
a
Department of Electrical Engineering, IIT Bombay

Internal Technical Report

FPGA Design for Decoder of Projective
Geometry(PG)-based Low Density Parity

Check(LDPC) Codes

Hrishikesh Sharma Sachin Patkar

July 29, 2010

Abstract

Explosive growth in Information Technology has produced the need of accurate
ways of transmitting large amount of digital information over really long distances.
Faster and efficient ways of encoding and decoding digital data to be transmitted
across different kinds of channels have been developed over the years to maximize
the utilization of the channel capacity and ensure error-free transmission. Low
density parity check codes(LDPC), proposed by Robert Gallager in 1960, have
been the subject of intense research and analysis over the past decade after their
rediscovery in 1996. Since they possess the potential to perform very close to the
Shannon limit, compared to any other code, the hindrances in the implementation
of LDPC codes have been widely studied. High-throughput decoding of such codes
has often been a challenge due to the large amount of resources required in fully
parallel implementations and lower throughputs in serial implementations. Mem-
ory efficiency is a known obstacle in achieving high throughput. Many structures
on their parity check matrices have been tried out to have efficient decoder designs.

In this report, we provide the detailed design of a fully-parallel LDPC de-
coder based on projective geometries, targetted for hardware emulation on Xilinx

1

Virtex-5 LX110T FPGA, and the corresponding platform XUP ML505. The de-
sign is based on memory-efficient communication primitives known as perfect access
sequences. Simple switches are used to interface the nodes with a regular inter-
connect. Architectural concepts of speculative scheduling and microprogramming
have also been used in the design.

1 Introduction

Rapid technological advances in the recent past have placed a recurrent demand on max-
imization of the speed and accuracy of modern communication systems. Error detection
and correction in short as well as long range communication systems forms an integral
part of the communication process. Efficient error correction schemes are, therefore,
crucial to the functioning of the communication pipeline. Such schemes are especially
important for maintaining data(information) integrity across noisy channels and less-
than-reliable storage media. With the advent of wireless communication, where they
channel noise is worse, importance of efficient error control has just increased. The
simplest error correcting schemes involve the acknowledgement of error-free message re-
ception, and retransmission of messages if required. However, Forward Error Correction
Schemes, involving encoding the data with an error-correcting code (ECC) at the point
of transmission and decoding the “most likely” data at the receiver end, are much more
popular. Such schemes are used in used in computer data storage, for example CDs,
DVDs and in dynamic RAM as well as in digital transmission, especially wireless com-
munication.

LDPC codes are an emerging class of ECC codes which exhibit superior bit error rate
(BER) performance, approaching the limit of Shannon capacity, over conventional chan-
nels. They require order of magnitude less arithmetic computations than equivalent
Turbo decoders. Also, relative ease of decoder design coupled with better performance
has made these codes candidates for usage in the recent generation of digital transmission
and magnetic storage systems. These codes were proposed by Robert Gallager in his doc-
toral work at MIT, 1960 [6]. Due to the technological limitations in implementing them
at that time, they were almost forgotten till they were rediscovered in 1995 by Mackay
and Neal [14] and have been widely studied since then, especially due to their potential
to perform close to the Shannon limit [27]. Their error correcting capability coupled with
superior encoding techniques has brought about their acceptance as the new standard in
a lot of digital transmission applications. As of now, LDPC are the standard of ECC in
satellite transmission(DVB-S2) for digital television [4], 10GBase-T Ethernet (802.3an),

2

G.hn/G.9960(ITU-T Standard for networking over power lines, phone lines and coaxial
cable) and WiMAX (IEEE 802.16e standard for microwave communications) [18].

LDPC codes are actually a class of linear block codes. Decoding of LDPC codes requires
iterative methods, and is based on soft inputs from the channel. Many approximation
algorithms have been designed for decoding LDPC codes[3]. All LDPC decoding al-
gorithms require large number of parallel working memories, and hence designing for
memory efficiency is one of the most challenging problems in its decoder design. In our
work, we have focused on a hardware implementation of LDPC decoder, as part of a
broader work of development of efficient methodologies for on-chip parallel computation.
More specifically, in this work, we have designed for hardware scheduling of decoder that
avoid memory bottlenecks arising out of conflicts, on-chip.

Unlike other codes, design of a LDPC decoder depends not only on code parameters(e.g.,
block length and code rate), but also on the type of the LDPC code. That is because
the architecture of an LDPC decoder depends exclusively on the structure of the set
of codes as represented by their parity check matrix H. To achieve good throughput
with reasonable decoder complexity, structured(in contrast to random) LDPC codes are
used more often. Different code structures, in form of different H matrices, result in
different architecture design, and hence different memory management schemes. Our
choice of structures has been one whose parity-check matrix is derived out of geometry
of projective spaces[4]. This choice of structure avoids memory conflicts, and also leads
to lesser routing congestion.

Field Programmable Gate Arrays(FPGAs) are increasingly being seen as a promising av-
enue for High Performance Computing (HPC), especially with the introduction of high-
end FPGAs such as Virtex-4/5 by Xilinx. These FPGAs are a very attractive choice
for hardware prototyping due to their abundant local memory, embedded high-speed re-
sources like DSP blocks, their reconfigurability etc. We selected FPGAs for prototyping
our decoder architecture. The main challenge associated with FPGA-based design is to
make the design as flexible in parameters as possible, small enough to meet the resource
constraints with optimization in speed. A lot many researchers have reported proto-
type implementation results on FPGA for structured codes[6,7]. We present results
for our first prototype based on fully parallel implementation of PG LDPC decoder.
This implementation has helped as a stepping stone towards on-going implementation of
semi-parallel design of the decoder. While a more complete picture of performance will
emerge from the semi-parallel prototype, the objective of this implementation has been
to demonstrate simplicity of design for PG-based LDPC codes, the high efficiency of the
hardware due to the structure, apart from just BER performance. The implementation
of our architecture has evolved by careful use of high-performing resources on modern

3

FPGAs. In this report, we present the design and implementation results for fixed point
logarithmic belief propagation(log-BP) decoding for projective-geometry based codes, tar-
geted at the Virtex-5 LX330T FPGA. We also present first time, the BER results for
PG-based LDPC codes’ decoding using log-BP algorithm.

The following sections are organized as follows. We first introduce LDPC Codes, and a
complete derivation of a decoding algorithm for such codes. This is followed by explaining
our choice of codes and their advantages. We also reproduce a parallel scheduling model
to be used in decoder design [11]. With this background, we provide the design details.
Especially, we give the details of the data path elements: processing units, memory blocks
and interconnect, followed by the control path details in terms of microcode sequencing.
We provide the overview of how we targetted such design for Xilinx FPGAs, followed by
results based on synthesis and simulation. We conclude by noting down the future work
possible.

2 LDPC Codes and Decoding

LDPC codes are capable of performing very close to the Shannon limit when decoded
using probabilistic soft decision decoding process. In this decoding, knowledge of channel
noise statistics is used to feed probabilistic information on received bits into the decoder.
The reliability of bit information is successively improved over iterations, and the hard
decision made post refinement. These iterative decoding schemes lead to acceptable
complexity in decoder design.

2.1 Matrix Representation

LDPC codes are actually a class of parity check codes. Hence, they can be fully
defined by a m × n parity check matrix H, with an additional requirement that the
matrix H be sparse. A valid codeword is said to be in the null space of the matrix H,
and hence satisfies the following.

HcT = 0 (1)

All the vectors that satisfy the above equation are said to be valid codewords for the
given code. The above product is equivalent to m parity check constraints involving any
of the n bits of the vector. The rows of the H matrix thus represent the check constraints.
Each of the columns of the matrix denotes a particular bit of the code and shows the

4

Figure 1: Tanner graph of a (2,4) regular code

constraints that it is involved in. If each of the code bits is present in the same number
of check constraints, and each of the constraints involves the same number of bits, then
the code is said to be a regular LDPC code(irregular otherwise). In general, the parity
checks can be replaced by parity checks over Galois fields containing elements other than
0 and 1. Such class of codes are called polynomial codes.

2.2 Graphical Representation

The Tanner graph is a bipartite graphical representation of H having two sets of vertices:
n bit nodes, and m parity-check nodes, for a m × n sized parity-check matrix. A bit
node is connected to a check node if it is involved in the parity check denoted by the
check node.So, an edge in the Tanner graph represents a non-zero entry in the matrix
H. In the Tanner graph of a regular code, all bit nodes have the same edge degree, and
all check nodes have the same edge degree. A code is said to be (j,k) regular if each bit
node is connected to j check nodes, and each check node is connected to k bit nodes. j
and k are also called the column and the row degree of the matrix H, respectively. An
example Tanner graph of a (2,4) regular code is shown in Figure 1.

The Tanner graph representation is used to represent the exchange of information be-
tween the bit and the check nodes during the decoding algorithm. The exchange of data
can be visualised to take place over the edges of the graph during each iteration of the
decoder.

5

2.3 Derivation of Log Sum-Product Algorithm

The decoding process followed in this work is of soft decoding nature [9]. In the soft de-
coder, rather than flipping bits, probabilities are propagated through the Tanner graph,
thereby accumulating evidence that the parity checks provide about the bits. The opti-
mal(minimum probability of decoding error) decoder seeks a codeword ĉ which maximizes
P(ĉ|y,Aĉ = 0), that is, the most probable vector which satisfies the parity checks, given
set of received data y = [y1, y2, · · · , yN].

There exit optimal algorithms chasing this computation that provide the best Frame
Error Rate(FEC) [7]. It is reached by the Viterbi Algorithm. Although block codes have
a trellis representation, the complexity of their trellis increases exponentially with the
size of the code. The decoding complexity for the true optimum decoding of an unstruc-
tured (i.e., random) code is hence exponential in K(for an (N,K,D) block code). Many
suboptimal decoding algorithms(e.g., BCJR) have been proposed to work on reduced
trellis size, but the complexity still remains high, especially when the codes have many
parity checks involved. If one focusses on having optimal Bit Error Rate, then, using a
simplification by MacKay [17], the decoder attempts to find a codeword having bits cn

which maximize

P (cn|y, all checks involving bit cn are satisfied)

That is, the posterior probability for a single bit given that only the checks on that bit
are satisfied. As it turns out, even this easier, more computationally localized, task
cannot be exactly accomplished due to approximations the practical algorithm must
make. However, the decoding algorithm has excellent demonstrated performance and
the complexity of the decoding is linear in the code length. Also, if the probability
of symbol taking different values from its alphabet are all equal, then it can be shown
in a straightforward way [7] that the abovementioned Maximum a-posteriori(MAP) de-
coding yields same results as Maximum Likelihood(ML) decoding. Hereafter, for better
readability and saving space, we will use a shortened notation, P (cn|y), to imply
P (cn|y, all checks involving bit cn are satisfied).

A derivation of the decoding algorithm, using log-domain inputs, is distilled and captured
here for understanding purposes, from [2], [7] and [17]. Computationally, this log-domain
version avoids having to compute normalizations, which are present in the basic sum-
product algorithm [17]. Also,

ĉn = 0 if Pr(cn = 0|y) > Pr(cn = 1|y) (2)

ĉn = 1 if Pr(cn = 0|y) < Pr(cn = 1|y) (3)

6

Hence if one considers log likelihood ratios as below, then using only the sign bit of LLR,
one can estimate or decide the most probable value of cn. The drawback of decoding
based on this representation is that it is only applicable to binary codes. Luckily, the
decoder we have designed deals with binary block codes only.

Let

λ (cn|y) = log
P (cn = 1|y)

P (cn = 0|y)
= log

P (cn = 1|yn, {yi : i 6= n})
P (cn = 0|yn, {yi : i 6= n})

(4)

Using Baye’s rule, the numerator can be re-written as

P (cn = 1|yn, {yi : i 6= n}) =
p(yn, cn = 1, {yi : i 6= n})

p(yn, {yi : i 6= n)}

=
p(yn|cn = 1, {yi : i 6= n}) · p(cn = 1, {yi : i 6= n})

p(yn| {yi : i 6= n}) · p({yi : i 6= n})

The noise that is superimposed on the transmitted codeword is in general assumed to be
a stochastic process. If this sequence of (noise) random variables is also independent,
identically distributed(i.i.d.), then, given cn, yn is independent of {yi : i 6= n}. Thence
the expression above can be simplified as

=
p(yn|cn = 1) · p(cn = 1, {yi : i 6= n})
p(yn| {yi : i 6= n}) · p({yi : i 6= n})

=
p(yn|cn = 1) · p(cn = 1| {yi : i 6= n})

p(yn| {yi : i 6= n})

The likelihood ratio in equation 4 can hence be written as

λ(cn|y)︸ ︷︷ ︸
Total Information

= log
p(yn|cn = 1)

p(yn|cn = 0)︸ ︷︷ ︸
Intrinsic Information

+ log
p(cn = 1| {yi : i 6= n})
p(cn = 0| {yi : i 6= n})︸ ︷︷ ︸

Extrinsic Information

(5)

The total information represents the overall information of bit n. As pointed out earlier,
the sign of total information leads to estimation of ĉn, while the magnitude of it repre-
sents the reliability of this estimate. Intrinsic information can be derived based on various
channel models, and the formula are tabulated in [7]. A sample derivation of intrinsic
information for AWGN channel model(= 4 · yn/σ2) can be found in [2]. It is obvious
that the intrinsic term is determined by the explicit measurement yn that affects the
bit cn. Similarly, it is obvious that the extrinsic term is determined by the information

7

provided by all the other observations, and the code structure. It essentially represents
the improvement of information we gain by considering the fact that the coded sym-
bols(bits) respect certain constraints. Hence one can try express the probabilities in the
extrinsic term in terms of the parity checks, as in next section.

2.3.1 Belief Propagation on Cycle-free Tanner Graphs

Let zm,n denote the (partial) parity check computed using all the bits connected to the
mth (total) parity check associated with cn, zm, except for bit cn. For setting up notation,
let the set of bits that participate in check zm be denoted as

Nm = {n : Hm,n = 1}

Also, let the set of bits that participate in check zm except for bit n be denoted as

Nm,n = Nm\n

Then,

zm,n =
∑

i∈Nm,n

ci (6)

For further notation, let the set of checks in which bit cn participates be denoted as

Mn = {m : Hm,n = 1}

Further, let
Mn,m = Mn\m

be the set of checks in which bit cn participates except for check m. The probability
that cn = 1 is the probability that the parity of all the other bits implied in each of
the parity check in which cn participates(Mn) is equal to 1 as well, so that the parity
check equation could be satisfied(even parity). Hence if cn = 1, then zm,n = 1 for all the
checks m ∈ Mn. Similarly, if cn = 0, then zm,n = 0 for all m ∈ Mn. Then, equation 5
can be rewritten as

λ(cn|y) = Intrinsic Information + log
P (zm,n = 1 for all m ∈ Mn|{yi : i 6= n})
P (zm,n = 0 for all m ∈ Mn|{yi : i 6= n})

On Cycle-free Tanner graphs, the events zm,n = 1 for m ∈ {1, · · · , |Mn|} are
conditionally independent given {yi : i 6= n}. This is because the set of bits associated

8

with zm,n will be independent of the bits associated with zm′,n, for m′ 6= m, in cycle-free
Tanner graphs, since the corresponding parity checks constraints m, n form disjointed
trees. Hence the extrinsic information term of the above equation can again be rewritten
as

log

∏
m∈Mn

P (zm,n = 1|{yi : i 6= n)∏
m∈Mn

P (zm,n = 0|{yi : i 6= n)

=
∑

m∈Mn

log
P (zm,n = 1|{yi : i 6= n)

P (zm,n = 0|{yi : i 6= n)

The individual probabilities in the numerator/denominator can be calculated using a
theorem by Gallager [6], which also gives first hint towards possible involvement of
recasting the above expression using hyperbolic functions.

• Consider a sequence of M independent binary digits ai for which Pr(ai = 1) = pi.
Then the probability that {ai}M

i=1 contains an even number of 1’s is
1
2

+ 1
2

∏M
i=1(1− 2pi).

Moving on, if we define the log likelihood ratio

λ(zm,n|{yi : i 6= n}) = log
P (zm,n = 1|{yi : i 6= n)

P (zm,n = 0|{yi : i 6= n)

Then, expanding using equation 6, where summation implies a binary XOR(⊕) opera-
tion, we have

λ(cn|y) = Intrinsic Information +
∑

m∈Mn
λ(zm,n|{yi : i 6= n})

= Intrinsic Information +
∑

m∈Mn
λ
(∑

j∈Nm,n
cj|{yi : i 6= n}

) (7)

Now, following the proof in [7], we have

tanh
1

2
log

Pr(zm = 0|
⋃

Dj)

Pr(zm = 1|
⋃

Dj)
=

∏
j∈Nm

tanh
1

2
log

Pr(cj = 0|
⋃

Dj)

Pr(cj = 1|
⋃

Dj)

Where Dj represents the set of other bits on which calculation of cj depends, i.e. Dj =
union of set of other bits used in parity check equations of set Mj. These bits can be

9

seen as set of all the bit vertices reachable in the rooted tree depicted in figure 2, from
the root cj. By reversing the sign, we have,

− tanh
1

2
log

Pr(zm = 1|
⋃

Dj)

Pr(zm = 0|
⋃

Dj)
=

∏
j∈Nm

tanh

(
− 1

2
log

Pr(cj = 1|
⋃

Dj)

Pr(cj = 0|
⋃

Dj)

)

Due to cycle freedom of underlying graph, the dependent set of bits for each cj are
independent. Further, because LLR is a ratio, then by applying Baye’s rule, Dj can be
replaced by {yi : i ∈ Nm,n}(we are counting other bits) for ratio purposes. Hence

− tanh
1

2
log

Pr(zm = 1|{yi : i 6= n})
Pr(zm = 0|{yi : i 6= n})

=
∏

j∈Nm

tanh

(
− 1

2
log

Pr(cj = 1|{yi : i 6= n})
Pr(cj = 0|{yi : i 6= n})

)

Then, using the definition of λ above,

− tanh
1

2
(λ(zm)) =

∏
j∈Nm

tanh

(
− 1

2
λ(cj)

)
(8)

Let Sj be the sign of λ(cj), which is a conditional LLR. Similarly, let Mj be the magnitude
of λ(cj). Then,

λ(cj) = Sj ×Mj

Using this in equation 8, and noting the fact that tanh(−x) = − tanh(x), we have

− tanh 1
2

(λ(zm)) =
∏

j∈Nm
tanh

(
− 1

2
Sj ×Mj

)
= (−1)|Nm| ×

(∏
j∈Nm

Sj

)
×
∏

j∈Nm
tanh

(
1
2
Mj

)
= (−1)|Nm| ×

(∏
j∈Nm

Sj

)
× log−1 log

(∏
j∈Nm

tanh
(

1
2
Mj

))
= (−1)|Nm| ×

(∏
j∈Nm

Sj

)
× log−1 ∑

j∈Nm
log
(
tanh

(
1
2
Mj

))
Or,

λ(zm) = (−1)|Nm|−1 ×

(∏
j∈Nm

Sj

)
× 2 tanh−1 log−1

∑
j∈Nm

log

(
tanh

(
1

2
Mj

))

10

Let us define a function φ(x) = − log tanh |x|
2

. It is easy to derive, using first principles,
that φ−1(x) = φ(x). Then, the equation above can be relaid as

λ(zm) = (−1)|Nm|−1 ×
(∏

j∈Nm
Sj

)
× 2 tanh−1 log−1

(
−1×

∑
j∈Nm

φ(Mj)
)

= (−1)|Nm|−1 ×
(∏

j∈Nm
Sj

)
× φ−1

(∑
j∈Nm

φ(Mj)
)

= (−1)|Nm|−1 ×
(∏

j∈Nm
Sj

)
× φ

(∑
j∈Nm

φ(Mj)
) (9)

Hence φ(x) represents a type of input transformation for the check nodes. Since originally
in equation 7 we are interested in calculating λ(zm,n), we have

λ(cn|y) = Intrinsic Information+
∑

m∈Mn

(−1)|Nm| ×

 ∏
j∈Nm,n

Sj

× φ

 ∑
j∈Nm,n

φ(Mj)

(10)

There is a curious factor in the second additive term of above equation, (−1)|Nm|. If

we were to define log-likelihood ratio as log Pr(ci=0)
Pr(ci=1)

instead of log Pr(ci=1)
Pr(ci=0)

, then it is
straightforward to see that this factor vanishes from second term. Whether one follows
the former or the latter convention do design a decoder system is essentially still a system
designer’s choice.

