
A System for Error Control Coding using
Expander-like codes and its Applications

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Bachelor of Technology

and

Master of Technology

by

Swadeshkumar A. Choudhary

(Roll No. 05D07018)

Under the guidance of

Prof. Sachin Patkar

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY–BOMBAY

June, 2010

Dissertation Approval

The dissertation entitled

A System for Error Control Coding using
Expander-like codes and its Applications

by

Swadeshkumar A. Choudhary

(Roll No. 05D07018)

is approved for the degree of

Bachelor of Technology

and

Master of Technology

Examiner Examiner

Guide Chairman

Date:

Place:

Declaration

I declare that this written submission represents my ideas in my own words and where

others’ ideas or words have been included, I have adequately cited and referenced the orig-

inal sources. I also declare that I have adhered to all principles of academic honesty and

integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source

in my submission. I understand that any violation of the above will be cause for disci-

plinary action by the Institute and can also evoke penal action from the sources which

have thus not been properly cited or from whom proper permission has not been taken

when needed.

Date: Swadeshkumar A. Choudhary

05D07018

Acknowledgments

I am grateful to Dr. Adiga (TCS Research) for proposing my thesis topic. I would like

to thank Prof. S. Patkar (IIT Bombay) for his invaluable guidance and support during

the entire course of this project. He has continuously motivated and inspired me to work

harder to overcome various hurdles. I would also like to thank Prof. H. Narayanan and

Prof. D. K. Sharma for their useful insights.

I would like to acknowledge that the work on proving the non-existence of certain

embeddings in our construction has been done in collaboration with Mr. Hrishikesh

Sharma. I want to thank Mr. Hrishikesh Sharma for his guidance and for always lending

a ear to my far-fetched propositions. Moreover, he has made invaluable contributions

towards the coherent presentation of ideas which has improved several sections of my

report. The folding of Projective Geometry based graphs is related to his field of interest

and he has independently developed an alternative scheme which is different from the one

presented in this report.

I also want to thank Yash Deshpande and Tejas Hiremani for their help in imple-

menting the Reed Solomon Product code in Matlab and discussing partitions of GF (qm)

respectively. I also thank Abhishek Patil for his help in the initial stages of the project.

Date: Swadeshkumar A. Choudhary

Abstract

We present a novel error correcting code in which the symbols of the code correspond

to the edges in a regular bipartite graph and the decoding algorithm is borrowed from

Zemor’s decoding algorithm for expander graphs [14]. We construct the graph using

point and hyperplane incidences of PG(5,GF(2)). Each vertex of the graph is a Reed-

Solomon decoder and we call the collection of edges incident on each vertex as the sub-

code for that vertex. We derive geometric bounds on the code for practical values of the

minimum distance of the sub-code and show via MATLAB simulations that the average

case performance of the code is 10 times better in 99% of the test cases for errors that

are randomly distributed. We also prove the non-existence of certain kinds of sub-graphs

in our construction and present an analysis of the eigenvalue based approach used in

previous literature. For burst errors, we present 2 schemes which utilize our decoder to

enhance the burst error correction rates of the codes used in CD-ROMs. We also present

an application of the decoder to DVD-R to improve burst and random error correction.

Two strategies of hardware implementation are presented. One of them involves efficiently

folding the computations so that fewer number of processors are required. Design details

of prototyping this strategy on a Xilinx Virtex 5 FPGA have been provided. Finally,

we have presented a general folding scheme for point-hyperplane incidence based graphs

that can be used for practical implementations of the code for much higher dimensions of

projective geometry with a practical number of processors.

iv

Contents

Abstract iv

List of Tables viii

List of Figures ix

1 Introduction 1

2 Previous work 3

2.1 Linear Codes . 3

2.2 Expander Codes . 3

2.3 Expander Graphs . 3

2.4 Construction of Expander Codes . 4

2.5 Good Expander Codes . 5

2.6 RS Codes as Good Component Codes . 6

2.7 Good Expander Graphs . 7

2.8 PG Graphs as Ramanujan Graphs . 8

2.8.1 Advantages of Using PG Graphs 8

3 Background Information 9

3.1 Zemor’s Construction of Expander Codes 9

3.1.1 Decoding Algorithm . 9

3.1.2 Error Correction . 10

3.2 ECMA-130: The CD-ROM Standard . 10

3.2.1 Main steps of Encoding . 11

3.2.2 Cross Interleaved Reed-Solomon Code 12

3.2.3 Main steps of Decoding . 13

v

CONTENTS vi

3.3 Projective Space over Finite Fields . 14

4 Detailed Description of Code Construction 16

4.1 Code Construction . 16

4.2 Performance of Code for Random Errors 17

4.3 Performance of Code for Burst Errors . 22

4.4 A side note on Encoding . 23

5 Derivation of Bound for Random Errors 25

5.1 Introduction . 25

5.2 Propositions . 25

5.3 Vector Space Representation of Geometry 26

5.4 Cardinalities Related to PG(5,GF(2)) . 26

5.5 Related Proofs . 27

5.5.1 Important Lemmas . 27

5.5.2 Main Proofs . 31

5.6 An Eigenvalue Based approach for getting ξ 38

6 Applications 40

6.1 Application to CD-ROM . 40

6.1.1 Scheme 1 . 41

6.1.2 Scheme 2 . 43

6.2 Application to DVD-R . 44

6.2.1 Present DVD-R Error correction blocks 44

6.2.2 Analysis of Error Correction in DVD-R 45

6.2.3 A New ECC Scheme for DVD-R . 47

6.3 Possibility of Building Other Expander-like Codes 49

6.3.1 Choice of Projective Space . 49

6.3.2 Choice of RS Code . 50

7 Detailed Design Description of Hardware Prototyping 51

7.1 Construction of the Graph . 51

7.2 Recapitulation of Decoding Algorithm . 53

7.3 Decoder Implementation Strategy 1 . 54

CONTENTS vii

7.4 Decoder Implementation Strategy 2 . 55

7.5 Interconnect of Decoder . 55

7.5.1 Folding the Interconnect . 55

7.6 Memory Block Design . 61

7.7 RS Decoder Design . 63

7.8 Control Path Design . 65

7.8.1 1st State Machine . 65

7.8.2 2nd State Machine . 66

7.8.3 3rd State Machine . 67

7.9 Multiplexers used in Control Path . 67

7.10 Schedule for Decoder Iteration . 68

7.11 Detailed Decoding Process . 69

7.12 A modification to include Erasures . 71

7.13 Performance Modeling and Analysis . 73

7.13.1 Results of Implementation on the board 75

8 Folding of PG based point-hyperplane graphs 76

8.1 Introduction . 76

8.2 Description of the Computations . 77

8.3 Folding computations for PG(5, GF (2)) - Propositions 78

8.3.1 Proofs . 78

8.4 Generalization to PG(m,GF (q)) . 90

9 Conclusion 96

9.1 Future Work . 97

A Appendix . 99

A.1 The Graph used for the decoder . 99

A.2 Distribution of Data . 104

A.3 Generating the points of PG(5, GF (2)) 105

Bibliography 107

List of Tables

4.1 Random errors (ε = 5) . 19

4.2 Random errors (ε = 7) . 19

4.3 Change in parameters of C with variation in minimum distance of subcode 20

4.4 Burst errors (ε = 5) . 23

6.1 Response to Burst errors for CIRC+RSPC 43

6.2 Response to Burst errors in Scheme 2 . 43

7.1 First 3 Disjoint Planes . 56

7.2 Points of 9 Disjoint Planes used in Folding 57

7.3 Hyperplanes of 9 Disjoint Planes used in Folding 57

7.4 Re-ordered Graph Vertices . 59

7.5 Erasure correction results . 72

7.6 Resource Utilization . 75

1 Point-Hyperplane Adjacency List . 99

2 memory block-Edge Storage Correspondence 104

3 Points of PG(5,GF(2)) . 106

viii

List of Figures

2.1 Variables and Constraints in Expander Codes 5

3.1 CIRC Encoder . 12

6.1 ECC Block of DVD-R . 45

6.2 Partitioning ECC Block into Recording Frames 46

7.1 Strategy 1 . 54

7.2 Example to illustrate Re-ordering . 58

7.3 (A) Distribution of computation to processing units (B) High-level System

architecture . 60

7.4 The interface of the Xilinx RS decoder IP 63

7.5 Data Path outline for each Processing Unit 65

7.6 Input Handling State Machine . 66

7.7 Output Handling State Machine . 67

7.8 Writeback Handling State Machine . 68

ix

Chapter 1

Introduction

Graph codes have been studied and analyzed in order to try and find codes that give

good error correction capability at high code rates. At the same time, from a practical

implementation point of view, such codes must have decoding and encoding algorithms

that are efficient in terms of speed and hardware complexity.

Expander Codes, first suggested by Sipser and Spielman [12], proved to be theoreti-

cally capable of providing asymptotically good codes that were decodable in logarithmic

time and could be implemented with a circuit whose size grew linearly with code size. [12]

analyzes the code properties of expander codes and finds lower bounds on the number of

errors that will always be corrected by the decoding algorithm. Zemor, in his analysis in

[14], suggests using Ramanujan graphs for constructing expander codes, and provides a

variation of the decoding algorithm which improves the bound by a factor of 12. In [6],

Hoholdt and Justesen build on the work of Tanner on graph codes by suggesting the use of

Reed Solomon codes as sub-codes for graphs that were derived from point-line incidence

relations of projective planes.

The present work deals with the design, analysis and implementation of a decoding

system which is based on a special bipartite graph. The bipartite graph is derived from

point-hyperplane incidence relations of projective spaces of higher dimensions than those

suggested by [6]. We look at various properties of the codes and in the process stumble

upon several interesting properties of projective geometry. Also, we want the codes to

be practically useful and hence we present a hardware design scheme for the decoder and

prototype it on a FPGA.

The codes have excellent robustness to random as well as burst errors and hence we

1

CHAPTER 1. INTRODUCTION 2

envisage their application in data storage systems. Disc storage is a general category of

secondary storage mechanisms, in which data are digitally recorded by various electronic,

magnetic, optical, or mechanical methods on a surface layer deposited of one or more

planar, round and rotating platters.The encoding pattern for most magnetic or optical

recordings follows a continuous, spiral path covering the entire disc surface and extending

from the innermost track to the outermost track.

Although discs are more durable than earlier storage mechanisms such as tapes,

they are susceptible to environmental and daily-use damage. Unlike the now-obsolete

3.5-inch floppy disk, most removable media such as optical discs do not have an integrated

protective casing and are therefore susceptible to data transfer problems due to scratches,

fingerprints, and other environmental problems such as dust speckles. These data transfer

problems, while the data is being read, manifests itself in form of bit errors in the digital

data stream. Even mechanical issues such as vibration due to occasional high rotational

speeds of disc motors also produce undesirable noise, and hence bit errors in fixed as

well as removable media. A long sequence of bit read errors while a track is being read

(e.g. a scratch on a track) can be characterized as burst error, while bit read error arising

out of tiny dust speckle masking limited number of pits and lands on a track leads to

random error. The occurrence of such events obviously not being rare, recovery of data

to maximum extent in presence of such errors is an essential subsystem within most

computing systems, such as CPU and disc players.

The next chapter gives relevant, exhaustive background information for the vari-

ous concepts required in this area. It also gives the basic properties of cardinalities of

projective geometry that we will be using. The subsequent chapters describe our code

construction in detail, give proofs of propositions relating to bounds on error correction

capacity and explain the application to two types of storage media(namely CD-ROMs

and DVD-R). We then proceed to give details of the hardware design of the prototype of

the decoder that has been evolved for the FPGA. Finally, we present a general hardware

design approach to fold computations related to graphs based on projective geometry. It

utilizes lattice embedding properties to fold the graph so that fewer processors may be

used for the implementation of the computations.

Chapter 2

Previous work

2.1 Linear Codes

A q-ary linear error-correcting code of length n and rank k is a linear subspace S of F n

of dimension k, where F = GF(q). Each codeword belonging to this code will have k

message symbols and the other n− k symbols are determined by the message. The total

number of codewords in S is qk. Another important characteristic of the code is the

minimum hamming distance d between any two codewords, which implies that the code

can correct upto bd−1
2
c errors. The rate of the code is given by r = k

n
. A linear code is

generally described by the triplet (n, k, d).

2.2 Expander Codes

Expander codes are a family of asymptotically good, linear error-correcting codes. They

can be decoded in sub-linear time(proportional to log(n), where n is length of codeword)

using parallel decoding algorithms. Further, this can be achieved using identical compo-

nent processors, whose count is linearly proportional to n. These codes are based on a

class of graphs known as expander graphs.

2.3 Expander Graphs

An expander graph is a graph in which every set of vertices has an unusually large number

of neighbours. More formally,

3

CHAPTER 2. PREVIOUS WORK 4

Let G = (V,E) be a graph with n vertices. Then the graph G is a δ-expander, if every

set of at most m vertices expands by a factor of δ. That is,

∀S ⊂ V : |S| ≤ m⇒ |{y : ∃x ∈ S such that (x, y) ∈ E}| > δ · |S|

Expander codes being a subclass of LDPC codes, for whose iterative decoding using

variables and constraints a bipartite graph is required, we are interested mainly in bipartite

expander graph. More specifically, a general (unbalanced) bipartite expander graph is a

(c, d, ε, δ)-expander if it is a (c,d)-regular bipartite graph in which every subset of at most

an ε fraction of the c-regular vertices expand by a factor of at least δ.

The degree of “goodness” of expansion, especially for regular graphs, can also be

measured using its eigenvalues. The largest eigenvalue of a k-regular graph is k. If the

second largest eigenvalue is much smaller from the first(k), then the graph is known to

be a good expander.

2.4 Construction of Expander Codes

It is well known that a randomly chosen (c,d)-regular graph will be a good expander with

high probability. A deterministic construction of good expander graph, that further leads

to construction of good expander codes is by considering the edge-vertex incidence graph

B of a d-regular graph G. The edge-vertex incidence graph of G = (V,E), a (2,d)-regular

bipartite graph, has vertex set E ∪ V and edge set

{(e, v) ∈ E × V : v is an endpoint of e}

Vertices of B corresponding to edges E of G are then associated to variables, while vertices

of B corresponding to vertices of G are associated to constraints on these variables. Each

constraint corresponds to a set of linear restrictions on the d variables that are its neigh-

bors(see figure 2.1). In particular, a constraint will require that the variables it restricts

form a codeword in some linear code of length d. Further, all the constraints are required

to impose isomorphic codes(on different variables, of course). The default construction of

expander codes requires d to remain constant as the order of G increases.

Formally, Let B be a (2,d)-regular graph between set of n nodes called variables, and

2
d
n nodes called constraints. Let b(i,j) be a function such that for each constraint Ci, the

CHAPTER 2. PREVIOUS WORK 5

Figure 2.1: Variables and Constraints in Expander Codes

variables neighboring Ci are vb(i,1), · · · , vb(i,d). Let S be an error-correcting code of block

length d. The expander code C(B,S) is the code of block length n whose codewords are

the words (x1, · · · , xn) such that, for 1 ≤ i ≤ 2
d
n, xb(i,1), · · · , xb(i,d) is a codeword of S.

2.5 Good Expander Codes

As pointed out earlier, the decoding algorithm for such codes is iterative. Hence good

expander codes imply at least the following properties:

� Better minimum distance(hence larger error-correction capability) than other codes

of same length,

� Fast convergence, and

� Better code rate than other codes in the same class

We now discuss the way good codes having the above properties be derived, with

help of three theorems. All the three theorems have been proved in [12], hence we just

provide the statement of theorem here. For the theorems, we assume that an expander

code C(B,S) has been constructed having S as a linear code of rate r, block length d, and

minimum relative distance ε, while B as the edge-vertex incidence graph of a d-regular

graph G with second-largest eigenvalue λ.

CHAPTER 2. PREVIOUS WORK 6

Theorem 1. The code C(B, S) constructed as above has rate at least 2r - 1, and minimum

relative distance at least
(
ε−λ

d

1−λ
d

)2

.

Theorem 2. If a parallel decoding round for C(B,S), as given in [12], is given as input a

word of relative distance α from a codeword, then it will output a word of relative distance

at most α
(

2
3

+ 16α
ε2

+ 4λ
εd

)
from that codeword.

Theorem 3. For all ε such that 1- 2H(ε) > 0, where H(·) is the binary entropy function,

there exists a polynomial-time constructable family of expander codes of rate 1 - 2H(ε)

and minimum relative distance arbitrarily close to ε2 in which any α < ε2/48 fraction of

error can be corrected by a circuit of size O(n log n) and depth O(log n).

From theorem 1, we observe that to have high minimum relative distance, we should

have ε as high, and λ
d

as low. Since B has been constructed out of d-regular graph G, low

λ
d

signifies high distance between first and second eigenvalues, i.e. the graph G has to be

a “good” expander graph. Further, to have high rate, S has to have a high rate r as well,

other than having high minimum relative distance ε.

From theorem 2, we observe that to shrink the distance of input word after one itera-

tion maximally, we need to again have ε as high as possible, and λ
d

as low as possible. Such

maximal shrinking of distance, per iteration, leads to the fastest convergence possible, as

is also brought out in the proof of theorem 3.

From theorem 3, we observe that to be able to correct as high fraction of errors as

possible, we need to have ε as high as possible, again.

2.6 RS Codes as Good Component Codes

By choosing a “good expander” graph, and fixing a code with high minimum relative

distance ε, one can design code having the first two properties described earlier. To

simultaneously have high code rate for C(B, S), the component code S also needs to

have high rate r. This is where bounds on rate come into picture. Given minimum

relative distance ε, the most loose upper bound on rate is the Singleton bound, and Reed-

Solomon codes and related ones actually achieve this bound! At the same time, we are

also interested in designing asymptotically good codes, for which one needs to guarantee

that the code rate does not fall to beyond a certain threshold at high code lengths. This

CHAPTER 2. PREVIOUS WORK 7

is where usage explicitly constructable class of codes, having a lower bound on code rate

away from 0 as per the lone lower bound, Gilbert-Varshamov bound, comes to use.

If one has particular applications in mind, and is not interested in constructing an

infinite family of asymptotically good codes, then another option opens up. Possibility of

using codes not living by the Gilbert-Varshamov bound has also been mentioned in [12].

Reed-Solomon codes are a class of non-binary, linear codes, which for a given rate, have

the best minimum relative distance(so-called maximum distance separable codes), and

vice-versa. They being (n, k, n− k + 1) codes, their rate need not → 0, as theoretically

it is possible to construct RS codes with very high distance(≈ α ∗n, where α is a positive

fraction), as n → ∞. Hence C are, in general, asymptotically good codes.

As a concluding remark, we had earlier observed that definition of expander code

requires d to remain constant as n increases. In our construction, d increases as n

increases. However, it is clear from statement of theorems 1 and 2 that higher value of

d leads to better properties of the code C(B,S). However, such codes may not be called

expander codes in wake of definition of these, but just graph-based, or expander-like

codes.

2.7 Good Expander Graphs

The construction of expander codes in [12] makes use of an unbalanced bipartite graph

B made out of a d-regular graph G. He says that a randomly chosen d-regular graph

will be a good expander with high probability. Zemor pointed out that if G is a regular

bipartite graph, then the % of errors that can be corrected using a parallel iterative

decoding algorithm can be increased twelve-fold. He also pointed out that the upper

bound on minimum relative distance, as pointed out in theorem 1, can also be achieved

faster, if one considers Ramanujan graphs (Since λ
d

value is low for these graphs. Earlier,

the particular construction of Cayley graphs using quadratic residues, suggested in [12] as

G, also had the Ramanujan property: λ(second-largest eigenvalue) ≤ 2
√
d− 1. However,

it is noted [14] that (a) Half the constructions of the bigger class of Ramanujan graphs

lead to bipartite regular graphs, and (b) Using bipartite regular graphs as G leads to

twelve-fold improvement in error correction capability. Hence it is imperative that one

focuses on using Ramanujan graphs for construction of good expander codes instead.

CHAPTER 2. PREVIOUS WORK 8

2.8 PG Graphs as Ramanujan Graphs

Balanced regular bipartite graphs Gd,d, which are symmetric balanced incomplete block

designs(BIBDs) are known to be Ramanujan graphs [5]. Incidence relations of projective

geometry structures give BIBDs and hence can be used to generate Ramanujan graphs.

Usage of projective plane as Gd,d along with RS codes as component codes to construct

good expander-like graph codes was first reported in [6]. For our work, we do not limit to

projective planes: to have better performance, we have made use of point-hyperplane inci-

dence graphs from higher dimensional projective spaces, which also satisfy the eigenvalue

properties that make a Ramanujan graph.

An example of an expander-like 1953-length code based on projective spaces is pro-

vided in section 4.1.

2.8.1 Advantages of Using PG Graphs

If one looks only at the decoding algorithm and construction of the graph, it would seem

that any simple, regular bipartite graph would be a good candidate for having good

expander codes and corresponding decoders. Some of the reasons for using projective

geometry are as follows.

� As discussed in chapter 4, the mapping of vertices to points and hyperplanes en-

ables us to use several projective geometry properties for disproving the existence

of certain bipartite subgraphs of a fixed minimum degree. This strategy leads us to

finding the minimum number of vertices required to form a complete bipartite sub-

graph of a given minimum degree. This number of vertices is required to calculate

the bounds for error correction capability of the overall code. Thus, we don’t need

to use complicated eigenvalue arguments used by [12] and [14]. Also, the bounds

obtained in this manner are better than our predecessors. Furthermore, Zemor had

restricted the subcodes to be constrained by d ≥ 3λ, λ being the second largest

eigenvalue of the graph. We have no such restriction.

� The use of projective geometry also helps in developing a perfect folded architecture

of the decoder for hardware implementation. Folded architectures enable efficient

utilization of processors and memories, without any significant increase in scheduling

complexity.

