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Abstract

Double precision sparse matrix vector multiplication (SpMxV) is a key computational

kernel in iterative solvers required in many scientific and engineering applications. Gen-

eral purpose processors achieve only a fraction of their peak performance in sparse matrix

vector product operations owing to poor cache behaviour resulting from irregular mem-

ory accesses. FPGAs offer more bandwidth and fine-grained parallelism, a combination

favourable for acceleration of SpMxV.

In this report, a design of a processing element performing SpMxV on FPGA is de-

scribed and evaluated. The design is developed with a view to accelerate especially large

matrices which have to be stored in off-chip DRAMs. The design improves peak perfor-

mance by blocking the matrix and pre-fetching data in bursts to hide large DRAM random

access latencies. The sparse matrix is decomposed into a relatively ‘dense’ component (still

processed as a sparse matrix) and a sparse component. The relatively ‘dense’ component

needs to have enough non-zeros to hide substantial portion (≥ 50%) of vector access la-

tencies. A complete description of the input data format along with the required matrix

data pre-processing is presented. An optimal scheduling scheme for workload allocation

amongst the processing elements without causing RAW hazards is also discussed. The

design is targeted for implementation on high-end FPGAs like Xilinx Virtex-5 LX330T

which can support a maximum number of five processing elements. The processing el-

ement has been prototyped as an accelerator peripheral for the iterative Gauss-Jacobi

algorithm in am embedded system on the available Xilinx XUPV5-LX110T development

board.
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Chapter 1

Introduction

Sparse Matrix Vector Multiplication (SpMxV) is a key computational kernel in many

scientific and engineering applications. Least square problems, eigenvalue problems, FEM,

computational fluid dynamics, image reconstruction in medical imaging, circuit analysis,

web-connectivity and many more applications need to solve sparse linear systems using

iterative methods. It is observed that SpMxV forms the bottleneck in these iterative

methods, resulting in only a fraction of the peak performance of the processing cores

being utilized.

For SpMxV, unless specific classes of matrices are targeted - like matrices arising

from FEM, circuit analysis - distribution of elements from the matrix (A) is unknown

and order of access is irregular. As a result there can be no planned reuse of vector

elements, unlike in the case of general matrix-matrix multiplication. This calls for higher

memory bandwidth requirement. The problem is compounded since fetching of pointers

describing location of non-zeros in the matrix also takes up a portion of the memory

bandwidth.

Large matrices which have sizes running into millions of rows cannot fit in the caches

of general purpose processors. Since memory accesses are irregular, cache hierarchy loses

its effectiveness and many random accesses to high latency DRAMs are made. This

causes performance of SpMxV to drop to a fraction of peak performance for general

purpose processors. It is only by optimization and tuning of SpMxV kernels for the

specific matrix structures that these shortcomings can be overcome[1].

Modern FPGAs provide abundant resources for floating point computations. Aside

from large logic capabilities, theses FPGAs also have sufficient on-chip single-cycle access
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CHAPTER 1. INTRODUCTION 2

blocks of RAM (BRAMs) to provide required on-chip memory bandwidth. On the other

hand, if external off-chip memories are to be used, then the high I/O pin count of FPGAs

helps to achieve high memory bandwidth and hide access latencies. However, off-chip

memories like DRAMs have large access latencies and can considerably slow down the

system if used naively.

FPGAs have been used previously to implement SpMxV. The major shortcoming

of these implementations is that they use on-chip BRAM or off-chip SRAM to store

data. As a result they deal with much reduced problem sizes (few tens of thousand rows)

as compared to what are observed in practical applications. In applications like web-

connectivity, computational fluid dynamics matrix sizes can run into millions of rows.

On-chip memories or SRAMs are simply insufficient to store such large amounts of data.

The memory densities required for such problems can be provided only by DRAMs.

We present the analysis and design for an FPGA based architecture that performs

double precision floating point Sparse Matrix-Vector Multiplication utilising commodity

DRAMs for storage. In typical applications, majority of non-zeroes tend to cluster in

relatively dense blocks. The rest of non-zeros scattered sparsely throughout the rest of the

matrix form a small percentage of total number of non-zeros. Hence, the problem matrix

is decomposed into two component matrices - one component comprising non-zeros in the

relatively ‘dense’ regions of the matrix and the other component containing remaining

elements. This design aims to accelerate computation over the relatively ‘dense’ regions.

This is achieved by arranging data in a burst-friendly manner in DRAMs to hide the

access latencies. We analyse the problem from an architectural standpoint, discuss design

trade-offs, present the limits on the expected performance and evaluate our design. The

design has been targeted at the Virtex-5 LX330T, a high end FPGA from Xilinx device

families. By using commodity DRAMs, our design is capable of processing matrices which

have multi-million non-zero elements. For most matrices, performance is observed to be

very close to the peak performance. Off-the shelf IEEE-754 compliant floating point

multipliers and adders are used in the processing cores of our design, ensuring portability

to newer device families.

An embedded system comprising of one instance of the processing element was im-

plemented for an application involving iterative matrix vector product - Gauss-Jacobi

solver - as a proof of concept. Performance figures for this system were collected and
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explained keeping in perspective limited capabilities of an embedded system.

1.1 Organization of the report

The aim of the project is to implement an architecture performing sparse matrix vector

multiplication for sparse matrices on the FPGA. The second chapter provides an analysis

of the challenges and trade-offs involved in design and also provides a background of

existing work.

The third chapter comprises an overview of the computational approach followed by

the architecture and then describes two variants of the developed architecture. Finally

the chapter provides software implementation flow details and simulation results. The

fourth chapter gives a brief overview of the hardware, software (iterative Gauss-Jacobi

solver) and hardware software co-design involved in the development of the embedded

system built around the SpMxV processing core. The fifth chapter finally discusses the

problem of generation of the optimal schedule for SpMxV computation and proposes an

algorithm for the same, while providing a proof of optimality.



Chapter 2

Analysis of SpMxV

2.1 Problem Definition

SpMxV is defined as follows: Consider a matrix vector product y = Ax. A is a n × n

sparse matrix with Nz non-zero elements. We use Aij (i = 0, ..., n − 1; j = 0, ..., n − 1) to

denote the elements of A. x and y are vectors of length n and their elements are denoted

by xj (j = 0, ..., n − 1) and yi (i = 0, ..., n − 1). Thus for every Aij, two operations need

to be performed - floating point multiplication followed by floating point addition.

yi = yi + Aij × xj (2.1)

2.2 Problem Analysis

We observe that xj is determined only after Aij is fetched along with the corresponding

row and column pointers from the memory into the processing element. There is no sure

way or predicting j before the nonzero element is fetched. Thus SpMxV suffers from

irregular memory accesses, which can slow down the system considerably if high latency

memories like DRAMs are used.

If we call the composite operation represented by 2.1 as multiply-accumulate, one

such operation requires two double precision (IEEE-754) words and the implicit pointers

represented here by i and j subscripts. Unlike the case of dense matrix computations,

there can be no planned reuse of the vector entries without knowledge of the matrix

structure. The elements are thus used only once after which they are discarded. Only the

4



CHAPTER 2. ANALYSIS OF SPMXV 5

result of the multiply-accumulate operation is stored. Since two input words are useful for

only two computation operations, the ratio of computation to bandwidth requirement is

low compared to other applications (namely general matrix-matrix multiplication). This

ratio becomes worse due to overhead of bandwidth requirement for fetching pointers -

two per matrix element. Assuming 32-bit pointers and double precision floating point

matrix and vector data, 24 bytes are fetched in order to perform 2 operations. Hence,

the performance of SpMxV is usually less than a tenth of the bandwidth available to the

system.

A deeper analysis of the problem reveals that there is an inherent trade-off involved

in allocation of bandwidth for fetching matrix and vector. There are two bottlenecks that

need to be overcome. Firstly, in case of pathologically sparse matrix (unstructured), a

random access need to be performed for every xj. The low latency for random accesses

offered by SRAM-like memories makes them the natural choice for storing vector elements.

Since we would prefer as many processing elements as possible, these memories should

be able to handle multiple requests without stalling. However, these memories would be

insufficient to store entire vector when the vector size runs into millions of rows. At the

other end of the spectrum, in a properly structured matrix, when the matrix elements

form clusters, required vector elements can be cached in relatively small size memories.

Here, the bottleneck is fetching enough matrix data from the external memories to ensure

maximum reuse of the vector elements.

Though modern FPGAs have large amounts of fast access memories, they still fall

short of the amount of storage required in case the matrix and/or vector data is to be

stored in on-chip memories. The largest Virtex-5 device has less than 24 Mb of storage

and the latest Virtex 6 family too has less than 48 Mb of on-chip memory. Assuming

64-bit data, this translates to 0.4M words and 0.8M words in case of Virtex 5 and Virtex

6 respectively. Moreover, as discussed in the above paragraph, if vector elements need to

be replicated, then the size of the matrices that can be handled drops far short of the one

million mark. Hence, an implementation geared to handle matrices having multi-million

rows has to use external DRAMs for storage.
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2.3 Related Work

The SpMxV kernel implemented by Zhuo and Prasanna[2] was among the earliest in the

field. They use Compressed Row Storage (CRS) format for their input which trims the

zeros from the sparse matrix rows. In their architecture, each trimmed row is divided into

sub-rows of fixed length equal to the number of processing elements. The dot products

in a sub-row are assigned to different processing elements and then a reduction circuit

is used to get the final vector element after all sub-rows have been processed. They

perform load balancing by merging appropriate sub-rows and padding them with zeros if

necessary, which significantly improves performance. However the architecture proposed

by them relies on SRAMs for storage of matrix entries which severely limits the matrix

size. Moreover the entire vector is replicated in local storage of all processing elements.