2.3.2 Recursive Calculation

Each of the additive term within the second additive term in equation 10 can be thought
of as the “message” which is passed from the check node m to the bit node n. How-
ever, it is also clear from the same equation that the computation of these check-to-bit
messages requires the knowledge of λ(cj|{yi : i 6= n}), the conditional likelihoods of the
bits which connect to the check equations of cn. Calculation of these likelihoods is in
fact the same problem as the computation of λ(cn|y), but by considering these bits cj

at the top of the subtrees resulting from the erasure of bit cn. This recursion has to
be processed until the leaves of the tree.

The terms λ(cj|{yi : i 6= n}) hence represent the “message” which is passed from the
bit node j to the check node m. This “message” is the collated information that the
bit node j gathers from various check nodes connected to it, except check node m, and
passes it on to check node m. The term λ(cj|{yi : i 6= n}) excludes channel information
that is related to bit n. This implies that information related to all the check equations

11

Figure 2: Recursive Calculation of Bit Likelihood Over a Tree

reachable by an edge in the tree rooted at bit node n(including check equation m) have
to be excluded. In lack of cycles(especially 4-cycles), it is straightforward to see that
between bit nodes j and n, no other check equation other than m is connected via an
edge to both bit nodes in the tree diagram. Hence, correspondingly, information λ(zm,n)
from check node m is omitted from calculation of λ(cj|{yi : i 6= n}). Thus

λ(cj|{yi : i 6= n}) = λ(cj|y)− λ(zm,n)
= (Intrinsic Information)j +

∑
k∈Mj,m

λ(zk,j)
(11)

A figure depicting the recursive calculation of of λ(cn|y) is given in figure 2.

It is also imperative that the leaf nodes of the above tree has to be bit nodes. What
is fundamentally available from channel observation is information about bits, and only
that can drive the decoder subsystem. Further, at the leaf level, the extrinsic information
accumulated from ficticious check nodes, that are actually absent, can be treated as 0 in
equation 11.

The above recursive computation is also known as Belief Propagation. This is because
each of the message, which denotes extrinsic information, represents a kind of belief that
a node of some type can share about the possibility of value being taken by a node of other
type(either bit value or the parity check value). Since such beliefs are made to propagate
throughout the tree, the algorithm is indeed a belief-propagation algorithm(sometimes
further called as message-passing algorithm).

12

2.3.3 Modification for Graphs with Cycles

For finite cycle-free graphs(trees), the log sum-product algorithm described so far is
clearly exact. This algorithm is able to compute the maximum information for the root
that can be obtained from all the observations. The algorithm is also finite-time on
trees, given the depth of the tree.

In practice, we rarely get codes whose corresponding Tanner graphs can be unrolled
into a tree alternating between row of bit nodes and row of check nodes. However,
because all the operations of sum-product algorithm are local(as observed earlier), it
may also be applied to graphs with cycles. The algorithm then becomes iterative and
approximate.

Another issue with the above algorithm is that the node cn, which was treated as the root
of the tree, is not a distinguished root node, but is actually an arbitrary node. This issue
can be dealt by considering each bit node cn in turn as if it were the “root” of a tree. For
each cn, we consider each parity check zm, m ∈ Nm associated with it, and compute check
to bit messages λm,n associated with it, and so onldots. This variant of algorithm does
not actually propagate information from leaf to root, but instead propagates information
throughout the graph as if each node were the root. If there were no cycles in the
tree, this algorithm would, in fact, still result in an exact computation at each node of
the tree. But as bits connect to checks to other bits through the iterations, there must
eventually be some cycles in the graph. These violate the independence assumptions and
lead to only approximate results[2]. Simulations have shown that if length-4 cycles are
avoided, then the results are still very impressive[20].

2.3.4 Inputs, Iterations and Output

The decoding algorithm derived above is clearly an iterative process of interchanging
information between the two types of nodes on the bipartite Tanner graph. The pattern
of interchange in an iteration is governed by the graph, which essentially depicts the
parity check matrix H. The fundamental input to the decoder system is the real-valued
sequence of discrete samples at the reciever end of the channel. Using a particular noise
model, these samples can be converted into intrinsic information samples, which are
fed to the decoder. An example conversion has been covered in section 2.3.5. Every
iteration, we try to estimate the value of bit, si, at bit node, from the total information
available about the bit (λ(cn|y) using set of equations 2. These decision equations

13

can be expressed in terms of LLR as follows.

ĉn = 0 ⇒ Pr(cn = 1|y)

Pr(cn = 0|y)
< 1 ⇒ log

Pr(cn = 1|y)

Pr(cn = 0|y)
< 0 (12)

ĉn = 1 ⇒ Pr(cn = 1|y)

Pr(cn = 0|y)
> 1 ⇒ log

Pr(cn = 1|y)

Pr(cn = 0|y)
> 0 (13)

The iterative process is halted if after calculating the syndrome condition(H · ŝT = 0)
over the estimated decoded vector d, at a given iteration, the resulting syndrome vector
becomes the all-zero vector. If after several successive iterations the syndrome does not
become the all-zero vector, the decoder is halted when it reaches a given predetermined
number of iterations. In both cases, the decoder generates optimally decoded symbols
or bits, in the a posteriori probability sense, but these will not form a code vector if
the syndrome is not an all-zero vector. In this sense the sumproduct algorithm does not
necessarily define the best estimate of the whole code vector that was initially transmitted
through the channel.

The presence of cycles of relatively short lengths in the bipartite graph is virtually
unavoidable when the corresponding LDPC code has good properties, but it is often
possible to remove the shortest cycles(of length 4, 6, 8, etc.), or least reduce their number.
The degrading effect of short-length cycles in the bipartite graph however diminishes as
the code length increases and is strongly reduced if the code length is large (>1000 bits)
[17].

2.3.5 Intrinsic Information for Gaussian Channels

In this section, we derive the intrinsic information value based on output of an Additive
white Gaussian noise(AWGN) channel. AWGN is a channel model in which the only
impairment to communication is a linear addition of wideband or white noise with a
constant spectral density and a Gaussian distribution of amplitude. The model does
not account for other channel issues such as fading, interference or dispersion etc. To
understand AWGN model, we look at some definitions first.

Gaussian noise is statistical noise whose (amplitude) samples have a probability density
function(pdf) of the Gaussian distribution. In other words, the values that the noise can
take on are Gaussian-distributed.

The above definition says nothing of the correlation of the noise samples in time, or
of the spectral density of the noise. Labeling Gaussian noise additionally as ‘white’
describes the correlation of the noise. In fact, white noise is another category of noise,

14

and hence white Gaussian noise is an intersection category of these noise models. White
noise is essentially a statistical noise with a flat power spectral density. In other words,
the signal contains equal power within a fixed bandwidth at any center frequency.

Gaussian noise is not necessarily always a white noise, since the definition of Gaussian
noise does not put any constraint on correlation of various amplitude samples, which are
Gaussian-distributed. Correlation between such samples in time or frequency domain
leads to distribution of signal power spectrum.

Hence one can define the intersection category of white Gaussian noise as a random
process N(t) which satisfies the following additional constraints.

1. µN = E[N(t)] = 0 (mean, expected value)

2. For any time instants t1 < t2 < . . . < tk, N(t1), N(t2), . . . , N(tk) are indepen-
dent gaussian random variables.

If we take a sequence of i.i.d. Gaussian random variables with a probability density
function N(0, σ2), then also the above two constraints are met. Treating these Gaussian
random variables as individual amplitude distribution of a white Gaussian noise process,
it is easy to prove that the power spectral density N0 is σ2/2.

The additive white Gaussian noise channel can now be defined/represented by a series
of outputs Yi at discrete time event index i. Yi is the sum of the input Xi and noise,
Ni, where Ni is independent and identically-distributed and drawn from a zero-mean
Gaussian distribution with variance σ2. The Ni are further assumed to not be correlated
with the Xi.

Ni ∼ N(0, n)

Yi = Xi + Ni

Let us assume that the modulation scheme been adopted post encoding of cn on the
transmitting end is Binary Phase Shift-keying(BPSK). In this scheme, each bit is mapped
to amplitude level of either +A or -A. Since we use binary codes, each symbol of the
codeword consists of only one bit, and hence simple schemes such as BPSK are applicable
clearly. Let us further assume that the mapping of {0, 1} to {+A, -A} is binary
antipodal, that is, {0 7→ +A, 1 7→ -A}. Such a choice is clearly a matter of convention.
Let the post-modulated analog signal be denoted by sequence tn, where the index n
essentially denotes a time period of the pulse on which the bit was modulated. Let us
also assume that the communication channel has N((µ =)0, σ2) AWGN model, which

15

has a probability density function of

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (14)

Due to additive property of noise, if it is superimposed upon a signal having a constant
amplitude of +A, then the new signal becomes yet another stochastic process with same
variance, but with a mean shifted from 0 to +A. Also, when applied to a situation where
tn = +A, the probability density function of the this output signal clearly denotes the
posterior probability, p(yn|tn = +A). Thus

p(yn|tn = +A) = 1√
2πσ2

e−
(yn−tn)2

2σ2

∣∣∣∣
tn=+A

= 1√
2πσ2

e−
(yn−A)2

2σ2

(15)

Using the convention of LLR, log p(...=1)
p(...=0)

, we have,

Intrinsic Information = p(yn|cn=1)
p(yn|cn=0)

, from equation 5

= p(yn|tn=−A)
p(yn|tn=+A)

= e
− (yn+A)2

2σ2

e
− (yn−A)2

2σ2

= −2·A·yn

σ2 , upon simplification

(16)

Generally A is assumed to be 1(normalized signal level) so that the encoded signal’s
power also turns out to be 1(normalized).

The above derivation makes use of two conventions: one for the definition of LLR, and
one for the mapping of symbols to amplitude levels. Based on variations on these,
different formulaes for intrinsic information can be derived using first principles, as in
this section.

2.3.6 Impact of Conventions on Output Decision

So far we have seen two conventions in the algorithm. One convention pertains to whether
LLR is represented as log (p=1···)

(p=0···) , or whether as log (p=0···)
(p=1···) . The other convention relates

to whether the BPSK modulation is assumed to be binary antipodal(ti = A · (1−2 · ci))
mapping, or binary podal(ti = A · (2 · ci − 1)) mapping.

16

The impact of first convention is change of sign of every data value, at every step
of decoding process, including the decision making process. The intrinsic information
becomes 2·A·yn

σ2 , hence opposite-signed data flows into the variable nodes, which in turn
emit opposite-signed bit-to-check messages. The impact of LLR convention then also gets
reflected in check node computation(refer equation 10) in terms of the factor (−1)Nm .
Finally, at the time of decision making based on sign of total LLR in bit node, an
opposite LLR condition, from equation 12, leads to making of right bit decision based
on opposite comparison with 0.

The impact of following a particular convention with respect to BPSK modulation is
slightly more subtle. If we change the BPSK mapping from e.g. binary antipodal to
binary podal mapping, then the intrinsic information also changes sign(e.g. to 2·A·yn

σ2).
However, given that for the same cn, tn now has an opposite sign, any average case noise
superimposition will lead the samples yn themselves to have opposite sign. Hence the
effect of 2 multiplicative (-1) terms in the intrinsic information formula tends to cancel
out even before it enters the iterative decoding process.

Hence, it does not matter what convention one follows, till one knows where all to make
changes in computation, thus ensuring that the output will still be consistent.

2.3.7 Summary of Decoding Algorithm

Input (a) The Parity-check Matrix H, (b) The maximum number of iterations(stopping
criterion) L, and (c) the sequence of intrinsic inforamtions from channel samples,
derived from equation 16.

Initialization (a) λ[0](zm,n|{yi : i 6= n}) = 0 for all (m, n) with Hm,n = 1. (b) λ
[0]
n =

Intrinsic Information as per the channel model used. (c) Loop counter l = 1.

Check Node Update For each (m, n) with Hm,n = 1, compute check(m)-to-bit(n) up-

date message(η
[l]
m,n) as(−1)|Nm| ×

 ∏
j∈Nm,n

S
[l−1]
j

× φ

 ∑
j∈Nm,n

φ(M
[l−1]
j)

Bit Node Update For each bit n = 1, 2, . . . , N , compute using equation 10, via mes-

sages from check nodes m: Hm,n = 1, as

λ[l](cn|y) = Intrinsic Information +
∑

m∈Mn

η[l]
m,n

17

Decision Making on Syndrome Vector At each bit node, after computing total in-
formation λ[l](cn|y) every iteration, set sn to 0 if λ[l](cn|y) < 0, or to 1 otherwise.
If H · sT = 0, then Stop decoding.
Otherwise, if l(number of iterations) is < L, the loop back to Check Node Update.
Otherwise, declare a decoding failure and Stop.

2.3.8 Cycles, Convergence and Update Scheduling

The scheduling of the BP algorithm is the order in which the messages of the graph
should be propagated. In the case when the Tanner graph has no cycles, this scheduling
does not affect the convergence of the algorithm. However, presence of cycles does delay
the convergence. Starting off from some node, extrinsic information can follow a cycle
and come back as redundant information to the same node, being part of some
message on the last step of the cycle. Back circulation of redundant information leads to
delay in convergence. As an aside, presence of short cycles delays the convergence more,
than presence of longer cycles.

The basic scheduling algorithm for sum-product, or belief propagation, is known as the
Flooding Schedule. In this scheduling, nodes of one side all do their updates in parallel,
after which nodes on the other side also do their updates in parallel. These two sets of
updates put together form an iteration. This scheduling is what was hinted at in section
2.3.3.

It can be seen by unfolding a Tanner graph, that there also exist paths/cycles that are
longer than the girth of the Tanner graph. Scheduling the message-based alternating bit
and check node update along these paths leads to improvement in convergence perfor-
mance. A class of decoding schedules, known as Shuffle Schedules, have been derived on
this observation [7].

Banihashemi and others have studied various ways of deriving schedules based on graph
concepts such as closed walks [22]. Another effort on deriving better schedule can be
found in [19]. In general, most of the scheduling techniques, and a single, broad frame-
work for describing these can be found in [7].

3 Projective Geometry and LDPC Codes

In this section, we present details of LDPC codes derived out of projective geometries,
that we use for our decoder. In the next section, we try to justify why we choose

18

projective geometry based LDPC codes.

3.1 Code Construction from Projective Geometries

Two classes of LDPC codes (type-I and type-II) can be constructed based on the lines and
planes of projective geometries over finite fields[12]. They have good minimum distance
properties and they can be decoded in various ways. They can also be put in quasi-cyclic
or cyclic form. This makes the hardware of the decoder easily practicable using shift
registers as well as their encoding easier using the linear-feedback shift register (LFSR)
technique.

Let G be a finite geometry with n points and j lines, and the properties of incidence on
lines and points.

The j×n matrix H = [hi ,j] for such codes is constructed as follows.

• Rows and columns correspond to the lines and points of the geometry respectively

• hi ,j= 1 iff the ith line contains the jth point in G and vice versa.

This in turn implies that,

• Incidence properties of G ensure that the resulting code is regular, with weights as
defined by the structure of the finite geometry.

• Any two columns have exactly one row where there is a ’1’ in both columns. This
corresponds to the fact that any two points lie on exactly one line.

• Similarly, any two rows have at most one column where there is a ’1’ in both
rows. This depends on whether the two corresponding lines are parallel, or they
intersect.

A matrix H derived from such a G, and its transpose, form two types of PG LDPC
codes, called the type I and type II codes respectively. Both the codes hence have
different codeword length(n and j respectively).

In decoding a linear block code such as LDPC with the Sum Product Algorithm and its
variants, the performance very much depends on cycles of short lengths in its Tanner
graph. A cycle in a (simple) graph is defined as a sequence of connected edges, which
starts from a vertex and ends at the same vertex. The sequence further satisfies the

19

condition that no vertex, except the initial and the final vertex, appears in the sequence
more than once. If there are short cycles, especially cycles of length 4, they make
successive decoding iterations highly correlated[2]. Hence the decoding performance gets
severely limited. It can be shown that the Tanner graph of type-I and type-II PG codes
don’t contain cycles of length 4. But they do contain cycles of length 6 [12]. Hence
their decoding is expected to be better than that of codes having girth-4 cycles in their
Tanner graphs.

Following [12], if the rows and columns of the matrix are derived from a general m-
dimensional projective geometry, PG(m,2s), over a GF(2s), the rows and column weights
will then be

wr = 2s + 1 (17)

wc =

(
2ms − 1

2s − 1

)
(18)

The null space of the matrix H defines a codeword ensemble of length j, given a j×n
parity check matrix H. The minimum distance properties of these codes provide them a
superior coding gain. Techniques like column and row splitting can be applied to improve
the code rate. It can be shown that one-step majority logic decoding can correct

[
wc

2

]
or

fewer errors in a code vector of a type-I PG LDPC code. Hence the minimum distance
of the code is at least wc + 1 [12].

For our analysis, we shall only consider codes based on lines and points of a 2-d projective
geometry, called the projective plane. Some of the characteristics of PG LDPC codes
based on projective plane, that need to be considered for decoding are as follows.

• The Tanner graph of the code is symmetric with respect to the degree of nodes of
any one kind, due to the duality of subspaces in the 2-d geometry.

• From the set of edges connected to one of the nodes in the graph, the set of edges
connected to any other node on the same side of bipartite graph can be found out
using Shift Automorphisms [11]. Hence the Tanner graph of the code is constructible
from incidences of just one node on one side of partite graph.

• Since the geometry is derived from a Galois field on prime power ps, the parameters
of the code and hence the design constraints also depend on the prime power ps.

For a LDPC code derived from PG(2,ps), the important design parameters are the fol-
lowing.

20

• Code length = n = no.of points = p2s+ps+1

• Number of parity check equations = j = no.of lines = p2s+ps+1

• Row weight = Column weight = ps+1

Then, for a fully parallel decoder for such a LDPC code, we have

• No. of bit processing nodes = p2s+ps+1

• Number of check processing nodes = j = no.of lines = p2s+ps+1

• Interconnect degree per node = ps+1

3.2 LDPC codes based on PG(2,23)

The projective plane over GF(8) contains 73 points and 73 lines. The H matrix is formed
by the incidence relationships between the lines and the points of the projective space,
as usual.

Recall that codewords of LDPC codes over GF(2s) contain symbols from the field GF(2):
{0,1}. In general, a class of codes called polynomial codes over GF(p), where p is any
prime number, can contain symbols from GF(p): {0,1,2,. . .,p-1}. The constraints for
such codes are then defined over modulo p arithmetic [13]. For example, the value of a
constraint may be given by (

∑
iviyi) (mod p), where coefficients vi’s are the coefficients

from the H matrix, and yi’s are the symbols of the input vector. For such generalized
constraints, however, the H matrix must also contain symbols from the base field GF(p).

Some of the parameters of the code are enumerated below.

• No. of bits = (23)2+ 23+ 1 = 73

• No of parity checks = (23)2+ 23+ 1 = 73

• No. of bits per parity check = 23+ 1 = 9

• No. of parity check per bits = 23+ 1 = 9

• Rate of the code = 45
73

21

The rate can be found by the formula given in [13]. For codes over PG(m+1,2s), no. of
parity check symbols in a codeword is

n− k = 1 +
(

m+p−2
m−1

)s
(19)

For the code under consideration, m=3, p=2 and s=3. Hence the number of parity
symbols in a block of 73 symbols is 28. Hence the rate of the code = 73−28

73
= 45

73
≈0.6.

Codes of such length may be useful in magnetic recording channels where layered coding
is used[8]. This involves using an outer code on a block which is already coded using an
inner code. One or both of these codes may belong to the LDPC scheme. Trellis and RS
codes are also popular in these applications.