Chapter 3

Background Information

Our construction of codes is based on Zemor’s ideas of Expander graphs. We briefly

summarize the basic construction suggested by Zemor[14]. We also introduce certain

concepts from projective geometry, since we use a PG-based bipartite graph construct

the expander-like codes. Finally, for their applications in CDROM decoding, we overview

the current existing standard for CDROM encoding and decoding, ECMA-130.

3.1 Zemor’s Construction of Expander Codes

Zemor’s construction is based on a d-regular balanced bipartite graph, G = (V,E). The

set V is divided into two sets A and B, with |A| = |B| = n such that every edge has one

endpoint in A and another in B. For any vertex t, the set of edges incident on t is denoted

by Et. As the graph is bipartite, the sets Et ∀t ∈ A induce a partition on E. A similar

partition can be created using the edge sets of the vertices belonging to B. The expander

code, C(G,S) is constructed by treating the edges of G as variables and the vertices as

constraints for a binary component code S. The block length of code C is N = n · d. As

before, the second largest eigenvalue of G is denoted by λ.

3.1.1 Decoding Algorithm

The steps in one decoding round of the algorithm suggested by Zemor are as follows:

� Each constraint t in set A completely decodes the sub-vector associated with the

set of d variables, Et, and replaces it with the closest codeword in S. This step can

9

CHAPTER 3. BACKGROUND INFORMATION 10

be carried out in parallel by all constraints in A as no symbol is shared between two

constraints.

� The constraints in set B replace the sub-vector associated with its edge sets, Et, t ∈

B, with the closest codeword in S. This again can be carried out in parallel by all

constraints.

3.1.2 Error Correction

The following result expresses the reduction in unsatisfied constraints in each step of this

algorithm.

Suppose S is a linear code (d, r · d, ε) and ε ≥ 3λ. Let P be a subset of A such that

|P | ≤ βn(
ε− 2λ

2d
) (3.1)

where β < 1. Let Q be a subset of B and suppose that there exists a set Y ⊂ E such that

1. Every edge of Y has one endpoint in P .

2. Every vertex of Q has at least ε
2

edges of Y incident on it.

Then

|Q| ≤ 1

2− β
|P | (3.2)

Using this result, Zemor proved that if ε ≥ 3λ, the total fraction of errors that can be

corrected using the above algorithm is α ≤ β ε
2d

(ε−2λ
2d

) for β < 1. This fraction can be seen

proportional to ε2

4
, an twelve-fold improvement over [12].

3.2 ECMA-130: The CD-ROM Standard

As specified by the ECMA-130 standard [7], CD-ROM decoder consists of several layers

of decoding to make the codes robust towards burst and random errors.

The digital data to be recorded in an Information Track is represented by 8-bit

bytes(symbols) and grouped into Sectors. A Sector is the smallest addressable part of

the information area that can be accessed independently. It has 2352 symbols which are

organized into the following categories.

CHAPTER 3. BACKGROUND INFORMATION 11

Sync field The first 12 bytes are the synchronization bytes for the frame. They are used

to indicate the start of a new frame.

Header field This consist of 4 bytes, a 3 byte sector address and 1 byte to indicate the

mode which indicates how the data is arranged in the next fields.

User data 2048 bytes of user data are placed from byte number 16 to 2063.

Error Detection Code(EDC) field The EDC field consists of 4 bytes recorded in

positions 2064 to 2067. The error detection code is a 32-bit Cyclic Redundancy

Check(CRC) applied on bytes 0 to 2063.

Intermediate field It consists of 8 (00)-bytes recorded in positions 2068 to 2075. These

are redundant bytes added to help improve the error correction per sector.

P & Q parity bytes These are the parity bytes added by the Reed Solomon Product

code which is the first layer of encoding. The P-parity field consists of 172 bytes in

positions 2076 to 2247 computed on bytes 12 to 2075. The Q-parity field consists

of 104 bytes in positions 2248 to 2351 computed on bytes 12 to 2247.

3.2.1 Main steps of Encoding

Encoding is done over 2048 bytes of user data. Sync and header fields are generated,

and attached ahead of the payload of user data. EDC and intermediate fields are then

calculated and attached ahead of user data field. The P and Q parity bytes are calculated

from the Reed Solomon Product Code(RSPC), as explained in [7]. This makes the entire

block of 2352 bytes. Bytes 12 to 2351 are then passed through a scrambler, and finally

the 2352 bytes are mapped onto a series of consecutive frames. Each frame consists of 24

8-bit symbols. There are 98 frames for each sector on the CD-ROM disc, and are called

the F1-Frames.

The F1-Frames are fed into a Cross Interleaved Reed-Solomon Code(CIRC) encoder.

This stage is responsible for the massive interleaving which corrects the majority of the

burst errors. The functioning of the CIRC is explained in the next section. The result is

that the F1-Frames of 24 bytes each are transformed into F2-Frames of 32 bytes each.

These additional 8 bytes carry the parity information in fact. The bit pattern of each

of the 24 8-bit bytes of an F1-Frame remains unchanged, but the bytes themselves are

CHAPTER 3. BACKGROUND INFORMATION 12

Figure 3.1: CIRC Encoder

displaced and re-distributed over 109 F2-Frames. A single byte called Control byte is

added as first byte to each F2-Frame. This yields a new F3-Frame of 33 bytes. The

information in the control byte is mainly used for addressing purposes.

The F3-Frames are then further passed through a few more stages before they are

finally ready to be recorded on the disk. One of these stages consists of an 8-to-14

encoding. In this stage, the 8-bit symbols are mapped to 14-bit symbols. The main

purpose of this stage is to even out the power spectrum density. Also, one of the stages is

another simpler form of interleaving which essentially doubles the error correcting capacity

obtained till the CIRC stage.

3.2.2 Cross Interleaved Reed-Solomon Code

The error correction encoding of the F1-Frames is carried out by a Cross Interleaved

Reed-Solomon Code(CIRC) encoder consisting of three delay sections and two en-

CHAPTER 3. BACKGROUND INFORMATION 13

coders C1 and C2. It is shown in Figure 3.1. The encoder works as follows.

� The input of the encoder consists of the 24 bytes of each F1-Frame. These bytes

are ordered into 12 words of two 8-bit bytes each, denoted A and B. Byte 0 of

F1-Frame number n is indicated as W12n,A, and byte 23 as W12n+11,B.

� The interleaving scheme of the first delay section(see figure 3.1) divides the words

into two groups one of which is delayed by two F1-frame times.

� The error correction encoder C2 generates a (28,24) Reed-Solomon code.

� The second delay section consists of a series of 28 delays from 0 to 27 D F1-frame

times, where D equals 4. This is the main interleaving where the symbols of a

input F1-Frame are spread over 109 frames. The result is that if one symbol of

the input appears in the 0th frame of the output of this stage, the next symbol will

appear in the 4th output frame and so on. From the decoding point of view, we can

roughly estimate the burst error required to corrupt an F1-Frame. Since C2 is two

error correcting, 3 symbols of a F1-Frame need to be corrupted for decoding to fail,

which corresponds to a burst of 8 ∗ 28 + 4 = 228 symbols.

� The error correction encoder C1 generates a (32,28) Reed-Solomon code.

� The third delay section yields a delay of one F1-Frame time to every alternate byte

out of the C1 encoder.

� The output of the CIRC encoder is grouped into F2-Frames as indicated in figure

3.1. All parity bits in the P and Q bytes are inverted before they leave the encoder.

The longest delay for a byte between input into, and output from, the encoder is

108 F1-Frame times.

3.2.3 Main steps of Decoding

The decoding is exactly the reverse of the encoding.

CHAPTER 3. BACKGROUND INFORMATION 14

3.3 Projective Space over Finite Fields

In this section, we look at how the projective spaces are generated from finite fields.

Consider a finite field F = GF(s) with s elements, where s is a power of a prime number

p i.e. s = pk, k being a positive integer. A projective space of dimension d is denoted by

P(d,F) and consists of one-dimensional subspaces of the (d+ 1)-dimensional vector space

over F (an extension field over F), denoted by Fd+1. Elements of this vector space are of

the form (x1, . . . , xd+1), where each xi ∈ F. The total number of such elements are s(d+1)

= pk(d+1). An equivalence relation between these elements is defined as follows. Two non-

zero elements x, y are equivalent if there exists an element λ ∈ GF(s) such that x = λy.

Clearly, each equivalence class consists of s elements of the field (s− 1 non-zero elements

and 0), and forms a one-dimensional subspace. Such 1-d vector subspace corresponds to a

point in the projective space. Points are the zero-dimensional subspaces of the projective

space. Therefore, the total number of points in P(d,F) are

P (d) =
number of non-zero elements in the field

number of non-zero elements in one equivalence class
(3.3)

=
sd+1 − 1

s− 1
(3.4)

An m-dimensional subspace of P(d,F) consists of all the one-dimensional subspaces of an

(m+ 1)-dimensional subspace of the vector space. The basis of this vector subspace will

have (m+1) linearly independent elements, say b0, . . . , bm. Every element of this subspace

can be represented as a linear combination of these basis vectors.

x =
m∑
i=0

αibi, where αi ∈ F(s) (3.5)

Clearly, the number of elements in the vector subspace are s(m+1). The number of points in

the m-dimensional projective subspace is given by P (m) defined in earlier equation. This

(m+ 1)-dimensional vector subspace and the corresponding projective subspace are said

to have a co-dimension of r = d−m (the rank of the null space of this vector subspace).

Let us denote the collection of all the l-dimensional projective subspaces by Ωl. Now,

Ω0 represents the set of all the points of the projective space, Ω1 is the set of all lines, Ω2

is the set of all planes and so on. To count the number of elements in each of these sets,

we define the function

φ(n, l, s) =
(sn+1 − 1)(sn − 1) . . . (sn−l+1 − 1)

(s− 1)(s2 − 1) . . . (sl+1 − 1)
(3.6)

CHAPTER 3. BACKGROUND INFORMATION 15

Now, the number of m-dimensional subspaces of P(d,F) is φ(d,m, s). For example, the

number of points in P(d, F) is φ(d, 0, s). Also, the number of l-dimensional subspaces

contained in an m-dimensional subspace (where 0 ≤ l < m ≤ d) is φ(m, l, s), while

the number of m-dimensional subspaces containing a particular l-dimensional subspace is

φ(d− l − 1,m− l − 1, s).

Chapter 4

Detailed Description of Code

Construction

In this chapter, we present a particular expander-like graph code. In a subsequent chapter,

this code has been designed for usage in a novel high-performance CD-ROM decoder. For

sake of extensibility, in chapter 6, we discuss how a family of such codes can be constructed.

4.1 Code Construction

To construct an expander-like code, we follow [14]. We generate a balanced regular

bipartite graph G from a projective space. A projective space of dimension n over GF(2),

PG(n,GF(q)), has at least following two properties, arising out of inherent duality:

1. The number of subspaces of dimension m is equal to the number of subspaces of

dimension n−m− 1.

2. The number of m-dimensional subspaces incident on each n − m − 1-dimensional

subspace is equal to the number of n − m − 1-dimensional subspaces incident on

each m-dimensional subspace.

We use these two properties of projective subspaces to create balanced regular bipartite

graphs. We associate one vertex of the graph with each m-dimensional subspace and one

with each n−m− 1-dimensional subspace. Two vertices are connected by an edge if the

corresponding subspaces are incident on each other. As edges lie only between subspaces

of different dimensions, the graph is bipartite with vertices associated with m-dimensional

16

CHAPTER 4. DETAILED DESCRIPTION OF CODE CONSTRUCTION 17

subspaces forming one set and vertices associated with n−m− 1-dimensional subspaces

forming another. Also, the two properties, listed above, ensure that both the vertex sets

have the same number of elements and that each vertex has the same degree.

We consider the graph, G = (V,E) obtained by taking the points and hyperplanes

of PG(5,GF(2)). This is the first code we construct, and use throughout. Possibilities

of constructing other useful codes of the same family is discussed in section 6.3. This

projective space is generated from GF(26). In this projective space, the number of points

(= number of hyperplanes) is φ(5, 0, 2) = 63. Each point is incident on φ(4, 3, 2) = 31

hyperplanes and each hyperplane has φ(4, 0, 2) = 31 points. Therefore, we have |V | = 126

and |E| = 1953. This implies that the block length of code C is 1953 and the number of

constraints in the code is 126. The second eigenvalue of G, λ is 4, according to formulae

by Chee and Ming[4]. Hence the ratio λ
d

is quite small, as required for design of “good”

expander codes. The calculation of elements of GF(26) and the generation of incidence

relations between points and hyperplanes in PG(5,GF(2)) has been elucidated in section

7.1 later.

As the expander graph G is 31-regular, the block length of the component code

need also be 31 to construct an expander-like code[12]. We have chosen the 31-symbol

shortened Reed Solomon code as the component code, with each symbol consisting of

eight bits. Our decoding algorithm is identical to Zemor’s, except that if a particular

vertex detects more errors than it can correct, we skip the decoding for that vertex. This

is because as a side output, it is possible to compute using Berlekamp-Massey’s algorithm

for RS decoding[2], whether the degree of errors in the current input block of symbols to

the decoder be corrected or not. If not, then the algorithm can be made to skip decoding,

thus preserving the errors in the input block. This variation in decoding will reduce

the number of extra errors introduced by that vertex if the decoding fails. Based on

this decoding algorithm, a MATLAB model of decoder was first made, to observe code’s

performance. It uses the built-in RS decoding and encoding functions from MATLAB.

4.2 Performance of Code for Random Errors

To benchmark the error-correction performance in wake on random errors occurring while

reading the disc, we varied the minimum distance of the component code, and simulated

CHAPTER 4. DETAILED DESCRIPTION OF CODE CONSTRUCTION 18

the MATLAB decoder model. Random symbol errors were introduced at random locations

of the zero vector. Convergence of the decoder’s output back to the zero vector was checked

after simulation. As the code is linear, the performance obtained in testing for zero

vector is valid for the entire code. Since the errors were introduced at random locations,

simulations were run over many different rounds of decoding for different pseudo-random

sequences as inputs, and averaged, to get reliable results. These sequences differ in random

positions in which the errors are introduced. Each round of decoding for particular input

further involves several iterations of execution of decoding algorithm. One iteration of

decoding corresponds to both sides of the bipartite graph to finish decoding the component

codes.

It is observed experimentally that in case of a decoding failure, beyond 4 iterations,

the number of errors in the codeword stabilizes(referred to as fixed point in [3]). In the first

few iterations, as the number of errors decrease in the overall code in a particular iteration,

the number of errors on average to be handled by RS decoders in next iteration is lesser.

Hence probabilistically, and experimentally, these component decoders converge faster,

thus increasing the percentage of errors being corrected in its next iteration. However,

after maximum 4 iterations, it was seen that there is no further reduction in errors. This

phenomenon could most probably be attributed to infinite oscillations of errors in an

embedded subgraph, to be described in next section.

Hence we have fixed the stopping threshold of decoder to exactly 4 iterations not

only in simulation, but also in the practical design of a CD-ROM decoder. In simulation,

if there are non-zero entries remaining after 4 iterations, then the decoding is considered

to have failed. In real life, if one or more component RS decoders fail to converge at 4th

iteration, then again decoding is considered to have failed. The results of our simulations

are presented in Tables 4.1 and 4.2. The component codes used for these simulations have

minimum distance as 5 and 7, respectively. The “failures” column represents the percent-

age of failed decoding attempts. The “average number of iterations” column signifies the

average number of iterations required for successful decoding of a corrupt codeword, over

various rounds.

We present some worst-case bounds on rate and error-correction capability of our

codes in Table 4.3. We vary the minimum distance of subcode between 3 and 15. Beyond

15, rate of the overall code C becomes very less and hence impractical. We also compare

CHAPTER 4. DETAILED DESCRIPTION OF CODE CONSTRUCTION 19

No. of errors failures Avg. no. of iterations

50 0 1

80 1 1.71

100 18 2.33

110 40 2.72

Table 4.1: Random errors (ε = 5)

No. of errors failures Avg. no. of iterations

150 0 1.6

175 0 1.99

200 0 2.19

250 23 3.82

275 64 4.5

Table 4.2: Random errors (ε = 7)

these bounds to the bounds derived by Zemor. For calculating the Zemor bounds and

making a fair comparison, we need to remove the advantage of using Reed Solomon

codes as sub-codes. Zemor had derived the bounds for general codes assuming that ≥ ε
2

errors could not be corrected for any distance(even/odd). For Reed Solomon component

codes used in our construction, since we use only odd distances, (ε+1)
2

errors can never be

corrected. To account for this, we replace ε/2 by (ε+1)/2 in Zemor’s formula to calculate

the bounds.

We give a geometrical analysis of process of error correction in the overall code C.

We have also used results from this analysis to derive the bounds on error correction

capability of C. First of all, since we have PG(5,GF(2)), points form the 0-dimensional

subspace and hyperplanes form the 4-dimensional subspace. Moreover, planes form 2-

dimensional subspaces of the projective space, and are symmetric with respect to points

and hyperplanes. Finally, 7 points are contained in a plane and a plane is contained in 7

hyperplanes in PG(5,GF(2)).

To understand the limits, given the minimum distance ε of the subcode, we need to

find the minimum number of random errors to be introduced in C, which will cause the

decoding to fail. This will happen if the vertices corresponding to the points and hyper-

CHAPTER 4. DETAILED DESCRIPTION OF CODE CONSTRUCTION 20

Minimum distance Subcode Lower bound on Error-correcting Zemor’s bound

of subcode (ε) rate rate of C capability of C for C

3 0.94 0.87 3 –

5 0.87 0.74 8 –

7 0.81 0.61 15 –

9 0.74 0.48 24 –

11 0.68 0.35 35 –

13 0.61 0.23 48 42

15 0.55 0.1 87 65

Table 4.3: Change in parameters of C with variation in minimum distance of subcode

planes get locked in such a way that in each iteration, an equal number of constraints

fail on each side. This is the minimal configuration of failure. Errors can expand over

iterations (more edges represent corrupt symbols), but eventually the codeword will be

decoded if the minimal configuration of failure is not corrupted. Similarly, if errors shrink,

i.e. lesser number of vertices in bipartite graph fail in next iteration, then it leads to a

case of decoding convergence, not decoding failure.

For example, if we consider ε = 5, each vertex of the graph can correct up to 2

erroneous symbols(b ε
2
c) in the set of symbols that it is decoding. If 3 or more erroneous

symbols are given to it, then either the decoder, based on Berlekamp-Massey’s algorithm,

skips decoding, or it outputs another codeword that in worst case has at least ε different

symbols now(than the transmitted codeword), and hence at least ε errors. In either case,

if we can generate a case in which decoding of the sub-code fails at vertices corresponding

to 3 points, all of which are incident on 3 hyperplanes, we have a situation in which the 3

points will transfer at least 3 errors to each of vertices corresponding to the 3 hyperplanes.

These vertices may also fail, or decode a different codeword, while decoding their inputs.

Again in the worst case each of these hyperplane decoders will output at least 3 erroneous

symbols. These corrupt symbols, or errors, are then transferred back to the vertices

representing the 3 points. Thus, the errors will keep oscillating infinitely from one side

of the graph to the other, and the decoder will never decode the right codeword. Thus,

a minimum of 3 ∗ 3 = 9 errors are required to cause a failure of decoding. We assume

the worst case scenario here also in the sense that the wrong decoding by a decoder does

CHAPTER 4. DETAILED DESCRIPTION OF CODE CONSTRUCTION 21

not reduce the number of errors in the minimum configuration of failure. Under this

assumption, the bounds can be called “tight”.

For any case in which less than 9 corrupt symbols exist, by pigeonhole principle, we

will have at least one hyperplane or point having less than 3 errors incident on it. Decoder

corresponding to that vertex will correctly decode the sub-code, thus reducing the total

number of errors flowing in the overall decoder system of C. This will, in next iteration,

cause some other hyperplane or point to have less than 3 errors. Thus in the subsequent

iterations, all the errors will definitely be removed. Therefore, 8 errors or less will always

be corrected. As we can see from Table 4.1, the worst case scenario is very unlikely to

occur and for randomly placed errors, even 80 errors are found to be corrected 99% of the

time.

Now the question is, when can we find a configuration in which 3 points are all

incident on 3 hyperplanes? If we choose any plane in the given geometry, we can pick

up any three points of that plane and find any 3 hyperplanes corresponding to the same

plane. This will ensure that all the 3 points are incident on all the 3 hyperplanes. Thus,

if for some input, the decoding at these 3 points fails, in the worst case they will corrupt

all the edges incident on them. This in turn would cause 3 errors each, on the chosen

hyperplanes. Hence the errors would oscillate between points and hyperplanes for each

successive iteration. Thus, in the worst case, there need to be 9 erroneous symbols, located

such that they are incident on the 3 chosen points, to cause the decoding of C to fail.

In general, if we are given a minimum distance ε of the subcode, it is known that at

each vertex, more than (ε+1
2

) errors will not be corrected. So, in our graph we need to find

the minimum number of vertices ξ required to get a embedded bipartite subgraph

such that each vertex in the subgraph has a degree of at least (ε+1
2

) towards vertices on

other side of the subgraph. Once this number of vertices in some embedded subgraph has

been found, the number of errors that can always be corrected by our decoder is given by:

E = ξ(
ε+ 1

2
)− 1

In PG(5,GF(2)), a plane has 7 points, and is contained in 7 hyperplanes. For

3 ≤ ε ≤ 13, ε being odd, the minimum number of vertices ξ corresponds to (ε+1
2

), and

the corresponding points and hyperplanes can be picked from any plane. For ε ≥ 15,

the calculation of ξ is non-trivial, since points and hyperplanes from one plane are not

CHAPTER 4. DETAILED DESCRIPTION OF CODE CONSTRUCTION 22

sufficient. This is because ε+1
2

= 8, which would require us to get a subgraph of minimum

degree 8. Construction of such embedded subgraph is not possible by choosing only

one plane. Thus, such a subgraph with 8 vertices on each side cannot exist. We have

constructed proofs to show non-existence of a minimum degree 8 embedded bipartite

subgraph having order of 9 and 10, within point-hyperplane graph of PG(5,GF(2)). At a

conjecture level, we suspect that an order-11, minimum degree 8 subgraph embedding is

also not possible. Without using this conjecture, still, the lower bound of 87 as number of

erroneous symbols in a 1953-length block of input based on C, as in the table 4.3, is a loose

lower bound. Since our constructions are exact, we can use these tight lower bounds for

all practical values of ε, wherever calculation of it is possible. Otherwise, another looser,

lower bound can be found using Lemma 1 of [6], but derivation of that uses eigenvalue

calculations. We have outlined the derivation in the next chapter. Without that, it is

still clear from this table that the bound is much better than the bound obtained by

Zemor[14] using eigenvalue arguments.