The sequential nature of the inputs to the already huge reduction circuit results in very

high latencies. The largest matrix evaluated had 21200 rows and 1.5 million non-zeros.

They reported an average performance of 350 MFLOPS.

Special care has been taken by Gregg et. al to create a DRAM based solution. They

use pre-existing SPAR architecture originally developed for ASIC implementation and

hence port a deeply pipelined design for FPGA implementation. They use local BRAMs

to create a cache for the DRAM data since they consider elimination of cache misses to be

of paramount importance. They reported performance of 128 MFLOPS for three parallel

SPAR computation units. In case caching is perfect, they achieve performance of 570

MFLOPS for three SPAR units.

The architecture developed by deLorimier[3] uses local FPGA Block RAMs (BRAMs)

exclusively to store matrix as well as vector data. While pre-processing the matrix, they

exploit the statically available information to schedule computation and communication

periods statically. The relevant micro-code is stored in the local storage of each process-

ing element. To maximize operating frequency, the accumulator used has a deep pipeline

which could potentially cause RAW (read after write) hazards due to the inherent feedback

in the accumulator datapath. During pre-processing, they re-order the matrix and inter-

leave rows to prevent RAW hazards thus circumventing the need for expensive pipeline

stalls which might have had to be enforced. However, the architecture has an forced com-

munication stage which is not overlapped with computation stage, decreasing the overall
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efficiency of the system. The main limitation of the system is its inability to handle de-

signs larger than what the BRAMs can accommodate. The largest matrix evaluated had

90449 rows and 1.8 million non-zeros. They reported performance of 1.6 GFLOPS for 1

Virtex-II 6000 and about 750 MFLOPS per FPGA with 16 FPGAs.

An architecture has also been developed by Sun, Peterson et. al[4], for a FPGA-

accelerator system. Data is transferred from host memory to off-chip memory on the

accelerator board. Their architecture relies on dividing a row into blocks of non-zero

sections and feeding them to the processing elements. Vector elements are loaded in blocks

as required in local on-chip memory. The design does not perform row-interleaving and

hence has to rely on other hardware for preventing RAW hazards. On Virtex-2 devices,

operation is estimated to be at 165 MHz for double precision data and performance

estimates predict up to 96% peak performance.

Our implementation strives to get the best of deLorimier’s architecture while using

DRAMs as in case of the architecture proposed by Gregg et. al.



Chapter 3

Design and Simulation

3.1 Overview

As shown in previous sections, SpMxV for large matrices cannot be handled exclusively

using on-chip memories. Hence we propose a hybrid system wherein the matrix and vector

are stored in external off-chip commodity DRAMs and the data is cached in local on-chip

memories. Since burst accesses can help to hide DRAM latencies, the following sections

explain a processing paradigm which enables data to be stored in a fashion amenable to

burst accesses.

From the discussion in previous sections, we know that there are two issues to be

addressed in order to accelerate SpMxV. Practically encountered matrices are not patho-

logically sparse nor are they perfectly clustered, both properties are present in them to

varying degrees. We propose that matrices be split accordingly. Clustered non-zeros are

handled by one kernel, and the outliers by a different one. In this paper we design an

architecture best suited to process the clustered blocks of non-zeros. Since the outliers

are few in number and randomly arranged, they should be handled separately.

3.1.1 Matrix Blocking

The operation involving sparse matrix vector multiplication is distributed amongst mul-

tiple processing elements. Since maximum throughput will be obtained when all the

processing elements are operating in parallel, the vector access should be as fast and

conflict-free as possible for each processing element. One solution is to use multi-port

8
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memories - one port for each processing element, but it is not scalable. The other solu-

tion, which we have used, is to use separate caches in each processing element for storing

vector elements and replicating the vector in all of them.

The local (single-cycle access) BRAM storage in FPGA is far from sufficient to store

multiple instances of a multi-million double precision vector. To tackle this problem the

relatively ‘dense’ matrix is divided into square blocks of certain predetermined size. The

granularity of division is influenced by amount of memory to be dedicated to on-chip

caches and definition of ‘dense’ block. A matrix block size of 128×128 is small enough to

allow for multiple on-chip caches and also contains sufficient non-zero elements. The block

size could be changed with no fundamental changes to the rest of the design. Since we are

using external DRAMs for matrix and data storage, we aim to make maximum use of the

burst accesses of DRAM to hide the access latencies. As described in previous paragraph,

since matrix elements are stored in the order in which they are to be processed, matrix

data can be fetched in continuous stream of bursts.

Figure 3.1: Matrix Blocking

Only the relatively ‘dense’ blocks are given as input to the processing elements in a

row-major fashion. A rowstrip is defined to be the set of all the blocks (128n row aligned)
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having the same set of rows. A direct fallout of such a mechanism is that the vector too

can be blocked and thus only elements in required blocks of the vector can be fetched

using burst accesses rather than the whole vector being stored. The blocking is described

in Figure 3.1. Moreover, we pre-fetch the next required vector block to reduce stalls

in computation, which is instrumental in hiding the DRAM access latencies. Since the

blocking is very fine, the vector block size is small and thus the vector entries can easily

be replicated in the local storage of all processing elements, bypassing problems which

may arise due to memory contention.

3.1.2 Dataflow

The matrix data is stored arranged in blocked column-row-data format. During operation,

relatively ‘dense’ matrix blocks are processed in a row major fashion one after the other.

The matrix data in each block is distributed amongst different processing elements in the

pre-processing phase. All processing elements operate on the same block at any given

time. For each ‘dense’ matrix block, the processing elements compute the product of

each matrix element assigned to it and the appropriate vector element using the vector

block replicated in each processing element. Each processing element also maintains a 128

element (one for each row in block) partial sum array, which is re-initialized to zeros at

the start of processing of a rowstrip. In each processing element, the generated product is

accumulated into that element of these partial sum arrays corresponding to the row of the

matrix data. These partial sum arrays are transferred out of each processing element at

end of processing of a rowstrip, after which they are accumulated in a adder tree. Thus,

for each row in the rowstrip, we get the accumulated sum which is the corresponding row

element in the result vector. This operation is described in a scaled down example, having

two processing elements, in Figure 3.2. In the figure, the variable Yijk represents that it is

a element contributing to the result vector generated by processing element i, for row k of

block j of the matrix. The grayed blocks represent ‘dense’ blocks and numbers represent

the processing element the matrix element is assigned to.

The processing pattern described above does output the result vector blocks in order

but not necessarily in continuation. For instance, if a particular rowstrip in the matrix

has no ‘dense’ blocks, there is no input to the processing elements corresponding to that

rowstrip. Thus no output partial sum array will be generated for that block of result
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Figure 3.2: SpMxV Operation

vector. This may not seem to be a problem in case matrix-vector product is the only

computation to be performed. However this is seldom the case. In most applications,

sparse matrix-vector product is used as an intermediate step in an iterative algorithm

where the next stage in the application might require knowledge of the entire vector.

This would require the design to fill the discontinuities in the result vector with zeros

or provide some identification for the output result vector block (for instance, in form of

block number). One of the two designs (Design B) described in the following sections,

provides the complete vector by filling discontinuities with zeros. Design A relies on

external module to recreate the vector as required by the processing element for the next

iteration.

Since we are using external DRAMs for matrix and data storage, we aim to make

maximum use of the burst accesses of DRAM to hide the access latencies. As described

in previous paragraph, since matrix elements are stored in the order in which they are to

be processed, matrix data can be fetched in continuous stream of bursts. Deciding the

pattern for storage of vector blocks however requires a bit of thought, which is explained

below. Since most applications involving sparse matrix vector product are iterative in

nature, the result vector of one iteration will be (after some processing) input vector of
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next iteration. If the input vector blocks are stored in the order of requirement, then

the result vector of this iteration would have to be manipulated to match the format of

the input vector, to get the system ready for the next iteration. This may lead to some

vector blocks being required to be replicated, while some may have to be dropped. This

scenario has the advantage of ease of access but disadvantage of result storage. Design A

follows the above protocol. On the other hand, if the input vector blocks are stored in

order, then the result vector needs minimal manipulation. This scenario has advantage

of result storage and the disadvantage of random input access. However, the knowledge of

the sequence of access of vector blocks is static and can be provided to the vector fetching

units at initialization time, reducing the penalty for random block access making the

second scenario more feasible than the first for iterative applications. Moreover within a

block, the vector data elements are sequentially stored, paving the way for burst accesses.

Design B follows the above protocol.

3.1.3 Bandwidth Allocation

Since the design processes relatively dense regions of the matrix, more bandwidth has to be

allocated for fetching the matrix than for fetching the vector. The most binding constraint

restricting the number of processing elements is the IO bandwidth which is just sufficient

to support seven DRAM controllers on the largest device LX330T of the Xilinx Virtex-5

family. In the following section, the data representation and storage are explained which

determine allocation of bandwidth between matrix and vector and number of processing

elements which can be supported.