In the remaining report, the design of the decoder for such codes is explained over. In the
next subsection, we introduce Karmarkar’s idea of perfect access patterns. We further
see its adaptability to decoding of LDPC codes using the log sum-product algorithm.
Then, we propose a design which makes use of the ideas entailed so far, to decode the
PG (2,23) LDPC code.

4 Choice of Codes

LDPC decoder design has three main parts: node unit design, interconnection network
design and the memory management design. Memory management, to some extent, is
tied up with interconnect design, because the node units use the interconnect network
only to access the message memory. It is the network that primarily determines system
performance in hardware system design [28]. Updating of extrinsic information is where
most of the time is spent by the decoder. Routing for direct wiring of the interconnect
network based on a random general Tanner graph leads to routing congestion due to
the disorganized nature of the defining graph. Such Tanner graphs also complicate the
design of memory controllers due to unstructured addressing pattern. To reduce the
complexity, some structure in the codes/graphs is needed. Our choice of Tanner graph
hence has been a regular Tanner graph. Designing regular LDPC codes with structural
properties such as girth is a combinatorial design problem. A nice work is by Shu Lin
et al[12], who present a geometric approach to the design of LDPC codes based on the
lines and points of various geometries over finite fields. They obtain four classes of cyclic
LDPC codes with girth 6. For long codes, BER performance of these codes is very close
to the Shannon limit. We have chosen type-I PG codes from their work. The required
regularity is visible from making a Tanner graph by carving out two subspaces and their

22

interconnections from a projective geometry lattice. As far as we know, our work is its
first extension towards efficient decoder design.

In general in the parity check matrix made out of subsumption relation between two
projective subspaces, not all rows representing parity check equations are linearly inde-
pendent. However, dropping such rows leads to slightly degraded performance[12], and
hence there are generally few more check nodes in PG-based LDPC decoder than strictly
required. Most of these codes have a rate of around 1/2, which can be boosted by a novel
technique called column splitting. A high-level design for column-split decoder has also
been worked out[21].

5 Parallel Scheduling Model

The scheduling model used in our design is based on Karmarkar’s template [11]. Projec-
tive geometry lattices possess structural regularity, and this property has been exploited
in scheduling of general parallel systems. Karmarkar was able to come up with a method
to achieve various nice properties that one seeks during parallel system design. As an
example, a 2-dimensional PG of order s contains n = s2 + s + 1 points and as many
lines. Each line is connected to s + 1 points and vice-versa. Given n processing units
and a memory system partitioned into n memory blocks M1, M2, · · · , Mn, Karmarkar’s
template can be applied by mapping memory blocks to points, and processing units to
the lines. A memory block and a processing unit are connected if the corresponding
point belongs to the corresponding line. Then any binary or multi-ary operation can be
assigned to each processing unit such that fetch of operators is based on perfect access
patterns(PAP) and sequences(PAS), as defined in [11]. A schedule for such a collec-
tion of operations leads to several important advantages, such as no memory conflict,
utilization of all processing units, full utilization of memory bandwidth, load-balancing
etc.

The perfect access patterns for a projective plane can be identified as follows. For
projective plane, shift automorphism can be applied transitively on both lines and points.
Hence one can use powers of it to “rotate among the points and lines such that each
point/line along the “rotation path is visited exactly once. Let l denote a line generated
by two points a and b. Then the perfect access pattern is defined by collection of
lines made out of shift automorphism of these points. The perfect access sequence is a
collection of such patterns, arising out of different pairs of points a and b, which are
part of same line l. A perfect access pattern is depicted in figure 3, while a perfect access
sequence is depicted in figure 4.

23

Figure 3: Example Perfect Access Pattern in Order-13 dimension-2 PG Graph

Figure 4: Example Perfect Access Sequence in Order-13 dimension-2 PG Graph

24

One can argue that the behavior of regular PG-based LDPC decoder is made up of perfect
access patterns and sequences [21]. Once that is established, applicability and utility of
Karmarkar’s template is obvious. The two types of computation, done by bit nodes
and check nodes, remain same over iterations. For each computation, the input mes-
sages(operands) have different values, and hence need to be stored in different memory
blocks. Thus it is imperative that we first split the LDPC decoding into two computa-
tions having topology similar to that Karmarkar’s template envisages. Fortunately, the
bit nodes and check nodes work in non-temporal-overlap fashion. We do the splitting
by designing in such a way that the memory block they access for operand input and
output are non-common. Thus the problem of scheduling for PAP/PAS in LDPC decod-
ing is decomposed into two isomorphic scheduling problems; see figure 5. Hence
we map both the sub-computations to the same fixed projective plane. In the bit-node
processing, the major processing involves adding the extrinsic information collected over
all the connections of the particular bit-node to check nodes. This processing is same in
nature on all bit-nodes. The number, and size of input coefficients that each bit-node
deals with, is also fixed. By taking two inputs at a time for addition, we can sched-
ule a binary operation on each bit-node processing unit, in every machine cycle. The
set of concurrent operations in each cycle form a PAP, while the set of all operations
within complete bit-node processing form the PAS. The processing is similar in check
nodes, though in log(tanh()) domain, hence one can again find perfect access pattern
in check-node processing as well. It can thus be observed that by the time a perfect
sequence execution is over, (major) processing (part) required on a node is also over.
Hence the PG-based LDPC code decoding algorithm does exhibit behavior which has a
decomposition based on perfect access patterns and sequences. All that remains, then,
is to deal with its refinement for detail design purposes.

For a more detailed picture of this mapping and applicability of Karmarkar’s template,
one can refer to [21].

6 Overall Hardware Model

A hardware implementation of the LDPC decoder has a number of components, each
with its own set of design challenges and architecture options. An intuitive look at the
algorithm suggests the following components.

• Sequential logic design for performing the bit node and the check node updates

25

• Interconnect design using direct wires and memory blocks, to realise the edges of
the Tanner graph i.e. the connectivity between nodes

• Finite precision representation of the data elements, i.e. messages

• Memory access/storage for the data dependency between iterations

• Fast and efficient I/O for block decoding of the codes

Some of the salient features of the decoding algorithm, which have a direct consequence
on the mapping of the algorithm to hardware, are as follows.

• In both the bit and check node updates, there is no data dependency between nodes
of the same type. So, all bit node processing/check node processing can happen in
parallel.

• The messages passed over the edges are carried forward from one iteration to the
next one. Hence they have to be stored/accessed from some local/global memory.

Figure 5: Symmetrical Decomposition of LDPC Decoding Computation

26

• The datapaths of the bit node and the check node processing units performing the
bit node and the check node updates may contain complex functions that have to be
quantized using lookup tables (LUT’s).The precision involved in such quantization
also affects the code performance of the entire system[10].

• The control path of the decoder does the scheduling of the node computations, and
the address generation for data fetching/storing. Following section 2.3.8, flooding
schedules have the highest degree of parallelism, where every node computation
happens in parallel with nodes of the same type.

• Regular LDPC codes have the leverage offered by the SIMD architectural models,
since data path of every check node is same, as well as the data path of bit nodes.
Further, at a time, if flooding schedule is used, either bit nodes, or check nodes are
doing the computation. Hence the difference remains only in different input data
on which these nodes operate upon.

Interconnects have long proven the roadblock in VLSI implementations of LDPC de-
coders at large code lengths. In order that a VLSI LDPC decoder be effective, it should
be able to meet following requirements to the maximal extent possible.

Conflict-free Memory Access LDPC decoding being communication-intensive(iterative
message-passign algorithm)”, memory accessing needs to be primarily optimized.
Depending on the degree of the Tanner graph of the code, multiple processing el-
ements will require data from a particular memory block during their execution.
The memory sub-system hence should be free to maximum extent from various
interconnect congestions, and in the best case, needs to be able to handle various
concurrent memory access requests in a conflict free way.

Scalable There should be no major modifications are required for it to be able to decode
codes of higher lengths.

Centralized Control logic Since the model of decoding computation is SIMD under
flooding schedule, it is possible, within an iteration, to replicate/centralize the
control path. This further reduces the logic density of the decoder circuit. This
will however increase the length of wires to be routed across modules, and may
require buffering along the path to offset the parasitics-driven wire delays.

Now we discuss the structure of a decoder design for PG LDPC codes, which tends to
satisfy the above requirements.

27

6.1 Data Path Overview

Most of the computational logic of the design is contained in the node processing units.
As discussed earlier, there are two types of nodes and memories in the decoder. The bit
nodes read input messages from the check memories, write back to bit memories, and
vice-versa. This completes an iteration of decoding, after which the complete datapath
is traced back in next iteration, till the finish. The memory blocks and processing units
are connected according to the geometry of the order-8, dimension-2 projective space.
All components along the datapath are synchronous, sequential logic elements.
The components are synchronous, since that eases the controlling based on microcode
sequencing, detailed in next section. Each component is further controlled by its own
enable signal, so that power wastage could be avoided. For speed and resource efficiency,
we chose to implement the data path using 9-bit fixed-point arithmetic, which has
1 sign, 3 integer and 5 fraction bits. It was found sufficient to represent LLRs for BER
measurements that we planned. Coincidentally, it also helped in implementing memory
blocks using block RAMs on Virtex 5 FPGA, which can be naturally configured having
9-bit ports. To avoid overflow during accumulations, the internal data path was made
13-bit wide in bit nodes, and 12-bits wide in check nodes. Since magnitude processing
happens separately in check nodes than sign processing, we need a bit less in width of
the magnitude data-subpath of check nodes. Bit nodes follow 2’s complement arithmetic
during their computation, while check nodes follow sign-magnitude arithmetic during
their computation. For conflict-free memory accesses along the datapath, we choose to
employ the perfect access sequences for governing the flow of messages. Memory blocks
are designed using hard macros, such as BRAMs in FPGA implementation that we
targetted, and are also assumed to be synchronous access storages. The time of flight of
signal over the interconnect is assumed to be negligible enough to avoid wire pipelining
in ASIC design.

Figure 6: Node Processing Unit Interface

28

The bit (check) side units represent the points (lines) of the geometry, and correspond-
ingly the columns (rows) of the parity check matrix H. Every node processing unit has
two inputs and two outputs, along with the control signals to enable various internal com-
ponents. Binary perfect access sequences are obeyed during each read or write of data
at the computation boundaries. The black box representation of each node processing
unit is shown in figure 6.

6.2 Control Path Overview

To have a scalable control path, we chose to use the popular microcode sequencing
template for control path design. Accordingly, all data path elements are synchronous
sequential logic elements with their own enable signals. Such a template also helps from
the requirement of being able to exploit the SIMD nature of computation by means of
having a centralized control unit.

While implementing the control store, we do not need extra space in the table to handle
branchings. In fact, we only have one branching at the end of the decoding, and that
can be handled out of microcode-based sequencing as an exception case.

A disadvantage of using such a control path architecture is that the implicit pipeline
stages are unbalanced in general. So the width of each clock pulse need not be max-
imally utilized to cover the propagation delay of various computing components. So
while one component, when enabled, may take T/2 time to finish computing, then next
component in datapath may take T time to finish its computation, starting from next
clock edge. In this case, due to synchronous design, there is T/2 time, during which
system is doing nothing, but which cannot be avoided. Unless one is careful during
structural decomposition of the design to have similar-depth circuits(in terms of primi-
tive gates), an asynchronous design is bound to give better performance over a microcode
sequenced synchronous design.

7 Bit Node Architecture

Every bit processing unit has to perform the following update on its data(see equation
7).

λ(cn|y) = Intrinsic Information +
∑

m∈Mn

λ(zm,n|{yi : i 6= n}) (20)

29

Hence each bit processing unit reads following two types of data from check memory
blocks in appropriate cycles.

• Intrinsic information, which is best latched at the beginning of decoding iterations,
and

• Extrinsic probabilities or check-to-bit messages λ(zm,n|{yi : i 6= n}) from check
memory blocks

The value λ(cn|y) is essentially the residue for a check node m. It involves the sum of the
intrinsic information, and all the incoming check-to-bit messages except the one from
the check node m. There are multiple options for calculating the residue.

Direct For every edge incident on the node, the bit node updates can be computed
independently. This would require independent datapaths for all the computations
in a single bit node, thus requiring a huge amount of gates. Hence is suitable only
for a small-sized Tanner graphs.

Trellis A forward-backward processing is performed to calculate the output messages,
just like a systolic Trellis graph method. Such a method has been reported in [3],
albeit for check nodes.

Total sum-first If the primary node operator(XOR in the case of check nodes, ad-
dition for bit nodes) is invertible(XOR and subtraction respectively), then the
computation can be done as follows. All the messages from the incident edges
can be combined first using the primary operator, and then individual, inverted
messages can be combined to this total sum to get the value of updated messages
for further propagation(see figure 7). This saves upon a number of gates, as the
combining of all messages is a shared computation.

We use total-sum-first approach in our design, wherever possible. We will see instances
of that in the next few sections. All the incoming messages are first summed up to
calculate the total sum. The phase of time in which this computation is done is termed
as the accumulation scan[21]. The second phase of computation, the calculation of
residues, can be termed as the output scan.

In the next few sections, we will describe portions of the complete datapath of bit pro-
cessing unit. The complete datapath is depicted in figure 8.

30

Figure 7: Total-sum-first calculation of Residues

7.1 Input Preprocessing

The accumulation scan is preceeded by preprocessing of bit node inputs, the check-to-bit
messages. The data flowing through the decoder across various iterations is signed data,
and hence 2’s complement arithmetic is preferred for implementing the computation,
wherever possible(e.g. in bit processing units). However, as explained in next section,
check processing units follow sign-magnitude arithmetic. Hence, bit processing units,
as a design option, have their data inputs as well as outputs in sign-magnitude format.
This in turn implies that the input data to bit processing units be first converted into
2’s complement format, before being presented to various arithmetic components (such
as signed adder) for computation.

A major part of computation in bit processing units is signed addition/accumulation of
messages to form the total sum. Repeated fixed-point addition can potentially lead
to overflow conditions. Hence we choose, in order to bring down loss of accuracy, a higher
width for internal datapath so that there is no truncation or rounding involved during
accumulation scan. At some point of time, we will need to bring down the datapath
width back to the width of system’s global datapath. By doing this shrinking at the
end of output scan, the rounding errors that will happen on data after subtraction(in
output scan), in general may be less than in the case when no higher internal bitwidth
is employed.

31

Figure 8: Complete Datapath of Bit Node

To expand a fixed point 2’s complement datum to a higher bitwidth, we do an obvious
sign extension of the datum. The number of additions that take place in accumulation
scan are 9 right now, for the message inputs, and 1 more to add up the intrinsic infor-

32

Input (sign-magnitude) 2’s complement

011010000 0000011010000
101000100 1111110111100

Table 1: 2’s complement and sign extension

mation. Hence,the maximum possible number of bits in which we can represent a datum
that is 10 times a 9-bit fixed point input, is (9+ dlog2 10e), i.e. 13 bits. Hence we choose
the internal datapath width of bit processing units to be 13 bits long, to accomodate
worst-case accumulation overflows. This 13 bit representation is also a fixed point rep-
resentation. Expecting the integer part to overflow, the representation consists of 1 bit
sign + 7 bits integer + 5 bits of fraction.

Two examples of preprocessing of positive and negative incoming datum to the bit pro-
cessing unit is shown in table 1.

7.2 Accumulation Scan

The first part of accumulation scan, in a multi-cycle synchronous operation, computes
the total sum of all the preprocessed input messages, taking 2 inputs every clock cycle.
This is done by implementing a 3-input, 13 bit clock-synchronous signed adder with a
synchronous clear. As mentioned earlier, 2 inputs are processed at a time, because we
are interested in leveraging the advantages of perfect access patterns during reading of
check-to-bit messages from check memory blocks. Hence we take 5 cycles to add up 9
input messages. In general, for m inputs to the adder, the accumulation is complete in[

m+1
2

]
cycles. The 3rd input of the adder generating the total sum is hence a feedback

input from the output, which feeds back the partial sum of messages accumulated so
far back into the addition process. To start with a partial sum of 0, a synchronous
clear has been provided in the adder, which when enabled, sets the output to 13b’0.
This particular instance of signed adder is shown in top right of the figure 8, where the
accumulation scan itself is depicted as the upper half of the datapath (above the blue
line which partitions the computation). We set the last (10th) input in 5th cycle to 13b’0
as a dummy input to the adder, since we have only 9 real inputs. This 10th input is
ensured as 13b’0 by the interconnection network between the memory blocks and the
processing units. This will be explained in the interconnects section 10.

The second part of the scan comprises adding the intrinsic information, in form of a log-

33

likelihood ratio(LLR), to the total sum. This is accomplished by another signed adder,
which adds the 2’s complemented and sign-extended version of the intrinsic information
value to the total sum. We use the same signed adder, but instead of implementing any
feedback(which is not required for a single-cycle operation), we choose to provide the 3rd

input as 13b’0.

The synchronization of preprocessing of input values before they are added, and providing
the enable signals to both the adders subsequent to input preprocessing, are taken care
by a group of signals, which include enable of adders, clear of adders, sign-extension
enable, etc.

As another design option, we latch the intrinsic information provided to the decoder
system inside the bit processing unit. This is because in the worst case, we expect
intrinsic information to be provided to the decoder system only at the time of beginning
of decoding. Since in every iteration, bit processing units need this information for
accumulation, we have to latch the data for these future usages. Intrinsic information
is expected to be provided in sign-magnitude format itself, for sake of consistency of
data inputs on the interface of the bit processing units. The preprocessing of intrinsic
information is done once every iteration, whenever required.

Since the next, output scan is itself a multi-cycle computation, the output total sum is
required to be kept constant for multiple cycles. This means we should be able to create
a latch kind of effect at the end of second adder. We achieve so by making the each bit
of the output of signed adder pass through a FDE macro(provided on Xilinx FPGAs),
which preserves the bit value as signal on the output wire, even after its enable has been
pulled down. For details, one may synthesize the signed adder, and see its technology
view/map in various synthesis tools.

7.3 Output Scan

The residues are calculated for each bit processing unit, by subtracting the input mes-
sages from the total sum, in the same order that they were presented to adders during
accumulation scan. Hence a shifted version of inputs is created as inputs to the output
scan datapath. We need two fundamental components in the output scan.

• Shift Registers: Since the same inputs are used both in the accumulation scan
as well as the output scan, a copy of them is tapped from the place where they are
input to the first adder in the accumulation scan. Once an input during accumu-
lation scan is converted into 2’s complement form, and sign extended, it is passed

34

Figure 9: Shift Register block

through a synchronous shift register. Each cell of the shift register is hence 13-bits
wide. Data shifts through the cells on the rising clock edge. The shift register
block is shown in figure 9.

The number of cells in the shift register have been fixed to match the latency of the
accumulation scan(6 cells). By the time when the accumulated total sum is stable
on the output of the second signed adder, the first(second) shifted input is also
stable on the first(second) shift register output. In the next 4 cycles, 3rd and 4th,
5th and 6th . . . inputs appear at the output of the shift registers, as if the inputs
were made to pass through some pipeline. There are two shift registers, one each
to generate one of the two inputs for each of the two subtractors that calculate
the residues. Since two inputs have been accessed per cycle during accumulation
scan, only two residues are calculated for output per clock cycle. This reuse of the
inputs alleviates the need to access the check memory blocks for a second time.

• Subtractors: The main computation in output scan is to calculate the residue
by subtracting individual messages from the total sum, again in a multi-cycle syn-
chronous operation. To again leverage perfect access patterns during output to bit
memory blocks, 2 subtractions are performed every clock cycle. This is done by
implementing a 2-input, 13 bit clock-synchronous signed subtractor. Each subtrac-
tor operates on 2’s complement data, which are sampled on the rising clock edge.
These subtractors are controlled by two enable signals. These enables are turned
on only after the total sum has appeared, so as to save unnecessary computation
and power wastage. The output of each subtractor is tristate only the enable is
pulled down, i.e. the its inputs become invalid.