4.3 Performance of Code for Burst Errors

The strongest applications for this code lie in the areas of mass data storage such as

discs. Here, as pointed earlier in chapter 1, burst errors are the dominant cause of data

corruption. Hence we have also examined the burst error correction capabilities of our

code. We benchmark this capability against that of codes designed in ECMA-130 standard

for CD-ROM encoding, which is considered to be very robust to burst errors.

In bipartite graph G constructed from PG(5,GF(2)), we label the edges with integers,

to map various symbols of the codeword. Such a labeling is not required to understand/

characterize the random error correction capability of the code. But here, we label the

edges with numbers to try to maximize the burst error correction capability. This is

achieved if each consecutive symbol, possibly part of a burst, is mapped to edges that are

incident on distinct vertices representing different component decoders. Thus, consecutive

numbered edges, representing consecutively located symbols in input symbol stream, go to

different vertices hosting different RS decoders. Since there are 63 vertices on one side of

the graph, this scheme of numbering implies that edges incident on vertex 1 are assigned

the numbers {1, 64, . . . , 1890}. Similarly, the edges incident on Vertex 2 are assigned {2,

CHAPTER 4. DETAILED DESCRIPTION OF CODE CONSTRUCTION 23

65, . . . , 1891}, and so on. This numbering essentially achieves the effect of interleaving

of code symbols. If the error correcting capacity of each component RS decoder is µ(=

b ε
2
c), then the minimum burst error correcting capacity of C will be µ ∗ 63. For example,

for ε = 5, µ is 2, and the minimum burst error correcting capacity is 2 ∗ 63 = 126. Table

4.4 gives MATLAB simulation results for burst error correction for ε = 5.

No. of errors failures Avg. no. of iterations

126 0 1

135 26 2.43

Table 4.4: Burst errors (ε = 5)

To demonstrate the excellent burst error correction capacity of our code, we bench-

mark it against the massive interleaving based codes in CD-ROMs. Traditionally in

ECMA-130, the encoding utilizes heavy interleaving and dependence on erasure correc-

tion to deal with burst errors. For erasure correction, one level of decoding identifies the

possible locations of the error symbols. The next level of decoding uses this information

to correct them. The stage/process of interleaving used in CD-ROMs makes the encoding

and decoding slower. We propose two schemes in next chapter, which offer significant

improvement in burst error correction at similar data rates. Our decoder, being fully

parallel in its decoding, can handle larger sets of data at a time and hence could be used

to increase the throughput. In our schemes, however, we wanted to fit our decoders in

place of the heavy interleaving stage of the CD-ROM decoding data path, which only

processes one frame at a time. Thus, in terms of throughput we will be matching the

CD-ROMs but we will surpass them in burst error correction capability.

4.4 A side note on Encoding

The overall code is linear and the decoding is hard decision based, hence test on a all zero

codeword suffices to test the properties of the code. To generate non-zero codewords, the

following rudimentary method can be used.

For the encoding process, we derive the parity matrix and find its orthogonal matrix

to get the generator matrix. Suppose d = 5 which means that for each sub-code 4 edges

CHAPTER 4. DETAILED DESCRIPTION OF CODE CONSTRUCTION 24

act as parity symbols. The parity matrix for each vertex is given by:
1 α α2 . . . α30

1 α2 α60

.

1 α4 α120

where α = 2 for us. The parity matrix for the 126 vertices is generated using

the above parity matrix and inserting the appropriate entries at the corresponding edge

locations. Each column of the overall parity matrix corresponds to an edge and there

are 126*4 rows. We then perform row operations to get it in RRE form. The generator

matrix is then easily obtained. A codeword is given by the product of the message vector

with the generator matrix.

The above stated method is not efficient because it uses matrix-vector multiplication

and hence is of O(n2). More efficient methods could be possible by utilising the structure

of the graph. Getting an efficient encoder design is one of the possibilities of future work

in this area.

Chapter 5

Derivation of Bound for Random

Errors

5.1 Introduction

This chapter tries to establish presence/absence of certain subgraph embeddings in bi-

partite graph G made from P(5,GF(2)). The edges of this bipartite graph signify the

subsumption, or reachability relationship in the lattice representation of the projective

space. The presence/absence of these embedded subgraphs leads to derivation of lower

bound of error correction capability of our expander-like code for cases whenever ε ≥

15. As discussed earlier in section 4.2, the calculation of ξ is non-trivial, since it in-

volves choosing multiple planes. In this chapter, we will calculate minimum value of ξ by

systematically eliminating the cases for which the required subgraph does not exist.

5.2 Propositions

We first state without proof, the two propositions that are needed to establish the non-

existence of certain minimal embeddings.

Proposition 1. In the construction of bipartite graph mentioned above, there exists no

embedded subgraph having size of partitions as 9, the degree of each of whose vertices has

a minimum degree(δ) of 8.

Proposition 2. In the construction of bipartite graph mentioned above, there exists no

25

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 26

embedded subgraph having size of partitions as 10, the degree of each of whose vertices has

a minimum degree(δ) of 8.

In the following sections, we work out the proofs of these individual propositions.

5.3 Vector Space Representation of Geometry

To recall, the points of an n-dimensional projective space over a field F can be taken to

be the equivalence classes of nonzero vectors in the (n + 1)-dimensional vector space over

F. Vectors in an equivalance class are all scalar multiples of one-another. These vector

being one-dimensional subspaces, they also represent the rays of a vector space passing

through origin. The orthogonal subspace of each such ray is the unique n-dimensional

subspace of Fn+1, known as hyperplanes. Each vector h of such orthogonal subspace is

linked to the ray, p, by a dot product as follows.

p0h0 + p1h1 + · · ·+ pnhn = 0

where pi is the ith coordinate of p. This uniqueness implies bijection, and hence a vector

p can be used to represent a hyperplane subspace, which is exclusive of this vector as a

point. Due to duality, similar thing can be said about a hyperplane subspace.

Hereafter, whenever we say that two projective subspaces of same dimension are

independent, we mean the linear independence of the corresponding vector subspaces in

the overall vector space.

5.4 Cardinalities Related to PG(5,GF(2))

1. Any line in this space is defined by any 2 points. The unique third point lying

on the lines is determined by linear combination of corresponding one-dimensional

subspaces. Hereafter, a line will be represented as a tuple <a, b, a+b>.

2. Similarly, or dually, 3 hyperplanes intersect in a particular 4-d projective subspace,

or flat.

3. Any plane in this space is defined by 3 non-collinear points, and their 4 unique

linear dependencies in the corresponding vector space. Hereafter, a plane will be

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 27

represented as <a, b, c, a+b, b+c, a+c, a+b+c>, with the non-canonical choice of

non-collinear points within this plane being implicit as <a, b, c>.

4. A plane contains 7 lines, thus being a Fano plane by itself.

5. A plane reaches out to 7 hyperplanes and 7 points in the corresponding lattice

structure through transitive join and meet operations. Such an hourglass structure

will be critical in our proofs.

6. Similarly, a hyperplane reaches out to 31 points: 5 of them being independent, and

others representing the linearly dependent vectors on these.

5.5 Related Proofs

5.5.1 Important Lemmas

Lemmas Related to Projective Space

Lemma 4. In projective spaces over GF(2), any subset of points(hyperplanes) having

cardinality of 4 or more has 3 non-collinear(independent) points(hyperplanes).

Proof. The underlying vector space is constructed over GF(2). Hence, any 2-dimensional

subspace of contains the zero vector, and non-zero vectors of the form αa + βb.

Here, a and b are linearly independent one-dimensional non-zero vectors, and α

and β can be either 0 or 1:

α, β ∈ GF(2) : (α = β) 6= 0.

Thus, any such 2-d subspace contains exactly 3 non-zero vectors. Therefore, in any

subset of 4 or more points of a projective space over GF(2) (which represent one-

dimensional non-zero vectors in the corresponding vector space), at least one point

is not contained in the 2-d subspace formed by 2 randomlypicked points from the

subset. Thus in such subset, a further subset of 3 independent points(hyperplanes)

i.e. 3 non-collinear vectors can always be found.

Lemma 5. Let there be 7 hyperplanes H1, · · · , H7 reachable from a plane P1 in PG(5,GF(2)).

Let there be any other plane P2, which may or may not intersect with the point set of

plane P1. Then, any point on P2 which is not reachable from plane P1, can maximally

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 28

reach out to 3 of these 7 hyperplanes, and vice-versa. Further, these 3 hyperplanes can-

not be independent. Dually, any hyperplane containing P2, and not containing P1, can

maximally reach out to 3 of the 7 points contained in P1 and which are not independent,

and vice-versa.

Proof. If a point on plane P2 which is not reachable from plane P1 lies on 4 or more

hyperplanes(out of 7) reachable from plane P1, then by lemma 4, we can always

find a subset of 3 independent hyperplanes in this set of 4. In which case, the point

will also be reachable to linear combination of these 3 independent hyperplanes, and

hence to all the 7 hyperplanes which lie on plane 1. This contradicts the assumption

that the point under consideration does not lie on plane P1. The role of planes P1

and P2 can be interchanged, as well as roles of points and hyperplanes, to prove

the remaining alternate propositions.

Hence if the point considered above lies on 3 hyperplanes reachable from P1, then

these 3 hyperplanes cannot be independent, following the same argument as above.

Otherwise it is indeed possible for such a point to lie on 3 hyperplanes, e.g. in the

case of the planes P1 and P2 being disjoint.

Lemma 6. Let there be 7 hyperplanes H1, · · · , H7 reachable from a plane P1 in PG(5,GF(2)).

Further, let there be any other plane P2, which intersects P1 in a line. Then, there exist

4 hyperplanes reachable from plane P1 which do not contain any of the 4 points that are

in plane P2, but not in plane P1.

Proof. A line contains 3 points in PG(5,GF(2)). Hence, P1 and P2 intersect in 3 points.

By duality arguments, they intersect in 3 hyperplanes as well. Hence, P2 contains

7-3 = 4 points that are not common to point set of P1. By lemma 5, these 4 points

can at maximum lie on 3 hyperplanes reachable from plane P1. Since there are 3

hyperplanes common to P1 and P2, and hence these 4 points already lie on them,

they do not further lie on any more hyperplane reachable from P1, but not from

P2.

Lemma 7. Let there be 7 hyperplanes H1, · · · , H7 reachable from a plane P1 in PG(5,GF(2)).

Further, let there be any other plane P2, which intersects P1 in a point. By lemma 5,

the 6 hyperplanes not containing both P1 and P2 still intersect P2 maximum in a line

each. Then, (a) Such lines contain the common point to P1 and P2, and hence exactly

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 29

2 more out of remaining 6 points of P2 that are not common to P1, and (b) 3 pairs of

hyperplanes out of the 6 non-common hyperplanes intersect in a (distinct) line each out

of the 3 possible lines in P2 containing the common point.

Proof. Let Ac be the common atom(point) between planes P1 and P2. By duality, ex-

actly one hyperplane will be common to both P1 and P2. Let some non-common

hyperplane Hnc reachable from plane P1 intersect plane P2 in a line L1, that is,

Hnc ∩ P2 = L1. Then, Ac ∈ L1. For if it is not, then

|L1 ∩ Ac| = 4

Also, L1 ∪ Ac ⊆ Hnc

and, L1 ∪ Ac ⊆ P2

⇒ |Hnc ∩ P2| = 4, a contradiction to lemma 5. Hence, the line L1 contains com-

mon point Ac and 2 more out of remaining 6 points of P2 that are not common to

P1.

Exactly 3 hyperplanes of the nature H1, H2, H1 +H2 intersect in a 4-dimensional

projective subspace, in PG(5,GF(2)). Such a subspace can always be formed by

taking union of a projective plane and a line intersecting the plane in a point, by

rank arguments. Let the common hyperplane to P1 and P2 be Hc. Let other

hyperplanes reachable from P1 be H1, H2, H1 + Hc, H2 + Hc, H1 + H2, H1 +

H2 + Hc. Then, the pairs of hyperplanes <H1, H1 + Hc>, <H2, H2 + Hc>, and

<H1 + H2, H1 + H2 + Hc>, along with Hc, form 3 distinct 4-d subspaces, which

leads to 3 distinct lines of meet under plane P2, for each pair. This can also be

verified from the fact that there are exactly 3 distinct lines in plane P2 that have a

point Ac in common. These 3 lines, and their individual unions with P1, leads to

reachability to H1, Hc, H1+Hc, H2, Hc, H2+Hc, and H1+H2, Hc, H1+H2+Hc,

respectively.

Lemma 8. Let there be two hyperplanes H1 and H2 meeting in a plane P1. Both H1

and H2 intersect any plane P2 disjoint from P1 in exactly a line, by lemma 5. Then

these intersecting lines L1(of H1 and P2) and L2(of H2 and P2) cannot be the same.

Proof. Let the vector space of a projective geometry flat X be denoted by V (X). Flats

are sets of points, each of which bijectively corresponds to a 1-d vector in the cor-

responding vector space. Also, closure of a flat(in terms of containing a point) is

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 30

defined as corresponding closure of the vector subspace. Hence, family of substruc-

tures in a projective space is bijectively intertwined to the family of subspaces in

the corresponding vector space(a category-theoretic? isomorphism). Then, if L1 =

L2 were true, then

V (L1) = V (L2) (5.1)

where

V (L1) = V (H1) ∩ V (P2) (5.2)

V (L2) = V (H2) ∩ V (P2) (5.3)

Also, it is given that

V (H1) ∩ V (H2) = V (P1) (5.4)

V (P1) ∩ V (P2) = φ (5.5)

Hence if one takes closure of set of vectors contained in V (L1) ∪ V (P1) (L1 is

part of P2 which does not intersect with P1), it does generate the entire vector

subspace V (H1). Similarly, closure of set of vectors contained in V (L2) ∪ V (P1)

generates the entire vector subspace V (H2). Then from equation 5.1, the generated

subspaces V (H1) and V (H2) coincide, a contradiction.

Lemmas Related to Embedded Graphs

Lemma 9. In a bipartite graph having 9 vertices each in both partite sets, and having a

minimum degree(δ) of at least 8, any collection of 3 vertices from one side is incident on

at least 6 common vertices on the other side.

Proof. Let the vertices of one side be denoted as (a1, a2, · · · , a9), and that of other

side by (b1, b2, · · · , b9). Given δ = 8, it is obvious that minimal intersection of

neighborhoods of a1 and a2 happens in some(at least) 7 vertices from the other

side. Then the 2 remaining vertices are N(a1) − N(a1) ∩ N(a2) and N(a2) −

N(a1)∩N(a2), respectively. The neighborhood of vertex a3 may either contain all

these 7 vertices (N(a1) ∩N(a2)), or the two vertices N(a1)−N(a1) ∩N(a2) and

N(a2) −N(a1) ∩N(a2), and at least 6 vertices out of N(a1) ∩N(a2). Hence the

minimal intersection of neighborhoods of arbitrarily chosen vertices a1, a2 and a3

is of cardinality 6.

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 31

Lemma 10. In a bipartite graph having 10 vertices each in both partite sets, and having

a minimum degree(δ) of at least 8, any collection of 3 vertices from one side is incident

on at least 4 common vertices on the other side.

Proof. Let the vertices of one side be denoted as (a1, a2, · · · , a9), and that of other

side by (b1, b2, · · · , b9). Given δ = 8, it is obvious that minimal intersection of

neighborhoods of a1 and a2 happens in some(at least) 6 vertices from the other side.

The two vertices in N(a1)−N(a1)∩N(a2) and two more in N(a2)−N(a1)∩N(a2)

count the 4 remaining vertices on the other side. The neighborhood of vertex a3

may either contain all these 6 vertices (N(a1) ∩ N(a2)), or at most all 4 vertices

N(a1) − N(a1) ∩ N(a2) and N(a2) − N(a1) ∩ N(a2), and at least 4 vertices out

of N(a1) ∩N(a2). Hence the minimal intersection of neighborhoods of arbitrarily

chosen vertices a1, a2 and a3 is of cardinality 4.

Lemma 11. In a bipartite graph having 11 vertices each in both partite sets, and having

a minimum degree(δ) of at least 8, any collection of 3 vertices from one side is incident

on at least 2 common vertices on the other side.

Proof. Let the vertices of one side be denoted as (a1, a2, · · · , a9), and that of other

side by (b1, b2, · · · , b9). Given δ = 8, it is obvious that minimal intersection of

neighborhoods of a1 and a2 happens in some(at least) 5 vertices from the other

side. The three vertices in N(a1) − N(a1) ∩ N(a2) and three more in N(a2) −

N(a1)∩N(a2) count the 6 remaining vertices on the other side. The neighborhood

of vertex a3 may either contain all these 5 vertices (N(a1) ∩ N(a2)), or at most

all 6 vertices N(a1)−N(a1) ∩N(a2) and N(a2)−N(a1) ∩N(a2), and at least 2

vertices out of N(a1)∩N(a2). Hence the minimal intersection of neighborhoods of

arbitrarily chosen vertices a1, a2 and a3 is of cardinality 2.

5.5.2 Main Proofs

Proving the four propositions of section 5.2 is done by demonstrating how one can incre-

mentally construct an embedded bipartite subgraph, by improving over minimum degree

of a smaller subgraph. This requires looking at the planes involved in the construction of

the embedding.

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 32

Theorem 12. In the construction of bipartite graph mentioned in section 5.1, there exists

no embedded subgraph having size of partitions as 9, the degree of each of whose vertices

has a minimum degree(δ) of 8.

Proof. Assume that such a subgraph exists. Then by lemma 9, any 3 points have at

least 6 hyperplanes in common, and vice-versa. By lemma 4, the set of 9 points

contains at least 3 non-collinear points. The 6 common hyperplanes to them in

the subgraph must contain the (unique) plane defined by the points. If one of

the points is contained in some different plane, then by lemma 5, this point can

only reach out to maximum 3 hyperplanes belonging to the first plane, and not

(all) 6 common hyperplanes, a contradiction. Again, from lemma 4, one can pick

a subset of 3 independent hyperplanes out of these 6 common hyperplanes. By

dual arguments, these 3 hyperplanes also must have 6 points in common, reachable

from a single unique plane defined by the 3 hyperplanes. Thus, a 6-a-side bipartite

subgraph with reachability defined by a single plane of the underlying projective

space, is embedded in the 9-a-side bipartite subgraph we are trying to construct.

� Case 1: Out of the remaining 3 points(hyperplanes) in the 9-a-side subgraph, we

can at most choose 1 point such that it is contained in all the 6 hyperplanes. This

1 point is the 7th point on the 7-7 hourglass passing through a single plane. It also

involves the remaining 7th hyperplane being incident on all these 6+1 points. The

remaining 2 points are necessarily part of at least one other plane. This configu-

ration of 2 remaining points and 2 remaining hyperplanes may maximally form a

K2,2 complete induced subgraph by considering whichever number of intervening

planes. In terms of their minimum degree, these 2 remaining points, by lemma

3overlap, can reach out maximum to 3 more hyperplanes reachable from plane

P1. Hence the maximum degree these two points achieve is 5, in any possible

construction. This contradicts the presence of assumed subgraph having δ of 8.

� Case 2: On similar lines, if we choose the 3 remaining points and hyperplanes

apart from the 6-a-side subgraph to form a complete bipartite subgraph K3,3 by

any construction, then again by lemma 5, they can reach out maximum to 3 more

hyperplanes reachable from plane P1. In such a case, they maximally achieve a

minimum degree of 6, which is still lesser than the requirement of 8.

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 33

Theorem 13. In the construction of bipartite graph mentioned in section 5.1, there exists

no embedded subgraph having size of partitions as 10, the degree of each of whose vertices

has a minimum degree(δ) of 8.

Proof. Assume that such a subgraph exists. Then by lemma 10, any 3 points have at

least 4 hyperplanes in common, and vice-versa. By lemma 4, the set of 10 points

contains at least 3 non-collinear points. The 4 common hyperplanes to them in

the subgraph must contain the (unique) plane defined by the points. If one of

the points is contained in some different plane, then by lemma 5, this point can

only reach out to maximum 3 hyperplanes belonging to the first plane, and not

(all) 4 common hyperplanes, a contradiction. Again, from lemma 4, one can pick

a subset of 3 independent hyperplanes out of these 4 common hyperplanes. By

dual arguments, these 3 hyperplanes also must have 4 points in common, reachable

from a single unique plane defined by the 3 hyperplanes. Thus, a 4-a-side bipartite

subgraph with reachability defined by a single plane of the underlying projective

space, is embedded in the 10-a-side bipartite subgraph we are trying to construct.

By considering only one intervening plane, we can maximum go upto 7-a-side sub-

graph only. Hence to construct 10-a-side graph, we need to consider at least one

more plane in the construction. We now individually consider the cases where the

maximum number of points taken from any one of the planes is n: 4 ≤ n ≤ 7.