Fetching a vector block entails fetching 128 64-bit words from DRAMs. The amount

of time required to fetch a vector block has a direct impact on the density of the ‘dense’

blocks that can be handled efficiently by the design. This limit can be reduced by allocat-

ing more bandwidth for vector fetch however compromising on matrix bandwidth. It was

found that putting this limit to around 80 covered significant portions of most matrices,

which after simple optimization translates to two memory controllers for fetching vector

data. Thus the largest FPGA can support five memory controllers which translates to

five processing elements.
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3.2 Data Representation and Storage

Since the two designs - A and B - have slightly differing functionality, their data require-

ments are also slightly different. First we discuss the similar part of the representation

and then discuss the deviations.

Figure 3.3: Data representation

For both designs, We use the Blocked-Column-Row format to store matrix data in

a compressed format. Each matrix element is 128 bits long. The least significant 64 bits

represent the matrix data value in double precision. As a result of the matrix and input

vector blocking, row and column address need to be provided as offsets from the block

boundary only. Thus we need seven bits each to access the proper location in a buffer.

However, as two buffers are used in ping-pong fashion for both vector and partial sum
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array storage (sections - 3.3.1 and 3.3.5), we need one more bit for each. This bit specifies

which of the ping pong buffers is to be utilized. Moreover in both designs we require a

bit to signify end of matrix data.

However, in Design A, the processing element needs to keep track of the number

of ‘dense’ matrix blocks encountered to evaluate if next vector block is required (section

3.3.1). So the matrix data for this design contains an eleven (scalable) bit block number.

In Design B, this evaluation is performed implicitly by checking the bit which specifies

the buffer to be used. This design however does require information about the rowstrip

currently in progress, to ensure that result vector is continuous.

Thus for fetching the matrix, we have a memory controller per processing element

accessing data stored in an interleaved fashion in two attached 32-bit DRAM banks.

Owing to the dual-clock edge operation of DRAMs used, a 128-bit word is accessed per

clock cycle in the burst mode. The vector data is stored in an interleaved fashion in each

of the pair of DRAMs attached to a memory controller. Thus when accessed in burst, the

four dual-clock edged DRAM banks can provide four 64-bit words per clock cycle.

Figure 3.4: Vector Storage in DDR DRAM memories
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3.3 Design

A block diagram of the processing element is shown in figure 3.5. Modules in the figure

are explained in the following section.

Figure 3.5: Block Diagram of processing element

3.3.1 Local Vector Storage

The vector blocks which are fetched from the DRAMs in burst accesses are replicated

in the local vector storage of each processing element. FPGAs have single-cycle Block

RAMs (BRAMs) which are used for implementing these memories. Since the matrix is

divided into block sizes of 128, we need storage for 128 elements of the block currently
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being processed as well as the 128 pre-fetched vector elements corresponding to the next

matrix block. By using simple dual port memories, while vector elements are being read

from one half of the storage by the processing elements, vector elements corresponding

to the next block are pre-fetched in the other half. Thus we effectively utilize ping-pong

memories to hide access latencies.

We would like to minimize the number of clock cycles required to replicate the vector

elements in all the processing elements. More importantly, this would also ensure that

the probability of vector blocks being pre-fetched in time is higher. This was the main

motivation for using two DDR DRAM controllers each connected to a DRAM, so that

we would get 4 words per clock cycle. Thus one vector block is fetched in 32 clock cycles.

Hence, the local storage is organized as a structure 4 double words wide and 64 deep. The

vector element address or alternately the matrix column index is split into row address

and column address internally as shown in the Figure 3.6.

Figure 3.6: Vector Storage
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The outputs of the BRAM primitives used for constructing the vector cache are

registered. As a result data can be read only at the end of the second clock cycle after

the cycle in which read enable is pulled high. This calls for use of a shift register for the

column select part of the read address to ensure that the select signal of the multiplexer

shown in Figure 3.6 is available at the right time.

Say we have n processing elements. Thus to ensure that the processing elements do

not have to wait for the vector-fetch stage to complete, the previous block should have at

least 32 × n non-zeros to ensure the communication and computation completely overlap.

In case n = 5, it imposes a requirement of 160 non-zeros per block of size 128 × 128,

which can be easily met in relatively dense regions of most sparse matrices. The impact

of this value will be discussed in more detail in the section on Matrix Pre-Processing.

The interface between the vector fetching memory controllers and the processing

element only comprises of valid (xvalid), acknowledge (xdata ack), end of block (xeod)

and the four 64-bit wide vector data input (xin1,xin2,xin3,xin4 ) signals. The address for

writing the vector data to the right location in the memory has to be generated internally

and the two designs perform this slightly differently.

3.3.1.1 Design A

In this design, a sub-module in this block (state machine shift load) houses control logic

for the write address generation, vector request generation and handshaking. This is

achieved by keeping track of the number of vector blocks brought into the processing

element as well as the number of ‘dense’ blocks processed - for which we need the block

number explained in section 3.2. By comparing these two values, a decision is made

whether or not to accept new vector blocks. This comparison also helps to evaluate

whether the matrix input needs to be halted - signal astop. A Block diagram of the

sub-module is shown in Figure 3.7.

3.3.1.2 Design B

In this design, the module vector cache houses a state machine depicted below in Figure

3.8. This state machine generates the signals which control write address generation, vec-

tor request generation and vector input ready indicator (signal vector blk rdy). The signal

is high when FSM is in state scnt 1 or scnt 2, and low otherwise. This implementation



CHAPTER 3. DESIGN AND SIMULATION 18

Figure 3.7: Design A: Vector Fetch Control Block

thus does not require any information about the block number of the matrix element. As

a result, no comparators are required unlike in Design A making this part of the design

immune to any increase in delay due to increase in matrix size (which would increase

number of bits in ablock and xcount in Design A).

3.3.2 Floating Point Multiplier

A fully IEEE-754 compliant double precision floating point multiplier, generated using

Xilinx CoreGenerator was used in the design. The multiplier is deeply pipelined for

high throughput. At the input interface of the multiplier, a data valid signal implicitly
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Figure 3.8: Design B: Vector Fetch Control FSM

signifying that both matrix and vector data is ready for multiplication, is provided as

operation nd. A synchronous clear (sclr), is included to reset the control path of mul-

tiplier before start of operation. The multiplier ready indicator on the input interface

(operation rfd), is used as one of the inputs in pipeline control. On the output interface,

we have only the result and the result valid signal.

Xilinx IPs have a 100 ns initialization period. To account for this, (and for robust-

ness) a counter counting once up to 33 is included which is activated after reset. Multiplier

can receive input data valid indication only after the count reaches 33. Since the oper-

ating frequency will in all likelihood be less than 330 MHz, this delay will be more than

sufficient to cover 100 ns.

In Design A, the multiplier (Coregen IP v4.0) is 10-stage pipelined and requires 13

DSP48E slices. Moreover, the clock enable of the multiplier is controlled by the pipeline

control block. This however causes the enable signal to be heavily loaded, affecting

timing performance. In Design B, the multiplier (Coregen IP v5.0) is 15-stage pipelined

and requires 11 DSP48E slices. The clock enable of the multiplier is forced to high, and
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a different pipeline control mechanism is implemented (section 3.3.6).

3.3.3 Isolation Queue

The isolation queue is used to buffer the output of the multiplier along with some asso-

ciated meta-data, which together will serve as input to the adder. The queue is required

to hold the results of the computation already in the vector access (2 stages deep) and

multiplier pipeline, in case the adder is not ready to receive them. This gives us an upper

bound on the depth of the queue required - two more than the multiplier latency.

In Design B, the modules after the multiplier require the product (64 bits), row

offset (8 bits), matrix end indicator (1 bit) and the rowstrip index (configurable, param-

eterized as ROWSTRIP WIDTH). Hence the width of the queue has to be (73 + ROW-

STRIP WIDTH). The queue is implemented as two queues having a common control. One

queue - data queue - is 64 bits wide, while the other queue is (9 + ROWSTRIP WIDTH)

bits wide (section 3.5).

Design A stalls the entire pipeline - vector access, multiplier an adder - in case adder

or partial sum cache is not ready. Hence, no buffering of results is required. In Design B,

pipeline is not stalled, just null elements are inserted (3.3.6) in the pipeline. As a result,

this module is required only in Design B and not in Design A.

3.3.4 Floating Point Adder

A fully IEEE-754 compliant double precision floating point adder, generated using Xilinx

CoreGenerator was used in the design. The adder is pipelined for high throughput.

However, since the adder functions as an accumulator, there is a loop from adder output

to adder input through local partial sum memory. This has the potential to cause RAW

hazards, since the adder might try to read from an address whose value is still in the

pipeline and this not been updated. Hence we would not want the pipeline to be very

deep, as this would compromise on the efficiency of operation (section 5) and offset the

advantage offered by deeper pipelining. Similar to the multiplier, the adder also needs a

100 ns initialization period. The same counter (counting to 33) used for the multiplier is

used for the adder.

At the input interface of the adder, a data valid signal implicitly signifying that both
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product and partial sum data is ready for accumulation, is provided as operation nd. A

synchronous clear (sclr), is included to reset the control path of adder before start of

operation. The adder ready indicator on the input interface (operation rfd), is used as

one of the inputs in pipeline control. On the output interface, we have only the result

and the result valid signal.