These particular instances of signed subtractors is shown in bottom middle of the figure
8, where the output scan itself is depicted as the lower half of the datapath (below the

35

blue line which partitions the computation).

7.4 Output Preprocessing

As mentioned before, the output of bit processing units is in sign-magnitude format(for
ease of implementation of check processing units). The output of subtractors used in
output scan produce data, which is 13 bit fixed point 2’s complement data. Hence
the data needs to be shrunk to 9 bits in sign-magnitude representation. Further, the
magnitude part needs to be saturated from (7 bits integer + 5 bits fraction) to (3 bits
integer + 5 bits fraction) to implement rounding off before the final write-back to bit
memory blocks.

Each 13-bit output of (two) signed subtractors is first reconverted into its magnitude by
calculating its 2’s complement. The sign of to-be-output residue is assigned according
to the MSB of subtractor’s output. It is known that sign-extension preserves the sign
of data across additions and subtractions. However, the magnitude of the subtractor
output may be 12 bits long, and has to be desaturated to 8 bits. The maximum possible
number that can be represented using 8 bits is 111111112(7.9687510). Also, if the integer
part of the absolute value of subtractor’s output is greater than 00001112,the (complete)
8-bit residue magnitude is pegged at 111111112.

Once both the sign and magnitude of a residue are generated in the proper format, it is
written back to the bit memory block. The correct address to be written to is generated
by the address generator to the memory, so the processing unit only performs a passive
write by providing the data at the inputs at the memory blocks.

The output of the bit processing unit is further multiplexed with another signal other
then the bit-to-check update messages. This signal represents the hard-estimate of the
bit value, to be used for codeword testing. We explain this in the next section.

The control signals to the processing unit, and the write-enable for the ports of the
memory blocks have been synchronized such that when the input to the memory block
ports becomes valid and stable,the write-enable is asserted and data is written to the
memory block. Since all stages in the processing datapath are synchronous,this serializa-
tion of control is straight forward. Every clock cycle after the first data on the memory
block ports becomes valid, a new data is written into consecutive locations by sequential
addressing. This will be discussed in detail in section 9.

36

7.5 Codeword Testing

During each iteration, to test whether an estimate for the codeword using the soft decod-
ing algorithm is correct, a codeword test is performed by guessing a value for every bit,
and then evaluating the constraints from the guessed values. Most of the decoding algo-
rithms deploy this guessing technique, based on different criteria. For example, Majority
Logic Decoding estimates the value of a bit based on the number of parity checks that
the bit is involved in, and their success or failure. In a Sum-Product decoding algorithm,
the guess value is based on the probability value of the bit being a 0 or 1 depending on
the value of the constraints it is involved in.

Although the constraints are evaluated in the check nodes, the guess for the value of the
bit is made in the bit node. From equation 7, we have,

λ(cn|y) = Intrinsic Information +
∑

m∈Mn

λ(zm,n|{yi : i 6= n})

This is the same as the accumulated sum(total sum) during the accumulation scan in the
bit update. Hence,once the accumulation scan is complete, the bit processing unit can
make an estimate about the value of the bit using the following condition(refer equation
2).

ĉn = 0 if Pr(cn = 0|y) > Pr(cn = 1|y)
ĉn = 1 if Pr(cn = 0|y) < Pr(cn = 1|y)

The MSB of the total sum indicates whether it is positive or negative, because the data
is in 2’s complement form. This way, all guess values of bits can be allocated to either
0 or 1, at the end of the accumulation scan. Over the sequence of such guess values(the
bit string/vector of guess values), zT , we need to perform H · zT , to check if channel
information samples have now converged to a codeword guess. Given that rows of H are
parity check constraints, this operation is essentially equalivalen to checking whether the
guess value of bits satisfy the parity checks, using XOR operations. Since the hardware
to do such operations is already present in check nodes, this computation of validating
the guess value sequence is delegated to the check processing units. To pass the guess
values(bit) as if they were bit-to-check messages to the check processing units, they have
to pass through(be written to) bit memory blocks. Since the memory blocks are 9-bit
wide, the guessed bit value is replicated for each of the 9 bits, to form a message called
’value vector’. Hence, a bit with guess value of ’0’ will have a value vector of 000000000,
and a bit with guess value of ’1’ will have a value vector of 111111111. This ’value vector’

37

is written to locations in the bit memories that are specifically reserved for passing the
guess values to check processing units for constraint checking. In the geometry we have
used, the correspoding locations are 1110 and 1210 of each memory block. The value
is written into 2 addresses because the check nodes will again access them from the
bit memories in a perfect access sequence (binary access). The generation of addresses
by the address generators and the control signals for writing in the memory blocks are
provided for by the centralized controller.

Thus the check processing units are enabled twice, once for check updates and once for
codeword testing. In the first case, only the sign data-subpath is selectively enabled to
do perform the computations. The execution of H · zT boils down to stimulation of sign
data subpath within the check processing units, where the sign bit during codeword test
simply represents the guess value, not the sign of any input residue. The accumulation
of all guess values in a total sum first implementation within the sign data subpath
reveals whether the corresponding parity check constraint was satisfied, or not. Hence
the outputs of 2-input XORs in figure 11 can be ignored during codeword testing.

It has to be noted that when the ’value vector’ is being written into the memory blocks,
the bit residues continue being calculated alongside by rest of the datapath, irrespective of
whether the estimate eventually turns out to be right or wrong. This forward specula-
tive scheduling is similar to the approach to conditional branching in the instruction
pipeline in microprocessors, where filling of pipeline from next instruction continues ir-
respective of the satisfaction of the branching condition, which is only known after few
cycles. Forward scheduling is justified by the following logic.

Suppose the codeword is correctly decoded in n iterations. In all but the last iteration,
the estimate of the codeword is sure to fail. So, instead of stalling the decoding process
for many cycles, to see if the estimate is right, in each of the n-1 iterations, it is better to
continue doing computation of bit updates, because these updates will only be required
to be discarded in the last (and the only successful) iteration. This increases the average
throughput of the decoder by decreasing the average latency of an iteration.

8 Check Node Architecture

Check-to-bit updates’ calculation by check nodes is implemented in similar way as their
bit counterparts, with a difference: the computations are done in the log(tanh()) domain.
Hence the datapath of the check processing unit is more complex than the bit proces-
sor. Further, the sign and magnitude of inputs are are treated/used in computation

38

Figure 10: Complete Datapath of Check Node

along different data subpaths. Hence the design of these two subpaths can be treated
separately.

39

8.1 Sign-Magnitude Separation

The input messages to check processing units is already in sign-magnitude form. Hence
sign-magnitude separation just amounts taking the leading bit as sign, and the remaining
bits as fixed-point, positive magnitude.

8.2 Sign Processing

The sign of the check-to-bit update message is generated in a manner similar to the
magnitude(described later), albeit using a different operation. The sign of outgoing
check-to-bit residue is calculated as follows(refer equation 10).

Sm,n =
∏

j∈Nm,n

Sj

where

Sj =
|λ(zm,n)|
λ(zm,n

If the data is represented in the LLR form, then the above description of computation of
overall sign bit for a check-to-bit update for bit node m can be implemented using XOR
of sign bits of all the bit-to-check updates received by that check node, except the node
m. The XOR operation, from equation 7, can be modeled as ’sum’ operation as well,
as defined in binary arithmetic. So, similar to the total sum first approach, we can first
find the total XOR of all the sign bits. In the place of subtraction for the magnitude of
the residue, the inverse operation of XOR needs to be applied to remove individual signs
from the accumulated XOR to get the residues. By noting that for a bit a, a ⊕ a = 0,
we have

(a⊕ b⊕ c)⊕ a = b⊕ c

(a⊕ b⊕ c)⊕ b = a⊕ c

(a⊕ b⊕ c)⊕ c = a⊕ b

We can see that XOR is self inverting. Hence the individual sign bits need to be XORed
again with the total sign, to generate the individual signs of the outgoing residues.
Thus,the sign processing is analogous to the magnitude processing, contains two scans.
See figure 11 for complete depiction of sign processing.

40

• Sign Accumulation scan: The calculation of total sign is again a multi-cycle
synchronous operation, taking 2 inputs every clock cycle. This is achieved using
a 3-input, 1 bit clock-synchronous XOR with a synchronous clear. Again it takes
5 cycles to add up 9 input signs. The 3rd input of the XOR generating the total
sign is hence a feedback input from the output, which feeds back the partial sum
of signs of messages accumulated so far, back into the addition process. To start
with a partial sum of 0, a synchronous clear has been provided in the XOR, which
when enabled, sets the output to ’0’. It has to be noted that the 10thinput to the
check processor is hardwired to 000000000. Hence the XOR of the 9 signs will not
be impacted due to an additional XORing of a ’0’ in the 5th cycle, which happens
due to use of perfect access patterns. This hardwiring will be explained in the
interconnects section 10.

• Sign Output scan: The sign part of outgoing residues are finally computed using
two 2-input XOR gates, one for each sign input, by XORing the input signs with
the total XOR(sign) from the accumulation scan. The reuse of the sign inputs
is again achieved by implementing 2 shift registers of 1-bit wide cells to provide
delayed inputs to the output scan’s XOR gates, once the sign accumulation scan is
complete. Path latencies are matched by the number of shift register cells, which
is 5.

Control signals for the shift registers and enable for the 3-input and the 2-input XOR
gates are provided at the time by lazy evaluation. That is, whenever a result of sub-
computation is needed, and the inputs to the sub-computation are also valid, the control
signals are correspondingly activated. of the valid inputs by the control logic. As pointed
out later, the latency harmonization between the magnitude and the sign processing data
sub-paths for check-to-bit updates is achieved by postponing the output scan to the last
possible cycle(i.e. a cycle before sign-magnitude combination starts off).

8.3 Using Sign Datapath in Codeword Testing

In the description for bit processing units, it was stated that just after the accumulation
scan in each bit processing unit, an estimate for the value of the bit is made, and is
communicated to the check processing units via the bit memory blocks. This is because
the sign data subpath of check processing units represent the constraints that need to
be checked to see if the sequence of decoded bit values form a codeword(H · zT = 0).

Hence, when enabled for codeword testing, the check processing units read the ’value
vectors’ in a perfect access sequence from the bit memory blocks that they are connected

41

Figure 11: Sign Processing in Check Node

to. The sign bit of each datum read represents the value of the guess for that bit. Hence,
the sign processing datapath is made to evaluate the total XOR of the signs of all the
incoming input guess bits. This is equivalent to checking the parity constraint with the
guesses for the bit. The magnitude datapath has no role to play during this phase, and
hence all its enable signals are not pulled high in this time period.

After the sign accumulation scan, the value of each constraint is collected from the check
nodes by the topmost component of hardware, and sequenced together. This sequence
represents the syndrome of the guess vector. A syndrome is defined by the vector
formed by the guess values for all bits [17]. If the syndrome of the guess vector is [0], the
guess of all bits is said to form a valid codeword, thus leading to halting of the decoding
process. A valid word signal is asserted high and the guess vector is put out on the output
ports. If the syndrome is not [0], the decoding continues and the valid word signal is left
asserted as low. This signal is therefore the indicator of the end of the block decoding.

It has to be noted that the codeword test process starts after the accumulation scan in the
bit processing units, and continues in parallel to output scan of the same. So, while the
bit processing units are busy calculating the bit-to-check updates after the ’value vectors’
have been written into bit memory blocks, the check processing units are evaluating the
constraint values according to the guess values for each bit. This forward speculative

42

scheduling has been argued and justified earlier, since only in the successful, which
happens to be the last, iteration of the decoder, will the bit-to-check updates generated
by the bit PE’s during the codeword test need to be discarded. By generating it alongside
always, we decrease the latency of each of the last but one iterations that precede it. It
also keeps the processing units busy for a greater no. of cycles on an average, a feature
desired by most parallel systems.

8.4 Magnitude Processing

As evident from 3rd step of algorithm(refer section 2.3.7, in the magnitude data-subpath,
inputs go through φ(x) transformation, before output’s magnitude is formed in total
sum first fashion. Further, the output’ magnitude is then reconverted back using inverse
transformation identical to φ(x). The traditional way to implement this function has
been usage of lookup tables(LUT). However, each node will need its own copy of LUT
to avoid memory access conflicts, and in a fully-parallel design, this cannot be afforded.
Hence a piece-wise linear approximation using a slightly modified Masera’s model
[16] is used to implement this function. Using this model, computation of φ(x) boils
down to a multiply-accumulate(MAC) operation for multiple input intervals. After such
conversion, the two scans of accumulation and output take place in a way that is almost
identical to that in the bit processing units.

The magnitude of the residue is, from equation 10,

φ

 ∑
j∈Nm,n

φ(Mj)

where

φ(x) = − log tanh

(
|x|
2

)
Incidentally, φ(x) is a self inverse function: φ(x) = φ−1(x). The magnitude part of
residue calculation per check processing unit follows a data subpath that is shown in
figure 12.

Traditionally, the convenient way to implement a real valued function in a precision-
constrained manner has been a look-up table. In LUT implementation, the value of the
function is looked up from a table by indexing into it using the input value, and then

43

Figure 12: Magnitude Processing in Check Node

returned. Such tables are generally in the form of a structured hash table with input
ranges providing a faster search. The simplest look-up can just be a ROM-based look
up with a one-to-one correspondence between the address of the function value, and
the range of the input. However, [15] shows that a large performance loss is induced
by the quantization of φ(x). Also, its implementation typically requires very expensive
look-up tables FPGA LUTs. The function is highly nonlinear and not limited/bounded,
owing to the vertical asymptote at x = 0. Thus, a direct implementation by means
of look-up tables (LUTs) would require large memories with lots of entries in order to
achieve the proper decoding performance. Better results in terms of both performance
and complexity are obtained by resorting to a modified decoding processing.

Masera et al have devised a piecewise linear approximation to evaluate the function
[16], shown in Table 2. The approximation is shown to be a good solution when the

44

Figure 13: Actual vs approximation: φ(x)

45

φ(x) x

−48x + 7.9375 | x |< 0.125
−7.5x + 3.875 | x |≤ 0.25
−2x + 2.5625 | x |≤ 0.75
−x + 1.75 | x |≤ 1
−0.5x + 1.25 | x |≤ 2
−0.125x + 0.5 | x |≤ 2.8125

−0.0625x + 0.3125 | x |≤ 3.75
0.0625 | x |≤ 6.0625

0 otherwise

Table 2: Piecewise Linear Approximation for φ(x) = − log
(
tanh | x

2
|
)

decoder is going to work near to the convergence and waterfall regions of the code (at
low Eb/No values). It is expected to be fairly accurate since more linear pieces have been
allocated in the range, where φ(x) is strongly nonlinear. Further, coefficients are chosen
in order to be easily represented in fixed point notation, which avoids complex, potential,
floating point multiplications. This approximation avoids numerical instability, because
it is intrinsically limited when its argument is zero. Moreover, hardware cost has been
reduced by selecting coefficients obtained through ‘shift’ operations, or sums of shifted
data(e.g. 48x = 32x + 16x), to reduce hardware complexity.

Figure 13 shows the comparison between the plots of the actual and the approximate
functions.

The function is evaluated using the Digital Signal Processing DSP48E blocks available in
the FPGA [23].The DSP48E slice supports many independent functions. These functions
include multiply, multiply accumulate (MACC), multiply add, three-input add, barrel
shift, wide-bus multiplexing, magnitude comparator, bit-wise logic functions, pattern
detect, and wide counter etc. We configure the DSP48E slice to perform the multiply
add function. Each DSP48E slice has a two-input integer multiplier, followed by multi-
plexers, and a three-input adder/subtractor/accumulator. We can use the multiplier to
evaluate the multiplication of the input with the multiplicand, and then multiplex the
intermediate result onto a input of the adder, which adds an offset constant to produce
the final approximation to φ(x).

All the above linear functions are simultaneously evaluated for both the inputs, using
one DSP block for each (input’s) range. The multiplier within DSP48E block is a 25 ×

46

Figure 14: Cascading DSP multiply-add in a DSP48E slice

18 integer multiplier, and the cascaded adder/subtractor is a 48 bit adder/subtractor.
The cascading of these two operators is set by the OPMODE and ALUMODE register
values in the DSP48E slice. The block diagram of DSP48E slice is reproduced from [23]
in figure 14.

To transform each of the check processing unit’s inputs for DSP48E consumption, we
zero-pad the magnitude part of input to make it 25-bit input. Further, based on the
range of input, which is dyanmic in nature, we make a choice of the multiplicand and
the addend in an earlier cycle. The multiplicand and the added are specific to the input
value, and hence specific to the two inputs per iteration themselves. Since the same
DSP48E slice has to operate on two different data, once for forward transformation φ(x)
and once for reverse, identical transformation φ−1(x), we need a multiplexer in from of
DSP slice’s multiplier input to multiplex 2 different value of the multipliers. In fact, the
choice of multiplicand and the addend is done based on the output of this multiplexer.

A modification to Masera’s model in [16] is that whenever | x |≤ 6.0625, φ(x) = 0.0625
instead of −0.0625. This modification we had to undertake φ(x) is always a positive
function, and experimentally we found this modification to bring down the difference
between two curves(real vs. approximate) further down.

Another issue with employing the DSP48E slice is that the multiplier within this block
is an integer multiplier. Hence the multiplier does not recognize any location of decimal

47

point. To overcome this issue, we made sure that every multiplicand to the multiplier is
an integer. This is done by multiplying the multiplicand as per the modified Masera’s
model by 2 successively, until the multiplicand becomes an integer. Correspondingly,
we multiply the addend also by the same factor, which is a power of 2. Thus, the
approximation of φ(x): 0.5x + 1.25 when |x| ≤ 2 becomes φ(x) : −x+2.5 when |x| ≤ 2.
Hence we need to correspondingly divide the output of DSP48E multiply-add operation
by same factor(2 in this example) to get a proper fixed-point mutliply-add operation.
The loss of precision due to this division is unavoidable, because our data representation
is fixed point. The division is achieved by right-shifting the result by a copy of multiplying
factor, which is stored at the time of scaling up the multiplicand and the addend. Since
MAC operation takes 1 cycle, the scale factor is delayed by 2 cycles and then applied to
the output of the DSP48E slice. Table 3 shows the actual versus evaluated functions in
each DSP instance in a check processing unit.

Actual function Evaluated function Scaling factor

-48x+7.9375 -48x+7.9375 1
-7.5x+3.875 -15x+7.75 2
-2x+2.5625 -2x+2.5625 1

-x+1.75 -x+1.75 1
-0.5x+1.25 -x+2.5 2
-0.125x+0.5 -x+4 8

-0.0625x+0.3125 -x+5 16
0.0625 0x+0.0625 1

Table 3: Actual and evaluated functions in the DSP instances

It is the beauty of Masera’s model that we are able to multiply the multiplicands by a
factor that is a power of 2, and get an integer. In general multiplying a fraction by power
of 2 not always leads to an integer. In fact, even while representing the addends which
in general are deep fractions, we do not loose any precision.

The multiplier and the adder/subtractor within DSP48E block follow 2’s complement
arithmetic. Hence, wherever needed, we do sign-extension of data(such as multiplicand)
to make the input adhere to proper width.

The transformation of x to φ(x) takes one machine cycle. However, given that multiplier
is involved, the propagation delay of MAC circuit is quite high. It was indeed found that
MAC unit/DSP48E block falls in the critical path of the decoder system. Right now
pipelining in the DSP block has been kept disabled, to decrease the overall latency of

48

the entire check node update. The options to change this is programmable pipelining of
input operands, intermediate products, and accumulator outputs, which will enhance the
throughput. The corresponding pipeline registers are introduced through configurable
attributes of the DSP slice [23].

After the conversion, the two scans of accumulation and output take place almost iden-
tical to that in the bit processing units, with few exceptions as follows.

• Adders: The inputs to the adder are 8 bits(sans the sign bit). Also, these inputs
are guaranteed to be positive, as the transformation φ(x) is always positive. Hence
using 2’s complement arithmetic during the scans is not required. The outputs of
the adder are 12 bits long, to accomodate the maximum possible overflow of 4 bits
for adding 9 inputs. Similar to the adders in the bit processing units, the enable
control signal is provided to tri-state the output whenever required. Outputs are
stable on the rising edge of the clock.