� Case 1: Assume that the maximally possible set of 7 points and some number

of hyperplanes are taken from the plane P1 intervening the 4-a-side subgraph

already present. The number of hyperplanes considered from P1 could therefore

be anywhere between 4 and 7. Hence we need to consider at least one more

intervening plane between the remaining hyperplanes(minimum: 3, maximum: 6)

and the 3 remaining points. In the best possible construction, these remaining

hyperplanes and points form a biclique. Then, any particular hyperplane from

this biclique is reachable to a maximum of all 4 points of this biclique, plus at

maximum 3 more points of plane P1; refer lemma 5. Hence the degree requirement

of these hyperplanes is unsatisfiable using a 7-* partition of the 10-point set, a

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 34

contradiction.

� Case 2: Next, assume that 6 points and some number of hyperplanes are taken

from the plane P1 intervening the 4-a-side subgraph already present. The number

of hyperplanes considered from P1 could therefore be anywhere between 4 and 7.

Hence again we need to consider at least one more intervening plane between the

remaining hyperplanes(minimum: 3, maximum: 6) and the 4 remaining points.

In another best possible construction, these remaining hyperplanes and points

form a biclique. Then, any particular hyperplane from this biclique is reachable

to a maximum of all 4 points of this biclique, plus at maximum 3 more points of

plane P1; refer lemma 5. Hence the degree requirement of these hyperplanes is

unsatisfiable using a 6-* partition of the 10-point set, a contradiction.

� Case 3: Next, assume that 5 points and some number of hyperplanes are taken

from the plane P1 intervening the 4-a-side subgraph already present. The number

of hyperplanes considered from P1 could therefore be anywhere between 5 and 7.

Hence again we need to consider at least one more intervening plane between the

remaining hyperplanes(minimum: 3, maximum: 5) and the 5 remaining points.

First, we claim that under this case, a subgraph K5,5 having one intervening plane

always exists. To see that, let’s take the lone boundary case where 5 points and

4(minimum) hyperplanes are taken from plane P1, and hence a K5,5 biclique is

not provided by incidences of P1. Then, the remaining 6 hyperplanes must belong

to plane/s different from P1. By lemma 5, they can at maximum reach out to

3 of the 5 points reachable from P1. To satisfy their requirement δ ≥ 8, they

should therefore be reachable to all 5 of the remaining points. Hence the set of

6 remaining hyperplanes and 5 remaining points form a K6,5 biclique, and hence

also K5,5. By lemma 4 and the fact that a plane formed by 3 independent points

reaches out to 7 hyperplanes, which is simultaneously minimum and maximum,

this K5,5 biclique contains exactly 1 intervening plane different from P1.

By abuse of notation, let’s call the plane intervening the always-present K5,5 sub-

graph as P1. Then, at maximum 7 hyperplanes can be considered from P1 in the

construction, and hence 3, 4 or 5 hyperplanes and remaining 5 points need to be

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 35

added to K5,5 by considering other planes. In case when either 3 or 4 hyperplanes

are considered from other planes, the set of 5 remaining points cannot have their

degree requirements satisfied. For, these points can be reachable to maximum 4

hyperplanes from other planes, and maximum 3 more, considering plane P1(refer

lemma 5). Hence we look into the case when 5 hyperplanes, and 5 points are

considered by looking into other planes.

In this case, each hyperplane out of 5 remaining hyperplanes needs to be reach-

able to 3 different points reachable from P1. These 3 different points cannot

be independent, for if they were, then the corresponding hyperplane would have

been on P1 rather than any other plane. Hence each one out of 5 such collec-

tions of 3 points forms a line. Given a plane in PG(5,GF(2)) having its point

set as <a,b,c,a+b,b+c,a+c,a+b+c>, it is immediately obvious that no subset of

5 points contains 5 different lines. In fact, to have 5 different lines contained in

some point subset, the minimum size of the subset required is 7. Hence all possi-

ble constructions in this case leaves at least one hyperplane not having its degree

requirement satisfied, a contradiction.

� Case 4: Finally, assume that 4 points and some number of hyperplanes are taken

from the plane P1 intervening the 4-a-side subgraph already present. The number

of hyperplanes considered from P1 could therefore be anywhere between 4 and 7.

Hence again we need to consider at least one more intervening plane between the

remaining hyperplanes(minimum: 3, maximum: 6) and the 6 remaining points.

We consider the following two cases.

� In this case, we assume that the remaining 6 points contain at least one sub-

set of size 3 forming a line. At least one point out of 3 remaining points

of this 6-set will be not be part of this line(a line has maximum 3 points in

PG(5,GF(2))). This point and the line therefore form a plane P2, which is

maximal, by our assumption in Case 4. Since in this case, any 3 points will

have at least 4 common hyperplanes to satisfy their degree requirements, the

3 independent points of plane P2 will have 4 hyperplanes in common, and

vice-versa. The remaining 2 hyperplanes, hereafter referred as H1 and H2,

do not contain both P1 and P2. More formally, by lemmas 7 and 8, the best

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 36

case occurs when

H i ∩ P i = a line, for i, j=1 and 2

Hence these hyperplanes can reach out to a maximum of 6 points reachable

from P1 and P2. In fact, they need to reach out to exactly 6 to satisfy their

degree requirements. This reachability to 6 points by each of the 2 hyper-

planes must consist of reachability to one line each from planes P1 and P2.

By lemmas 7 and 8, the intersecting lines of H1 and H2 to say, P1, cannot be

the same. In a plane of PG(5,GF(2)) denoted as<a,b,c,a+b,b+c,a+c,a+b+c>,

one can clearly see that to accomodate 2 different lines, one needs to consider

a subset of at least 5 points. This contradicts our construction in which we

originally had 2 collections of 4 points each contained in two planes.

� In this case, we assume that the remaining 6 points do not contain any subset

of size 3 which is dependent. This means that any subset of triplet of points

from among these define a plane. So we will arbitrarily consider two disjoint

triplets from this 6 remaining points, and consider their planes P2 and P3.

Also note that points from triplet of P2 do not lie on P3, and vice-versa.

For, we are assuming in this sub-case that 4 coplanar points do not exist

among these 6 remaining points. Again in this case, any 3 points will have

at least 4 common hyperplanes to satisfy their degree requirements, and vice-

versa. Hence we again have 4 points and hyperplanes being considered in

construction, for each of the planes P1, P2 and P3. Note that there may

be common points and hyperplanes used in this construction. We consider 2

separate sub-subcases

? In this case, all the 10 hyperplanes of the required graphs lie within the

set of union of sets of 4 hyperplanes each being considered per plane.

Consider the 3 independent points of the triple of plane P2. None of

these points can be same, or linear combination of any point reachable

from plane P1. These 3 points were earlier also illustrated to be indepen-

dent, and hence not reachable from P3 as well. A join of plane P1 and

one different point reachable from plane P2 in the corresponding lattice

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 37

yields one different 3-d flat each, in the lattice. With respect to plane

P1 where we are considering a set of 4 hyperplanes, it is obvious that

in PG(5,GF(2)), at least 3 of these hyperplanes are independent. If the

remaining hyperplane is dependent on 2 of these 3, then a complete 3-d

flat is reachable from this set of 4 hyperplanes. By lemma 5, any point of

P2 is reachable to at most 3 of the hyperplanes reachable from P1, that

too when the 3 hyperplanes are part of a complete 3-d flat. Hence it is

possible that a particular point reachable from P2 also reaches out to the

unique 3-d flat , whenever it exists, and thus to the 3 hyperplanes of P1

from this 3-d flat. Since the join of different independent points of P2

with plane P1 gives rise to different 3-d flats, and since there is at most

one 3-d flat embedded in the set of 4 hyperplanes being considered w.r.t.

plane P1, at least two points reachable from plane P2 can only reach out

to at most 2 hyperplanes reachable from plane P1. A similar conclusion

can be reached with respect to the same 3 points of plane P2, and the

hyperplanes reachable from P3, that are under consideration for this con-

struction. In the best case, 2 distinct points out of the 3 points reachable

from P2 have a degree of 3 towards planes P1 and P3, respectively. Hence

at least 1(the remaining one) point reachable from plane P2 is reachable

to at most two hyperplanes each, reachable from planes P1 and P3. A

similar point can also be located on plane P3, the 3 points reachable from

which have identical relation to the point sets of remaining 2 planes.

Without loss of generality, we further claim that at most 3 of the 10 hyper-

planes used in construction remain outside of those considered for planes

P1 and P3(or P2). When planes P1 and P3 are disjoint, they cover 8

of the 10 required hyperplanes of the construction. If the planes meet in

a point, then by duality arguments, they also meet in a hyperplane. In

which case, they cover 7 out of 10 required hyperplanes of the construc-

tion. If P1 and P3 meet in a line(the last possible scenario), then P3

has 1 point exclusively belonging to itself. Hence in all cases, either P2

or P3 has at most 3 points lying on it. On both these planes, we have

located at least 1 point, which reaches out to at most 2 points each to the

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 38

remaining 2 planes. Hence in all scenarios, there exists at least one point

who can reach out to at most 3+2+2 = 7 hyperplanes, thus invalidating

the construction of this case.

? In this case, all the 10 hyperplanes of the required graphs do not lie within

the set of union of sets of 4 hyperplanes each being considered per plane.

Hence, there is at least 1 hyperplane that is not covered by planes P1,

P2 and P3, i.e. it is not reachable to either of these. By lemma 5 and

the fact that in the assumption for this case, the triplet of points of P2

and P3 are not collinear, one can see that the points of the planes P2 and

P3 provide degree at most 2 each to the above hyperplane. Additionally,

it may provide a reach out to maximum 3 points lying on plane P1. By

considering the planes P1, P2 and P3, we have exhausted all the points

of the construction, and the maximum degree this particular hyperplane

has achieved so far is 3+2+2 = 7, that is clearly not sufficient.

5.6 An Eigenvalue Based approach for getting ξ

The arguments are very similar to the ones given by [14]. Let A = (aij) be the 2n X 2n

adjacency matrix of the bipartite graph G(V,E) of degree d, i.e., aij = 1 if there is an

edge between the vertices indexed by i and j and aij = 0 otherwise.Let S be the set of

vertices of the graph G that form the minimal configuration of failure. Let xs be a column

vector of size 2n such that every coordinate indexed by a vertex of S equals 1 and the

other co-ordinates equal 0. Now, we have,

xT
s Axs =

∑
vεS

δGS(v) (5.6)

where δGS(v) is the degree of vertex v in the subgraph GS induced by the vertex set

S in G.

Let j be the all-ones vector. j is the eigenvector of A associated with the eigenvalue

d.

Define ys such that

xs =
| S |
2n

j + ys (5.7)

CHAPTER 5. DERIVATION OF BOUND FOR RANDOM ERRORS 39

ys has | S | co-ordinates equal to 1− |S|
2n

and 2n− | S | co-ordinates equal to − |S|
2n

and

ys is orthogonal to j. Therefore, we can write

xT
s Axs =

| S |2

4n2
d j.j + yT

s Ays

Since j.j = 2n, we have,

xT
s Axs =

| S |2

2n
d + yT

s Ays (5.8)

Now, ys is orthogonal to j and the eigenspace associated to the eigenvalue d is of

dimension 1 (G is connected). Therefore, we have, yT
s Ays ≤ λ‖ ys ‖2 where λ is the

second largest eigenvalue of A. Considering the structure of ys as explained above, we

have,

‖ ys ‖2 = | S | (1− | S |
2n

)2 + (2n− | S |)(| S |
2n

)2

= | S | − | S |2

2n

Since we are looking for subgraphs in which the degree of each vertex is at least a certain

value (say γ), after combining the various equations and inequalities above, we get,

γ | S | ≤ xT
s Axs

=
| S |2

2n
d + yT

s Ays

≤ | S |2

2n
d + λ‖ ys ‖2

=
| S |2

2n
d + λ(| S | −| S |

2

2n
)

Finally, since | S |> 0, we can cancel it from both sides and the expression that we arrive

at is,

| S |≥ 2n(γ − λ)

d− λ
(5.9)

Because of duality of points and hyperplanes, we get ξ = |S|
2

. Thus,

ξ ≥ n(γ − λ)

d− λ
(5.10)

The above formula is also stated in [6] in the context of finding the minimum distance

of the code proposed by him using PG(2, q). In our case, the above formula should be

used only for ε ≥ 15. For all practical values of ε, the combinatorial methods give a very

tight bound(under the assumption stated in the previous chapter) as they have have been

found by looking at the minimal configuration required for a failure to occur.

Chapter 6

Applications

In the chapter, we bring about applicability of the coding scheme in multiple areas, some

of them in detail.

6.1 Application to CD-ROM

As indicated in section 4.3, we have also benchmarked the burst error correcting capability

of our code against CD-ROM decoding based on ECMA-130. Based on this benchmarking,

we propose 2 novel schemes for CD-ROM encoding and decoding. These schemes are based

on the expander-like codes that have been discussed in chapter 4. Application of these

codes at various stages of CD-ROM encoding scheme(and correspondingly in decoding

scheme) substantially increases the burst error correcting capability of the disc drive.

To start with, we recall that the major part of error correction of the CD-ROM

coding scheme occurs during the two stages, RSPC and CIRC. On the encoder side, RSPC

stage comes before CIRC stage, while on decoder side, CIRC stage comes before RSPC

stage. To get an idea of the average error correction capabilities of CDROM scheme, we

simulated the CIRC and the RSPC stages of the ECMA standard in MATLAB. Because

the CIRC uses delay elements to implement the interleaving, any frame arriving at the

input of the second RS decoder has data symbols from the preceding 109 frames. Thus

to gauge the error correction capabilities, we start with 218 frames of 32 symbols each.

The 109th frame is our 0th frame. After considering the effect of interleaving, this frame

will require data symbols from the previous 109 frames. Errors are distributed over the

last 109 frames and the error correction capability is observed. The details of CIRC and

40

CHAPTER 6. APPLICATIONS 41

RSPC stages are as follows.

CIRC This stage leads to interleaving of codeword symbols. The massive interleav-

ing done here is mainly responsible for the burst error correction. In a frame of

6976(=32*109*2) symbols, it can correct on an average 240 consecutive corrupt

symbols. This amounts to approximately 2000 bits. If the burst is placed appropri-

ately i.e. at the end of one frame of 6976 symbols and at the beginning of the next

frame, then the CIRC can potentially correct 4000 bits of burst errors. The success

of error correction thus depends on the location of the burst.

RSPC After the CIRC stage during decoding, some of the burst errors get corrected,

and others get re-distributed among F1-Frames due to de-interleaving. Due to

this spreading out happening due to de-interleaving, the remaining ones can be

considered as random errors. The RSPC stage in decoding then serves to correct

these errors using RS decoding as erasure decoding. Success of this stage depends

heavily on the CIRC stage marking corrupt symbols as erasures. If we consider only

error detection and correction, the CIRC + RSPC system on an average corrects a

burst of 270 symbols in a frame of 6976 symbols.

The schemes we propose involve replacing one or both of the CIRC and the RSPC

with encoders and decoders based on our expander-like codes. This happens in such a

way, that we maximize burst error correction, without suffering too much on the data

rate.

6.1.1 Scheme 1

As discussed, the CIRC+RSPC subsystem in decoder can detect and correct a burst

of about 270 erroneous symbols, in a frame of 32x218(=6976) 8-bit symbols. In the

first scheme, we replace this subsystem with 4 decoders for our expander-like codes, C.

Hence the RS subcodes used in C have block length d as 31(symbols). Further, we fix

their minimum distance as ε = 7. The output of corresponding 4 encoders is further

interleaved to improve performance, and de-interleaved on receiving side. Let k be the

number of message symbols in each subcode. For Reed-Solomon code, which are maximum

distance codes, we have n− k + 1 = ε, which implies that the data rate of the subcode is

k
n

= 25
31

= 0.806.

CHAPTER 6. APPLICATIONS 42

To construct these subcodes, we take a (255,249,7) RS code, and choose the first 31

message symbols; setting the other message symbols to 0. Hence we have a shortened RS

code with each symbol (still) represented by 8 bits. We need to use this shortened RS

code because each data symbol in the CD-ROM is a byte long.

For the overall code C, the data rate is equal to (2 ∗ r − 1)[12], where r is the rate

of the (RS) subcode. Hence the rate for codes used in each of our encoders/decoders is

2 ∗ 0.806− 1 = 0.612. Thus, the number of message symbols for each decoder is equal to

1953 ∗ 0.612 = 1197. The rest are therefore parity symbols.

In terms of frames, we set the cumulative input of the encoders, and correspondingly

the cumulative output of decoders, to a stream of 199 frames, each having 24 symbols

payload. Assuming that each symbol can be encoded in 1 byte, this leads to generation of

4776 bytes. With 12 padding bytes added to it, we can re-partition this bigger set of 4788

bytes into 4 blocks of 1197 bytes each(4*1197=4788). Each block of 1197 source symbols

can then be worked upon by 4 parallely working encoders. After encoding each block to

1953 symbols, one of the extra added(padding) bytes is removed from each encoder giving

244 frames of 32 bytes of data. Every RS decoder has ε = 7, which implies that it can

detect and correct upto 3 errors. Thus, each encoder for C will give a burst error correcting

capability of 63 ∗ 3 = 189. Since 4 of such encoders work in interleaved fashion, we get a

minimum burst error detection and correction capability of 756 among 244 frames. This

is opposed to 270 in 218 frames in the case of CIRC+RSPC subsystem.

The detailed design of each of the 4 corresponding decoder is provided in chapter 7.

Advantages

1. A massive improvement in burst error correction : 270 in 32x218 symbols for

CIRC+RSPC system, versus 756 in 32x244 in our scheme.

2. The code rate achieved is also comparable to the one for CIRC+RSPC subsys-

tem. In the latter case, the data rate is 24/32=0.75, whereas in our case it is

0.62.

Disadvantage

This scheme is hardware expensive due to use of many parallel RS decoders. Also,

the high throughput of our decoder is not utilized. We can reduce the resource

complexity by time-multiplexing the decoders, and also folding the architecture of

CHAPTER 6. APPLICATIONS 43

one decoder itself. As far as the throughput is concerned, we are limited by the

stages before and after the CIRC+RSPC subsystems(see [7]). Hence, even though

our decoder is faster, the advantage is not seen.

6.1.2 Scheme 2

This scheme is a more hardware economical scheme, which also increases the burst error

correcting capability. Since our decoder also has a very good random error correcting

capability, we can achieve an error correction advantage by replacing just the RSPC stage

with our encoder/decoder. Two of our encoders can take the place of the RSPC encoder

in this scheme. Data from these encoders is then interleaved, and passed on to the CIRC.

In the decoding stage, after CIRC, there is correspondingly de-interleaving followed by

decoding based on our code.

This scheme has the advantage that it increases the error correction capability. It

also matches the code rate of CIRC: 0.75 for CIRC, versus 0.74 for our decoder. Also, it is

a hardware economical scheme. MATLAB simulations show that the burst error rate goes

up from 270 for CIRC+RSPC subsystem, to more than 400 for CIRC and our encoder.

Tables 6.1 and 6.2 show some simulation results for this scheme.

No. of errors failures

270 2

300 45

400 86

Table 6.1: Response to Burst errors for CIRC+RSPC

No. of errors failures

400 7

450 17

500 26

Table 6.2: Response to Burst errors in Scheme 2

CHAPTER 6. APPLICATIONS 44

6.2 Application to DVD-R

The same class of codes can also be applied to evolve encoding and decoding for DVD-

ROM. This particular application of the new coding scheme also brings out the fact that

taking a bipartite graph G from a higher-dimensional projective space can be advanta-

geous in terms of better rate and better error correction capacity.

6.2.1 Present DVD-R Error correction blocks

The details of the ISO/IEC standard implementation have been given in [10]. Here, we

provide an overview the main error correcting block, which will be used later to derive a

new correcting scheme.

The data received from the host, called Main Data, is formatted in a number of

steps, before being recorded on the disk. It is transformed successively into following.

� a Data Frame,

� a Scrambled Frame,

� an ECC Block,

� a Recording Frame, and

� a Physical Sector.

Data Frames

A Data Frame consists of 2064 bytes arranged in an array of 12 rows, each containing 172

bytes. The first row starts with three fields spanning 12 bytes interval, which is followed

by 160 Main Data bytes. The next 10 rows each contains 172 Main Data bytes. The last

row contains 168 Main Data bytes, followed by four check bytes of Error Detection Code

(EDC). Thus there are 2048 bytes of Main Data in each Data frame of size 2064.

Scrambled Frames

The 2048 Main Data bytes are later scrambled according to the procedure described in

section 17 of [10]. Scrambling bytes are generated with a Linear Feedback Shift Regis-

ter(LFSR), and each data byte is XOR-ed with a corresponding scrambling byte.

CHAPTER 6. APPLICATIONS 45

Figure 6.1: ECC Block of DVD-R

ECC Block

An ECC Block is formed by arranging 16 consecutive Data Frames, after scrambling,

in an array of 192 rows of 172 bytes each; see figure 6.1. To each of the 172 columns, 16

bytes of Parity of an Outer Code are added. This results in a block having 208 rows

having 172 bytes each. To each resulting 208 rows, 10 byte of Parity of an Inner Code

are added. Thus a complete ECC Block comprises 208 rows of 182 bytes each. The bytes

of this array are identified as Bi,j, where i is the row number and j the column number.

Thus the ECC block is nothing but a Reed Solomon Product Code, with the inner

code being a RS(182,172,11) code, and the outer code being a RS(208,192,17) code.

Recording Frames

Sixteen Recording Frames are obtained by partitioning an ECC block into 16 frames,

while simultaneously doing interleaving. This is achieved by interleaving one of the 16

PO rows(see figure 6.1) at a time after every 12 rows of an ECC Block. Figure 6.2 brings

out this partitioning graphically.

The rate of this encoding can simply be calculated as 2064 ∗ 16/37856 = 0.8724.