In Design A, the adder (Coregen IP v4.0) is 14-stage pipelined and requires 3 DSP48E

slices. Moreover, the clock enable of the adder is controlled by the pipeline control block.

This however causes the enable signal to be heavily loaded, affecting timing performance.

In Design B, the adder (Coregen IP v5.0) is 12-stage pipelined and is chosen to be imple-

mented on logic and not DSP48E slices. The clock enable of the multiplier is forced to

high, and a different pipeline control mechanism is implemented (section 3.3.6).

3.3.5 Partial Sum Storage

Since we process the matrix in blocks of 128×128, we need storage for 128 partial sums

in each processing element, each corresponding to one of the 128 rows in the block being

processed. Since the accumulation stage involves a pipelined adder, we need one port

for reading the existing partial sum corresponding to row in the input stage of the row

address pipeline. We need another port for updating the partial sum generated by the

adder, corresponding to the row in the final stage of the row address pipeline. Thus we

need at least two ports for partial sum storage.

When processing for a row strip is done, the partial sums corresponding to that row

strip need to be transferred out of the processing element. This would take as many clock

cycles as the depth of the partial sum storage. If we have only one buffer for storing partial

sums, the entire processing pipeline will have to halt while this transfer is in progress. To

prevent such situations, as in the case of the vector storage, we have a ping pong memory

system for storing the partial sums generated by each processing element. This ensures

that the accumulator does not have to stall while the partial sums are being read out

of the processing element at the end of a row strip. Since each processing element can

potentially generate 128 partial sums, the size of the storage buffer is enlarged to 256

elements.

At every stage, care is taken to not consume more clock cycles than necessary, since

that may result in the computation pipeline being stalled. To reduce the clock cycles
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Figure 3.9: Partial Sum Storage

required for transferring partial sums out of the processing element, we use ping-pong

buffers to partial sum storage is organized as two buffers each 4 double words wide and 32

words deep. A similar analysis as done for the vector storage yield that a row strip should

contain at least 32 × n non-zeros to ensure that computation and IO overlap completely.

As evident from above explanation, the structure of the ping-pong buffer used for

storing partial sums is different from the one used for storing vector elements. While

the accumulator reads as well as writes to one of the ping-pong memory buffers in the

storage, the other buffer is simultaneously being emptied and initialized to zero. Thus

during certain periods of operation more than two ports are needed. A simple dual-port

memory, as used for vector storage or even a true dual-port memory provides only two

ports. As a result, we need two simple dual port memories serving as separate storage
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buffers, each of 128 elements as opposed to one big buffer of 256 elements (Figure 3.9).

Owing to the slightly differing functionalities of the two designs, they have different

FSMs for controlling the transfer of partial sum arrays out of the processing element.

3.3.5.1 Design A

In Design A, the state machine described in figure 3.10 controls the ports of the Block

RAMs serving as the partial sum caches. The figure only shows control for the read port.

The control for the write port follows exactly the same path except that it is always one

step behind. This ensures that the locations in the cache are cleared only after they have

been read.

From the state machine, we see that there is no mechanism for identifying the region

of the result vector produced. This design relies on external hardware to reproduce the

vector in the format required for the next iteration.

3.3.5.2 Design B

This design makes use of the information of the rowstrip number to generate the result

vector in a continuous fashion. As described in the figure 3.11, when an element of a

new rowstrip is encountered, a comparison of the new rowstrip index and old rowstrip

index is performed. If the difference is only one, after transmission of the result vector

block, the control goes back to idle state unless a new block is required to be transferred

immediately. On the other hand, if the difference is more than one, first the result vector

block is transmitted after which an appropriate number of zero valued result vector blocks

are inserted. As in the case of Design A, the state machine also controls address generation

and port control of the Block RAMs serving as partial sum caches.

Alternatively, this module could also have been designed to just provide the result

vector block along with the rowstrip index to the modules performing the writeback to

the DRAMs. In this case, if no result block is generated for a portion of the result vector,

nothing would be written to the DRAMs, when in fact zeros are supposed to be the

result. This would work only if the DRAMs are initialized to zeros before the operation.

However, this is rarely done as this operation would require a lot of time. Hence this

approach was not used.
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Figure 3.10: Design A:FSM for Partial Sum Transfer Control

3.3.6 Pipeline Control

3.3.6.1 Design A

In Design A, we have one whole unified pipeline. The head of the pipeline receives data

in the format described in section 3.2. During the following 4 stages, the appropriate

vector element is accessed from the local vector cache using the column information. The

multiplier pipeline forms the next 10 stages. The next 2 stages in the pipeline take care

of the latency of access of partial sum from the local BRAM serving as partial sum array

caches. Finally we have the 14-stage adder pipeline.
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Figure 3.11: Design B:Partial Sum Transfer Control

Thus we can see that the entire pipeline needs to be stalled if even one of the following

conditions is true:

� Data corresponding to a new matrix block has arrived at input, but the correspond-

ing vector block has not yet been fully fetched. This condition is represented by the

astop signal being high.

� At the end of the multiplier pipeline, request is made for accessing that partial sum

cache which has not yet been emptied fully. This condition is represented by the

clkout busy signal being high.
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� Matrix data is not valid at input. (avalid is low)

� Multiplier or adder are busy - represented by mult busy and adder busy respectively.

This would imply that the floating point units are not ready for new data OR their

control paths are being synchronously cleared through sclr.

� The complete matrix has been processed.

The condition for stalling the pipeline is represented by signal ‘apause’ (active low) as

digital ‘OR’ of the above conditions. This signal in conjunction with other signals is used

as the ‘clock enable’ for the floating point units. Other pipeline registers decide to retain

their value or shift their value to the next stage on the basis of this signal. As a result,

this signal was observed to have very high load, which affected routing and thus timing

performance.

3.3.6.2 Design B

In Design B, we have two pipelines separated by the isolation queue each having separate

control. The first pipeline, between the input and the isolation queue contains two stages

to match the latency of vector access followed by the multiplier pipeline. The second

pipeline, after the isolation queue, contains four stages to match latency of partial sum

access followed by the adder pipeline. The latency of the partial sum access is more as

compared to that of vector access, because the path from partial sum caches to adder

input (comprising of many 64-bit multiplexers) is divided into stages to maximize the

throughput.

During operation, any of the following cases can occur with respect to the upper

pipeline:

� Data corresponding to a new matrix block has arrived at input, but the correspond-

ing vector block has not yet been fully fetched. This condition is represented by the

astop signal being high.

� Matrix data is not valid at input. (avalid is low)

� Multiplier is busy - either it is not ready for new data or its control path is being

synchronously cleared through sclr.
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� Multiplier has finished computing product for every input matrix data element.

� The isolation queue is full.

In any of these cases, we deassert the valid flag at the head of the pipeline - treating the

corresponding elements inserted in the pipeline as null. At the end of the pipeline, the

multiplier rdy signal helps us identify if the element currently at the output is null or valid.

Only if it is valid, it is inserted in the isolation queue. Null elements are discarded. This

strategy helps us achieve higher throughput as a pipeline enable signal is not required.

In case of the lower pipeline too, we employ a similar strategy. We insert null

elements if any of the following conditions are true:

� At the head of the pipeline, request is made for accessing that partial sum cache

which has not yet been emptied fully. This condition is represented by the clk-

out busy signal being high.

� The isolation queue is empty.

� Adder is busy - either it is not ready for new data or its control path is being

synchronously cleared through sclr.

� The matrix has been processed.

The partial sums are updated in the partial sum array only if the corresponding adder

output valid signal is high.

3.3.7 Reduction Circuit

Since the non-zeros in a row are distributed amongst the processing elements, partial sums

corresponding to the same row may be generated in more than one processing element.

It is necessary to reduce them to get the final vector. To achieve this, a reduction circuit

(log n deep) is attached to the outputs of the processing elements. When a row strip

is completely processed in all the processing elements, the partial sums clocked out are

reduced by the circuit.
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3.3.8 Xilinx ISE Flow Results

Both the designs have been synthesized and implemented using Xilinx ISE 11.4 for the

Xilinx Virtex 5 device LX330T (package FF1738) of speed grade -2. Table 3.1 below show

the device utilization summaries for both the designs.

Table 3.1: LX330T Device Utilization Summary

Available
Design A Design B

Used Utilization Used Utilization

Number of Occupied Slices 51840 1049 2% 1101 2%

Number of 36k Block RAMs 324 12 3% 12 3%

Number of DSP48Es 192 16 8% 11 5%

The tool provides choices of different strategies for design implementation - timing

performance, area optimized design or a balanced approach. For both the designs, the area

utilization is not a major concern, but throughput is. Moreover, a complete system will

have certain other modules in conjunction with a processing element, namely memory

controllers. Thus none of the processing element IOs need to be packed into the IO

registers implying no constraints on IO timing. Hence to extract maximum possible speed,

“Timing Performance without IOB packing” strategy is selected in ISE for synthesis as

well as map operations. To ensure that the design is not bound to any device, minimal

timing constraints and no placement constraints were used.

Only a timing constraint of 300 MHz was applied on the period of the system clock.