The 10th residue, fed in 5th cycle to the adder, is φ(12b′0), since 12b’0 is input
from the interconnect. Interestingly, this value is not 0. It is actually 11111100,
and hence there is a wrong offset of 11111100 in the total sum calculated by this
stage. This offset is taken care by the subtractors later.

• Subtractors: Two subtractors, each with a data width of 12 bits, calculate the
residues in order of the arrival of inputs over 5 cycles. The output is stable on the
rising clock edge.

The first input of the subtractor, in all 5 cycles, is the total sum of residues’
magnitudes, which is provided by the accumulation scan. To nullify the effect of
wrong offset 11111100, the subtractors calculate in1-(in2+11111100), where in2 is
the shifted version of each message input to the check processing units.

• Shift registers: To reuse the converted inputs while calculating the final check-to-
bit messages, the bit-to-check messages are passed through a shift register. Each
cell of the shift register is obviously 8 bits wide. Data shifts through cells syn-
chronously with the positive clock edge. The latency of the shift register is matched
to the latency of the accumulation scan, that is, 5 cycles.

As there are 9 inputs,the latencies of the accumulation and the output scans within
magnitude processing are 5 clock cycles each. Similar to bit residues, these magnitudes
undergo desaturation. After the magnitudes are pegged to 8 bits again,the residues have
to be reconverted using the same function φ(x); the function is self-inverting. For this

49

purpose, we use the same DSP blocks again, whose inputs are multiplexed between the
bit-to-check messages and the saturated residues, as described earlier. The phase choice
control signal drives this multiplexer’s output. The choice of multiplicand and the addend
is also made afresh, since these values depend on the value of x, the input to Masera’s
approximation model. This reuse of the DSP blocks is necessary to avoid duplication of
resources.

8.5 Sign-Magnitude Recombination

After the inverse transformation of residue magnitudes, the outgoing sign is merged back
into the outgoing message’s magnitude. Hence there is a need for latency harmonization
between sign and magnitude data subpaths. This is done by doing lazy evaluation of
the final signs(or the output scan of the sign data subpath). The 2-input XORs are
hence activated a cycle before sign-magnitude combination starts off. To be able to do
so, the 3-input XOR gate, which is responsible for sign accumulation, is front-ended
by a FDE macro, which acts as implicit latch to let the accumulated sign persist for
multiple cycles(till another driver on the signal changes it). Further, the length of the
shift registers in the sign processing datapath is also increased beyond 5 cycles need by
sign accumulation scan, till the last possible cycle. With this lazy evaluation scheme,
the sign and the corresponding 8-bit magnitude of the residue become stable in the same
clock cycle, and hence can be combined(put in different bit intervals of output signal)
right in the next cycle.

At the time of combining the sign and magnitude, care is required to be taken about
the factor (−1)|Nm| in check messages. One may refer to equation 10 to understand this
factor.

The final residues are then written back into the check memory blocks, to be passed on
to bit processing units for the next iteration.

9 Memory Architecture

Memory blocks are required for storing the inputs during their consumption over multiple
cycles by a processing unit.As described earlier, there are two types of required memory
blocks: bit memory blocks and check memory blocks. Each type of memory block is
written into by processing units of the same kind, but are read by processing units of the
opposite kind.

50

These memories need to be true dual-port, since each node consumes 2 inputs at a time.
By the design, in any cycle, the messages being consumed in different nodes are never
the same, and hence latency penalty arising out of memory conflicts do not arise. The
memory architecture is distributed; each node unit owns a memory block of its own
having a width of 9 bits and depth of 12 locations. The data corresponding to each node
is stored in the same order as the line/point index in the corresponding geometry. Hence
the address generation units of these memories are simple 4-bit counters. Since each
block receives only two read requests per cycle and has dual-port capability, the entire
access is collision-free, the greatest asset of our architecture.

9.1 Implementation of Memory Blocks

Xilinx FPGAs have embedded block RAM resources(hard macros), that are used to
implement the memory blocks we desire. Since these macros are parameterized, we use
block memory generator to instantiate memory blocks by providing certain values to the
configurable parameters of block RAM macro. One can, in fact, use a single memory
primitive to instantiate memory blocks of arbitrary widths and depths. The generator is
available as a feature of the CORE Generator software [26]. We use the Core Generator
to generate block RAMs configured to our design.

9.2 Configuring Block RAMs

Using Core Generator, a variety of memory block configurations can be generated using
block RAMs, such as single/dual port memories, ROMs or RAMs etc. To implement a
perfect access pattern, we need to fetch two residues per cycle, and similarly store back
two residues per cycle later on. Hence we configure the memory blocks to be r/w memory
of the form RAM, having 2 ports that can operate independently of each other(true dual
port, see figure 15).

For dual-port read/write memories on Xilinx FPGAs, each port operates independently.
Each port can be configured for clock, pipelining and operating mode features. The True
Dual-port RAM provides two ports, A and B, through both of which read and write
accesseses to various memory locations can be done.

The GUI of CORE Generator allows us to configure the RAMs. Since the block RAMs
are of 36 kilobytes each, a natural bitwidth for each memory port is 9 bits, leading to
4096 physical locations within the memory block. Coincidentally, we have chosen the

51

Figure 15: True Dual Port RAM

data/message bitwidth to be 9 bits as well. Hence configuring the parameter, (9-bit)
byte write enable, to be true is of no particular advantage.

Further, each RAM is built up from the multiple fixed sized primitive RAM blocks
within the FPGA. Since our data width is 9 bits, we can readily use the 2k × 9 (or
even 4k × 9) RAM primitives to build every bit and check RAM block. As such, the
required user memory block size is achieved by concatenating this single physical memory
primitive type in both width and depth. In our design, each user memory block has size
requirement of 9 bits width and 12 locations depth, hence 2k × 9 memory primitive is
best fit. Further, we use fixed primitives option of building user memory block, rather
than minimum area option, since regularity is expected to help in layout of the design.
The organization and the addressing of locations is explained in a later section.

There are three operating modes available for the RAM ports, which determine the
relationship between the write and read interfaces for that port. Port A and port B can
be configured independently with any one of three modes, because we are implementing
a true dual port RAM. The modes differ in terms of the write cycles on the RAM ports.

All the 146 block RAMs in the decoder have been configured to operate in the ’NO
CHANGE’ mode for both ports A and B. In NO CHANGE operating mode, the

52

driver/value on the output port remains unchanged, during a write operation at some
location within the memory. As shown in figure 16, the data output is still the previous
read data, and is unaffected by a write operation on the same port. This particular
operating mode is needed to effect the simultaneous proceeding, without any stall, of 2
branches of computation in our decoder. So while check processing units need to read
the value vector from bit memory block for codeword testing, bit processing units, at the
same time, are ready with the bit-to-check update messages. To allow these messages
to be written at some bit memory block locations, different from where value vector(s)
have been stored, and at the same time allow the output of bit memory blocks to be
latched to value vector for 5 cycles, the only option is to use NO CHANGE operating
mode.

Figure 16: Example of NO CHANGE Memory Operating Mode

Thus, the reading and writing of data is performed by first enabling the entire memory
block itself, for which a separate pin is configured. It is followed by providing the
address on the address pins of a particular port, and then asserting/deasserting the
Write Enable of the port. The write enable signal works dual-purpose: when 0, it
implies a read operation in conjunction with block-level enable, and when 1, it implies
a write operation. For the true dual port RAMs, both ports can be read/written to,
independent of each other. The pipelining and the output register features have been
right now turned off, to decrease the memory access latencies. In the current mode, both
read and write access take one clock cycle. Also, we do not configure the RAM to have

53

a set/reset pin. Though the reset is not strictly required, we do an initialization of first
12 locations of the memory to 9b’0 just for precaution.

9.3 Assigning Messages to Memory Blocks

The memory blocks are connected to the processing units of the opposite kind as per
the connections of the Tanner graph. The Tanner graph for our codes is itself the
representation of interconnection between lines and points of PG(2,GF(23). We fix the
convention such that the bit memory blocks and processing units correspond to the points
of the geometry, while the check memory blocks and processing units correspond to the
lines. By explicit construction, we find that point 0 of the geometry lies on the following
set of lines in the geometry [21].

Point 0 : {0,1,71,38,11,20,43,59,67}
Similarly, other points in the geometry lie on the lines shown in the corresponding set,
which can be obtained by using shift automorphism over the set representing lines inci-
dent on point 0.

Point 1: {1,2,72,39,12,21,44,60,68}
Point 2: {2,3,0,40,13,22,45,61,69}
. . .
. . .
. . .

Point 72: {72,0,70,37,10,19,42,58,66}
Thus, each bit memory block, corresponding to a point, is connected to the check pro-
cessing units, representing the lines, that the point lies on. Analogous the bit memory
blocks, check memory blocks are connected to bit processing units as per the incidence
set of lines of the geometry:

Line 0: {0,72,2,35,62,53,30,14,6}
Line 1: {1,0,3,36,63,54,31,15,7}
. . .
. . .
. . .

Line 72: {72,71,1,34,61,52,29,13,5}
Each bit-to-check update message is written into the same indexed memory blocks, as

54

its generator bit processing unit has. However, this memory block, as a point, is read
from check processing units, representing lines, to do their own computations. Same is
the case for storage of check-to-bit update messages. Hence, as a byproduct, the ports
of various memory blocks are connected as follows.

• The input data ports of each RAM/memory block are connected to the outputs of
the processing units of the same kind.

• Clock input to all block RAMs is through the system clock

• The output data ports of each RAM/memory block are connected, via a circular
shift connector at each port, to the processing unit of opposite kind. The connector
loads the data available on RAM port on the appropriate wire in the interconnect.
This part of design is explained in detail in the interconnect design, section 10.

• Address ports receive the addresses from respective address generators, which are
common to all block RAMs of the same type.

• The block RAMs are selectively enabled based on the schedule of decoding. This
enable signal is provided by the centralized control path.

• Similarly, the write enable signal is provided separately for each port by the cen-
tralized control path. However,the write enable for port A of all RAMs of the same
type is common, and likewise for port B.

9.4 Internal Layout of Memory Blocks

The data corresponding to various check processing units is stored in a particular bit
memory block in the same order, as the line index corresponding to its point index. For
example,in bit memory block 0, data for check processing unit 0 is stored in location 0,
in location 1 for processing uit 1, in location 2 for processing unit 71, and so on. The first
9 locations thus store the required message data. The order of internal storage is defined
by the automorphisms that are used to generate the geometry as stated in [11]. Thus,
even though the addresses are consecutive and the access sequential, the organization of
data is structured. Hence the memory accesses are structured themselves.

The 10th location in all the memories is set to 000000000 during the initialization se-
quence, and is never written to during any update. Data read from the 10th location is
dumped and not used. This design decision is explained in section 10.

55

Locations 1110 and 1210 in the bit memory blocks are reserved for storing the ’value
vector’. This storage happens after the guess for the bit value is made during the
bit update phase of each iteration. These value vectors are then read by the check
processing units to evaluate the constraint values from the guess value. A control signal
to the address generator is used to load these special addresses on the memory block
ports, when the value vector is to be written. Check memory blocks also have same
number of reserved locations, since they are instantiated using the same component as
the bit memory blocks. However, these locations(1110 and 1210) of the check memory
blocks are not used or accessed.

9.5 Address Generation

Address generation units provide the right addresses at the address ports, at the right
time according to schedule(e.g. when data is stable and valid for a write operation).
The address generation is different for bit and check memory blocks, but as such com-
mon/same for memory blocks of the same type. It generates addresses for both the ports
of every memory block simultaneously. Since we use perfect access patterns to access
memory blocks, every clock cycle, two addresses need to be generated. The access being
sequential due to the sequence in which we internally store messages, memory address
generation is also sequential, not random. Since the memory blocksare 12 locations deep,
4-bit addresses are required to access these memory locations.

During read/write access from both types of memories, data is accessed from sucessive
locations in the RAM. Hence the address generation unit has two address output ports,
which generate consecutive values of address. One of them is connected to the port A
address bus of all memory blocks of the same type. The other is similarly connected to
Port B address bus. Hence, port A addresses are always even, while port B addresses
are always odd. Also, port B address is one location ahead of port A. I.e. when addrA is
00002, addrB is 00012 and so on. When read/write access is going on, then in every clock
cycle, the address on each port is incremented by 1. Thus, addrA takes values of 00002,
00102, 01002, 01102 and 10002, while addrB takes values 00012, 00112, 01012, 01112 and
10012. These values cycle through in the next round of read/write access. In the reset
state, controlled by an active high start signal to the address generation units, the port
addresses are 00002and 00012. It can be seen that there can never be any access collision
between the ports of the memory blocks, due to this exclusive address generation.

During the codeword test phase, when the ’value vector’ is being written into bit memory
locations 10102 and 10112, the address generation units provide these special addresses

56

on the ports. An active high exclusive control signal is used to signal the start and the
end of this write process. The check and bit address generation units are similar, except
that this control signal en codetest is always low for the check memory blocks’ address
generators.

The bit address unit is active during the bit update phase at three points. At one point,
it aids the writing of the ’value vector’, while at the other point, it aids the writing the
bit-to-check residues calculated. Further, during check update calculations, bit memory
blocks are being read by the check processing units, and hence bit addresses need to be
continuously generated. Similarly, the check address unit is active when check memory
blocks are being read by the bit processors for the bit update, and also during the check
update for writing the check-to-bit residues into check memory blocks.

9.6 Intrinsic Latch

The only input to the decoder at the start is the soft estimate of the information received
from the channel. This is in the form of channel, or intrinsic information. Since every
iteration, intrinsic information needs to be added to form the total information within bit
nodes, each bit processing unit needs to keep this piece of data latched within itself for
future use across multiple iterations. Hence each bit processing unit reads these values
from an input port, and uses a set of simple D-type latches to hold these values. There
are therefore 73 instances of such 9-bit latches, having their own enable input signal.

10 Interconnect Architecture

Most of the VLSI implementations of LDPC decoding suffer from routing congestions
due to the dense network of interconnects between the processors and memories. In-
terconnects end up consuming most of the floor space in the layout of the design [15].
Hence, efficient implementation of interconnects is critical to the efficiency of the de-
coder. To add to it, FPGAs are not optimized for global routing, but do provide good
point-to-point connects in a localized area(neighboring CLBs).

The PG LDPC decoder for block size 73 has a not-so-dense network of wires between the
processing units and memory blocks. There are two instances of global message carrying
interconnects: those between the check memory blocks and the bit processing units, and
the ones between bit memory blocks and the check processing units. Each memory block
has 9 processing units connected to it, and vice versa. Thus,the total number of single

57

bit carrying wires is 146 *9*9 = 11826. Since the degree of each node is 9(can further
grow as design scales), and given the classical flooding schedule that we use to compute
the updates, bus architecture is not suitable for implementing the interconnect. This is
because in a particular cycle, at least 9 units will try to simultaneously transmit on the
bus, leading to widespread congestion in the interconnect. Hence, Dedicated wiring
is used in to implement these connections within the data path in our architecture. The
wires between the processing units and the memory blocks of the same type are expected
to be local, due to the proximity in their placement. The wires required to interface
control pins of multiple datapath elements, to centralized controller, are expected to be
via global wiring.

Since 9 processing units access a memory block in total, over multiple different cycles
using same two ports of the memory block, there is a requirement of diverting the data
in each cycle, on the two ports, to the right processor in the right cycle. To achieve this,
two connecting elements which act like circular shift switches are used in the datapath.
We discuss these switches in section 10.2.

10.1 Tanner Graph Generation

The Tanner graph in for our purpose is same as the line-point incidence graph of a
projective plane (dimension 2). In general, a projective space of dimension n over GF(2),
P(n, GF(q)), has at least following two properties, arising out of inherent duality:

1. The number of subspaces of dimension m is equal to the number of subspaces of
dimension n−m− 1.

2. The number of m-dimensional subspaces incident on each n −m − 1-dimensional
subspace is equal to the number of n − m − 1-dimensional subspaces incident on
each m-dimensional subspace.

Hence not only the number of bit nodes and number of check nodes is equal for our
Tanner graph, but their incidence degrees to the nodes of other kind are also equal. As
mentioned earlier, we associate each point of the projective plane to bit nodes, while
we associate each line to check nodes. Two nodes are connected by an edge, if the
corresponding line(point) contains(is contained in) the corresponding point. Hence the
Tanner graph is essentially a balanced, regular bipartite graph.

The required projective space is generated from GF(23). In this projective space, the
number of points (= number of hyperplanes) is 73. Each point is incident on 9 lines, and

58

vice-versa. The bipartite graph is constructed by using the point-line incidence relations
of P(2, GF(23)). The points are generated using a primitive polynomial, which give the
tapping points in a linear shift feedback register(LFSR). The primitive polynomial used
to generate GF(23) is x3 + x2 + 1. To give each point an index, which is in form of a
polynomial, we perform a polynomial hashing to generate a bitstring representation of
each point. This hashing is essentially a bijection between polynomial coefficients and bit
placeholders in the bitstring [21]. To identify the points lying on a line, we do a reverse
construction. We take 2 points, and call it a particular line(any 2 points make up a line
in projective plane). We identify the remaining 7 point by taking linear combination,
modulo 23, of the polynomial reprsentation of these two points, with coefficients for linear
combination varying from (1,1) to (7,7). (0,0) is not a valid combination of the two
points. Any duplicate points(or polynomials) that are found are dropped out. The set of
9 points is then said to be lying on the particular line. All other lines are then obtained
by applying Shift automorphism to the point set of this first line [11]. Table 4 gives the
complete list of the lines and their adjacent points, a summary of which was presented
earlier in section 9.3. To have a possible layout regularity, we introduce symmetry in the
form that the edges incident on a vertex of side A(say, V 1) are sorted with respect to
increasing index numbers of the vertices reached in side B. This is the order in which
the corresponding update messages are fed to the processing unit represented by V 1. A
similar strategy is used for ordering inputs for processing unit vertices on side B.