6.2.2 Analysis of Error Correction in DVD-R

As mentioned earlier, the main error correction in DVD-R is provided by the RSPC block,

which consists of an inner RS(182,172,11) code and an outer RS(208,192,17) code. The

CHAPTER 6. APPLICATIONS 46

Figure 6.2: Partitioning ECC Block into Recording Frames

inner code can detect and correct up to 5 errors ((11 − 1)/2), while the outer code can

detect and correct 8 errors.

Random Errors

The minimum distance of the overall code is 17∗11 = 187. Hence in a block of (208∗182) =

37856 bytes, the number of random errors should be less than or equal to (187−1)/2 = 93,

in order that the block be decoded completely. [10] further points out that the number of

errors in 8 consecutive ECC blocks must be less than or equal to 280, for correct decoding.

Burst Errors

The RSPC code used in DVDs is very robust towards burst errors. Since the data is

arranged in a matrix fashion(see figure 6.1), it is easy to calculate the worst case amount

of errors than can be corrected by the inner and outer codes.

If we do not consider erasures, then the inner code can correct a burst of 5 errors,

while the outer code can correct a burst of 8 errors. The biggest burst of errors that we

can be corrected in the product code can be derived as follows.

CHAPTER 6. APPLICATIONS 47

� We can allow for 8 rows of 182 bytes to get completely corrupted. Then, these will

be detected and corrected by the outer code’s decoders, which operate on columns

of the matrix.

� We can further have an additional 5 bytes getting corrupted in the row above and

below the set of 8 rows. Since inner code decoding happens first, these errors will

be corrected by the inner code’s decoders, after which the outer code’s decoders can

correct the remaining 8 rows of contiguous corrupted data.

The above two points make it clear that without considering erasure decoding, we

can still detect and correct 8 ∗ 182 + 5 ∗ 2 = 1466 errors in a burst, in one block of 37856

bytes. If we put two ECC blocks back to back, the number of errors hat can be detected

and corrected increases. We can add another 8 rows of 182 corrupt bytes in ECC block

1, 5 bytes before these 8 rows(corrected by inner codes), 8 rows of 182 corrupt bytes in

ECC block 2 and 5 bytes after these 8 rows. This gives a total of 8 ∗ 2 ∗ 182 + 5 ∗ 2 = 2922

errors’s burst that can be corrected simultaneously.

If we allow for the inner decoding to mark as erasures, all the bytes of a codeword

that has more errors that it can correct, we can increase the overall burst error correction

even further. With only erasures, the outer code can correct 16 erasure symbols. Thus

the total error correction capacity will be 16 ∗ 2 ∗ 182 + 5 ∗ 2 = 5834 bytes. This is the

absolute maximum burst that this stage can handle.

6.2.3 A New ECC Scheme for DVD-R

We now present a scheme based on our expander-like codes, C. This scheme, which

uses decoders for code C, can improve the error correction capacity of the DVD scheme

presented above.

In this scheme, we subtitute the RSPC stage of the DVD encoding by encoders

of code C. These encoders are therefore employed during the transformation of Data

Frames into Recording Frames. In order to be compliant with the rest of the standard,

we must output the encoded data as a block having same size as one recording frame, i.e.

2366(= 13 ∗ 182) bytes. Thus, we take 2064 bytes per data frame as input, and need to

output 2366 bytes in the format of recording frames.

Since we need higher rate and a better error correction capacity, we need to look at

CHAPTER 6. APPLICATIONS 48

higher dimensions of PG. Higher dimensional of PG lead to better expansion properties,

which leads to better error correction.

In one such scheme, we consider PG(8, GF (2)). This geometry contains 29−1 = 511

points and hyperplanes. Further, each point is contained in 28−1 = 255 hyperplanes and

similarly, each hyperplane contains 255 points. Thus, the degree of each vertex in the

bipartite graph we construct will be 255, and the number of vertices in each partition of

the bipartite graph will be 511. Each edge of the graph represents an 8-bit symbol. Thus,

the total number of symbols in the overall code G8 will be 255 ∗ 511 = 130305.

Each vertex of the graph is a RS decoder which corresponds to a RS(255,239,17)

code. Thus, each vertex can detect and correct 8 errors. The rate of the sub-code in this

case is r = 239/255 = 0.9373. The overall rate of the code is at least 2 ∗ r − 1 = 0.8745,

which is marginally better than the rate in the ISO/IEC standard for DVD encoding.

The overall burst error correction capability without erasures will be 8∗511 = 4088 bytes,

which is much greater than 2922.

We also have 2366 ∗ 55 = 130130; thus, we can output 55 frames in one round

of encoding. Hence we choose to encode 175 lesser source symbols, than required by

G8. These remaining 175 source symbols will be set to 0, a padding byte value. These

175 padding bytes are later dropped after encoding, to get an overall encoded block of

130130 bytes. By using a systematic encoding matrix, the locations of these padding

bytes remain intact during the process of encoding. Because of using 175 lesser source

symbols for encoding, the overall rate drops to 0.8732.

It is reasonable to assume pipelining while decoding, because of the application of

DVDs in many real time applications like video etc. Thus, two frames of 130305 bytes

put together can detect and correct a burst of 4088 ∗ 2 = 8176 bytes. This number is

quite bigger than the absolute maximum burst of 5834 brought out earlier. Thus, even if

we do not consider erasures, we have, at a slightly higher rate, achieved a much better

burst error correction capability.

Thus, at the price of extra hardware for decoding, and memory for storing the large

frame sizes, we have a linear time decoder with an exceptional burst error correction

capability.

As far as random errors are concerned, our average case performance will easily sur-

pass the existing standard. The existing standard specifies that the number of random

CHAPTER 6. APPLICATIONS 49

errors in 8 consecutive ECC blocks must be less than or equal to 280. Our frame size of

130305 corresponds to approximately 3.44 consecutive ECC blocks. Preliminary MAT-

LAB simulation results show that around 1990 random errors are always corrected in one

iteration of the decoding itself.

As a concluding note, the design of expander-like code to be used in DVD-R applica-

tion is not limited to choice of RS(255,239,17) code. In fact, as we increase the minimum

distance from 17 to 21(i.e. RS(255, 235, 21) code), we get a burst error correction 511*2

more than 4088, that is, 5110, while the drop in overall code rate drops by just 0.03. If r

expander-like encoders are used simultaneously, and their outputs interleaved, then also

the error-correction capability goes up by factor of r.

6.3 Possibility of Building Other Expander-like Codes

The reason for choosing Reed Solomon codes as component codes has been that they

are maximum distance separable codes. Hence they achieve the maximum rate for a

given value of ‘minimum distance’ ε. Other expander-like codes, with possible future

applications, can be built by using different component codes also. For example, we could

use concatenated codes in place of RS codes as subcodes. Concatenated codes have been

shown to achieve the Zyablov bound(which is tighter than the Gilbert-Varshamov bound).

Hence, they could offer a greater advantage for the rate-distance trade-off.

6.3.1 Choice of Projective Space

We have given extensive results for the construction derived from P(5,GF(2)). We are in

no way restricted to this dimension. One main reason for picking up this dimension

was that the degree of each vertex in the graph derived is 31, which is very close to the

F2 frame size of 32 bytes in CD-ROMs. Thus, the choice of this dimension would help us

benchmark the performance of our code against an industry standard. At the same time,

the size of the code was practical enough for the software implementations in MATLAB

to finish in a reasonable amount of time.

One can, in fact, use higher dimensional spaces to construct expander-like codes

having utility elsewhere. For example, in section 6.2, we use an 8-dimensional projective

space to have an expander-like code construction, which can be potentially used for DVDs.

CHAPTER 6. APPLICATIONS 50

6.3.2 Choice of RS Code

Once again, we chose the parameters of the RS code to enable efficient schemes, that

could be applicable to data storage systems. In case of application to CD-ROM, since the

smallest symbol size is a byte, we had to use a RS code of size 255. The degree of each

vertex in the bipartite graph used there being 31, we had to shorten the RS code size to

31. This shortening is done simply by dropping the message symbols from 32 onwards.

More specifically, if the minimum distance is ε, symbols 32 to 255− ε+ 1 are assumed to

be zero. Similar shortening schemes can be employed in other applications as well.

In turn, the minimum distances are chosen to get the overall rate of code to match

the rate used by applications such as the CD-ROM encoding scheme. Additional error

correction capability is achieved by adding a small amount of interleaving.

Chapter 7

Detailed Design Description of

Hardware Prototyping

As discussed in section 6.1, we can use multiple decoders based on our expander-like

codes to have 2 new decoding schemes, that give better performance than the existing

decoders. The design details for each such decoder for new, expander-like code targeted

for CD-ROM application, is provided in the remainder of chapter.

7.1 Construction of the Graph

The bipartite graph is constructed by using the point-hyperplane incidence relations of

P(5,GF(2)). The points are generated using a primitive polynomial, which give the tap-

ping points in a linear shift feedback register(LFSR). The primitive polynomial used to

generate GF(26) is x6 + x + 1. The points of this projective space are given in table 3

in the appendix. To identify the points lying on a particular hyperplane, first one has

to construct the 5-dimensional vector subspace of the 6-dimensional vector space GF(26).

Then the points that correspond to vectors lying in that subspace can be taken as the

points on the particular hyperplane. One such hyperplane, represented by its point set, is

(0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 18, 19, 24, 26, 27, 28, 32, 33, 35, 36, 38, 41, 45, 48, 49, 52, 54, 56).

The remaining 62 hyperplanes can be obtained by applying shift automorphism[11] to this

hyperplane.

Let the hyperplanes, numbered from 0 to 62, form one side, called A, of the bipartite

graph between points and hyperplanes. Similarly, let the points, numbered from 63 to

51

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING52

125, form another side of the graph, called B. Based on this numbering, Table 1 in

the appendix gives the complete list of the hyperplanes and their adjacent vertices. As

described in section 4.3, to improve the burst error capability, we need to number the

edges such that consecutive edges always go to different vertices. Hence we label edge

between vertex 0 and 63 as edge number 1, between vertex 1 and 64 as edge number 2

and so on. . .

Viewed as a computation graph, every vertex of this graph maps to a RS decoding

computation. The input symbols to each of these decoders correspond to the edges which

are incident to the vertex in question. During decoding, these symbols are provided as

inputs in a specific order: message symbols first and then parity symbols. This order

also gets reflected in the reduced row echelon form of the corresponding generator

matrix, G. The edges incident on a vertex of side A(say, V 1) are sorted with respect to

increasing index numbers of the vertices reached in side B. This is the order in which the

corresponding symbols are fed to the RS decoder represented by V 1. A similar strategy

is used for ordering inputs for RS decoders of vertices on side B.

While generating the bipartite graph and its edge/vertex labels, we prefer the alter-

nate representation described in equation 7.1. To recall, the points of an n-dimensional

projective space over a field F can be taken to be the equivalence classes of nonzero vectors

in the (n + 1)-dimensional vector space over F. Vectors in an equivalence class are all

scalar multiples of one-another. These vector being one-dimensional subspaces, they also

represent the rays of a vector space passing through origin. The orthogonal subspace of

each such ray is the unique n-dimensional subspace of Fn+1, known as hyperplane. Each

vector h of such orthogonal subspace is linked to the ray, p, by a dot product (addition is

modulo 2 because of GF (2)) as follows.

p0h0 + p1h1 + · · ·+ pnhn = 0 (7.1)

where pi is the ith coordinate of p. This uniqueness implies bijection, and hence a vector

p can be used to represent a hyperplane subspace, which is exclusive of this vector as

a point. Due to duality, similar thing can be said about a hyperplane subspace. It is

important to note that the above equation does not imply orthogonality. It is just a

way to generate the hyperplane and point subspaces and is a convenient representation of

incidence. Using this representation, we can find the vectors representing the hyperplanes,

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING53

containing a given set of points, and then correlate them to the decimal numbers used to

represent the hyperplanes.

The representation of points and hyperplanes is further dependent on the represen-

tation of the underlying vector space. For the vector space, we use a canonical represen-

tation. In this representation, we set those positions in a vector as 1 which correspond

to that power of x existing in the 1-D subspace. For example, point 0 is represented by

000001, point 2 as 000100, point 8 as 001100 and so on. This representation can also

easily be derived from table 3 in the appendix.

Next, we describe two possible hardware implementation strategies, for scheme 2 of

alternative CDROM decoding, introduced earlier in section 6.1.2. We also give details of

its prototype implementation on a Xilinx XUPV506 board based on LX110T FPGA. But

first let us recall the decoding algorithm.

7.2 Recapitulation of Decoding Algorithm

Given a d-regular PG bipartite graph G, let the set of its vertices be V = A ∪B, where

|A| = |B| = n. Every edge of G has one endpoint in A and one in B. For any vertex v

of G, let the subset of edges incident to v be labeled as

Ev = {v1, v2, · · · , vd}

Every edge of the graph represents an 8-bit symbol.

To an expander-like decoder based on this graph, we can give a received vector x as

input, where the length of x is N = d · n. Every entry in x is an 8-bit symbol. The

first iteration of the algorithm consists of applying complete RS decoding for the code

induced by Ev for every v ∈ A. Hence we try to replace, for every v ∈ A, the vector

xv1 , xv2 , · · · , xvd by one of the closest codewords of S. However, if a particular vertex

detects more errors than it can correct, it skips its localized decoding. This is because

while using Berlekamp-Massey’s algorithm for RS decoding [2], it is usually possible to

calculate whether the degree of errors in the current input block of symbols to the decoder

be corrected or not. If not, then the algorithm can be made to skip decoding, thus

preserving the errors in the input block. This special step in algorithm, due to decoding

being RS decoding, helps in reducing the number of extra errors introduced by a vertex,

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING54

if the decoding fails. However, it is possible that if the codeword incident on a vertex is

corrupt enough, the RS-decoding algorithm is fooled into outputting the wrong codeword.

7.3 Decoder Implementation Strategy 1

As discussed in previous section, decoder for C has inherent parallelism in the sense that

the Reed Solomon decoders corresponding to vertices on one side of the bipartite graph

can work in parallel, every iteration. The first strategy utilizes this parallelism.

The strategy is to have a master processor, which is responsible for data distribution

to its slaves. The slave processors are essentially the set of RS decoders. After decoding

the subcode, the slaves send back the corrected subcodes to the master. 63 of such RS

decoders can work in parallel, as dictated by a master, in our case. The master processor

would be required to serve all these slaves with data at the same time, to get the highest

throughput possible. As such, the master would be completely idle during the time the

slaves are performing their decoding. This strategy is represented in the figure 7.1.

The limitation of this strategy is that though it is easy in implementation, for every

data transfer along various edges at an iteration boundary, 2 hop communication is re-

quired. Iterative decoding of all kinds being data flow intensive systems, this limitation

can severely affect the system throughput. Also, another role/advantage of master pro-

cessor, that of buffering data which has to be later forwarded to a different slave then the

source slave, is not required in our system.

Figure 7.1: Strategy 1

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING55

7.4 Decoder Implementation Strategy 2

A more efficient strategy is to utilize projective geometry properties to fold the parallel

vertex computations, such that the number of RS decoders required to implement the

decoder for C is only a factor of order of G. This saves a lot of resources, and can fit on

even small FPGAs. The penalty is paid in terms of its tradeoff with decoding time. In

one example of 7-fold folding, approximately 14 machine cycles are required to finish one

iteration of decoding of C, as opposed to 2, if we used 63 RS decoders used in design.

In the remaining sections, we describe the design of decoder as per this strategy.

7.5 Interconnect of Decoder

The interconnect of the current implementation is based on 63-vertex bipartite graph

G|B, whose construction has been described in section 11.1. Edges of this graph depict

the data to be processed by the RS decoders. The data path is inherently parallel for one

partition of the graph. (No vertices share an edge in one partition). The data path has

been folded onto a smaller graph, as described next.

7.5.1 Folding the Interconnect

To enable the folding of computation, we need to partition the graph G in a particular

way. The requirement is that one should be able to assign groups of data(edges) to RS

decoders in a manner which ensures conflict-free memory accesses and complete hard-

ware utilization. The latter requirement means that no decoder remains idle while other

decoders are working. Also, the folding and the scheduling should be such that data

re-distribution between memory blocks should be minimized.

Projective geometry offers a way of partitioning of the graph efficiently such that data

redistribution between memory blocks is not required. For efficient folding, we make use of

the projective subspace which is symmetric with respect to both points and hyperplanes.

For P(5,GF(2)), the plane(2-d subspace) is the corresponding subspace, that contains 7

points, and is contained in 7 hyperplanes.

The idea is in terms of reachability, one should be able to form a family of 9 subsets of

the set of 63 vertices corresponding to the points, each subset defining a disjoint plane.

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING56

Planes being disjoint implies that the 9 subsets of points are themselves disjoint. By

duality in projective space lattices, the corresponding hyperplanes also must be disjoint

for folding the computations. Such a configuration exists, and can be found heuristically

as explained below.

To form such partition, we start by generating a 6-dimensional vector space (exclud-

ing the zero vector), where each vector can represent a point(or its orthogonal hyperplane;

see equation 7.1). Now, we can generate a list of all possible planes by selecting groups

of 3 linearly independent vectors and their linear combinations as a set of 7 points that

constitute a plane. The set of all planes (totally 1395) are generated by enumerative

techniques. This is because the other way, that of using complete automorphism group

of P(5,GF(2)) to generate all the planes, has so far not been worked out. For each plane,

we can generate the list of hyperplanes associated with it.

The heuristic algorithm to find the partition starts with the first plane on the list of

all the planes. After selecting this plane (let us call it P1), it makes a pass through the

list of planes to find all the possible disjoint planes (i.e. all those planes which have no

point in common with P1). If less than 9 planes are found, the second plane is selected

as P1 and the checking is done from the 3rd plane onwards. The algorithm stops when a

set of 9 disjoint planes are found.

We sped up the process in our construction by starting with a set of 3 planes, 2

orthogonal and the 3rd got by adding individual points of the first 2 planes. To identify

these 3 disjoint planes was straightforward, as we are dealing with a six-dimensional vector

space. These 3 planes are as follows.

Sr. No. Points

1 000001 000010 000011 000100 000101 000110 000111

2 001000 010000 011000 100000 101000 110000 111000

3 001001 010010 011011 100100 101101 110110 111111

Table 7.1: First 3 Disjoint Planes

The tables below present the points and hyperplanes of the 9 planes that will be

used for hardware implementation. The points and hyperplanes are given by their vector

space representation.

Once such a partition has been chosen, we can assign one decoder to each plane such

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING57

Sr. No. Points

1 001001 010010 100100 011011 101101 110110 111111

2 000001 000010 000100 000011 000101 000110 000111

3 001000 010000 100000 011000 101000 110000 111000

4 001010 010100 100011 011110 101001 110111 111101

5 001011 010110 100111 011101 101100 110001 111010

6 001100 010011 100110 011111 101010 110101 111001

7 001101 010001 100010 011100 101111 110011 111110

8 001110 010111 100101 011001 101011 110010 111100

9 001111 010101 100001 011010 101110 110100 111011

Table 7.2: Points of 9 Disjoint Planes used in Folding

Sr. No. Hyperplanes

1 001001 010010 100100 011011 101101 110110 111111

2 001000 010000 100000 011000 101000 110000 111000

3 000001 000010 000100 000011 000101 000110 000111

4 001011 010100 011111 100001 101010 110101 111110

5 001110 010011 011101 100111 101001 110100 111010

6 001111 010001 011110 100011 101100 110010 111101

7 001100 010101 011001 100010 101110 110111 111011

8 001101 010111 011010 100110 101011 110001 111100

9 001010 010110 011100 100101 101111 110011 111001

Table 7.3: Hyperplanes of 9 Disjoint Planes used in Folding

that it can work on behalf of all decoding computations mapped to all the points and

hyperplanes reachable from that plane. Each decoder will need memory associated with

it, since the decoding is multi-cycle operation. Each memory block is designed to hold

31×7=217 bytes(one symbol is one byte in our case) of data.

In section 7.1, while generating the bipartite graph, we had numbered the hyper-

planes from 0 to 62, and the points from 63 to 125. Based on this numbering of vertices,

we also number the edges in a particular order so as to maximize the burst error correcting

capability. This ordering has been discussed already in section 4.3. We recall from there

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING58

that vertex 0 gets data symbols (1, 64, 127, . . . , 1890), and so on.

As shown in table 3, each decimal representation of a point has a unique vector

representation. Similarly, each hyperplane also has a unique decimal and vector represen-

tation. When we divide the hyperplanes and the points as we have done in tables 7.3 and

7.2, we are essentially re-ordering the vertices of the graph so as to enable efficient folding

of computation. Consider the partition of the graph that corresponds to the hyperplanes.

As explained in 7.1, the vertices were labeled as {0, 1, . . . , 62}. The re-ordered partition

of the graph is given in table 7.4. Now the vertices on the hyperplane side are arranged

in the order {0, 37, 51, . . . , 62, 1, 2, 3, . . . , 52}. A similar re-ordering has occurred on the

points side as well. This re-ordering naturally changes the order of edge numbers incident

on a vertex.

To elaborate this re-ordering, consider a small bipartite graph of 4 vertices on each

side, with each vertex having a degree of 4. Figure 7.2 shows two representations of the

same graph: one shows the routine labeling, while the other shows vertices re-ordered

labeling. The edge numbers are written on the edges. This numbering is similar to our

construction(i.e. consecutive edge numbers go to different vertices).

Figure 7.2: Example to illustrate Re-ordering

Consider vertex V 0 in figure 7.2(a). If this were a RS decoder, the symbols numbers

{0, 4, 8, 12} would be given to it with 0th symbol being the first, and 12th symbol being

the last. Suppose the code was designed to have two message symbols and 2 parity

symbols. Then, symbols 0 and 4 would be message symbols, and symbols 8 and 12 would

be corresponding parity symbols.

In part (b) of the figure, vertices V 1 and V 3 are interchanged. Similarly, vertices

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING59

5 and 7 are interchanged. Thus figure 7.2(b) is the same graph with vertices re-ordered.