Static timing analysis of both the designs after Place-And-Route revealed that Design A

can operate at 175.4 MHz while Design B can operate at ∼302 MHz. Moreover, for Design

B, critical paths involve read/write operation of the BlockRAM resources used for partial

sum storage. These critical paths may be broken at the cost of increased accumulator

latency which will decrease throughput by imposing stricter conditions to prevent RAW

hazards.
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3.4 Simulation

3.4.1 Functional Simulation

The simulator used for functional simulation was ModelSim SE 6.2f and the host machine

had 4GB RAM (and 5GB swap). Choice of matrix was constrained by the simulator

and/or CPU RAM. A large matrix results in large amounts of RAM being consumed by

the simulator (in gigabytes), and finally crashes the simulator.

The complete design comprising of five processing elements and seven memory con-

trollers was evaluated using matrices from the University of Florida Sparse Matrix Suite[5]

maintained by Tim Davis. The matrices chosen for evaluation represent a range of spar-

sities as shown in table 3.2.

Simulation was carried out using DDR3 DRAM memory controllers working at 400

MHz. Thus during periods of burst accesses, peak memory bandwidth of 44.8 GB/s can

be harnessed from the seven DDR3 memory controllers. Thus as calculated in 2.2, the

memory bandwidth allows peak processing capability of 3.73 GFLOPS. However, peak

memory bandwidth will rarely be attained. Moreover, the maximum operating frequency

of the processing element (PE) designed is 302 MHz which caps peak processing power to

3.02 GFLOPS (604 MFLOPS/PE), and from table 3.2 it is observed that performance of

the processing element can reach up to 85% of the peak processing power. This compares

favourably to previous work[6].

Table 3.2: Performance Evaluation of Design

Matrix
Application Non-Zeros

Size(n) Nz/n
2(%)

MFLOPS/
%Peak

Area (Nz) PE

1 gemat11 Power Flow 33185 4929 0.14 520 86.79

2 cryg2500 Material Prob 12349 2500 0.20 512 85.45

3 lns 3937 Fluid Flow 25407 3937 0.16 502 83.2

4 rajat27 Circuit Sim 99777 20460 0.024 333 55.5

5 eurqsa Economics 46142 7119 0.088 473 78.4
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3.5 Optimizations

To improve timing performance, several optimizations were attempted on Design B with

respect to Design A.

� Removed clock enable as pipeline stalling mechanism for the floating point adder

and multiplier pipelines.

� Isolated the multiplier and adder pipelines by adding a queue in between.

� Minimized load of pipeline control signals - astop, input ack - as much as possible.

� Split the data width of the isolation queue between the multiplier and the adder into

data-bits and other bits. The queue has width of (73 + ROWSTRIP WIDTH). Of

these, the least significant 64 bits are for data, the next 8 bits represent row, then

end of matrix and then finally rowstrip index. The row bits, after passing through

some combinational logic need to be provided as address bits to a Block RAM.

Xilinx offers 512deep×72wide as its widest Block RAM primitive. If a unified queue

is used, data (64 bits) and row (8 bits) are clubbed together in one Block RAM

primitive. This creates a big critical path for the row bits (∼1.9 ns access, ∼1.6 ns

routing, ∼0.1 ns combinational logic, again ∼2 ns routing to the BRAM and ∼0.27

ns setup time) of ∼5.8 ns. If instead, the row bits are separated from data, then

the queue can be implemented using LUT resources which offer smaller delay path

and more placement options for the placement tool in the implementation flow.

(NOTE:Static timing analysis showed the largest critical path for row bits. However

it is possible that the other bits (end of matrix and rowstrip index) also suffered

from large delays. So all these bits were shifted for implementation on LUTs)

� Broke the adder input selection logic into two stages. In the first stage, two 64-bit

4-to-1 multiplexers bring the number of selections from 8 to 2. In the second stage

one 64-bit 2-to-1 multiplexer selects the adder input.

(NOTE:If the design is modified to contain 64deep×2-word wide buffers instead of

the current 32deep×4-word wide buffers, adder input selection can be dne in one

stage. Making the buffer 128deep×1-word wide is not recommended owing to the

large number of clock cycles required to transfer partial sums out.
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� The state machine psum ctrl fsm cs has a state szblock wait which ensures that

the signal rowstrip diff is not involved in the multiplexer logic which decides its own

value, thus improving timing.

� The streamout * i outputs of the partial sum storage are registered so that the

outputs of the partial sum storage Block RAMs are not directly assigned to the

output buffers.



Chapter 4

Application: Iterative Solver

4.1 Overview

Sparse matrix vector multiplication is typically used while solving differential or linear

systems of equations. In this chapter, we demonstrate building a system to implement

the Gauss-Jacobi iterative method for solving linear systems of equations using the sparse

matrix vector multiplication unit (Design A) described in chapter 3.

Typically, in most iterative methods, and Gauss-Jacobi is no exception, operations

other than sparse matrix vector multiplication have structured accesses. These operations

can be efficiently performed by a simple off-the-shelf micro-processor in conjunction with a

cache. Moreover, for building a complete standalone system, peripheral units like memory

controllers, DMA controllers, interrupt controllers, bus controllers will be required which

are easily available tailored for the particular processor. This aids in the task of building

a system around our sparse matrix vector multiplication unit, by itself useless, which is

why we pursued an embedded systems approach for development. Moreover, a proposition

demonstrating use of such a peripheral in an embedded system is attractive as it would

expand the capabilities of embedded systems. Of course, building a auxiliary co-processor

which will do these operations is always possible and may be made even more efficient

using parallelizing techniques. However, in such an approach, the auxiliary components

too would have to be designed which would involve a considerable investment of time.

Xilinx Platform Studio provides a good platform by providing the proprietary Mi-

croBlaze soft micro-processor core, which can be configured as per system requirements.

Using Xilinx peripherals, a complete system was built around our processing element.

32
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Xilinx XUPV5-LX110T development board was used for implementing the system. The

board has a single 256MB DDR2 SDRAM (Double Data Rate 2 - Synchronous Dynamic

RAM) SODIMM (Small Outline - Dual Inline Memory Module) module. Since only one

DRAM interface is available to us, we have to time multiplex our requests. We can do

only one of the three DRAM operations - read vector, read matrix or store partial sums

- at a time.

4.2 Building the system

The Base System Builder (BSB) Wizard in Xilinx Platform Studio (v11.4) was used to

configure the system and the micro-processor. The system was configured to be a single

processor system with a 125 MHz floating point unit enabled MicroBlaze processor. The

processor was chosen to have 32 KB local memory and no cache. Since our processing

element was designed to operate on data stored in external DRAMs, a DDR2 SDRAM

controller connected to a DRAM on board was used. Interrupt controller was also included

in the system to enable the processor to respond to processing element requests. Finally,

a UART following RS232 protocol was included to aid in debugging and result checking.

There were two options for connecting the processor to the processing element using

different buses. The first option (4.2.1) used a point to point bus (FSL) while the second

(4.2.2) used a shared bus (PLB).

4.2.1 Plan A - Using Fast Simplex Link (FSL) Bus

Initial approaches were aimed at connecting the processing element to the processor

through FSL (Fast Simplex Link) Buses since they utilize minimum handshaking and be-

ing point to point need no arbitration. The MicroBlaze would get data from the DRAM

and place it on the FSLs. The FSL Bus follows FIFO based communication. The block

diagram below (Figure 4.1) gives an overview of the control signals involved.

The FSL bus accepts data stable on the lines of FSL M Data at a positive clock edge

if FSL M Write is high (and FSL M Full is not asserted). Data can be read off at the

slave end if FSL S Exists and FSL S Read are both stable and high at positive clock edge.

Similar protocol is followed if the data word is a control word, except that FSL M Control

also needs to be stable at the positive clock edge along with data.
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FSL_M_Data

FSL_M_Clk

FSL_M_Control

FSL_M_Write

FSL_M_Full

FSL_S_Clk

FSL_S_Data

FSL_S_Control

FSL_S_Read

FSL_S_Exists

FIFO

. . . .

Figure 4.1: Fast Simplex Link (FSL) Bus Block Diagram

However a point to point bus with the other end not connected to a memory was not

conducive for our bandwidth hungry peripheral. Every unit of 32-bit data when accesses

from DRAM has to pass through the micro-processor local memory before it is placed on

the FSL bus. Moreover, data cannot be brought into the processor local memory from

the DRAM in burst. The processor can make only random 32-bit data accesses to the

DRAM. This approach would have considerable reduced the effective input bandwidth.

Hence the use of FSL buses was abandoned.

4.2.2 Plan B - Using Peripheral Local Bus (PLB)

The Peripheral Local Bus (PLB) IP provided by Xilinx is a shared bus which supports

burst data transfer. This would provide better data input bandwidth for our processing

element. Burst data transfers can be realized by incorporating a DMA on the bus. Other

peripherals like interrupt controller, UART are also available as modules compatible with

PLB. Moreover, design complexity is reduced if the system has only one bus. Hence, we

chose to use PLB over FSLs in our system.

4.3 Adding Processing Element to the System

The processing element is to be added as a peripheral on the PLB bus in our system.

The “Create Or Import Peripheral Wizard” in Xilinx Platform Studio creates a wrapper

for our peripheral so that it can be easily incorporated in the system. The wrapper

incorporates among other things, a PLB IPIF (Interface for PLB) module which on one

hand interfaces with the PLB, and on the other provides easy to use interface for the user

design. Thus the user design does not need to bother about the intricacies of the PLB

handshaking and transfer protocols.
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In the system designed, the processing element never needs to initiate any transfers

and hence, the wrapper is configured to include only the PLB slave interface and no master

interface. The wrapper can also be configured to include programmer visible registers (32-

bit), programmer visible memory (64K) spaces (32-bit wide), interrupt control, read FIFO

and write FIFO.