Table 4: Point-Line Adjacency List

Line Adjacent Points
0 0, 1, 11, 20, 38, 43, 59, 67, 71
1 1, 2, 12, 21, 39, 44, 60, 68, 72
2 2, 3, 13, 22, 40, 45, 61, 69, 0
3 3, 4, 14, 23, 41, 46, 62, 70, 1
4 4, 5, 15, 24, 42, 47, 63, 71, 2
5 5, 6, 16, 25, 43, 48, 64, 72, 3
6 6, 7, 17, 26, 44, 49, 65, 0, 4
7 7, 8, 18, 27, 45, 50, 66, 1, 5
8 8, 9, 19, 28, 46, 51, 67, 2, 6
9 9, 10, 20, 29, 47, 52, 68, 3, 7
10 10, 11, 21, 30, 48, 53, 69, 4, 8
11 11, 12, 22, 31, 49, 54, 70, 5, 9

Continued on next page

59

Table 4 – continued from previous page
Line Adjacent Points
12 12, 13, 23, 32, 50, 55, 71, 6, 10
13 13, 14, 24, 33, 51, 56, 72, 7, 11
14 14, 15, 25, 34, 52, 57, 0, 8, 12
15 15, 16, 26, 35, 53, 58, 1, 9, 13
16 16, 17, 27, 36, 54, 59, 2, 10, 14
17 17, 18, 28, 37, 55, 60, 3, 11, 15
18 18, 19, 29, 38, 56, 61, 4, 12, 16
19 19, 20, 30, 39, 57, 62, 5, 13, 17
20 20, 21, 31, 40, 58, 63, 6, 14, 18
21 21, 22, 32, 41, 59, 64, 7, 15, 19
22 22, 23, 33, 42, 60, 65, 8, 16, 20
23 23, 24, 34, 43, 61, 66, 9, 17, 21
24 24, 25, 35, 44, 62, 67, 10, 18, 22
25 25, 26, 36, 45, 63, 68, 11, 19, 23
26 26, 27, 37, 46, 64, 69, 12, 20, 24
27 27, 28, 38, 47, 65, 70, 13, 21, 25
28 28, 29, 39, 48, 66, 71, 14, 22, 26
29 29, 30, 40, 49, 67, 72, 15, 23, 27
30 30, 31, 41, 50, 68, 0, 16, 24, 28
31 31, 32, 42, 51, 69, 1, 17, 25, 29
32 32, 33, 43, 52, 70, 2, 18, 26, 30
33 33, 34, 44, 53, 71, 3, 19, 27, 31
34 34, 35, 45, 54, 72, 4, 20, 28, 32
35 35, 36, 46, 55, 0, 5, 21, 29, 33
36 36, 37, 47, 56, 1, 6, 22, 30, 34
37 37, 38, 48, 57, 2, 7, 23, 31, 35
38 38, 39, 49, 58, 3, 8, 24, 32, 36
39 39, 40, 50, 59, 4, 9, 25, 33, 37
40 40, 41, 51, 60, 5, 10, 26, 34, 38
41 41, 42, 52, 61, 6, 11, 27, 35, 39
42 42, 43, 53, 62, 7, 12, 28, 36, 40
43 43, 44, 54, 63, 8, 13, 29, 37, 41
44 44, 45, 55, 64, 9, 14, 30, 38, 42

Continued on next page

60

Table 4 – continued from previous page
Line Adjacent Points
45 45, 46, 56, 65, 10, 15, 31, 39, 43
46 46, 47, 57, 66, 11, 16, 32, 40, 44
47 47, 48, 58, 67, 12, 17, 33, 41, 45
48 48, 49, 59, 68, 13, 18, 34, 42, 46
49 49, 50, 60, 69, 14, 19, 35, 43, 47
50 50, 51, 61, 70, 15, 20, 36, 44, 48
51 51, 52, 62, 71, 16, 21, 37, 45, 49
52 52, 53, 63, 72, 17, 22, 38, 46, 50
53 53, 54, 64, 0, 18, 23, 39, 47, 51
54 54, 55, 65, 1, 19, 24, 40, 48, 52
55 55, 56, 66, 2, 20, 25, 41, 49, 53
56 56, 57, 67, 3, 21, 26, 42, 50, 54
57 57, 58, 68, 4, 22, 27, 43, 51, 55
58 58, 59, 69, 5, 23, 28, 44, 52, 56
59 59, 60, 70, 6, 24, 29, 45, 53, 57
60 60, 61, 71, 7, 25, 30, 46, 54, 58
61 61, 62, 72, 8, 26, 31, 47, 55, 59
62 62, 63, 0, 9, 27, 32, 48, 56, 60
63 63, 64, 1, 10, 28, 33, 49, 57, 61
64 64, 65, 2, 11, 29, 34, 50, 58, 62
65 65, 66, 3, 12, 30, 35, 51, 59, 63
66 66, 67, 4, 13, 31, 36, 52, 60, 64
67 67, 68, 5, 14, 32, 37, 53, 61, 65
68 68, 69, 6, 15, 33, 38, 54, 62, 66
69 69, 70, 7, 16, 34, 39, 55, 63, 67
70 70, 71, 8, 17, 35, 40, 56, 64, 68
71 71, 72, 9, 18, 36, 41, 57, 65, 69
72 72, 0, 10, 19, 37, 42, 58, 66, 70

61

10.2 Circular Shift switches

As pointed out earlier, two connecting elements which act like circular shift switches are
used in the datapath to achieve 2-to-9, and 9-to-2 port multiplexing. The first one is
called the memory switch, while the second one is called the processor switch.

10.2.1 Memory switch

Each of the 2 (data) output ports of each memory block is connected to a 1:5 circular
shift switch having 5 different outputs. These outputs are in the same order, as
the incidence set of the point/line that the memory block represents. Hence there are
2 memory switches adjacent to each memory block, interfaced to 1 port each of the
memory block. The role of each memory block is to place the data being read from the
memory block, on certain wires that realize the Tanner graph interconnect, in a circular
manner. Figure 17 shows the design of a memory switch interface to port A of the bit
memory # 0, along with the connections.

Figure 17: 2-to-9 Memory Switch

On every clock rising edge, the data on the input of switch is placed on to one of its
outputs. The order of the outputs that it is placed on goes from output # 1 to output
#5 and back to output # 1. Thus, in the first cycle, output # 1 gets the input data, in
the next cycle output # 2 and so on. As the input data is continuously changing due
to the read address of the block RAM port, different outputs(interconnect wires) get
different data in the different cycles.

62

10.2.2 Processor switch

Since every processing unit gets data from 9 memory blocks in total, but can take in only
2 inputs per clock cycle, a 9-to-2 circular switch is required at the processing unit end
too. The role of this circular shift switch to select the right data from all the incoming
wires. Thus there is a 5:1 switch interface to each of the two input ports of each of the
processing unit. This switch has 5 inputs and 1 output, which feeds one of the input
ports of the processing unit. The switch circularly connects its inputs to the output
on every clock edge, very much mirroring the function of a memory switch. Thus, the
output would be connected to input # 1, input # 2..,input # 5 and back to input # 1
in that order over successive cycles. The processor switch for the second input of check
processing unit # 0 is shown in figure 18.

Figure 18: 9-to-2 Processor Switch

10.3 Detail Design of Interconnect between Switches

The connections between the two types of switches are made such that perfect access
patterns get exercised during each cycle in which memory reads are being performed.
For example, the (memory) switch of a bit memory block is connected to the processor
switches of the check processing units that are going to read from that particular block, in
the order of a perfect access pattern. As discussed earlier in section 9.3, bit memory block
0 will be accessed by check processing units corresponding to the lines in its incidence
set.

Point 0 : {0,1,11,20,38,43,59,67,71}

63

Thus, the memory switch at port A is connected to the switches of processing units 0, 1,
11, 20 and 38, while that at port B to the switches of processing units 43, 59, 67 and 71.
The last output of the port B switches is unconnected, or left open(there’s no valid 10th

input data per processing unit). The order of the connections is maintained as per the
order from left to right in the incidence set. Hence, the 1st memory switch of bit memory
block 0 passes on the data on 1st output port of memory block, to lines {0,11,38,59,71}
in 5 consecutive cycles, while the second switch passes on the data on 2nd output port
of memory block, to lines {1,20,43,67} in 4 consecutive cycles(fifth switching is ignored).
Thus, the processor switch of check processing unit 0 is connected to output #1 of the
memory switch, that of check processing unit 11 to output # 2 and so on. Data from
the bit memory is placed on inputs of these memory switches in the same order.

Likewise, the inputs of the processor switches are connected in the order of the incidence
set of the line that the processing unit represents.

Line 0: {0,2,6,14,30,35,53,62,72}
Hence connections from memory switches of the bit memory blocks 0, 6, 30, 53 and 72
are the inputs to switch A of the processing unit, while that from memory blocks 2,14,35
and 62 are inputs to the switch B, in that order. Data input to the processing unit is
also selected in the same order. The last input to switch B is hardwired to 000000000.
This is to insulate the value of the total sum in the accumulation scan from the invalid
10th input, which may be randomly anything(an open connection).

Thus, in the first read access cycle, data from the first two locations (corresponding
to the first two lines in the incidence set) of the bit memory is placed at its output
ports. It is then transimitted to the first(out of 5) processor switches interfaced to each
memory switch. The processor switches then switch over the data on their input ports,
to the input ports of corresponding processing units. The order of the incidence set is
followed strictly for every cycle, at both the switches. Hence there are no access collisions
throughout the read cycle. It thus takes 2 clock cycles for the data, after it is stable on
the memory block output, to reach the processing units. The address generation in the
memory block is synchronized to ensure that the data from the right memory location is
present on its port, before it is connected to a processor by enabling two shift switches.

The switches are provided with a control signal to tri-state the network when processors
are not reading from memories.

64

11 Overall Datapath

The overall datapath starts at intrinsic latches, goes through an array of bit and check
processing units, and stops after a check on the syndrome vector. While doing syndrome
checking, we use speculative scheduling to boost the throughput. While the XOR data-
subpath calculates the syndrome, we allow bit nodes to proceed with computation of
message for next iteration, because they will be doing so in all but one(last) iteration.

LDPC decoders generally need clock and intrinsic data as inputs, and decoded codeword
as their output. In our design, intrinsic data is loaded into latch by the decoder. The
codeword is placed in a output register.

12 Control Path Architecture

For a parallel processing system like LDPC decoder, control signals need to be applied to
multiple datapath elements simultaneously. Since we follow a flooding decoding schedule,
multiple control signals required to drive multiple datapath elements in a particular cycle
have the same semantics in general. Hence a compact, centralized controller is more
hardware-efficient than a distributed controller, for generation of control signals, at the
cost of global routing(higher wire delays), and high fan-outs. Co-ordination for the entire
data flow along the datapath is done by the centralized controller by asserting the control
signals in the right cycle, since the design is a synchronous design.

This centralized control unit is implemented using an architectural template called mi-
croprogramming, to achieve design flexibility and scalability. Microcodes are pro-
grammed into a ROM, called as controller ROM, acting as control store. The control
signals are generated through low level instructions, analogous to microcodes. The mi-
crocodes are essentially control bit-vectors, each bit of which is mapped to a control signal
used to control elements of the decoder datapath. Each control vector hence aids in ex-
ecution of certain datapath elements in a particular cycle. A sequence of control vector
thus sequences the execution of the complete datapath itself. Since in our design, the
sequencing of datapath is identical across iterations, we limit the control path design to
evolution of a sequence of microcodes signifying the executions in a sequence of machine
cycles for one iteration only. When the current control vector is read from the ROM, the
control signals in various parts of the design get asserted/deasserted depending on the
bit pattern of the vector. Accordingly, the datapath executes some part of the current
decoding step. To understand how the microcodes are evolved at design time, we have
to take a look at the Moore machine of the decoder. Since the circuit is synchronous,

65

the state of the circuit is advanced by the clock input. The next state is determined by
the current state, characteristic of a Moore machine.

12.1 Decoder State Machine

Figure 19: Finite State Machine of the decoder

There are three distinct states of computation: the bit processing,the check processing
and the codeword test. Codeword test phase executes in parallel with the bit process-
ing phase. The data exchanged between all the states is through the memories. The
START state of the decoder is used to initialize the contents of all the memories in the
design by reading in the input intrinsic values, and flushing the memory block contents.
The process then enters the bit processing state. The bit and check processing
states execute one after the other in an iterative manner, until the codeword test, which
happens in parallel with the bit processing, returns a true value on the valid word sig-
nal. Following this assertion, the decoding process transits into the STOP. This state
signfies the finding of a valid codeword.

The computational steps are all synchronous on the rising clock edge. In few cases,
the inputs are registered on the negative clock edge due to clock-independent latch-
ing/multiplexing of the inputs. But, since the setup and hold time constraints are fol-

66

lowed by the synthesis, inputs are never invalid before they are used for computations
or for being written into memories. The enable signal of most computational blocks,
when de-asserted, leds to tristating of their outputs. Address generation units also have
control signals to start and stop the address generation.

12.2 Control Store

The RAM used to implement the control store is a single port RAM. It is 38 bits wide
and 42 locations deep. The width 38 has been decided according to the total number of
control signals in the decoder, plus a few additional bits to provide space for any future
expansions. The depth of control store is equal to the number of clock cycles needed to
complete one iteration, which includes execution of both bit nodes and check nodes. The
first 19 bits of the control vector are dedicated to the check-side control signals, while
the last 17 are dedicated to the bit side control. The complete sequence of microcodes
for an iteration is loaded as an initialization file (*.coe file) for the control ROM.

12.3 Microcode Sequencer

The controller ROM needs an address generator to be able to write out control vector
on its output port. The address generator is called a microcode sequencer. In our case,
the addressing needed is sequential due to lack of branching. Hence the microsequencer
is simply a counter acting on the positive clock edge. For the decoder, there is only one
conditional execution: that of decoder’s exit. This is handled as an exception outside
the microsequencer. After each iteration, which is of 42 cycles, the microcode sequencer
keeps coming back to 0th microcode to help run the next iteration.

Whenever the seuqencer places an address on the address bus of controller ROM, a
control vector from corresponding location is read out in the next cycle. The individual
bits are then distributed as control signals throughout the design, which can then drive
various datapath elements in their next cycle. The control vectors are thankfully pre-
determined due to the completely deterministic data flow.

The signal valid word is the reset signal for the address generator of the control RAM.
As soon as the signal goes high, indicating that a valid codeword has been found, the
address generator stops generating the addresses, thus stopping the load and the decoding
of microcodes.

In the simulation of the design, it was seen that there is a small but finite delay between
the clock edge and the transition of the control signals in the datapath. This is there

67

due to the read access latency of the RAM. Hence the effecting of a control cycle takes
place 1 cycles after the corresponding control vector has been read.

12.4 Design Schedule

The design schedule is the sequence of computations that is done within the bit update
and check update states, iteratively, preceeded by any computations that are done in
START state(such as latching intrinsic information), and succeeded by any computa-
tions that are done in STOP state. The bit update phase encapsulates a micro-level
FSM of bit node computations, and similarly does check update state. These underly-
ing micro-level FSM in both bit and check processing units capture the timing constraints
for individual components of theirs. For example, in bit node, the write-enable for the
ports of the bit memory blocks asserted only after(at next clock edge) the inputs at
the ports become stable. Control signals are provided in parallel to all nodes of one
kind for concurrent computation. Both the clock edges are used within bit nodes and
check processing units, to expedite computation. The entire design is thus a synchronous
design.

The schedule of an entire iteration is given in appendix A, tables 7, 8, 9, 10, 11 and 12.
The details of this schedule are also explained in the same appendix.

13 Implementation Overview

The decoder was written in VHDL with a structural design hierarchy and the primitive
units described behaviorally. It is targeted for the Xilinx Virtex 5 LX330T FPGA. As
such, the computational resources even on the largest of FPGA are not sufficient to
accommodate thousands of bit and check nodes required for parallel decoding of large
practical LDPC codes. Hence the design that we could fit in has a size of PG(73), based
on Galois field GF(23) [12]. The tools that were used were ISE 10.1 for IDE, Synplify
Pro D-2009.12 for Synthesis and Modelsim 6.2 for simulation. Coregen 8.1 was used to
design all the RAM/ROM cores.

14 Synthesis Results

Based on above implementation, we synthesized a decoder of length 73 and regularity
9 targeted to Xilinx Virtex 5 LX330T, having code rate of 45

73
. The resource utilization

68

statistics are shown in table 14. Since usage of DSP slice is replacable by custom logic,
and pin count reducable by using a ROM to store intrinsics, it is evident that memory is
the most critical resource in our implementation. The pre-routing maximum frequency
was found to be around 130 MHz. The frequency did not change when we changed the
length of the code to a lower value, 57, or the board within Virtex 5 family, such as
SX240T. The critical path was located to run through the check node in this imple-
mentation. So the check nodes, specifically the DSP block within, was pipelined using
one register. The maximum frequency increased to 155 MHz as a result of this change.
The number of cycles per iterations are remained at 42 due to microprogramming-based
control path design. The system throughput achieved at the non-pipelined frequency at
practical SNRs(> 2) is ≥ 89 Mbps(see equation 21. This throughput will definitely get
boosted up by further careful pipelining of overall design, and retiming the circuit. This
throughput is in fact, sufficient for the requirements of WiMAX(75 Mbps) and DVB-
S2(90 Mbps) [5]. Since the throughput increases at least linearly with code length, if
we were to somehow fit a length-1057 PG LDPC decoder on some FPGA, then analysis
shows that such a scaled design would have had a throughput of 1.06 Gbps, comparable
to that achieved by well-known fully parallel ASIC design [1].

Table 5: Resource Utilization for Virtex 5 LX330T

Resource Number % Utilization

CLB Slices
6-input LUTs 35405 17%

Flip-flops 25842 12.5%
DSP Slices(Multipliers) 146 76%

BRAMs 147 45.3%
Bonded IOBs 764 79.5%

14.1 Throughput Calculation

The throughput of the decoder system can be calculated as

T =
73× fclk

42× navg

mega symbols per second (21)

Here, fclk is the maximum clock frequency, in MHz, obtained from synthesis of the circuit
and navg is the average no. of iterations required to decode the code. Also recall that

69

42 is the no. of clock cycles taken for one iteration run and 73 is the length of the block
decoded.

If a complete black box view of the system is taken, then another figure for the through-
put, which has practically very less significance, can be calculated as

T =
73× 9× fclk

42× navg

mega symbols per second (22)

given that each input symbol is repesented as 9-bit fixed point data element at the input
of the decoder system.

14.2 Experiments with Synthesis

During Synthesis with Synplify Pro, one option that was tried out was (automatic) LUT
combining. During incremental synthesis of the system, it was observed that at times,
even an inverter was mapped to a 6-input LUT on FPGA, which tantamounts to wastage
of compuatational power of the basic cell of Virtex-5 FPGA, the 6-input LUT. A bigger
sized combinational circuit can perhaps be packed into a 6-input LUT. However, after
synthesis along with this option, the improvement in total number of LUTs/CLBs used
came down by just 2-3%.

(Automatic) Retiming the design, so as to increase the maximum clock frequency achiev-
able by the system, also did not show signficant improvement. As a tradeoff, due to buffer
placements along the datapath, the number of LUTs used went up by a small factor.

(Automatic) Pipelining was another option, which is yet to be tried out.

To reduce the load of high-fanout components, a parameter called “fanout guide” was
experiemented with. To reduce the maximum number of loads on the output of any cell,
timing-driven replication is performed of the output driver. This leads to insertion of
buffers, and hence to increase of number of LUTs used.

15 Simulation and Testing

Two kinds of off-board simulations were performed: a functional and a performance
simulation. On-board performance simulation has been planned.

70

15.1 Functional Simulation

The idea behind functional simulation at behavioral level was to weed out any implemen-
tation errors that would have crept in, plus any design error which would have happened
due to oversight. For this, a complete iteration of the decoder was simulated, cycle-by-
cycle, and the value of various signals at intermediate points in datapath were tallied
with hand calculations.

The starting point of such simulation was achieved by writing values 110 through 1010 in
first 10 location of each bit memory block at the initialization time(through an init file).
This led to non-trivial execution of all datapath elements within the bit node and the
check node. Further, to have non-trivial value vector as well, to check the codeword test-
ing branch’s proper functioning, value vectors were hard-coded to 9b’1(negative values)
within the hardware model.

A lot many errors were thus located and fixed, which helped in saving time during further
usage of the system. The entire simulation was carried out within the realm of Modelsim
tool, without any further test setup being required.

15.2 Simulation for Performance Benchmarking

Modelsim simulations were done to detect the convergence and Bit Error Rate of de-
coding at various SNRs for measuring performance. The corresponding test strategy
is described in the next section. Figures 20 and 21 show the decoding performance in
terms of BER as well as average no. of iterations, assuming an AWGN channel and
BPSK modulation scheme. These measurements were very close to the measurements
done on the MATLAB model developed for the same decoder. Both the curves follow
standard models. PG codes converge very fast under SPA decoding [12], and same seems
to be true for log-SPA decoding as well. This is because given the medium code rates of
PG codes, there are more parity checks involved per bit, and hence reliability updates
converge fast. The BER curve shows all the three regions, though lack of precision due
to shorter length of code makes it look more stretched out, and a higher error floor. The
usefulness of these codes under various channel conditions is already established in [12].

15.2.1 Test Strategy

First, the generator matrix G of size 45 × 73 was generated from parity check matrix
H. For that, Gauss-Jordan Elimination was used, and any null rows found during the

71

Figure 20: Transmission BER Performance

process were dropped. The generator matrix needs to be systematic(in [I KT] form), so
that after decoding, the last 73-45=28 bits can be dropped. Else, the locations of parity
bits will be smeared throughout, and the decoder will then need to use this location
information additionally citekarkooti. Multiple(right now 10) 45-bit pseudo-random
binary inputs were generated and encoded with G, thus generating the 73×1 codeword
vector. Binary antipodal modulation was performed on each bit of the codeword, using
the mapping {′0′ → +1, ′1′ → −1}. This leads to generation of the transmitted bitstring.
With the modulation signal’s amplitude normalized(±1), the energy per bit of encoded,
modulated signal is Es = 1(A2 in general).