Now, the symbols to Vertex V 0 are given in the order {0, 12, 8, 4}. Thus, symbols 0 and 12

become the message symbols, and symbols 8 and 4 become the parity symbols. A similar

analysis can be done for the vertices on the other side also. This reordering of input

symbols is used for pre-ordering of data distribution in the memory blocks, as explained

in the next section.

The above example illustrates how the re-ordering of vertices causes the edges to also

re-order. This fact must be taken into account at the time of encoding also. Appropriate

re-arrangement of the columns of the generator matrix is required to be done there.

Plane No. Hyperplane Vertices Point Vertices

1 0,37,51,56,57,61,62 63,64,65,69,70,75,89

2 1,2,3,40,54,59,60 66,67,68,69,73,78,92

3 6,20,25,26,30,31,32 95,96,97,101,102,107,121

4 5,7,10,11,41,50,58 74,76,77,82,86,106,122

5 9,23,28,29,33,34,35 98,99,100,104,105,110,124

6 12,16,21,22,24,39,55 87,88,91,93,103,111,120

7 13,19,27,38,42,45,18 83,90,94,108,109,114,117

8 14,17,36,43,46,48,49 81,84,112,113,115,118,125

9 4,8,15,53,44,47,52 71,79,80,85,116,119,123

Table 7.4: Re-ordered Graph Vertices

To understand the impact on schedule due to folding, recall that a decoding iteration

consists of RS decoding on vertices on one side of the bipartite graph. If we call iterations

on 2 sides as phases, then phase 1 corresponds to each of the 9 RS decoders decoding

for the 7 hyperplanes associated with its plane. Similarly, phase 2 corresponds to the RS

decoding for the 7 points associated with each plane.

It is easy to prove that any point on a plane is incident on exactly 3 hyperplanes of

a disjoint plane, and vice-versa. In Phase 1, for decoding symbols that correspond to

a hyperplane, each decoder requires 31 symbols of data as input. 7 symbols out of these

correspond to the edges which are also incident on the points of the corresponding plane.

Then, based on 8 other disjoint planes, the same decoder can fetch 3 symbols each using

edges that reach to each of certain points on these 8 planes. Thus, each decoder can fetch

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING60

Figure 7.3: (A) Distribution of computation to processing units (B) High-level System
architecture

all its 3×8+7 = 31 symbols directly.

A high level view of the mapping of computation to hardware is shown in figure

7.3. In this figure, each Pi is the processing unit corresponding to the Plane Pi.

Further, each Mi is the memory block associated with the Processing unit Pi, but not

contained in Pi. The interconnect, though represented as a black box, can be thought of

as a big multiplexer, which controls the connections between the read/write ports of the

memories, and the input/output ports of the processing units. Depending on the Phase of

computation and the number of input symbols that have been received by the decoder so

far, the interconnection is effected by establishing connections between processing units

and the memories. This point becomes clearer when we explain the details of the design

in the upcoming sections.

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING61

7.6 Memory Block Design

As mentioned earlier, each processing unit is co-located with an associated memory block

(RAM) of size 217 bytes. The processing unit hosts an RS decoder. This decoder has

an input stage, a computing stage and an output stage. Input for the decoder is read

from the memory blocks, and the corresponding output must be written back to memory

blocks. We use dual-port memory blocks, with one port used as a read port and the

other as a write port. Usage of dual port memory blocks allows us to overlap the input

and write-back stages. Hence it gives the system an advantage of increasing throughput.

Our scheduling takes care that simultaneous read and write does not occur on the same

memory location.

For the FPGA implementation, the memory blocks are implemented with asyn-

chronous read, so that they get synthesized into distributed memories. This is because we

require small-sized (217 bytes) memory blocks. Also, distributed memories, implemented

using Look Up Tables (LUTs), are faster than the other on-FPGA memory elements, the

block RAMs(BRAM).

The storage of data in these memory blocks is such that design of the address gener-

ators is greatly simplified. In Phase 1, we store the data such that the address generator

of each processing unit simply runs a counter from 0 to 217. As seen in previous section,

each decoder requires first 7 bytes corresponding to the edges with points associated with

its own plane Pi in first cycle, 3 bytes next from edges to points associated with Pi+1,

and so on. Due to cyclic shift automorphism in the projective space lattices, whenever

the index of a plane, i+ j : 1 ≤ j ≤ 8 becomes > 9, we convert it to ((i+ j) modulo 9).

Thus, the data distribution is such that for the first 7 clock cycles, each decoder

gets data from its own memory block. In the 8th, 9th and 10th cycle, its address and data

ports are switched over to new connections, such that each decoder receives data from

{(i+ 1) modulo 9}th memory block. In the next 3 clock cycles, the connections are again

changed, so that each decoder receives data from {(i+ 2) modulo 9}th memory block, and

so on. Hence the internal layout of each memory block can be seen as follows.

Each memory block i contains the first 7 symbols required by decoder i in ad-

dress locations 0 to 6. Addresses 7, 8 and 9 contain the data required by decoder

{(i − 1) modulo 9} in its 7th, 8th and 9th clock cycles. The next 3 locations store the

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING62

data required by processing unit {(i − 2) modulo 9}, and so on. After address 30(data

item 31), the cycle starts again with the next 7 bytes required by decoder i, now mapped

to a different vertex of next fold, the next 3 by decoder {(i− 1) modulo 9} and so on.

The order of edge numbers stored in each memory block is given in table 2 in the

appendix.

The obvious advantage of storing data this way is that the address generation mod-

ule is just a counter in phase 1. It is clear that changing the order of the input symbols

to the decoders has simplified data distribution and address generation in Phase 1. This

is convenient because the corresponding change in the encoding process is just the re-

arrangement of columns of the generator matrix. So, rather than keeping track of the

original order of symbols and possibly complicating the address generator, it is simpler

to modify the order according to the partition.

Another important advantage of such a data distribution is that in phase 2, each

decoder needs to fetch data from only its corresponding memory block. This can be

seen easily by noting that each memory block stores all the data symbols required for

the points associated with the processing unit. The memory blocks layout was planned

for phase 1 computation actually. Since in Phase 1, a memory block is read from, only

when data is required corresponding to an edge incident on a point associated with the

corresponding processing unit, it ensures per-point complete storage property.

However, in phase 2, the order in which data is required by the decoder is different.

A simple counter for address generation will not work. In fact, to deal with this, we

store the required order of addresses in 2 ROMs along with each decoder. Both ROMs

contain the same sequence of data. One ROM is used for input address sequence, while

the second is used for the output order sequence, thus providing ability to overlap the

input and output phases. In Phase 2, at every clock cycle, an address is read from the

ROM, and is placed on the address port of the memory block(RAM). The output of the

RAM then becomes available to the decoder.

We make sure that no data hazards due to simultaneous reading and writing will oc-

cur. In any phase, decoders are working either on points, or on hyperplanes, at a time, and

the data required for a point(hyperplane) is not required by any other point(hyperplane).

In between phases, we wait for the write-back (output) to finish before starting the input

stage of the next phase. Hence there are no data hazards.

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING63

7.7 RS Decoder Design

Figure 7.4: The interface of the Xilinx RS decoder IP

For rapid prototyping, we make use of IP core in form of Xilinx RS decoder v7.0. A

schematic of the decoder is given in figure 7.4. The interface for input phase consists of

a ready for first data (rffd) output from the decoder, a synchronizing (sync) input to the

decoder and the data in port. We can select the symbol width in terms of clock cycles

for which a symbol is steady at data in. In our design, we have chosen it to be 1 clock

per symbol. Depending on the symbol width and the minimum distance of the code, we

can determine the processing delay (in number of symbol periods). There is also a ready

output, which is used to indicate when the decoder is ready to receive input symbols. This

output is useful only if the processing delay (delay for processing the inputs) is greater

than the number of clock cycles required to input all the input symbols. It is futher

useful when block length for the RS codes being used is variable, since in such cases, one

needs to know when to stop giving new data at the input port of the decoder, so that the

input symbols are not lost. It is not required in our implementation, when the RS codes

minimum distance is ε = 5. Here, the processing delay is 30 clock cycles, which is less

than the number of clock cycles required to sample the input (31 in our case). The ready

signal always remains high in our case and only the rffd is required for handshaking.

Also, once the first symbol of a code is sampled by the decoder, then a fixed latency

later, the decoded output starts appearing at the output, one symbol per clock edge.

The output interface has control signals to indicate the start and end of the output word

(blk strt and blk end respectively). It also has an output fail control signal, which is

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING64

asserted if the decoding fails. There is also an option for having the input passed on

to an output (data del) after the latency of the decoder. The blk strt is pulled high for

one clock cycle by the decoder, when the first output symbol is available on the output

port. The blk end signal is pulled high for one clock cycle, when the last output symbol

is available at the output port. Along with blk end, the fail signal is pulled high or low

depending on whether the decoding was successful or not. If the fail value is asserted,

then the contents of data out are not to be considered valid. In that case, we must take

the output from data del as per requirements of our decoding algorithm.

The IP core, which is a (255,251,5) RS decoder, has been tuned/parametrized for

the minimum distance of the code(ε) = 5 and a shortened RS code of length 31, for

which the processing delay is 30 clock cycles, while the latency is 68 clock cycles. The

processing delay is the delay before which the next block of input symbols can be given to

the decoder. The latency is the delay between the first input symbol and the first output

symbol.

Whenever we sample rffd to be high, we pull sync signal high, and place the first

symbol of the corrupt codeword at the input. The decoder starts sampling the input from

the clock edge at which it samples sync to be high. At the same clock edge rffd is pulled

low by the decoder. It is responsibility of the bigger system to place the correct data

symbol sequence at the subsequent clock edges, on the inputs of RS decoder subsystem.

This decoder requires a initialization period of around 100 ns when powered up. In

this period the rffd is high irrespective of sync value. Thus, the Reset state of the system

must last for at least 100 ns. More specific details can be found in the data sheet of the

decoder provided by Xilinx[9].

So, in conclusion, our Processing Unit consists of the RS Decoder IP and the two

ROMs along with address generation logic. Each memory block is a distributed RAM.

The ports of the memory blocks and processing units are interconnected such that each

processing unit can read from, and write to, every other memory block. However, at a

time, only one processing unit is reading and only one processing unit is writing to it in

our design. The data path of each processing unit is outlined in figure 7.5.

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING65

Figure 7.5: Data Path outline for each Processing Unit

7.8 Control Path Design

Three simple finite state machines have been used to implement the system. First FSM

handles the input phases. The second and third FSMs handle the output and write-

back phases of the decoding. Since each processing unit works perfectly in sync with

the others, i.e. at any stage, all the processing units are at exactly the same stage of

computing, we need to instantiate the FSMs only once and change the control signals for

all the processing units simultaneously.

7.8.1 1st State Machine

This state machine handles the inputs for each RS decoder. The state variables involved

in transitions are stored in various registers. The roles of these state variables(registers)

are as follows.

hp addr is the counter for the address value in Phase 1.

count i keeps track of how many symbols have been fed to the decoder.

sync is a 9 bit register which is a handshake signal for the RS decoders.

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING66

flag1 indicates the current phase, 0 implies Phase 1; 1 implies Phase 2.

sync flag indicates a synchronization between the input and output cycles. Phase 2

should not be started before output of Phase 1 has been written back. Similarly, in

the next iteration, Phase 1 should not be started before output of Phase 2 is written

back to the memory blocks.

Figure 7.6: Input Handling State Machine

7.8.2 2nd State Machine

This state machine takes the decoded output, and the delayed input from each of the 9

decoders, and stores them into 2 different registers. Depending on the value of the fail

signal at the end of a block, one of the registers is selected to be written back into the

memory blocks. flag3 is asserted when a block output is complete indicating to the 3rd

state machine that it can begin the writeback process.

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING67

Figure 7.7: Output Handling State Machine

7.8.3 3rd State Machine

This state machine is responsible for writing back data into the memory blocks. flag2

specifies which Phase output is being written back. If it is ’0’, 1st Phase output is being

written back. In this case, we need to write to the memory blocks in the same order that

we read in Phase 1. If flag2 is ’1’, then the output is from Phase 2. In this case, the order

of addresses for storing back is fetched from the 2nd ROM. In either phase, the value of

the fail flag determines whether the decoded output or the delayed input is to be written

back. The counter count constr keeps track of how many constraints have been written

back.

7.9 Multiplexers used in Control Path

Depending on the Phase of computation, either hp addr i (Phase 1), or rom output i

(Phase 2) needed to be switched onto the address input of the read port of the 9 memory

blocks. Therefore there are 9 multiplexers (with select signal as flag1). These muxes

decide which of these two are selected to be the address inputs.

Similarly, in the output phase, we need to decide between hp addr o and rom output o

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING68

Figure 7.8: Writeback Handling State Machine

for the address input to the write port of the memory block. Here, again, we need 9 mul-

tiplexers (with select signal as flag2).

Further, when the decoders start the output phase, we store the decoded output

and the delayed input. Depending on the value of fail, we need to select one of these for

writing back. So 9 more multiplexers are required for enabling this selection.

Finally, in Phase 1 input as well as write back, we need to decide, on the basis of

count value, the port connections between the processing units and the memory blocks.

The logic for this has been written in a behavioral manner. It is implemented as a chain

of multiplexers, which incidentally also forms the critical path of the design.

7.10 Schedule for Decoder Iteration

Even though the 3 FSMs have to be executed for each processing unit, as mentioned before,

each processing unit works perfectly in sync with the others. Hence we can have only one

instance of each FSM, and just replicate and distribute their output signals/transitions to

all processing units in each cycle. The input and output FSMs are largely independent,

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING69

except during the end of Phase 1 or Phase2. Here, we must wait (for around 100 clock

cycles) for the write back of the current phase to finish, before the inputs for the next

phase can be read. This synchronization is achieved with the sync flag. Also, the two

output FSMs are synchronized in the sense that the write-back can be executed only after

the outputs from the decoder have been received, and the fail signal has been checked to

indicate the validity of the output. This synchronization is achieved via flag3, and can be

easily seen from the FSM diagrams.

The implementation of the schedule is thus completely synchronous, with counters

keeping track of how many input/output symbols have been sent/received.

7.11 Detailed Decoding Process

In this section we present a brief walkthrough of one decoding iteration, based on decoder’s

implementation on FPGA.

As mentioned before, the initial reset signal must be held high for at least 100 ns.

Once the reset goes low, and the (rffd) output of every RS decoder goes high, decoding

computations for phase 1 are started off.

At the start, the address counter for Phase 1 is set to 0. Initially, the output of

each memory block is mapped to input of the corresponding processing unit, i.e. read

port output of Mi is given to Pi. The sync input for each RS decoder is also set high.

From the next clock edge, each decoder begins to sample the data at its input. Hence

the address counter needs to start incrementing every clock edge so that the correct data

symbols are available to the decoder. Note that we had stored the data in the memory so

that the address generator would be just a counter. After 7 clock cycles, the connection

mapping of processing units to memory blocks needs to change, as explained in section

7.6. For the next 3 clock cycles, processing unit Pi is mapped to memory block Mj, where

j = (i + 1) modulo 9. The mapping is again changed after 3 clock cycles, whereafter

the processing unit Pi is connected to memory block Mj, where j = (i + 2) modulo 9.

Throughout all these connection switchings, the address output from each processing unit

is also being incremented by 1. This scheme of the interconnection changing every 3 clocks

is continued till each processing unit has received the complete input data required for

the decoding of the first hyperplane associated with it.

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING70

In our case, the processing delay for the input is 30 clock cycles, which is less than the

number of input symbols for one sub-code decoding. Thus, it is possible to begin the input

phase of the next hyperplane as soon as the input of the first hyperplane has been given.

But, to make the design robust and to ensure complete synchronization between processing

units, we wait till the rffd output of each decoder becomes high before asserting the sync

of each decoder again, and starting the input phase of the next hyperplane. Once the

input phase is started, the process repeats with the address being incremented every clock

cycle, and the connections between processing units and memory blocks change similarly,

according to which input symbol needs to be received at the different processing units.

After 68 clock cycles of latency since the first input symbol was sampled by each

decoder, the output and the delayed input start appearing at their respective ports. Both

these output need to be stored in separate registers until the 31st output symbol (i.e.

blk end signal is asserted). With the blk end signal asserted, the fail signal indicates if

the decoding was a failure or not. If the decoding fails, we need to write-back the delayed

input. If the decoding was successful, we need to write back the valid output of the

decoder. The write-back schedule is exactly the same as the input schedule, with the

address being a counter and the connections between the memory block write ports and

the processing units exactly mimicking the steps during the input schedule.

The above mentioned schedule repeats 7 times for each processing unit. Thus, each

processing unit decodes the symbols corresponding to the 7 hyperplanes associated with

it. The write-back for a particular hyperplane finishes (68 + 31 = 99) clock cycles after

the first input symbol has been sampled by the decoder. Thus, after the input schedule for

Phase 1 is complete, we must wait for 99 clock cycles before initiating the input schedule

for Phase 2. This is done to ensure that no write-after-read data hazards occur.

In Phase 2, the processing units work on decoding the symbols associated with the

points. The interconnections between the read and write ports of the memory blocks to the

input and output ports of the processing unit is greatly simplified, with every processing

unit Pi only communicating with its own memory block Mi. The address output of each

processing unit that is fed to the two address ports of the memory blocks is got from

the two ROM outputs. One ROM for the input schedule, while the other ROM for the

output schedule. The address input for the ROMs is a simple counter which is set to zero

initially. Once the rffd outputs of all decoders are sampled to be high, the sync signal

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING71

is asserted for all the decoders and the first input symbol is ready to be read from the

memory block read ports. Once 31 symbols have been read, we check if the rffd signals of

all the decoders is high. Only then RS decoders are sequentially provided with the inputs

for the next “point”. Here also, the output symbols and the delayed input symbols start

appearing at the respective ports, 68 clock cycles after the first input symbol is sampled

by the decoder. These must be stored in registers, as before, until we get the blk end

signal. Once the blk end signal is asserted by the decoder, we must begin the write back

of the output or the delayed input depending on the value of the fail signal.

The write back is performed similar to the input schedule, the address for the memory

block write ports is got from the ROMs and the ROM address itself is just a counter.

This schedule is repeated till each processing units finish the decoding associated with all

the 7 points assigned to them. The completion of Phase 2 results in the completion of

one iteration of the overall decoding. The entire Phase 1 and Phase 2 cycles are repeated

4 times, before the result of the decoding algorithm can be read from the memory blocks.

7.12 A modification to include Erasures

So far, we have not discussed the effects of adding the ability of erasure corrections to

our decoder. This partly due to the lack of easy erasure decoding blocks in MATLAB.

However, the Xilinx RS decoder IP does have the option of including erasure correction

facility. You can choose to give an additional one bit input to the decoder core to specify

if the input symbol being sampled at the current clock edge is an erasure or not.

In the present design, if erasure correction is enabled, we just store an extra bit with

every data symbol to indicate if it is an erasure or not. If the decoding at a decoder core

fails(indicated by the fail signal), we mark all the edges going to that vertex as erasures.

Enabling erasure correction increases the latency and processing delay of the core,

thereby decreasing the throughput. Also, it necessitates a slight change in the input

handling FSM to ensure the correct working of the design. Since we had designed for

ε = 5, without erasures, the processing delay was 30 clock cycles and we could afford

to give continuous input to the core. Including erasures and/or increasing ε, we get

processing delay to be greater than the number of input symbols. Now, we must wait

till the processing delay of one input block is over before the next input block can be

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING72

ε Latency Processing Delay Random errors Burst errors Clocks for

4 iterations

5 83 45 141 143 3428

7 115 77 218 219 5218

9 155 117 328 295 7459

Table 7.5: Erasure correction results

given to the decoder. This does not change anything in Phase 1 of the input because

our address generator is just a counter and hence there is only one clock cycle delay

between us asserting the address and the data being available for input to the core. The

input handling FSM does that based on the rffd signal and hence does not depend on

the processing delay. However, in Phase 2, we are using a look-up for the address as well

and hence there is a delay of 2 clock cycles between the assertion of the look-up table

address and the availability of data at the output. To ensure a continuous stream of input

symbols after the first data has been sampled by the decoder, we need to invest an extra

clock cycle in which we just sample the rffd after it goes high and get the pipeline started.

This has been incorporated by using an additional ‘flag5’ signal to delay the assertion of

the “sync” signal by one clock cycle. Investing 7 extra clock cycles per iteration, we have

made the design generic in the sense that it will work for all values of processing delay

and hence all valid values of ε.

The table 7.5 gives approximate error correction results with respect to the Model-

SIM simulations that have been run in order to gauge the error correction capabilities for

different ε values, with erasures. The clock period was 20 ns.

A further improvement of the design has been done with respect to the storage

required for address look-up in Phase 2. It is not possible to infer a Dual Port ROM

in the version of Xilinx that we are using and hence the best way to save storage space

is to use a dual port distributed RAM within each processing unit rather that 2 ROMs

described above.

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING73

7.13 Performance Modeling and Analysis

In this section we first present a calculation of the peak throughput of the design, give

order estimates for number of computations and storage involved and finally present some

results of the current implementation of the design.

Throughput

Let us assume that the design has been implemented such that the operating frequency

is f Hz. Let the underlying bipartite graph have N edges. Let the dimension of the

projective geometry used be m. Thus, the number of points is 2m+1 − 1 = n, which is

also equal to the number of hyperplanes. Each vertex in the bipartite graph formed out

of the incidence relations of points and hyperplanes has a degree of 2m − 1 = δ.

Thus, N = (2m+1 − 1) ∗ (2m − 1) = n ∗ δ. Let there be x number of processing units

working in parallel. Further, let each processing unit work on y pointsm, and hence on y

hyperplanes.

Let the processing delay(time for processing the inputs) of the RS decoder be p. Let

the latency of the RS decoder be l symbol periods. Let the number of clock cycles per

symbol period be c. Once the first input symbol is sampled, then l*c clock cycles later, the

first output symbol appears. The size of each block of RS code is δ. So, it takes δ ∗c clock

cycles to collect the output, and further δ clock cycles to write it back to the memories.