The processing element needs three interfaces with the external world - first for

accessing vector blocks, second for accessing matrix elements, and third for storing partial

sums. Each interface is associated with an active high level interrupt which would signal

the processor about the state of the processing element. The interrupt control block

included in the wrapper generates a unified interrupt signal from the above three interrupt

sources. This interrupt signal is fed to the system interrupt control unit which unifies

interrupts of all peripherals in the system (in our case, the DMA and the processing

element), and generates the interrupt request signal for the MicroBlaze.

Figure 4.2: System Block Diagram

Since vector and partial sum transfers would be fixed size burst transfers, an interface

involving memory spaces is the best choice. Matrix elements too can be brought in fixed

size blocks, making the design process simpler by having a similar interface for all three.

Aside from the three memory spaces, the wrapper is configured to have three programmer
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visible registers. One register is used to communicate interrupt conditions to the software.

Another register is used to communicate state of the software to the interface mechanisms.

Finally the third register is included as an aid in debugging.

Note that, although we have memories for vector and partial sum at the interface,

we cannot do away with the memories used as vector caches or partial sum caches inside

our processing element. The underlying reason is that the system is 32-bit while the

processing element operates on double precision which is 64-bit data. As a result, inside

the memories at the interface, data will be broken into two chunks placed at successive

locations, a different data format from the one the processing element was designed to

process. Moreover the vector caches inside the processing element our four 64-bit words

wide. To emulate such a cache would using the 32-bit memory spaces would require data

to be brought in or stored in DRAMs in an inconvenient format. Also, we want to demon-

strate working of the processing element as a portable complete peripheral independent of

the platform, and hence chose not to modify the design solely for a particular embedded

implementation.

The resultant system has the configuration as shown in figure 4.2.

4.4 Designing Interfaces for the Processing Element

Transfer of matrix, vector or partial sums between the processing element and DRAM is

designed to be a two-stage process. One stage is more closely associated with the particular

interface - vector, matrix, partial sum - and hence is different for each, although the

skeleton is similar. The other stage co-ordinates with the software and the interface state

machines to transfer data between the memory spaces and DRAM. The state machines

controlling this stage for matrix, vector and partial sum transfer are hence very similar.

In section 4.4.1, the state machines co-ordinating with software are explained. Since

the state machines are designed in conjunction with the software flow, a background of

the software involved in the transfer is also provided. The individual FSMs interacting

with the processing element are explained in the subsections 4.4.2, 4.4.3 and 4.4.4.
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4.4.1 Co-ordinating with software and hardware

Each of the three interfaces has a state machine which generates the interrupt signal

requesting transfer of data and then communicates with the software till the end of the

transaction. In this section, the control flow in both hardware and software is explained

side by side.

In the case of vector and matrix interfaces, interrupt is generated when the memory

spaces for vector and matrix storage respectively are empty. In the case of partial sum

interface, interrupt is generated when the memory space has the complete final vector

block ready for transfer. The hardware state machine, after generating the interrupt,

waits for acknowledge, then masks the interrupt signal and waits for the transfer complete

notification after which it goes back to its initial state.

Figure 4.3: State machine to co-ordinate with software

Receipt of an interrupt is the cue for the software to configure the DMA appropri-

ately. Interrupt acknowledge and DMA transfer are multi-cycle processes and thus the
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hardware state machine has no indication about their progress. It will keep on interrupt-

ing the processor even after interrupt has been acknowledged, if there is no communication

between the two.

As depicted in the state diagram (figure 4.3), for each interface we use a pair of

signals - interrupt acknowledge and transfer done - which are predefined to be certain bits

in a user register. Initially all signals are cleared to represent false condition. When an

interrupt is received, software clears the transfer done signal and only then sets interrupt

acknowledge. This ensures that the transfer done signal set high for the previous transfer

is not interpreted by the hardware state machine for the current transfer. After the DMA

signals the end of transaction, first the interrupt acknowledge is cleared and only then

transfer done is set. This is essential because a register write by software is a multi-cycle

process. If transfer done is set before clearing interrupt acknowledge, and an interrupt

request is generated in between, then the hardware state machine would interpret the

acknowledge for the most recent interrupt.

4.4.2 Vector Interface Control

A fixed number (256) of 32-bit words have to be transferred while transferring a 128-

element vector block to the processing element. Hence one user memory instance which

implemented as a Block RAM primitive is used to provide storage for the vector data.

Once the BRAM has been filled up, the data is transferred to the processing element in 32

sets of 4 double-precision (64-bit) words. The state machine performing the data format

conversion is depicted in Figure 4.4 below.

This state machine also generates the transfer control signal following the protocol

recognized by the processing element. After successful transfer of vector block to the pro-

cessing element, the state machine described in section 4.4.1 is notified that the memory

is empty.

4.4.3 Matrix Interface Control

As explained in section 3.2, for Design A, matrix entries can be treated as a 96-bit wide

word with the three most significant bits unused. As in the case of vector interface, the

DMA transfers data into a user design accessible 32-bit wide memory block. Since the
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Figure 4.4: FSM for Vector interface for PE

depth of one memory block is 256, and one matrix data word is 96-bits (three 32-bit

words), one DMA transfer brings in 85 matrix entries. More memory blocks could have

been used to get storage for more than 85 matrix entries.

The state machine for this interface builds the 96-bit word from the 32-bit words at

successive memory locations an then sends them to the processing element, following the

transfer protocol recognized by the processing element. The state machine for the transfer

is depicted in Figure 4.5. After successful transfer of matrix to the processing element,

the state machine described in section 4.4.1 is notified that the memory is empty.
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Figure 4.5: FSM for Matrix interface for PE

4.4.4 Partial Sum Interface Control

When the processing element completes processing of a row strip, 128 double precision

words (each 64-bit wide) are to be transferred from processing element to the DRAM.

The processing element outputs four successive elements of the result vector in one clock

cycle. The state machine for this interface formats the data by breaking it into eight

chunks each of 32-bits and storing it at successive locations in the memory space. Again

as in the case of vector interface, one memory block (256 deep) is used for storing the

partial sum data. The state machine for the data format conversion and transfer control

is shown in Figure 4.6.
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Figure 4.6: FSM for Partial Sum interface for PE

4.5 Software Development

Software for an embedded system can be divided into two classes. The first class includes

routines to configure and access the hardware, manage interrupts, essentially create an

abstraction for the second class. The second class deals with development of the high level

application to implement the desired functionality using the hardware access routines. In

the following sections, software developed for the system is described briefly.

4.5.1 Hardware Management

The high level application (in our case - Gauss Jacobi method for iterative solution),

usually needs hardware routines to provide data to hardware for processing, accept data



CHAPTER 4. APPLICATION: ITERATIVE SOLVER 42

from hardware, finding status of hardware modules and for responding to interrupts. We

will describe the routines developed or used to manage different hardware modules like

the DMA, interrupt controller and the processing element. The embedded design tool also

provides library functions for each device in the system to aid in software development.

4.5.1.1 DMA Controller

The DMA controller needs to be configured and initialized before use. The embedded

design tool provides a basic library for the DMA controller which has functions to gather

information for configuration (XDMACentral LookupConfig) and apply it (XDMACen-

tral CfgInitialize). Since DMA needs to generate transfer complete interrupt only, the

appropriate bit for transfer complete interrupt enable in the interrupt control register of

the DMA needs to be set. This can be done by using the library function XDMACen-

tral InterruptEnableSet with the appropriate mask or by explicitly setting the register

value using memory mapped IO.

Thereafter, using the DMA involves setting parameters for the transfer, like source

address increment and/or destination address increment and length of transfer (number

of bytes to be sent). The DMA transfer starts as soon as the Length register is updated

with a non-zero value. All this can be performed implicitly through the library functions

XDMACentral SetControl and XDMACentral Transfer.

In our application, the DMA is used for three types of transfers. Before start of each

transfer, a flag is set specifying the type of transfer initiated. The interrupt handler for

the DMA complete transfer is a small routine which only clears the interrupt flag and

resets the type of transfer flags (req str, req vec, req mx ).

4.5.1.2 Interrupt Controller

The processor used (MicroBlaze) has one interrupt line, while there are two interrupt

sources in the system. As a result, a module like an interrupt controller is needed, which

will collect all interrupts from the system, and create one interrupt request signal. As in

the case of DMA controller, library functions provided by the tool can be used, simplifying

the design process, and making it more robust with respect to hardware revisions.

Before operation, the interrupt controller has to be initialized using XIntc Initialize.

This involves initialization of vectoring tables in the controller and members of the struc-



CHAPTER 4. APPLICATION: ITERATIVE SOLVER 43

ture used in software for managing the controller. Following initialization, the interrupt

sources from different peripherals are connected to the controller using XIntc Connect.

The interrupt controller is then started (XIntc Start) and the interrupt enables in the con-

troller for each of the interrupt sources are set (XIntc Enable). Finally, we have to register

the interrupt vector table of the controller with the processor (microblaze register handler)

and enable interrupt on the processor (microblaze enable interrupts).