The transmitted bitstring was then smeared with additive white gaussian noise(AWGN)
to create the effect of passing through the channel. The power spectral density of AWGN
was chosen so that a range of SNRs could be acheived for the received signal(a sequence
of real-valued samples). Hence the AWGN process model has a mean of 0, and a variance
of σ, where σ is to be varied downward in the set {0.84, 0.81, 0.78, 0.73, 0.68, 0.63, 0.57}.
This corresponds to varying the SNR(Eb

N0
) of received signal between 1.5 and 5, in dB.

Now Eb = Es×R, where R is the code rate, and power spectral density N0 = σ2

2
. Given

72

Figure 21: Convergence Performance

that encoded signal’s power, Es is 1, Eb

N0
= 2∗R

σ2 . Further, 10 log10
1
σ2 = − 20 log10 σ. By

varying σ within the set {0.84, 0.81, 0.78, 0.73, 0.68, 0.63, 0.57}, we get the SNR set,
or the observation points as {1.5, 1.83, 2.15, 2.73, 3.35, 4.01, 4.88}.
Each such sequence of 73 real samples, representing a channel measurement for a par-
ticular SNR, was first converted into sequence of intrinsic information, as per equation
16. This sequence of real-value intrinsic information was then digitized using 9-bit fixed
point representation. A collection of 73 such 9-bit inputs, acting as intrinsic information,
was provided to the decoder system via the testbench. The testbench would then trigger
off the decoding process. The decoder was made to stop at 50 iterations, and only at
low SNRs, the decoder would sometimes hit this threshold. The transmission BER was
measured by computing the distance between the 73 bit decoder’s output(the final value
vector), and the transmitted codeword.

At each SNR, 10 input sequences, each one a sequence of 73 9-bit data, were successively
generated, and provided to decoder for decoding. The convergence and BER perfor-
mance, as measured at a particular SNR, would then be the average of these 10 trials.

73

15.2.2 Test Setup

The entire process of 73 9-bit input(intrinsic information) generation is done by a matlab
script. For a particular SNR, which is a constant provided to this script, it generates a set
of 10 files, decoder inputi, storing 10 different sequences of 73 9-bit binary inputs. These
are the sequences of intrinsic information. The script also generates 10 files storing the
trasmitted codeword(tx codewordi), which is to be used later to calculate the decoded
codeword’s distance from transmitted codeword.

The system test bench consists of a clock generator, a file i/o process to read in the
intrinsic information from file, and another process to write the final value vector into
a file called decoder output. The testbench also writes into the same file, the number
of iterations that were taken by the decoder for convergence. This testbench can not be
run in a loop for multiple inputs.

Hence, a shell script, run.sh, has been created to run the decoder for simulation, without
any interruption or manual intervention, 10 times in a stretch, using the decoder inputi

series of files for intrinsic information. This script generates decoder outputi series of
files. The idea here is to be able to do a single-run test for multiple inputs, per fixed SNR.
This script needs to be run from a machine, on which UNISIM and XilinxCoreLib
are installed as part of Modelsim [24].

Another shell script, analyse.sh, has also been provided to do post-processing, such as
calculation of BER, given the set of decoder outputi files.

15.3 On-board Testing

Porting of the decoder implementation on Xilinx Virtex 5 LX110T is ongoing. Measure-
ment of real performance such as maximum system frequency etc. will be done once this
porting is over.

16 FPGA Implementation

16.1 Choice of design platform

Most of the applications that use LDPC codes have code lengths running into thousands
of bits. The fastest decoding for LDPC codes is obtained through fully parallel decoding.
Since the SP decoding algorithm is inherently parallel, the platform on which the design is

74

placed should be suited to accommodate and enhance parallel computing. Fully parallel
LDPC decoders have benefit of higher throughput and power efficiency, but require
the implementation of a large number(thousands) of concurrent processing elements,
together with message passing within a congested routing network.

A practical implementation of the algorithm in either hardware or software is gener-
ally optimized for silicon area, power, throughput, latency, flexibility of im-
plementation, scalability etc. While microprocessors and DSP blocks provide the
most flexibility, complex computations can take multiple execution time units. Field
programmable gate arrays(FPGAs) offer more opportunities for parallelism, but with
reduced flexibility. FPGAs are intended for datapath-intensive designs, and thus have
an interconnect grid optimized for local routing. Custom ASICs are well suited for di-
rect mapped architectures, offering even higher performance with further reduction in
flexibility. ASICs can, in fact, be able to meet the requirement of fitting thousands of
processing units, but accompanying the VLSI implementation of a decoder are issues
with interconnects like crosstalk, and long-distance routing problems. A first ASIC im-
plementation of a fully parallel decoder shows that more than half the density on the
ASIC is occupied by the interconnects [1].

Due to the structured nature of the node connections, FPGA fabric is well suited for
the sparse interconnect networks for most PG LDPC codes. However, as pointed out
earlier, the computational resources even on the largest of FPGA’s are not sufficient to
accomodate thousands of bit and check processing units required for parallel decoding
of large practical LDPC codes. Even with this handicap, FPGAs still remain suitable
for doing rapid prototyping, and iterative improvement of a system design. Hence we
have chosen to implement a FPGA-based design to test and study the working of the
concurrent flows of perfect access for LDPC decoding.

16.2 Components of the FPGA design

On Xilinx LX330T, we have been able to synthesize and implement a length-73 PG
LDPC code’s decoder. The degree of each node in its balanced, symmetric bipartite
Tanner graph is 9. The decoding system contains of four main components.

1. Processing Units: They are the computational blocks that process the messages
passed along the edges of the Tanner graph(bit and the check updates). In addition,
the check processing units also perform the codeword test during each iteration of
the algorithm.

75

2. Memory Blocks: Memory blocks are used to store data required between itera-
tions. The size of the memory block required is dependent on the total number of
edges in the Tanner graph of the code. Also, the precision of the data representing
the messages directly affects the size of the memory blocks. The choice of the
precision is discussed later. In the case of a structured graph like for the subspaces
of a Projective Geometry, one can follow structured access patterns for memory
access.

3. Control Logic: For parallel processing designs, the control logic is spread over
a large no. of partitions. At times, there may be multiple instances of a control
block, each for a localized area. Due to resource constraints for large designs on
FPGA’s, however, it is suitable to centralize the dispatch of control signals through
wires to different parts of the datapath.

4. Interconnects: A medium dense network of interconnects results due to the in-
cidence of the subspaces of the geometry. During placement and routing of the
design,the interconnect length may not be optimized for all signals. So,the user
may have to place and route under defined minimum local constraints. We shall
take a look at this under the topic of synthesis.

16.3 Data representation

The choice of message precision is dictated by the bit error rate and the resources of
storage and computation available on the FPGA [25]. The data used to represent
the messages is in 9-bit fixed point format, with the MSB representing the sign and
the rest 8 bits for the magnitude. In the magnitude part, the most significant 3 bits are
for the integer part, and the remaining 5 bits represent the fractional part of data. The
table below shows few examples of numbers in decimal representation, and equivalent
9-bit fixed point representation.

Fixed point notation Decimal equivalent

000011000 0.75
100001101 -0.40625
011000100 6.125
101111000 -3.75

Table 6: Fixed point notation of data

76

Hence the maximum magnitude that can be represented using this notation is 7.96875.
However, the internal datapaths of the node processing units contain additional bits for
allow intermediate overflows due to accumulations. At the communication frontiers, i.e.
between processing units and memory blocks, only 9-bit representation is used.

16.4 Implementation Details

The functionality of each bit node is mapped to CLBs and BRAMs. BRAMs were also
used to map the storage for intrinsic data. The entire datapath of bit nodes is otherwise
mapped to CLBs, requiring 26 CLBs. Similarly, the functionality of each check node is
mapped to CLBs and DSP slices. 2 DSP48E slices are used per check node to realize
the multiply-add operations involved in φ(x) function. We set the alumode of the slice
so that it performs a MAC operation, feeding from A, B and C inputs of the slice. The
datapath involving DSP slices carries the magnitude part and has positive data, so the
inputs are zero-padded before being fed in at A, B and C ports. The decimal point at
output is adjusted dynamically to emulate fixed-point multiplication, by truncating few
bits at the right of the output. The remaining datapath is otherwise mapped to CLBs,
requiring 44 CLBs. The bit and check memory blocks are mapped onto BRAMs. They
are configured to be true dual port memories. To avoid routing congestion on global
routes, we have implemented a 50% reduction in global wires by time-multiplexing the
two instances of PG interconnect: one between bit memory blocks and check nodes, and
the other between check memory blocks and bit nodes. This mapping also made the
synthesis process faster, discussed earlier.

17 Future Work

The design is far from complete. Some of the design changes that are required to be
done are as follows.

1. Elimination of Coregen-generated BRAM cores. Across myriad of synthesis tools,
Coregen-generated netlists are not portable. Also, since we are using 0.03% of
BRAM storage space, its quite a wastage. Distributed memory implementation of
memory blocks, using flip-flops that are only utilized upto 12.5%(refer table 14),
looks clearly feasible on paper.

2. Memory pipelining, if necessary. BRAMs can be pipelined for better latency, in
case they are retained.

77

3. Makind a dual-data rate(DDR) design. Even while retaining synchronous control
architecture in form of microcode sequencing, one can try to utilize both the clock
edges.

4. Right now, at beginning of every iteration, same intrinsic ifnormation is being
re-latched. This has to be removed. Also, preprocessing of intrinsic information
is happening every iteration, which can be avoided by latching data, after doing
preprocessing.

5. Removal of bit and check memory initialization. It is via the .coe files. In fact,
microcode sequencer needs to be modified so that it does not do the residue accu-
mulation scan in first iteration at all.

6. To eliminate res choice based process from check node. In such case, there can
be junk values in most cycles on the check node outputs, res out[1|2]. However,
if we enable enable c mem for writing in the check node outputs in right cycle,
the outputs will contain non-junk data for that much time, which is an acceptable
solution.

7. Since the computation within DSP slice is generally under critical path, and the
multiplier within DSP slice is not pipelined, we can try implementing our own
pipelined-multiplier plus accumulation(PMAC) unit, with a hope to get better
overall system frequency.

8. Right now, saturation of magnitude in check processing units is happening just
after accumulation scan. If saturation is done after output scan, post reverse phi
transformation, where some subtractions take place, then this may cut down loss
of precision at times(when the residue and total sum have the same sign).

9. In fact, ports of the adders used in check processing units can also be made of
higher width, to further cut down on precision loss.

Some of the synthesis experiments that are remaining are as follows.

1. Synthesis with syn dspstyle and syn ramstyle directives

2. Synthesis with coregen netlists presence. So far coregen modules have been treated
as black boxes.

3. Slack and Critical path analysis, and subsequent optimization

78

4. Manual retiming. Automatic retiming is not giving big-ticket advantages.

5. Introduction of asynchronosity in design. Since the pipeline stages implicit in syn-
chronous microcode-based control architecture are not balanced, many components
are wasting most part of clock period.

6. Doing constrained(UCF-based) synthesis.

At simulation level, following things can be tried out.

1. Check compatibility with algorithm

2. Sanitizing functional simulation against stable decoder model is some other higher-
level language such as MATLAB.

To make the design fit and get ported on the locally available Xilinx Virtex-5 LX110T
board, at least the following things need to be done.

1. Removing MAC/DSP slices and introducing BRAM LUTs. LX110T has lesser
DSP slices than currently present in design.

2. PCI-E interfacing experiment. To provide intrinsic information real-time, this
needs to be done.

3. Trying out using multiple clocks. Certain slow blocks such as DSP slices can
perhaps be provided faster clocks. Synthesis using multiple clocks is supported by
most synthesis tools.

Finally, to make design more scalable and maintenable, following things remain.

1. Making a single configuration file for hardware.

2. Introduction of fixed point configurability using generics. Right now 9-bit represen-
tation is being used, but for experiments on convergence, it should be changeable
at one place.

3. Merging multiple shift registers into one using generics.

4. Use constants/generics to specify signal widths. Currently they are all hard codes.

The ultimate design change, of course, may be done by redesigning nodes to try out
other different soft-decoding algorithms, such as min-sum family of algorithms!

79

References

[1] Andrew J. Blanksby and Chris J. Howland. Low density parity check code decoder.
IEEE Journal of Solid-state Electronics, 37(3):404–412, March 2002.

[2] John Crockett. A hardware implementation of Low-density Parity-check coding for
the Digital Video Broadcast satellite version 2 standard. Master’s thesis, Utah State
University, 2006.

[3] I. B. Djordjevic and B. Vasic. Projective geometry LDPC codes for ultralong-haul
WDM high-speed transmission. Photonics Technology Letters, IEEE, 15(5):784–
786, 2003.

[4] ETSI. EN 302 307: Second generation framing structure, channel coding and
modulation systems for Broadcasting, Interactive Services, News Gathering and
other broadband satellite applications, April 2005.

[5] Gabriel Falcao Paiva Fernandes, Vitor Manuel Mendes da Silva, Marco Alexan-
dre Cravo Gomes, and Leonel Augusto Pires Seabra de Sousa. Edge stream ori-
ented ldpc decoding. In Proceedings of the 16th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, pages 237–244. IEEE Computer Soci-
ety, 2008.

[6] Robert Gallager. Low Density Parity Check Codes. M.I.T. Press, 1963.

[7] Frederic Guilloud. Generic Architecture for LDPC Codes Decoding. PhD thesis,
ENST Paris, 2004.

[8] Yang Han and William E. Ryan. Ldpc coding for magnetic storage: low floor
decoding algorithms, system design, and performance analysis. PhD thesis, Univer-
sity of Arizona, Tucson, AZ, USA, 2008.

[9] Sarah J. Johnson and Steven R. Weller. Low-density parity-check codes: Design and decoding,
pages 1–18. Wiley Encyclopedia of Telecommunications, jan 2003.

[10] Marjan Karkooti. Semi-Parallel Architectures For Real-Time LDPC Coding. Mas-
ter’s thesis, Rice University, 2004.

[11] Narendra Karmarkar. A New parallel architecture for sparse matrix computation
based on finite projective geometries. Proceedings of Supercomputing, 1991.

80

[12] Y. Kou, Shu Lin, and M. Fossorier. Low-density parity-check codes based on fi-
nite geometries: a rediscovery and new results. IEEE Transactions on Information
Theory, 47(7):2711–2736, 2001.

[13] Shu Lin. On the Number of Information Symbols in Polynomial Codes. IEEE
Transactions on Information Theory, pages 2711–2736, November 1972.

[14] David J.C. MacKay and Radford M. Neal. Near Shannon Limit Performance of Low
Density Parity Check Codes. Electronics Letters, 32:1645–1646, 1996.

[15] Mohammad Mansour and Naresh Shanbhag. High throughput ldpc decoders. IEEE
Transactions on VLSI Systems, 11(6):976–996, December 2003.

[16] G. Masera, F. Quaglio, and F. Vacca. Finite precision implementation of ldpc
decoders. IEE Proceedings - Communications, 152(6):1098–1102, 2005.

[17] Jorge Castineira Moreira and Patrick Guy Farrell. Essentials Of Error-Control
Coding. Wiley Interscience, second edition, October 2006.

[18] PACT XPP Technologies. White Paper: IEEE Std 802.16eTM LDPC Decoder on XPP-III,
August 2006.

[19] Predrag Radosavljevic, Alexandre de Baynast, and Joseph R. Cavallaro. Optimized
Message Passing Schedules for LDPC Decoding. Asilomar Conference on Signals,
Systems, and Computers, pages 591–595, November 2005.

[20] William E. Ryan. An Introduction to LDPC Codes, chapter 6.2. CRC Handbook
for Coding and Signal Processing for Magnetic Recording Systems. CRC Press,
August 2003.

[21] Hrishikesh Sharma. Optimal Projective Space Lattices based Architectures for
LDPC Decoding. Technical report, Tata Consultancy Services, India, 2006.

[22] Hua Xiao and Amir H. Banihashemi. Graph-based message-passing schedules for
decoding LDPC codes. IEEE Transactions on Communications, 52(12):2098–2105,
2004.

[23] Xilinx, Inc. Virtex-5 FPGA Xtreme DSP User Guide, version 3.3, January 2009.

[24] Xilinx, Inc. Xilinx Synthesis and Simulation Design Guide, version 10.1, April
2009.

81

[25] Xilinx, Inc. Xilinx Virtex-5 Family Overview, version 5.0, February 2009.

[26] Xilinx LogiCORE. Block Memory Generator Product Specification, version 2.8,
September 2008.

[27] Sae young Chung, G. David Forney, Jr., Thomas J. Richardson, and Rdiger Ur-
banke. On the design of low-density parity-check codes within 0.0045 dB of the
Shannon limit. IEEE Communications Letters, 5:58–60, 2001.

[28] Tong Zhang and Keshab Parhi. A 54 Mbps (3,6)-regular FPGA LDPC decoder.
IEEE Workshop on Signal Processing Systems, pages 127–132, October 2002.