For y points, since we can give input symbols for the next block immediately after the

processing delay whenever δ ≤ p, y ∗ p ∗ c clock cycles are required to provide all the

inputs per phase to a particular RS decoder. Consider the last RS decoding corresponding

to last point that is scheduled on a particular RS decoder. After the first input symbol

of this point is sampled, l*c clock cycles later, the output symbols start appearing, where

they are registered and then either the delayed input or the corrected output is written

back to the memory, depending on the fail signal. Hence, the number of clock cycles C

required per Phase of computation is as given below:

C = (y − 1) ∗ p ∗ c+ (l ∗ c) + δ ∗ c+ δ

For both phases, the number of clock cycles required is 2C. So, for one iteration 2C

clock cycles are required. Since we perform 4 iterations, 8C clock cycles are required for

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING74

one decoding round.

Since there are x processing units, there are x two port memory units. The size

of each memory unit is y ∗ δ. In a pipelined implementation, the decoded output of the

present codeword needs to be read out, and the input symbols of the new codeword needs

to written to the memories. Since the memory units are two port and we can implement

them in the read first mode, totally y ∗ δ clock cycles are required for reading the present

memories and writing in the symbols of the next codeword.

Thus, over k blocks of streaming encoded data, the throughput can be given as

follows.

Throughput =
k ∗N

k ∗ (8C + y ∗ δ)
f bytes/sec

=
N

(8C + y ∗ δ)
f bytes/sec

Power

The maximum power is used up during the RS decoding steps. Within RS decoding, we

can estimate power by giving the order of field computations involved for RS decoding

algorithm. As the size of the Galois field increases, the complexity required for addition,

multiplication etc. of two field elements increases. Also, as the number of parity symbols

for the code increases, the number of computations also increase and become more com-

plex. Given below is the order of additions/subtractions, multiplications and comparisons

involved if it is a t error correcting code.

Number of Additions/Subtractions ∝ t2

Number of Multiplications ∝ t2

Number of Comparisons and Updates ∝ t

Note that by using the Singleton bound for RS codes, we have t = (1−R)
2
· n. Hence

we can coarsely represent the computational complexities as follows.

CHAPTER 7. DETAILED DESIGN DESCRIPTION OF HARDWARE PROTOTYPING75

Number of Additions/Subtractions = O(n2)

Number of Multiplications = O(n2)

Number of Comparisons and Updates = O(n)

Storage

It is clear from the discussions so far that the amount of memory required varies linearly

with the size of the code.

7.13.1 Results of Implementation on the board

The design was implemented on a Xilinx virtex 5 LX110T FPGA with a speed grade of -3

(maximum available for this device). About 25% of the slices were used to implement the

folded computations which corresponds to 4,367 out of 17,280. We used distributed RAM

to implement the memory modules. The results are tabulated in 7.6 for both with and

without erasure designs. The post PAR frequency is 180.83 MHz for the design without

erasures and 180.79 MHz for the design with erasures.

The above numbers are for ε = 5 for which it takes 2611 clock cycles to finish 4 iter-

ations, without erasure decoding. Adding 217 clock cycles to write data into the memory,

we get a throughput of 1953
2828
∗ 181 ≈ 125Mbytes/s. For a 72x CD-ROM read system,

the data transfer rate is 10.8Mbytes/s. Hence, the decoder can easily be incorporated

without hurting throughput. Moreover, in an ASIC implementation, we would expect the

performance to be better.

To test the design on the board, we simply output the memory contents to the serial

port provided on the board after 4 iterations of decoding. This data is transmitted to the

PC and can be read via the Realterm program.

Without Erasure With Erasures

Resource Available Usage Percentage Usage Percentage

Occupied Slices 17280 4367 25 5889 34

Total Memory(KB) 5328 324 6 324 6

Table 7.6: Resource Utilization

Chapter 8

Folding of PG based

point-hyperplane graphs

8.1 Introduction

As the dimension of the projective space is increased, the corresponding graphs derived

from the incidence relations of the projective subspaces grows in size (in terms of number

of vertices and degree of each vertex). If each vertex of the graph represents a processor

then the number of processors grows exponentially with the dimension. For practical

implementations it is not possible to have a large number of processors running in parallel.

Folding the computation efficiently allows practical implementation with the advan-

tage that all the processors are utilized continuously throughout the computation cycle.

The folding allows us to create a schedule which ensures that there are no memory access

conflicts and no shifting of data between memories is required.

We begin by giving a brief introduction to the cardinalities associated with projective

geometry. We then proceed to demonstrate our folding schemes using PG(5, GF (2)) as

an example. It is then very easy to extend the scheme to general projective geometry

dimensions and we can also determine the conditions required to extend the scheme to

projective spaces over other Galois fields.

76

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 77

8.2 Description of the Computations

The computations we consider are based on bipartite graphs that are created using point-

hyperplane incidence relations of PG(m,GF (p)). The points and hyperplanes are repre-

sented by the vertices of the graph and there is an edge between two vertices if one of

them represents a point and the other represents a hyperplane containing the point.

Thus, the vertices corresponding to the points form one partition of the graph and

the vertices corresponding to the hyperplanes corresponds to the other partition. We

envisage two possible mappings of computations based on such graphs.

� Type 1 : The vertices corresponding to processors and the edges correspond to the

data symbols/memories. Each processor performs the same computation but on

different sets of data i.e. the data symbols or the data from the memories that

correspond to the edges incident on it. This sort of mapping is useful for iterative

decoding applications.

� Type 2 : The points correspond to processing units and the hyperplanes correspond

to the memories that store data required by the points that are contained in it. A

dual and equivalent version of this exists with the roles of points and hyperplanes

interchanged. In this case, there could be computation scheduled that required

a hyperplane to work on binary operands, i.e. it accesses two points at a time,

performs some computation and writes back the result. A perfect access pattern

mentioned in [11] could be generated.

Both of the above types of computations can be easily folded so that fewer processors

are required at the cost of throughput. The folding schemes and schedules we talk about

are perfect in the sense that if the graph is folded by a factor of ‘x’, then the amount

of time required for the computation increases exactly by a factor ‘x’(Assuming same

number of memories in both cases). No processor is left idle at any point during the

computation. This is under the assumption that once the processors acquire the data

required for a particular computation cycle, each processing unit takes exactly the same

amount of time to finish the computation. Moreover, the special folding scheme ensures

that the data doesn’t need to be redistributed between memories in between computations

thus avoiding an overhead of time. The schedule becomes structured and can be used to

simplify the address generation circuits within processing units. We will use dual port

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 78

memories where one port is used for reading and one port for writing. This helps to

overlap the input and output phases between folds and thus save time.

8.3 Folding computations for PG(5, GF (2)) - Proposi-

tions

In this section we outline two schemes to demonstrate the possibilities of folding compu-

tations related to point hyperplane incidence graphs derived from PG(5, GF (2)).

Proposition 3. When considering computations based on the point-hyperplane incidence

graph of PG(5, GF (2)), it is possible to fold the computations and arrange a scheduling

that can be executed using 9 processing units and 9 dual port memories.

Proposition 4. When considering computations based on the point-hyperplane incidence

graph of PG(5, GF (2)), it is possible to fold the computations and arrange a scheduling

that can be executed using 21 processing units and 21 dual port memories.

8.3.1 Proofs

We first present some important numbers associated with PG(5, GF (2)) that we will use

in proving the functional correctness of the folded computations.

Projective geometry of dimension 5 over GF (2)

� No. of points = No. of hyperplanes (4-d projective subspace) = φ(5, 0, 2) = 63.

� No. of points contained in a particular hyperplane = φ(4, 0, 2) = 31

� No. of points contained in a line(1-d projective subspace) = φ(1, 0, 2) = 3

� No. of points contained in a plane(2-d projective subspace) = φ(2, 0, 2) = 7

� No. of points contained in a 3-d projective subspace = φ(3, 0, 2) = 15

� No. of hyperplanes containing a particular plane = φ(5− 2− 1, 4− 2− 1, 2) = 7

� No. of hyperplanes containing a particular line = φ(5− 1− 1, 4− 1− 1, 2) = 15

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 79

� No. of hyperplanes containing a particular 3-d projective subspace = φ(5−3−1, 4−

3− 1, 2) = 3

� No. of lines contained in a 3-d projective subspace = φ(3, 1, 2) = 21

We will need the following lemmas to establish the feasibility of folding using propo-

sition 1.

Lemma 14. The point set of a projective space of dimension 5 over GF (2) (represented by

the non-zero elements of a vector space V over GF (2)) can be partitioned into disjoint sets

such that each set contains the non-zero elements of a 3-d vector subspace of V and thus

represents a unique plane (2-d projective subspace). This leads to the set of hyperplanes

(4-d projective subspaces) also being partitioned into disjoint sets.

Proof. The vector space V is represented by the field GF (26) and has an order of 63.

Since 3 is a divisor of 6, GF (23) is a subfield of GF (26). The multiplicative cyclic group

of GF (23) (of order 7) is isomorphic to a subgroup of the multiplicative cyclic group of

GF (26) and we can form a coset decomposition to generate 9 disjoint partitions of V

into subsets such that each subset is a 3-d vector space (-{0}) and hence represents a 2-d

projective space i.e. a plane.

Lets say that α is a generator for the multiplicative group ofGF (26). Then (1, α9, α18,

α27, α36, α45, α54) is the sub-group that we are looking for. The distinct cosets correspond-

ing to this sub-group give the partition we need.

Each plane is contained in 7 hyperplanes and these hyperplanes are unique to the

plane since they represent the 7 hyperplanes that are common to the set of points that

form the plane. More explicitly, if two planes do not have any point in common, they will

not have any hyperplanes in common and vice-versa. Thus, the 9 disjoint planes partition

the hyperplane set into 9 disjoint subsets.

Also, we have proved earlier in lemma 5 that a point that is not contained in a plane

lies in 3 hyperplanes associated with that plane.

Thus, in our case, a point on a plane P1 gets a degree of 7 through P1, and a degree

of 3 from each of the remaining 8 planes. (Total degree is 8*3 + 7 =31) This is true for

all points with respect to the planes that they lie in and all hyperplanes with respect to

the plane they contain.

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 80

Main Proof of Proposition 3

Here, we present the folding scheme and the schedule for proposition 1; thereby proving

its existence.

We have shown above in lemma 14 that we can partition the set of points into

9 disjoint subsets (each corresponding to a plane) and there will be a corresponding

partition of the hyperplane set. Let the planes be P1, P2 . . . , P9. We will assign a

processor to each of the planes. Let us abuse notation and call the processors by the

name corresponding to the plane assigned to them. We will assign a dual port memory to

each of the processing units and provide a schedule that avoids memory conflicts. The

distribution of data among the memories can be done such that the address generation

circuits become simplified (counters/look-up tables). The address generating units are

incorporated with the processors to form processing units.

Type 1 Computation

Here, the processors are represented by the points as well as the hyperplanes. The data

symbols are represented by the edges of the bipartite graph. The overall computation is

broken into two phases. Phase 1 corresponds to the points performing the computation

over the edges and updating the necessary data symbols. Phase 2 corresponds to the

hyperplanes performing the computations and updating the necessary symbols.

The schedule and data distribution among the memories (say M1,M2 . . . ,M9) is

done as follows:

� In Phase 1, processing unit Pi performs the computations corresponding to the

points that are contained in the plane Pi in a sequential fashion.The data corre-

sponding to edges incident on the hyperplane-vertices containing plane Pi is stored

in memory Mi. Thus for each hyperplane h containing plane Pi, there will be

7 units of data corresponding to the points associated with plane Pi that will be

stored in Mi. In addition to this, Mi will have to store 3 units of data for each of

the points not a part of Pi corresponding to the 3 hyperplanes that are reachable

from those points and contain plane Pi.

Suppose processing unit P1 is beginning the computation cycle corresponding to

point a. It needs to fetch data from the memories, perform some computation and

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 81

possibly write back the output of the computation to the same memories. First,

it collects the 7 units of data corresponding to a in M1. This corresponds to the

edges that exist between point a and the hyperplanes that contain plane P1. Next,

it fetches 3 units of data from each of the other Mis that correspond to a. This

consists of the edges between a and the 3 hyperplanes from each of the planes not

containing a. Since none of the points share any data (have no common edges in

the graph), we can have all the 9 processors working in parallel and each of them

follows the same schedule. For processing unit Pi, first, 7 units of data from Mi

are fetched. Further, 3 units of data are fetched from each M(i + j)mod9, j going

from 1 to 8. In this fashion, no two processing units will be trying to access the

same memory at the same time i.e. no memory conflicts will occur. The writing

if the output is done in a similar fashion. If dual port memories are used, we can

overlap the writing of the output of one point with the reading of the input of the

next point.

� In Phase 2, processing unit Pi performs the computation corresponding to the hy-

perplanes that are associated with plane Pi. If the data is distributed as explained

in the previous point, then Mi already contains all the data required for the hy-

perplanes associated with plane Pi. In this case the processing unit communicates

only with its own memory and performs the computation.

The data can be distributed such that the address generator circuit in Phase 1 is

just a counter and in Phase 2 it becomes a look up table. This sort of folding is specially

useful if the order in which the data is received by the processing units has an effect on

the computation involved.

Type 2 Computation

In this case, the hyperplanes represent the processors and the points represent memory

units/data to be operated on. There is an equivalent mapping with the roles of the points

and hyperplanes reversed.

Here, we place the data corresponding to the points associated with a plane Pi

in memory Mi. There is only one phase of computation wherein the processing unit

performs the functions of each of the hyperplanes associated with in a sequential fashion.

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 82

The schedule of data retrieval has to be developed depending on the kind of computation

involved. Suppose, as mentioned earlier, binary operands are required. Each hyperplane

takes data from two of its points at a time and goes through all possible combinations in

one phase. Then an exhaustive schedule can be thought of for one processing unit and

the remaining processing units follow the same schedule but talk to different memories.

Specifically, if P0 is talking to Mi,Mj then P1 will talk to M(i+ 1mod9)M(j + 1mod9)

and so on in order to ensure no memory conflicts. The assumption here is that all

hyperplanes of the projective space are allowed to work in parallel. So, if two hyperplanes

are working with data associated with a particular point and they make relevant updates

to that data, it should not make a difference to the overall computation. Alternatively,

the computation could be such that the data from the points is used for computation, but

the results of the computation are accumulated/updated in a completely different section

of the memory.

Lemmas related to Proposition 4

Lemma 15. The point set of a projective space of dimension 5 over GF (2) (represented by

the non-zero elements of a vector space V over GF (2)) can be partitioned into disjoint sets

such that each set contains the non-zero elements of a 2-d vector subspace of V and thus

represents a unique line (1-d projective subspace). The set of hyperplanes (4-d projective

subspaces) can also be partitioned into disjoint sets of 3 hyperplanes each such that each

set represents a unique 3-d projective subspace by the relation that it is contained in the

3 hyperplanes only.

Proof. The proof is very similar to lemma 14. As before, V is represented by GF (26) and

since 2 divides 6, GF (23) is a subfield and thus V can be partitioned into disjoint vector

subspaces(-{0}) of dimension 2 each (using coset decomposition). Each of these subsets

represents a 1-d projective subspace (line) and contains 3 points.

By duality of projective geometry, it follows that we can partition the hyperplanes

into disjoint sets of 3 each such that each set represents a unique 3-d projective subspace.

This can be achieved by performing a suitable coset decomposition of the dual vector

space.

Thus, we have partitioned the set of 63 points into 21 sets of 3 points each. In this

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 83

way we have a one-to-one correspondence between a point and the line that contains it.

The following theorem is critical in showing that a conflict-free schedule can be developed.

We now provide certain lemmas, that will be needed to prove theorem 19 later.

Lemma 16. The “union” of two disjoint lines(1-d projective subspaces) leads to a 3-d pro-

jective subspace. The union operation is defined as taking all possible linear combinations

of the points in the two lines.

Proof. Let the two disjoint lines be L1 and L2. Being disjoint, they have no points in

common.

Each line, being a 2-d vector space contains exactly two independent points. Thus,

two disjoint lines will contain 4 independent points. Taking a union, we get all possi-

ble linear combinations of the 4 independent points which corresponds to a 4-d vector

space(lets call it T12). The 4 independent points have been taken from the points of the

6-d vector space V , used to describe the projective space. Thus, the 4-d vector space, got

from the linear combinations of the 4 points, is a subspace of V .

Being a 4-d vector subspace of V , T12 represents a 3-d projective subspace.

Lemma 17. For PG(5), let L = {L0, L1, . . . , L20} be the set of 21 disjoint lines obtained

after coset decomposition of V . Let Tij be the 3-d projective space obtained after taking

the union of the lines Li, Lj, both taken from the set L. Then, any line Lk from the set

L, is either contained in Tij or does not share any point with Tij. Specifically, if it shares

one point with Tij, then it shares all its points with Tij.

Proof. Let α be the generator of the cyclic multiplicative group of GF (26). Then the

points of the projective space will be given by {α0, α1, . . . , α62} and for any integer i,

αi = α(i mod 63).

Lines are formed by 2-d vector subspaces. After the relevant coset decomposition of

GF (26), without losing generality, we may generate a correspondence between lines of L

and the cosets as follows:

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 84

L0 ≡ {α0, α21, α42}

L1 ≡ {α1, α22, α43}

L2 ≡ {α2, α23, α44}
...

L19 ≡ {α19, α40, α61}

L20 ≡ {α20, α41, α62}

Now, Li ≡ {αi, αi+21, αi+42}, where, i + 21 ∼= ((i + 21) mod 63) and i + 42 ∼=

((i+ 42) mod 63).

Similarly, Lj ≡ {αj, αj+21, αj+42}

Now, Tij is given by the union of Li, Lj. Thus, Tij contains all possible linear

combinations of the points of Li and Lj. Let us divide the points of Tij into two parts:

1. The first part X1 is given by the 6 points of Li and Lj

2. The second part X2 contains 9 points obtained by the linear combinations of the

form aαu + bαv where αu ∈ Li and αv ∈ Lj and a, b take the non-zero values of

GF (2), i.e. a = b = 1.

Consider any line Lk ∈ L.

� Case 1:

If k = i or k = j, then by the given construction, it is obvious that Lk ⊂ Tij and

the lemma holds.

� Case 2:

Here, k 6= i, j

We have, Lk ≡ {αk, αk+21, αk+42}. Also, Lk ∈ L and k 6= i, k implies that Lk is

disjoint from Li and Lj. Thus, it has no points in common with Li and Lj.

Since Lk has no points in common with Li and Lj, it cannot have any points in

common the set of points X1 of Tij defined above.

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 85

Now, we will prove that if Lk has even a single point in common with the set of

points X2 defined in point 2 above, then it has all its points in common with the

set X2 which implies that Lk ⊂ Tij. If no points are in common, then Lk is not

contained Ti,j as required by the lemma.

Without loss of generality, let αk = αu + αv

where, αu ∈ Li and αv ∈ Lj
From the coset decomposition given above, it is clear that if αk ∈ Lk, then αk+21 ∈

Lk, and αk+42 ∈ Lk. Here again, k + 21 ∼= ((k + 21) mod 63) and k + 42 ∼=

((k + 42) mod 63)

Since α is a generator of a multiplicative group, αk+21 = αk.α21 and αk+42 = αk.α42

Also, one of the fundamental properties of finite fields states that the elements are

abelian with respect to multiplication and addition and the multiplication operator

distributes over addition, i.e.

a.(b+ c) = (b+ c).a = a.b+ a.c = b.a+ c.a (8.1)

where a, b, c are elements of the field.

Consider, αk+21, We have,

αk+21 = αk.α21 (8.2)

=⇒ αk+21 = (αu + αv).α21 (8.3)

=⇒ αk+21 = αu.α21 + αv.α21 (8.4)

=⇒ αk+21 = αu+21 + αv+21 (8.5)

Here, 8.4 follows because of 8.1 and as usual, the addition in the indices is taken

modulo 63.

Since, αu ∈ Li and αv ∈ Lj, from the coset decomposition scheme, we have,

αu+21 ∈ Li and αv+21 ∈ Lj. Thus, αu+21 ∈ Tij and αv+21 ∈ Tij. And finally,

(αu+21 + αv+21) ∈ Ti,j which has the straightforward implication that αk+21 ∈ Tij.

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 86

Analogous arguments for αk+42 prove that αk+42 ∈ Tij. Thus, all three points of Lk

are contained in Ti.j and Lk ⊂ Ti,j.

The arguments above show that any line Lk ∈ L either is completely contained in

Tij or has no intersecting points with it. For the sake of completeness, we present

the points in Tij so that is easy to “see” the lemma:

Tij =

αi αi+21 αi+42

αj αj+21 αj+42

αj + αi αj+21 + αi αj+42 + αi

αj + αi+21 αj+21 + αi+21 αj+42 + αi+21

αj + αi+42 αj+21 + αi+42 αj+42 + αi+42

Lemma 18. Given the set L of 21 disjoint lines that cover all the points of PG(5, GF (2)),

pick any Li ∈ L and take its union with the remaining 20 lines in L to generate 20 3-d

projective subspaces. Of these 20, only 5 distinct 3-d projective subspaces will exist.

Proof. Any 3-d projective subspace has 3 hyperplanes associated with it. If a line is con-

tained in a 3-d projective subspace, then it is contained in all the 3 hyperplanes associated

with that 3-d subspace.

Also, if a line is not contained in a 3-d subspace, it is not contained in any of the

hyperplanes associated with it. This is because:

dim(L1 ∪ T1) = dim(L1) + dim(T1)− dim(L1 ∩ T1)

dim(L1) = 2 , dim(T1) = 4

dim(L1 ∩ T1) = 0

=⇒ dim(L1 ∪ T1) = 6

where L1 is the line, and T1 is the 3-d projective subspace not containing the line. A

hyperplane is a 5-d vector space and so if dim(L1 ∪ T1) > 5, L1 is not contained in any

hyperplane associated with T1.