4.5.1.3 Processing Element

Low level software for the processing element only comprises of the routine to manage its

interrupt. The interrupt handler clears the interrupt flag, disables the interrupt, reads

the interrupt source register in the processing element and sets the appropriate transfer

request flag.

The interrupt is held active by the processing element till the software acknowledges

it by setting bits in the processing element register. The acknowledgement is performed

by software outside the interrupt, hence to prevent multiple interrupts for the same event,

interrupt needs to be disabled in the handler. It is enabled again after the DMA transfer

is successful.

4.5.2 Software Application - Gauss Jacobi

Gauss Jacobi method for iterative solution is implemented to demonstrate proof of working

of the processing element. The software first generates a linear system of equations and

initial guess and stores them in the DRAM in the appropriate format as required by

the processing element. The processing element is then signalled that data initialization

is done. Thereafter, the processor performs the rest of the algorithm (besides matrix

vector multiplication) as and when data is ready. Occasionally, it needs to configure the

DMA, communicate with the processing element and when an iteration is done, reset the

processing element for the next iteration.

A flowchart describing the software is depicted in figure 4.7.
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Figure 4.7: Application Software Flowchart

4.6 Evaluation

The system described in the previous sections of this chapter is compared against a pure

software Gauss-Jacobi iterative solver. A tri-diagonal matrix was generated by the pro-

cessor and written to the DRAM before processing. The table 4.1 below shows the com-

parison of the two systems for different matrix sizes, with a 64KB data cache enabled for

both setups. Both the systems provided solutions after 6 iterations in all cases. However,

the accelerator system had a 3% inaccuracy.

As shown in the table 4.1 above, for the pure software approach processing time
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Table 4.1: Performance comparison for Gauss-Jacobi solver

Matrix Storage
Software System Accelerator

Iteration 1 Iteration 2 Iteration 3 System

1 640 × 640
General 0.713 ms 0.709 ms 0.709 ms

0.593 ms
Compressed 0.251 ms 0.108 ms 0.072ms

2 3200 × 3200
General

3.558 ms 3.536 ms 3.536 ms 2.777 ms
Compressed

3 12800 × 12800
General

14.224 ms 14.138 ms 14.137 ms 11.016 ms
Compressed

depends on how the data is stored in DRAM. If data is stored closely in a small region

of DRAM (referred to as Compressed in the table), then for small matrices like the

640×640 matrix which can fit in the data cache, the processing time decreases drastically.

This corresponds to almost one operation per cycle throughput. However this advantage

vanishes even for small matrices if the data is spread out over the entire address range

of DRAM. This may be due to loss of effectiveness of the direct-mapped cache due to

absence of spatial locality. The accelerator system remains unaffected by arrangement of

data in memory.

From the table 4.1, it is evident that the speedup of the accelerator system is only

marginal (about 25%) over the software approach. A closer look at the time spent on

one iteration revealed that a large amount of time is spent in transfer of data between

accelerator and DRAM via DMA. When the DMA read and write burst sizes are increased

from 8 to 16, and the internal DMA FIFO length (provided as a parameter by EDK) is

increased from 8 to 48, we get a substantial 1.5X speedup. The table 4.2 provides the

time required for transfers for both DMA configurations for the 12800×12800 matrix.

Table 4.2: Accelerator System DMA Transfer Time

Number of DMA Configuration

Transfers 8-8-8 16-16-48

Matrix 300 5.269 ms 3.305 ms

Vector 100 1.749 ms 1.077 ms

Results 100 1.164 ms 0.735 ms
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For the 16-16-48 DMA configuration, the time required for just matrix-vector mul-

tiplication for the 12800×12800 matrix is 7.55 ms which corresponds to a throughput of

6.73 MFLOPS. There are several reasons for this low throughput, which are enumerated

below:

1. The soft processor available is a 32-bit processor. This decreases bus width to 32

bits, in turn decreasing the bandwidth available to the processing element. Multiple

clock cycles are required to transfer just one matrix/vector/result word.

2. Embedded system can contain only one bus. Requests to the DRAM have to be

made on the same bus on which the DRAM provides data. Firstly, this reduces

throughputs since requests cannot be queued. Secondly, this will increase number

of bus turnarounds.

3. The board provides only one DRAM interface thus decreasing number of processing

elements supported and imposing need to time-multiplex transfers.

4. The DMA controller module makes requests for maximum burst size of 16. Such a

small burst is not sufficient to hide DRAM access latency.

5. Data is first transferred from source to the internal DMA FIFO, and then transferred

from the FIFO to the destination. Thus data needs to be transferred twice along

the same bus. The time required for bus turnaround worsens the situation.

The limitation caused by the last point mentioned above can be eased by including a

PLB master attachment to the accelerator peripheral. Such an attachment would enable

data to be transferred in burst (of maximum size 16) directly from source to destination.

4.7 Design Flow

� Using the Base System Builder (BSB) Wizard, build the basic system and include

the relevant peripherals. In this design the only peripherals selected in the BSB

wizard were: Instruction memory controller, Data memory controller, DRAM con-

troller, RS232 UART.

� Modify the User Constraints File (UCF) in $PROJECT/data folder. The IO Pin

locking constraints for the DDR2 SDRAM controller port signal “dq0[63:0]” are
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repeated twice in the file, so to take care of MAP stage errors, the constraints which

are repeated at the end of the file need to be commented out.

� Using the “Create and Import Peripheral Wizard”, generate a wrapper around the

peripheral with the configuration described in Section 4.3 with name $NAME.

� Generate the interfaces between the PE and PLB slave IPIF and instantiate the

processing element in the wrapper file.

� In case design contains many design files, include the VHDL module files in the

directory $PROJECT/pcores/$NAME v1 00 a/hdl/vhdl. Include verilog files if any

in $PROJECT/pcores/$NAME v1 00 a/hdl/verilog

� In case the design contains netlists, copy them to directory (after creating it if re-

quired) in $PROJECT/pcores/$NAME v1 00 a/netlist. However, wrappers for the

netlist MUST be included in the appropriate folder ($PROJECT/pcores/$NAME -

v1 00 a/hdl/vhdl/ OR $PROJECT/pcores/$NAME v1 00 a/hdl/verilog). More-

over include the synthesis constraint “BOX TYPE” with the value “black box” for

each instance of the module/entity for which netlist is to be used instead of the

wrapper.

� In case, VHDL and Verilog files are added to the design (of the peripheral), the PAO

(Peripheral Analysis Order) file in $PROJECT/pcores/$NAME v1 00 a/data/ should

be modified. Include statements of the form:

lib $NAME v1 00 a filename vhdl/verilog

� In the MPD file, include the following statements if netlists are included in the

design:

OPTION STYLE=MIX

OPTION RUN NGCBUILD=TRUE

� If design is a mixed design (both VHDL/Verilog), include (or modify) the following

statement in the MPD file:

OPTION HDL=MIXED

� If netlists are a part of the design, a BLACK BOX DESCRIPTION file (.bbd) file

with the name “$NAME v2 1 0.bbd” in the directory “data” within the directory
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$PROJECT/pcores/$NAME v1 00 a/. The structure of the data in the file is as

follows:

FILES

##IMPORTANT:“FILES” MUST BE THE ONLY WORD ON THE FIRST LINE

netlist1.ngc, netlist2.ngc, ...



Chapter 5

Matrix Pre-Processing

5.1 Why Pre-Processing?

� The processing element consumes matrix entries in blocks. Standard matrix repre-

sentations are in the row-major or column major format. Hence it is necessary to

pre-process the matrix to format the data input to the matrix as well as provide

block number and row/matrix finish indicators.

� The current architecture only operates on ‘dense’ regions of the matrix and hence

pre-processing is needed to identify these regions

� Pre-processing will help in balancing the load between the processing elements, thus

maximizing performance

� The computation pipeline in the processing element has a feedback path which can

cause RAW hazards. Pre-processing will ensure that such cases are minimized or at

least that null computations are inserted to avoid data corruption

The figure 5.1 depicts how RAW hazards can occur in the system owing to the

pipelined accumulator.

Pre-processing involves two independent stages. In one stage, ‘dense’ regions in

the matrix are identified. In another, the non-zero elements in a given ‘dense’ block

are optimally scheduled for the processing elements. In the following sections, first the

algorithm for optimal scheduling is provided, followed by identification of the ‘dense’

blocks.

49



CHAPTER 5. MATRIX PRE-PROCESSING 50

Figure 5.1: Occurrence of hazards in adder pipeline

5.2 Optimal Scheduling Problem

5.2.1 Formalization

Given a value a and a pool of elements each having an attribute (row number) having a

value bounded on both sides, generate a known number of sequences - k - such that:

1. The sequences are as balanced as possible w.r.t number of elements.

2. In each sequence, elements having a particular value of row number are separated

by at least a elements. If this is not possible, null elements - having special value

of row number and not bound by this constraint - can be inserted. Null elements

count towards the length of the sequence.

3. The length of the largest sequence be as small as possible.

In our problem of matrix pre-processing, k denotes the number of processing elements

while a denotes the adder latency. Note that adder latency of a implies that there should

be a elements between two elements having the same row number.

5.2.2 Algorithm

Initially it is assumed that we have to generate only one sequence (k = 1). It can be shown

that once we have this sequence, generating k sequences is trivial. In such a situation (k
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= 1), the optimization constraint is slightly modified to finding the ONE sequence with

the least length. Equivalently, the solution sequence should have minimum number of

null elements.