A Complete Microcode Schedule

A.1 Schedule Details

Table 7: Complete Microcode Schedule

en intr wr en pmux b cl add b en add b en shift b en intr add
Cycle No. cvec(39) cvec(38) cvec(37) cvec(36) cvec(35) cvec(34) cvec(33)

1 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 1 0 0 0 0 0
5 0 1 0 1 0 0 0
6 0 1 0 0 1 1 0
7 0 1 0 0 1 1 0
8 0 1 0 0 1 1 0
9 0 0 0 0 1 1 0
10 0 0 0 0 1 1 0
11 0 0 0 0 0 1 1
12 0 0 0 0 0 1 0
13 0 0 0 0 0 1 0
14 0 0 0 0 0 1 0
15 0 0 0 0 0 1 0
16 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0

Continued on next page

82

Table 7 – continued from previous page
en intr wr en pmux b cl add b en add b en shift b en intr add

Cycle No. cvec(39) cvec(38) cvec(37) cvec(36) cvec(35) cvec(34) cvec(33)
37 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0

Table 8: Complete Microcode Schedule

en codetest codetest wr en sub b en res conv en sat b en out b badd en
Cycle No. cvec(32) cvec(31) cvec(30) cvec(29) cvec(28) cvec(27) cvec(26)

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0
12 1 1 1 0 0 1 1
13 0 1 1 1 0 0 1
14 0 0 1 1 1 0 0
15 0 0 1 1 1 1 1
16 0 0 1 1 1 1 1
17 0 0 0 1 1 1 1
18 0 0 0 0 1 1 1
19 0 0 0 0 0 1 1
20 0 0 0 0 0 0 1
21 0 0 0 0 0 0 1
22 0 0 0 0 0 0 1
23 0 0 0 0 0 0 1
24 0 0 0 0 0 0 1
25 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0

Table 9: Complete Microcode Schedule

en wr bmem 1 en wr bmem 2 en mmux b netmux decide cword
Cycle No. cvec(25) cvec(24) cvec(23) cvec(22) cvec(21) cvec(20) cvec(19)

1 0 0 0 0 0 0 0

Continued on next page

83

Table 9 – continued from previous page
en wr bmem 1 en wr bmem 2 en mmux b netmux decide cword

Cycle No. cvec(25) cvec(24) cvec(23) cvec(22) cvec(21) cvec(20) cvec(19)
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0
13 1 1 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 1 0 0 0 0
16 1 1 1 0 0 0 0
17 1 1 1 0 0 0 0
18 1 1 1 0 0 0 0
19 1 1 1 0 0 0 0
20 1 1 0 0 0 0 0
21 0 0 0 0 0 0 0
22 0 0 1 0 0 0 1
23 0 0 1 0 0 0 0
24 0 0 1 0 0 0 0
25 0 0 1 0 0 0 0
26 0 0 1 0 0 0 0
27 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0

Table 10: Complete Microcode Schedule

cl add c cl sign acc en pmux c en sign shift en sign acc en sign res
Cycle No. cvec(18) cvec(17) cvec(16) cvec(15) cvec(14) cvec(13) cvec(12)

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
16 0 1 1 0 0 0 0
17 0 0 1 0 0 1 0
18 0 0 1 0 0 1 0

Continued on next page

84

Table 10 – continued from previous page
cl add c cl sign acc en pmux c en sign shift en sign acc en sign res

Cycle No. cvec(18) cvec(17) cvec(16) cvec(15) cvec(14) cvec(13) cvec(12)
19 0 0 1 0 0 1 0
20 0 0 1 0 0 1 0
21 0 0 0 0 0 1 0
22 0 0 0 0 0 0 0
23 0 1 1 0 0 0 0
24 0 0 1 0 1 1 0
25 0 0 1 0 1 1 0
26 1 0 1 0 1 1 0
27 0 0 1 0 1 1 0
28 0 0 0 0 1 1 0
29 0 0 0 0 1 0 0
30 0 0 0 0 1 0 0
31 0 0 0 0 1 0 0
32 0 0 0 0 1 0 0
33 0 0 0 0 1 0 0
34 0 0 0 0 1 0 0
35 0 0 0 0 1 0 0
36 0 0 0 0 1 0 0
37 0 0 0 0 1 0 1
38 0 0 0 0 1 0 1
39 0 0 0 0 1 0 1
40 0 0 0 0 1 0 1
41 0 0 0 0 0 0 1
42 0 0 0 0 0 0 0

Table 11: Complete Microcode Schedule

phase choice c coeff choice c en scaling c en add c en mag shift c en sub c en sat c
Cycle No. cvec(11) cvec(10) cvec(9) cvec(8) cvec(7) cvec(6) cvec(5)

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0
24 0 1 0 0 0 0 0
25 0 1 0 0 0 0 0
26 0 1 1 0 0 0 0
27 0 1 1 1 1 0 0
28 0 1 1 1 1 0 0
29 0 0 1 1 1 0 0
30 0 0 1 1 1 0 0
31 0 0 0 1 1 0 0
32 1 0 0 0 1 1 0
33 1 0 0 0 1 1 1
34 1 1 0 0 1 1 1
35 1 1 0 0 1 1 1

Continued on next page

85

Table 11 – continued from previous page
phase choice c coeff choice c en scaling c en add c en mag shift c en sub c en sat c

Cycle No. cvec(11) cvec(10) cvec(9) cvec(8) cvec(7) cvec(6) cvec(5)
36 1 1 1 0 0 1 1
37 1 1 1 0 0 0 1
38 1 1 1 0 0 0 0
39 1 0 1 0 0 0 0
40 1 0 1 0 0 0 0
41 1 0 0 0 0 0 0
42 1 0 0 0 0 0 0

Table 12: Complete Microcode Schedule

en reschoice c cadd en en wr cmem 1 en wr cmem 2 en mmux c
Cycle No. cvec(4) cvec(3) cvec(2) cvec(1) cvec(0)

1 0 1 0 0 0
2 0 1 0 0 0
3 0 1 0 0 1
4 0 1 0 0 1
5 0 1 0 0 1
6 0 0 0 0 1
7 0 0 0 0 1
8 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 0 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 0 0 0
26 0 0 0 0 0
27 0 0 0 0 0
28 0 0 0 0 0
29 0 0 0 0 0
30 0 0 0 0 0
31 0 0 0 0 0
32 0 0 0 0 0
33 0 0 0 0 0
34 0 0 0 0 0
35 0 0 0 0 0
36 0 0 0 0 0
37 1 1 0 0 0
38 1 1 1 1 0
39 1 1 1 1 0
40 1 1 1 1 0
41 1 1 1 1 0
42 0 0 1 1 0

86

A.2 Schedule Description

In this section, we explain various contiguous portions of the schedule.

A.2.1 Cycle 1

In the first cycle, and only in first iteration, the intrinsic information which is expected
to be ready before the decoder is enabled, needs to be latched within the decoder system
immediately. The latching signal, en intr wr lasts exactly one cycle.

A.2.2 Cycles 1-5

Simultaneously, to start reading check-to-bit update messages from check memory blocks
in every iteration except the first iteration, check address memory generation needs to
be started, using cadd en. Since it takes 5 cycles to read all messages, 2 at a time, the
address generation lasts 5 cycles.

A.2.3 Cycles 2-6

Linked to cadd en, check memory blocks get automatically enabled from next cycle.
Since addresses are ready cycle 2 onwards, and memory blocks enabled for access as
well, we need to keep en wr cmem[1|2] pulled low, so that read happens on the check
memory blocks.

A.2.4 Cycles 3-7

From cycle 3 onwards, message data starts appearing on output ports of check memory
blocks. It has to be appropriately distributed over different interconnect wires using
memory muxes next. Hence memory muxes are now enabled for these 5 cycles. The
corresponding signal is en mmux c.

A.2.5 Cycles 4-8

After memory muxes propagate this input message on the interconnect, processor muxes
have to be enabled, so that they can provide the bit processing units the required inputs
by sampling the right wires on the interconnect. The corresponding signal is en pmux b.

87

A.2.6 Cycles 5-9

The input signals are changed from 9-bit sign-magnitude form, to 13-bit 2’s complement
form suitable for internal datapath of the bit processing units. No enable signal is
required for this processing.

A.2.7 Cycle 5

The output of 3-input adder being used in accumulation scan in bit processing units,
which is also being used via feedback as 3rd input, is cleared in this cycle before doing
total sum of the input messages. The corresponding signal is cl add b.

A.2.8 Cycles 6-10

The total sum of input messages is performed via a 3-input adder, enabled using en add b,
by taking 2 inputs at a time.

A.2.9 Cycles 6-14

Simultaneously, 2 shift registers, enabled using en shift b, take in the 2 inputs to the
decoder, which they later present on their output during output scan. The last output
of shift register should come out just before last round of subtraction happens in output
scan. Hence the shift registers remain enabled till cycle 14.

A.2.10 Cycle 11

The total sum of messages needs to be further added with the intrinsic information at
every bit processing unit, every iteration. This is done immediately in next cycle after
accumulating the inputs, using en intr add signal.

A.2.11 Cycle 12

The hard decision on bit’s estimated value, which needs to be made every iteration, is
made in this cycle, using en codetest signal. This is because in previous cycle, total
information about the bit in the current iteration becomes available. This is one of
those exceptional computations, that does not wait for clock edge to happen. The same

88

signal, at the next rising clock edge(clock number 13), leads to transfer of the value
vector(computed asynchronously within previous cycle) onto outputs of bit processing
units. Hence en out b is also simultaneously asserted in this cycle.

A.2.12 Cycles 12-15: Read after Write

The value vector sent out by each bit processing unit needs to be first written in special
locations of bit memory blocks, 11 and 12. Subsequent to that, it needs to be read(by
check processing units), and presented to check processing units for parity constraint
checking. Hence in cycles 12 and 13, special addressses are generated by enabling signals
testcode wr and badd en simultaneously for 2 cycles. At the rising edge of cycle 13, the
value vector, enable signal for the bit memory blocks(en bmem), and the addresses for
the 2 locations where value vector is to be written, all get computed. Hence, by also
asserting the memory write signals en wr bmem [1|2] in this cycle, the write operation
gets performed at the rising edge of cycle 14. By allowing the addresses to remain stable
till next cycle, and also the bmem en to remain 1 at the next clock edge, but by pulling
down en wr bmem [1|2] to 0(to signal a read), the value vector gets presented at the
output ports of bit memory blocks during the cycle number 15.

A.2.13 Cycles 15-19

Since the bit memory outputs become available in cycle 15, bit memory muxes are en-
abled as well during this cycle, using en mmux b signal, to allow distribution of value
vector in next 5 cycles. The same data is held on the output of bit memory blocks for
5 consecutive cycles due to design of the memory blocks(“no change” configuration).
Hence, the same value vector per bit gets distributed 9 times to 9 different check pro-
cessing units in appropriate cycle.

A.2.14 Cycles 16-20

To propagate value vector further after it has appeared on interconnects, (check) pro-
cessor muxes are enabled for 5 cycles using en pmux c signal, starting cycle 16.

A.2.15 Cycle 16

The parity from each bit estimate is accumulated using a 3-input XOR gate, one of whose
inputs is the output itself, connected in a feedback mode. To clear any useless offsets,

89

the output of this sequential piece of logic is cleared, using cl sign acc signal, before the
actual accumulation of parity starts.

A.2.16 Cycles 17-21

The accumulation of even parity is done using XOR gates over next five cycles, enabled
via the en sign acc signal, using the bit estimate of various bits arriving at its inputs in
these cycles.

A.2.17 Cycle 22

Since the final accumulated parity per check processing unit gets formed in cycle 22,
checking the entire sequence of parities to be all-0-sequence is done in next cycle, by
enabling the corresponding decide cword signal in this(22nd) cycle.

A.2.18 Cycle 23

If the sequence of bit estimates was found to form a valid codeword, then the com-
plete control path is disabled by disabling the microcode sequencing in this cycle, asyn-
chronously via the valid word signal. The decoder subsystem is then deemed to have
converged upon a possible codeword that was transmitted to the reciever system.

A.2.19 Cycles 12-16: Winding back to Parallel Branching

While testing of estimated bit sequence as a codeword is being performed over cycles
12-23, simulataneously, bit nodes continue doing computation as if they were to prepare
for another round of iteration. Hence, since the total information gets available in pre-
vious cycle (11th), the output scan starts from this cycle, via the signal en sub b. The
calculation of residues is done by subtracting a delayed version of 2-inputs per cycle,
from the total information, for next 5 cycles.

A.2.20 Cycles 13-17

Since the output of bit processing units is in sign-magnitude format, the sign and mag-
nitude are extracted from the 2’s complement residues prepared in last cycle, using
en res conv signal, for 5 cycles.

90

A.2.21 Cycles 14-18

Since the output of bit processing units have 8 bits for magnitude representation, while
the internal datpath of bit processing units have 13 bits, the magnitude is saturated to
8 bits in these 5 cycles, using en sat b signal.

A.2.22 Cycles 15-19

The saturated, 9-bit sign magnitude formatted outputs of bit processing units are pre-
sented at the output ports of the units in these 5 cycles, using the signal en out b.
Simultaneously, to faciliate writing of these residues in appropriate locations of bit mem-
ory blocks, address generation for bit memory blocks, using perfect access patterns is
started over, using assertion of badd en signal.

A.2.23 Cycles 16-20

Starting cycle 16, the data at input ports of bit memory blocks is stable, as are the enable
for the bit memory blocks(en bmem) and the appropriate addresses. Hence, the write
signals are asserted en wr bmem [1|2] in this cycle, so that the write starts happening
from next rising clock edge. Note that this write does not clash with the data being held
stable at output ports(value vector), due to “no change” configuration.

A.2.24 Cycles 21-25

Since the value vector data has been distributed over the interconnect the requisite
amount of cycles by now, one can immediately start preparing for check node updates,
as soon as writing of bit-to-check update messages in bit memory blocks is over. For
this, the badd en is continued to be held high for 5 more cycles, between cycles 19 and
24. The address counter goes back to 0 at start of cycle 19, and re-counts from there.
Pulling down signals en wr bmem [1|2] to 0 leads to signalling of read operation to be
performed. en bmem remains at 1 during cycles 21-25, as it is derived from badd en.

A.2.25 Cycles 22-26

Since the bit memory outputs again become available in cycle 22, bit memory muxes
are enabled as well during this cycle, using en mmux b signal, to allow distribution of
bit-to-check update messages in next 5 cycles.

91

A.2.26 Cycles 23-27

To propagate value vector further after it has appeared on interconnects, (check) pro-
cessor muxes are enabled for 5 cycles using en pmux c signal, starting cycle 23.

A.2.27 Cycle 23

The sign from each check-to-bit message meant for next iteration is accumulated using
a 3-input XOR gate, one of whose inputs is the output itself, connected in a feedback
mode. To clear any useless offsets again, the output of is cleared, using cl sign acc signal,
before the actual accumulation of sign starts.

A.2.28 Cycles 24-28

The total accumulation of sign of input messages is performed via a 3-input XOR gate,
enabled using en sign acc, by taking 2 inputs at a time. The output of accumulation
remains stable till at least cycle 40, when the signs of outgoing messages start getting
computed using the accumulated sign.

A.2.29 Cycles 24-28

Simultaneously, the multiplicand and addend needed to transform the 2 inputs per cycle
into log(tanh()) domain using DSP slices’ MAC operation, are enabled to be chosen
using coeff choice c signal in these 5 cycles. This choice is done on negative clock edges,
starting the falling edge of 24th clock cycle.

A.2.30 Cycles 24-28

Since the same function is used to invert the transformation inputs, same DSP slices
are used twice during the course of check node updates. Hence, at the first instance,
check node inputs are multiplexed onto inputs of DSP slices during these cycles, using
phase choice c signal. A ’0’ value of this signal signifies the accumulation phase, and
hence the forward transformation of inputs. This multiplexing is done on negative clock
edges, starting the falling edge of 24th clock cycle.

92

A.2.31 Cycles 24-32

Further simultaneously, 2 shift registers, enabled using en sign shift, take in the 2 input
sign bits, which they later present on their output during output scan. The last output of
shift register should come out just before last round of outgoing sign calculation happens
in output scan. Hence the shift registers remain enabled till cycle 40.

A.2.32 Cycles 25-29

The magnitude part of input is transformed by approximating the transform to be a
MAC function, to be performed by 2 DSP slices, starting cycle 25. No particular enable
signal is required for this job.

A.2.33 Cycles 26-30

To account for fixed point during the point-less multiplication that happened within the
DSP slice, shifting and scaling is performed post transformation. The shifting is enabled
via en scaling c signal, and it starts off from cycle 26 onwards.

A.2.34 Cycles 27-31

The total sum of input messages is performed via a 3-input adder, unsigned this time,
that is enabled using en add c, by taking 2 inputs at a time.

A.2.35 Cycles 27-43

Simultaneously, 2 shift registers, enabled using en mag shift c, take in the 2 inputs to the
decoder, which they later present on their output during output scan. The last output
of shift register should come out just before last round of subtraction happens in output
scan. Hence the shift registers remain enabled till cycle 43.

A.2.36 Cycles 32-36

Since the total information at the check node gets available in previous cycle (30th), the
output scan starts from this cycle, via the signal en sub c. The calculation of residues
is again done by subtracting a delayed version of 2-inputs per cycle, from the total

93

information, for next 5 cycles. Simultaneously, phase choice c signal is also asserted to
’1’ this cycle onwards, signifying the output scan.

A.2.37 Cycles 33-37

Since the output of check processing units have 8 bits for magnitude representation, while
the internal datpath of check processing units have 12 bits, the magnitude is saturated
to 8 bits in these 5 cycles, using en sat c signal.

A.2.38 Cycles 34-38

To invert the transformation before sending out the residue, same DSP slices are used
again, as mentioned before. Hence, at this second instance, saturated magnitude outputs
are multiplexed onto inputs of DSP slices during these cycles, using phase choice c signal,
which has already been pulled up to a ’1’ value. This multiplexing is done again on
negative clock edges, starting the falling edge of 34th clock cycle.

A.2.39 Cycles 34-38

Simultaneously, again, the multiplicand and addend needed to inverse-transform the
outputs, 2 per cycle, using DSP slices’ MAC operation, are enabled to be chosen using
coeff choice c signal in these 5 cycles. This choice is again done on negative clock edges,
starting the falling edge of 34th clock cycle.

A.2.40 Cycles 35-39

The magnitude part of would-be outputs are inverse-transformed by approximating using
a MAC function, to be performed by 2 DSP slices, starting cycle 35. No particular enable
signal is required for this job.

A.2.41 Cycles 36-40

To account for fixed point during the point-less multiplication that happened within the
DSP slice, shifting and scaling is performed post transformation. The shifting is enabled
via en scaling c signal, and it starts off from cycle 36 onwards.

94

A.2.42 Cycles 37-41

The scaled magnitudes are now multiplexed on appropriate wires of the 2 output ports of
bit processing units, using en reschoice signal, starting cycle 37 onwards. Simultaneously,
calculation of final sign of each of these output messages is started off by pulling up the
en sign res signal, which is appended to the magnitude as soon as it gets computed.
Further simultaneously, to faciliate writing of these residues in appropriate locations of
check memory blocks, address generation for check memory blocks, using perfect access
patterns is started over, using assertion of cadd en signal.

A.2.43 Cycles 38-42

Starting cycle 38, the data at input ports of check memory blocks is stable, as are the
enable for the check memory blocks(en cmem) and the appropriate addresses. Hence,
the write signals are asserted en wr cmem [1|2] in this cycle, so that the write starts
happening from next rising clock edge.

A.2.44 Cycles 1-5: Over to Next Iteration

Since the bit-to-check update messages have been written into check memory blocks
by end of cycle 42, one can immediately start preparing for bit node updates for next
iteration. This is done by cycling around, and going back to processing as detailed in
section A.2.2.

95

	Introduction
	LDPC Codes and Decoding
	Matrix Representation
	Graphical Representation
	Derivation of Log Sum-Product Algorithm
	Belief Propagation on Cycle-free Tanner Graphs
	Recursive Calculation
	Modification for Graphs with Cycles
	Inputs, Iterations and Output
	Intrinsic Information for Gaussian Channels
	Impact of Conventions on Output Decision
	Summary of Decoding Algorithm
	Cycles, Convergence and Update Scheduling

	Projective Geometry and LDPC Codes
	Code Construction from Projective Geometries
	LDPC codes based on PG(2,23)

	Choice of Codes
	Parallel Scheduling Model
	Overall Hardware Model
	Data Path Overview
	Control Path Overview

	Bit Node Architecture
	Input Preprocessing
	Accumulation Scan
	Output Scan
	Output Preprocessing
	Codeword Testing

	Check Node Architecture
	Sign-Magnitude Separation
	Sign Processing
	Using Sign Datapath in Codeword Testing
	Magnitude Processing
	Sign-Magnitude Recombination

	Memory Architecture
	Implementation of Memory Blocks
	Configuring Block RAMs
	Assigning Messages to Memory Blocks
	Internal Layout of Memory Blocks
	Address Generation
	Intrinsic Latch

	Interconnect Architecture
	Tanner Graph Generation
	Circular Shift switches
	Memory switch
	Processor switch

	Detail Design of Interconnect between Switches

	Overall Datapath
	Control Path Architecture
	Decoder State Machine
	Control Store
	Microcode Sequencer
	Design Schedule

	Implementation Overview
	Synthesis Results
	Throughput Calculation
	Experiments with Synthesis

	Simulation and Testing
	Functional Simulation
	Simulation for Performance Benchmarking
	Test Strategy
	Test Setup

	On-board Testing

	FPGA Implementation
	Choice of design platform
	Components of the FPGA design
	Data representation
	Implementation Details

	Future Work
	Complete Microcode Schedule
	Schedule Details
	Schedule Description
	Cycle 1
	Cycles 1-5
	Cycles 2-6
	Cycles 3-7
	Cycles 4-8
	Cycles 5-9
	Cycle 5
	Cycles 6-10
	Cycles 6-14
	Cycle 11
	Cycle 12
	Cycles 12-15: Read after Write
	Cycles 15-19
	Cycles 16-20
	Cycle 16
	Cycles 17-21
	Cycle 22
	Cycle 23
	Cycles 12-16: Winding back to Parallel Branching
	Cycles 13-17
	Cycles 14-18
	Cycles 15-19
	Cycles 16-20
	Cycles 21-25
	Cycles 22-26
	Cycles 23-27
	Cycle 23
	Cycles 24-28
	Cycles 24-28
	Cycles 24-28
	Cycles 24-32
	Cycles 25-29
	Cycles 26-30
	Cycles 27-31
	Cycles 27-43
	Cycles 32-36
	Cycles 33-37
	Cycles 34-38
	Cycles 34-38
	Cycles 35-39
	Cycles 36-40
	Cycles 37-41
	Cycles 38-42
	Cycles 1-5: Over to Next Iteration