All the elements are organized into lists on the basis of their row number. These

lists are then arranged in increasing order of length. Since, row number is bounded from

above and below, this sorting can be performed in linear time. To start with, the list

with maximum number (say b) of elements is chosen and its elements are arrayed as

shown in figure 5.2. If there are two or more lists with the maximum number of elements,

then any one can be chosen. The figure 5.2 also shows the traversal pattern which will

generate the final sequence. The X’s denote null elements placed so that the minimum

distance constraint a is not violated. Thus at this stage, the number of null elements in

the sequence is a(b− 1), since trailing X’s in the last row do not count towards length of

sequence. They are incorporated in the figure for ease of explanation.

Figure 5.2: Scheduling in a block:Initial phase
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Figure 5.3: Scheduling in a block:Continuation

Thereafter, we check if there are other lists with b elements. For every such list, we

are able to replace an entire column of X’s with elements of the list without violating the

minimum distance constraint. The remaining lists have a maximum of (b − 1) elements.

Only at this stage, we remove the trailing X’s in the last row. In the previous step, all

columns of X’s may have been replaced by elements. Even in this case, the rest of the

algorithm described below holds. Only difference is that instead of replacing X’s with

elements, new columns will be appended.

For the remaining lists, we replace as many X’s in a column as we can and wrap

the elements of successive lists to the next column. This step is showed in more detail in

the figure 5.3. Since the lists are in decreasing order of length, no list wraps around and

reaches even the row just above the one where the list started in the previous column. As

a result, minimum distance constraint is never violated. Again, if all X’s are replaced,

then new columns whose maximum length can be (b − 1) are appended.

Generating k sequences just requires a slight modification of the above algorithm.

After the rows of the block are sorted in decreasing order of number of non-zeros, starting
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from the longest row, non-zeros of the rows are distributed amongst the k sequences in

a continuous fashion. For each of the k sequences, the non-zeros are grouped according

to the row number and again the rows are arranged in decreasing order of number of

non-zeros (assigned to the sequence under consideration). These steps are described in

figure 5.4. Thereafter the non-zeros in each sequence are arranged as shown in figures 5.2

and 5.3 using exactly the same strategy to get the allocation schedule for each sequence.

The grayed elements in figure 5.4 represent the longest rows for that sequence which will

be on the leftmost in the structure in the strategy described above.

Figure 5.4: Case for k sequences: Distribution of data

5.2.3 Proof of Optimality

From section 5.2.2, it is clear that for the worst case problem, the maximum number of

null elements is bound to a constant and is a(b − 1). Now we proceed to show that the

scheduling is optimal by considering two mutually complementary cases.

1. Case A:Total number of elements in pool less than or equal to a(b − 1)

Given that the longest list has b elements, the minimum length of the list is (a(b −

1) + 1). This is the minimum required length enforced by the distance constraint

and we cannot do better than that. Also note that, we never add X’s in the entire

duration of the algorithm. The null elements represented by X’s are replaced with
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the list elements. Since the number of elements is less than or equal to a(b − 1)

which is the number of X’s, this operation does not modify the length of the list.

Thus our algorithm generates the optimal solution for the specified constraint in

this case.

2. Case B:Total number of elements in pool greater than a(b − 1)

In the algorithm, we started off with a(b−1) X’s with no X’s added over the course

of algorithm. In this scenario, all X’s will be replaced by list elements. In this

scenario, the length of the list will be exactly equal to the number of elements in

the pool. Again, we cannot do any better than this and thus the algorithm has

given us an optimal solution for the given constraints.

For generation of k sequences, only the optimality of distribution of non-zeros amongst

the sequences has to be shown.

Proof:If the row with maximum number of non-zeros has b elements, the algorithm en-

sures that in each of the k sequences, there are no more than ⌈ b/k ⌉ non-zeros of any

row in a sequence. Moreover by the Pigeon-Hole-Principle, at least one sequence should

have greater than or equal to ⌈ b/k ⌉ non-zeros belonging to a row. Since the length of

the schedule has a direct correlation to the maximum number of non-zeros belonging to

a row assigned to a sequence, the length of the schedule generated is optimal.

5.3 Matrix ‘Dense’ Block Identification

Like the optimal scheduling problem discussed in section 5.2, identification of ‘dense’

blocks in a matrix is constrained by hardware. First we give a background of the con-

straints imposed by hardware so that the problem can be defined precisely.

In Design B, the result vector needs to be recreated fully by the processing element.

For regions of result vector, which correspond to those rows of the matrix not in any

‘dense’ block, the processing element has to explicitly insert zeros. Inserting variable

number of elements by the granularity of a row would require more information which

would translate to more bandwidth requirement. The extra information requirement is

manageable if the insertion is performed at granularity of a row-strip. Thus the hardware

imposes the constraint that the rowstrips be 128n aligned.
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In the most general case, identifying regions in the matrix is a two-dimensional

problem. In our case, constrained by the hardware, we have a one-dimensional problem

wherein we have to find the ‘dense’ regions in a rowstrip.

5.3.1 Formalization

The above problem can be formalized as follows.

� We are given an array a of size n, with a[i] non-negative.

� Find the positions of non-overlapping windows of size w such that the summation

of all array values whose indices fall in any window is maximized.

� A window is valid only if summation of array values whose indices fall in the window

is greater than a threshold d.

The array a[i] contains number of non-zero elements in the column of index i in the

rowstrip. The window size refers to the size of the matrix blocks under consideration

while d refers to the threshold which defines a matrix block to be ‘dense’.

5.3.2 Algorithm

We use principle of dynamic programming to find the best set of windows. First we will

define some functions which will help in the solution.

b[i] =



















i
∑

j=i−w+1

a[j] if i ≥ (w − 1)

0 otherwise

(5.1)

c[i] =



























0 if i = 0

max{c[i − w] + b[i], c[i − 1]} if i ≥ w & b[i] ≥ d

c[i − 1] otherwise

(5.2)

The function b[i] computes the summation of elements in the window ending at

position i. The function c[i] is the actual function which is maximized using dynamic

programming.

In each step, represented by consideration of a new index, we have the option of using

the window ending at the new index or not. Using the window ending at the new index
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implies that as of now, inclusion of the element at the index provides a higher sum and

thus a better solution. Of course the rest of the solution will have to change to account

for the constraint of non-overlapping windows. In fact the new solution has this new

window appended to the best solution at that index which occurs at a distance of width

of a window before the new index. The combined summation of the elements at new

window indices and elements in the solution at indices more than window distance before

the current index, was more than the summation of the elements at indices included in

the solution at the index immediately to the left. This is represented by the second line

of definition of the function c.

5.4 Software Implementation

The algorithm described above is implemented in C++ and has been evaluated for ma-

trices from the University of Florida Sparse Matrix Suite for runtime , coverage (ratio of

number of non-zeros selected to total number of non-zeros), efficiency (ratio of nonzero

elements selected to final number of entries in list). The runtime category only considers

processing time and not the time required for writing schedule to hard disk. The software

Table 5.1: Results for Matrix Pre-processing

Name Size Non-zeros Coverage Efficiency Runtime

gemat11 4929 33185 77.43% 99.25% 0.741s

cryg2500 2500 12349 84.42% 99.6% 0.326s

lns 3937 3937 25407 93.29% 99.25% 0.665s

rajat27 20640 99777 73.77% 61.56% 2.954s

webbase 1000005 3105536 65.35% 84.92% 25.204s

implementation takes arguments for defining a ‘dense’ block, adder latency and number

of sequences to be generated. Thus lower the threshold for labelling a block as ‘dense’,

higher the coverage, but lower the efficiency. For the results above, the block size was set

to 128×128, threshold was set to 83, latency set to 16 and number of processing elements

(number of sequences) set to 5. Design B actually allows adder latency to be set to 15.
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Conclusion

In this report a modular design for sparse matrix-vector multiplication targeted at the

LX-330T FPGA by Xilinx, is presented and discussed. The report discusses the trade-

offs for the SpMxV architecture, it aims to provide insight into the design of accelerators.

The simplicity of the design and the use of commodity DRAMs makes this design a

practical accelerator for the HiPC community. The design can achieve a performance of

600 MFLOPS per PE, which compares favourably with related work.

6.1 Future Work

The section on implementation of the accelerator using embedded development kit sug-

gests using a bus master attachment instead of a DMA to improve performance. Such a

modification would most likely cut the data transfer time to half of the present time.

Alternatively, instead of an embedded system on a standalone board, a system can be

developed on an accelerator board (Nallatech BenADDA16) connected to a host through

a fast interface (PCI Express), which would provide processing results more relevant to

the HiPC community and enable testing for large matrices the processing elements were

designed to process.

The current design requires vector blocks to be stored in order of requirement in

the DRAMs. If the vector fetch units are provided with the information of the order

of requirement, vector could be stored in order which is more convenient for iterative

algorithms. The vector fetch units can be initialized with this data when the DRAMs

are being initialized with data. Moreover, this would also free the matrix blocks from

57
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the requirement of being 128n column aligned. This would increase the coverage of the

matrix processed by this kernel.

Lastly, this report only discusses design for handling dense regions of the matrix. A

processor for the remaining regions of the matrix has to be designed.
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