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 87

Let Tij and Tjk be 2 4-d vector subspaces of V that represent 2 3-d projective

subspaces. dim(Tij) = dim(Tjk) = 4. Also,

dim(Tij ∪ Tjk) = dim(Tij) + dim(Tjk)− dim(Tij ∩ Tjk)

It is known that Tij and Tjk have 0,1 or 3 common hyperplanes. No other case

is possible. If they have three common hyperplanes, then Tij = Tjk. This implies that

dim(Tij ∩ Tjk) = 4.

If they have one hyperplane common, the 5-dimensional vector space corresponding

to that hyperplane must contain both the 4-dimensional vector spaces. This is possible

iff dim(Tij ∪ Tjk) = 5⇒ dim(Tij ∩ Tjk) = 3.

If they have no hyperplane in common, then dim(Tij∪Tjk) = 6⇒ dim(Tij∩Tjk) = 2.

Consider the union of line Li with Lj ∈ L, j 6= i. By Lemma 16, the union generates a 3-d

projective space. Lets call it Tij. Similarly, let the union of line Li with Lk ∈ L, k 6= i, j

be called Tjk.

By lemma 17, either Lk ⊂ Tij or Lk ∩ Tij = 0.

If (Li, Lk) ⊂ Tij, then Tjk = Tij.

If Lk ∩ Tij = 0, then Tjk is distinct from Tij and it adds 3 hyperplanes to Li. More-

over, dim(Tij ∩ Tjk) = 2, which implies that Tij and Tjk do not share any hyperplanes.

Applying this argument iteratively for the 20 3-d subspaces we see that a maximum

of 5 distinct 3-d projective subspaces can be generated, each of which gives a cardinality

of 3 hyperplanes to Li, thus making 15 hyperplanes.

Each 3-d projective subspace, e.g. Tij has 15 points and hence, it can contain a max-

imum of 5 disjoint lines. One of them is Li, and another 4 need to be accounted for. So,

when the union of Li is taken with the remaining 20 lines, a maximum of 4 lines, out of

these 20 lines, can give rise to same 3-d projective subspace, Tij. This implies that a min-

imum of 20/4 = 5 3-d projective subspaces can be generated from the remaining 20 lines.

Since a maximum and minimum of 5 3-d projective subspaces can be generated, ex-

actly 5 distinct 3-d projective subspaces are generated. Moreover, none of these subspaces

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 88

share any hyperplanes.

Finally, the main theorem behind the construction of schedule mentioned in propo-

sition 4, is as following.

Theorem 19. In PG(5, GF (2)), given a set of 21 disjoint lines (1-d projective subspaces)

that cover all the points, a set of 21 disjoint 3-d projective subspaces can be created such

that they cover all the hyperplanes.In this case, each point attains its degree of 31 hyper-

planes in the following manner:

1. it gets a degree of 3 hyperplanes each from 5 3-d projective subspaces that contain

the line corresponding to it.

2. it gets a degree of 1 hyperplane each from the remaining 16 3-d projective subspaces

that necessarily cannot contain the line corresponding to it.

The dual argument with the roles of points and hyperplanes interchanged also holds.

Proof. Generate the set of 21 disjoint lines L according to the coset decomposition corre-

sponding to the subgroup isomorphic to GF (22). We choose this subgroup as the canonical

subgroup mentioned in theorem 19, i.e. {α0, α21, α42}.

Choose any line Li from this set and take its union with the remaining 20 lines in

the set to generate 5 distinct 3-d projective subspaces(as proved in lemma 18). Call these

subspaces T1, T2, . . . , T5. Choose 5 distinct lines, each NOT equal to Li, to represent

each of these subspaces. Such a choice exists by lemma 16. Pick the line representing

T1, and take its union with the other 4 lines to generate 4 new 3-d projective subspaces.

Choose 4 more lines(distinct from the 5 lines used earlier), to represent these 4 new

subspaces. Again, such distinct lines exist by lemma 16, and there are overall 21 distinct

lines. Pick another line from T1 (not equal to the previously used lines), and take its

union with the 4 newly chosen lines to form yet more 4 new 3-d projective subspaces.

Repeat this process 2 more time, till you get 21 different 3-d subspaces, each contributing

3 distinct hyperplanes.

The following facts now hold for the so generated partitions of hyperplanes and

points:

1. Each line in the set L lies in 5 3-d projective subspaces and each 3-d projective

subspace contains 5 lines from the set L.

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 89

2. A point in a line gets a degree of 3 hyperplanes from every 3-d subspace that contains

the line and a degree of 1 hyperplane from every subspace that doesn’t contain the

line (since in this case if the subspace doesn’t contain the line, it doesn’t contain

the point and hence will only contribute one hyperplane corresponding to the union

of the point with the projective subspace).

From the above facts, all the points of the theorem follow. The dual argument holds

in exactly the same way. You could have started with a partition of 3-d subspaces and

generated lines by completely working in the dual vector space and using the exact same

arguments. Hence, there are two ways of folding for each partition of V into disjoint

lines.

Proof of Proposition 4

From the lemmas stated above, it is quiet clear that we have a system such that the

graph can be folded easily and a scheduling similar to the one used for proposition 1 can

be developed.

We begin by assigning one processing unit to every line of the disjoint set. Each

processing unit has an associated memory. After the 3-d subspaces have been created

as explained above, we can assign a 3-d space to each of the memories. For Type 1

computation, the computation is again divided into two phases. In phase 1, the points on

a particular line are scheduled on the processor corresponding to that line in a sequential

manner. A point gets 3 data units from a memory if the 3-d projective space corresponding

to that memory contains the line, otherwise it gets 1. In phase 2, the memory already

has data corresponding to the hyperplanes that contain the 3-d subspace representing the

memory and the communication is just between the processing unit and its own memory.

The output write-back cycles follow the schedule of input reads in both phases.

In Type 2 computation, the schedule is similar to the phase 1 schedule used in Type

1 computation, but depends on the application. No phase two exists. Thus, using 21

processors with appropriate address generation schemes, we can fold the computation

efficiently in this case also.

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 90

8.4 Generalization to PG(m,GF (q))

In this section, we generalize the above propositions for projective geometries of dimension

m, when m+ 1 is not a prime number.

A PG(m,GF (q)) is represented using the elements of a vector space V of dimen-

sion m + 1 over GF (q). If m + 1 is not prime, it can be factored into prime factors

p1, p2, p3, . . . , pn such that p1 ∗ p2 ∗ . . . ∗ pn = m + 1. Also, the dimensions of the pro-

jective subspaces vary from 0 to (m− 1) and the dimensions of the corresponding vector

subspaces of V vary from 1 to m. The points are the 0 dimensional projective sub-

spaces (represented by the elements of V) and the hyperplanes are the m− 1 dimensional

projective subspaces.

It is convenient to describe the folding in two separate cases; even though the first

case is a sub-case of the second one.

� Case 1 :

Suppose m + 1 is even. Then we can partition the set of points (has cardinality

qm+1−1
q−1

) into disjoint sets; each of dimension m+1
2

and thus containing q
(m+1)

2 −1
q−1

each.

The existence of such a partition can easily be explained by using the arguments

similar to that of lemma 1. The vector space V would be represented by GF (qm+1).

Since m+ 1 is even, m+1
2

divides it and GF (q
m+1

2) is a sub-field of GF (qm+1). Thus,

V can be partitioned into disjoint subspaces (say Sis), each of dimension m+1
2

and by

property of vector sub-spaces, if x ∈ Si then λx ∈ Si, λεGF (q). So the equivalence

relation of points holds in the subspaces also. Each subspace represents a m−1
2

dimensional projective subspace.

Now because of duality of points and hyperplanes, there are a equal number of hy-

perplanes associated with each m+1
2
− 1 dimensional projective subspace. Moreover,

since we have a disjoint partition of points, there will exist a corresponding disjoint

partition of hyperplanes. The number of partitions equals qm+1−1

q
(m+1)

2 −1
.

Each point has a total of qm−1
q−1

hyperplanes containing it; q
(m+1)

2 −1
q−1

hyperplanes from

the partition that contains it and the rest from the remaining partitions in the

following manner:

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 91

No. of partitions remaining =
qm+1 − 1

q
(m+1)

2 − 1
− 1

= q
(m+1)

2

Each partition is formed by m+1
2

independent points and all their linear combinations

over coefficients from GF (q). The total number of points in a m−1
2

dimensional

vector space is q
(m−1)

2 −1
q−1

. Therefore, in any set of q
(m+1)

2 −1
q−1

+ 1 points, it is possible

to find m+1
2

independent points.

Any point that does not lie in a m−1
2

dimensional projective subspace reaches out

to exactly q
(m−1)

2 −1
q−1

hyperplanes through that projective subspace. Any more and

we could find m+1
2

independent points which would imply that the point lies in that

subspace. Any less, and the point would not achieve the established number of

hyperplanes in the above partition as:

Hyperplanes from the sets not containing the point =
q

(m−1)
2 − 1

q − 1
∗ q

(m+1)
2

=
qm − q

(m+1)
2

q − 1

Total degree =
q

(m+1)
2 − 1

q − 1
+
qm − q

(m+1)
2

q − 1

=
qm − 1

q − 1

as required

Given the above construction, it is easy to develop an architecture and scheduling

strategy as in proposition 1. One processor could be assigned to each of the disjoint

sets of points. Additional folds are possible by assigning multiple disjoint sets to

each processing unit as long as the “symmetry” of the schedule (with regards to the

amount of data required from local memory and data required from memories of

other processing units) is maintained.

� Case 2 :

Let m + 1 = (k + 1) ∗ t, where k > 0 and t ≥ 3 (t = 2 comes under case 1). There

exists a projective subspace of dimension k and its dual space will be of dimension

m− k− 1. We will use these subspaces to partition the points and hyperplanes into

disjoint sets and then assign these sets to processing units.

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 92

Now, V has dimension m+1 and the vector subspace corresponding to the projective

subspace of dimension k has a dimension of k + 1. Since, k + 1 divides m + 1, we

can partition the points into disjoint sets, each set having k+ 1 independent points.

The sets are obtained by coset decomposition of multiplicative group of GF (qm+1).

Let S denote the collection of these sets and let the ith set be denoted by Si. Since

t ≥ 3, k ≤ bm+1
2
c.

We will construct the dual projective subspaces from these sets such that they do

not share any hyperplanes and together cover all the hyperplanes, thus creating a

disjoint partition. m − k independent points are required to create a m − k − 1

dimensional projective subspace. Since m−k
k+1

= (m+1)−(k+1)
k+1

= t−1, the union of t−1

disjoint sets taken from S, each having k + 1 independent points, and the points

that are all possible linear combinations over GF (q) of these, will form a m− k− 1

dimensional projective subspace.

Let S0, S1, S2, S3, . . . , St−2 ∈ S be combined to make the m − k − 1 dimensional

projective space T1.

S0, S1, S2, S3, . . . , St−2 are sets of cosets that have been obtained by the coset decom-

position of the nonzero elements of GF (qm+1). Further, an equivalent set of points

of projective space can be obtained from each coset Si as the set of equivalence

classes using the equivalence relation ai = λ · aj, where ai, aj ∈ Si, and λ ∈ GF(q).

Therefore, they can be written as:

Si ≡ {αi, αi+β, αi+2β, . . . (qk+1 − 1) terms}

where, α is the generator of the multiplicative group ofGF (qm+1), and {0, α0, αβ, α2β,

. . . (qk+1− 1) terms}, where β= qm+1−1
qk+1−1

forms a subfield of GF (qm+1) that is isomor-

phic to GF (qk+1).

Moreover, any Si ∈ S contains only the non-zero elements of a vector space over

GF (q), and their all possible linear combinations of the form (c0a0+c1a1+. . .+cnan)

∀c0, c1, . . . , cn ∈ GF (q). Here, a0, a1 . . . , an ∈ Si, and all c’s are not all simultane-

ously 0.

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 93

Consider Sk ∈ S, k 6= 0, 1, 2, 3, . . . , (t − 2). Similar to lemma 17, we will show that

if even one point of Sk is common with T1, then all points of Sk must be common

and thus, Sk ⊂ T1.

Divide the set of points of T1 into two parts:

X1 consists of the points of S0, S1, . . . , S(t−2).

X2 is the set of points of the form c0α
u0 + c1α

u1 + . . .+ c(t−2)α
u(t−2)

where αui ∈ Si and ci ∈ GF (q) and there are at least two non-zero ci’s.

Moreover, if αui ∈ Si, then ciα
ui ∈ Si∀ci ∈ GF (q). Therefore, we can abuse notation

and simply write

X2 = αu0 + αu1 + . . .+ αu(t−2) (8.6)

such that there are at least two non-zero terms in the summation.

Let Sk ≡ {αk, αk+β, αk+2β, · · · }. Consider αk ∈ Sk. It is clear that since Sk is dis-

joint from Si, i ∈ 0, 1, . . . , (t− 2), αk 6∈ X1.

Suppose if αk ∈ X2, then we have,

αk+β = αk.αβ (8.7)

=⇒ αk+β = (αu0 + αu1 + . . .+ αu(t−2)).αβ (8.8)

=⇒ αk+β = αu0+β + αu1+β + . . .+ αu(t−2)+β (8.9)

Now, if αi ∈ Sj for some i, j, then α(i+β) ∈ Sj. Therefore, it is clear that equation

8.9 represents some linear combination of elements of S0, . . . , St−2 and hence must

be contained in T1.

Proceeding in a similar way for all multiples of β, we find that all points ∈ Sk are

eventually found part of T1, where we started just by having one point being part

of T1.

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 94

Thus, if T1 is generated by the union of S0, . . . , S(t−2), the remaining Si’s are either

contained in T1 or have no intersection with T1. If some Si has no intersection with

T1, then replacing S0 or S1 or . . . or S(t−2) with Si will each generate a different (m-

k-1)-dimensional projective space T , which is distinct from T1 for each substitution

that is made.

Let Ti and Tj be two distinct subspaces, each generated by union of disjoint Si’s.

Between these two sets, there will be some sets Sk which are common as per the

construction mentioned above. The number of shared independent points, that are

contained in these shared sets Sk, is (t− 2) ∗ (k+ 1). Thus, we have, dim(Ti∩Tj) =

(t− 2) ∗ (k + 1)

dim(Ti ∪ Tj) = dim(Ti) + dim(Tj)− dim(Ti ∩ Tj)

= 2m− 2k − (k + 1) ∗ (t− 2)

= 2m− 2k − (k + 1) ∗ t+ 2(k + 1)

= m+ 1 (Since, m+1=(k+1)*t)

Since dim(Ti ∪ Tj) > m, they have no hyperplanes in common.

Therefore, if we generate all the distinct Ti’s, we will get a disjoint partition of the

hyperplane set. The number of hyperplanes containing a Ti (m− k− 1 dimensional

projective subspace) is equal to φ(m−(m−k−1)−1, (m−1)−(m−k−1)−1, q) =

φ(k, k − 1, q) where φ is the function defined in section 3.3.

A construction and schedule analogous to the one used for Theorem 19 may be

generated. For Type 1 Computation, we begin by assigning one processor for each

Si. To each of these processors, we also assign one Ti containing the corresponding

Si. The points in Si are executed on the corresponding processor in a sequential

fashion. Each point gets φ(k, k − 1, q) hyperplanes from every Tk that contains

Si. The remaining degree will be evenly distributed among the remaining Tk’s.

Specifically,

CHAPTER 8. FOLDING OF PG BASED POINT-HYPERPLANE GRAPHS 95

If Si ∩ Ti = 0 , then :

dim(Ti ∪ Si) = dim(Ti) + dim(Si)− dim(Ti ∩ Si)

= m− k + k + 1− 0

= m+ 1

Therefore, if Si ∩ Ti = 0, then Si gets no hyperplanes from Ti.

Each Si gets φ(m−k−1, (m−1)−k−1, q) hyperplanes in all, out of φ(m, (m−1), q)

hyperplanes, which it must get from N = φ(m−k−1,(m−1)−k−1,q)
φ(k,k−1,q)

T ’s reachable from it.

So every point A, gets φ(m − k − 1, (m − 1) − k − 1, q) hyperplanes from N =

φ(m−k−1,(m−1)−k−1,q)
φ(k,k−1,q)

Tk’s containing the Si which itself contains this point.

Moreover, for the remaining Tj’s (the ones not containing the point A) have the

following property:

dim(Tj ∪ A) = dim(Tj) + dim(A)− dim(Tj ∩ A)

= m− k + 1

= m+ 1− k

Therefore, the number of hyperplanes got from Tj will be the number of hyperplanes

containing the subspace (Tj ∪A). It is a m+ 1− k vector subspace and therefore is

a m− k projective subspace. The number of hyperplanes containing it is given by:

φ(m− (m+−k)− 1,m− 1− (m− k)− 1, q) = φ(k − 1, k − 2, q)

So now a schedule can easily be generated utilizing the incidence relations stated

above.

For Type 2 computations, a schedule for the phase 1 is to be generated. Moreover,

the schedule will be application dependent. It depends on the number of operands

needed from memory corresponding to each point and a corresponding perfect access

pattern generation.

Chapter 9

Conclusion

We have presented the construction, performance analysis and hardware design strategies

for a expander-like decoder that is based on a bipartite graph. The graph if derived from

the incidence relations of projective spaces offers unique advantages in terms of deriving

lower bounds on error correction capabilities, and there is a fundamental advantage in

terms of hardware design. As the size of the graph increases, practical implementation

of the code become difficult. Projective geometry through lattice embedding properties

offers a natural way of folding the computations which leads to using fewer processors. The

folding is special because it does not involve any data transfer between memories between

computation cycles, every processor is utilized completely during the computation cycle

and the address generation circuits can be simplified due to the structured nature of the

memory accesses.

The code performance is better than previously stated in literature as it relaxes

some restrictions that were imposed with respect to the second largest eigenvalue of the

graph. Derivation of bounds of error correction have been presented and the average

case performance of the code is shown to be up to 10 times better through simulations.

Moreover, the code has special implicit interleaving due to the numbering of the edges and

this offers great advantage in burst error corrections. A natural application of these codes

with respect to data storage media (namely CD-ROMs and DVD-R) has been explored

and we have presented schemes that improve the burst error performance in comparison

to existing standards.

The hardware design for the decoder prototype has been completely worked out.

We use Xilinx RS decoder IPs as the processors. The computations have been efficiently

96

CHAPTER 9. CONCLUSION 97

folded in order to make them fit on a Xilinx LX110T FPGA. We have tested the design

on the FPGA and also exploited the erasure correction ability of the RS code. The ASIC

implementation of the decoder is expected to be much more optimal and we would expect

a much higher throughput. Moreover, a general folding strategy has been developed for

higher dimensions of projective geometry that provides a methodology for practically

implementing decoders of higher dimensions.

9.1 Future Work

In this section we would like to present a couple of open problems that could prove to be

challenging and exciting for anyone interested in this area.

� As stated before, the combinatorial bounds hold for the practical values of ε. How-

ever, beyond a certain point, we are forced to revert back to eigenvalue arguments

to obtain the bounds. A general formulation of the problem is as follows :

We would like to solve the following general optimization problem using the prop-

erties of projective geometry. The problem is as follows,

Given, xT
s Axs − γxT

s xs ≥ 0, xs ε {0, 1}2n

which is equivalent to, (A− γI)xs ≥ 0, xs ε {0, 1}2n

minimize xT
s xs

We need to find non-trivial solutions of the above problem. xs and A are the same

as mentioned in chapter 5. The value of ξ is then given by xT
s xs.

� The second problem is with respect to the rate of the code. It should be noted that

the value of the rate of the overall code (2 ∗ r− 1) is a lower bound and is obtained

by assuming that all the constraints corresponding to the vertices of the graph are

independent.

In general, the performance of our decoding algorithm is independent of the as-

signment of edges as message or parity symbols of the subcodes. Thus, we would

like to see if by changing this arrangement, can we get a higher rate for the code

while keeping the error correction capacity the same. Hoholdt [6] has addressed the

problem of the rate of the code without explicitly looking at the edge assignment

CHAPTER 9. CONCLUSION 98

problem. Intuitively it looks like if we were able to arrange the code to ‘look like’

a product code (The parity symbols of one side of the graph become the message

symbols of the other side), we would be able to get a higher rate. If we map the

decoding algorithm to mimic decoding of product codes, we would be able to achieve

D/4 error correction (D is the minimum distance of the overall code and D/4 would

be the correction capability of the corresponding product code). But to do this,

we must be able to manipulate the parity matrix of the overall code to make it the

parity matrix of a product code. At the sub-code level, we need to figure out which

edges to put as message symbols of the subcode and which to put as parity. The

parity symbols due to the left hand side of the graph must appear as the message

symbols in the right hand side of the graph. This assignment problem itself could

be very difficult.

If d1=d2=d, rate of a product code for RS subcodes would be as follows: r(subcode) =

(n−(d−1))
n

= (1− [(d−1)
n

]) = 1− z(say) for product code:R = r2 = 1− 2z + z2

which is greater than (2r − 1)(= 1− 2z)

Thus, it should be possible to get the same error correction capacities for our code

at higher rates.

� Thirdly, the problem of designing a linear time encoding system is still open. Using

properties of projective geometry, we should be able to utilize the structure of the

parity/generator matrices to develop a practically efficient encoding system

CHAPTER 9. CONCLUSION 99

A Appendix

A.1 The Graph used for the decoder

Table 1: Point-Hyperplane Adjacency List

Hyperplane Adjacent Vertices

0 63, 64, 65, 66, 67, 69, 70, 71, 72, 75, 76, 77, 79, 81, 82, 87, 89, 90,

91, 95, 96, 98, 99, 101, 104, 108, 111, 112, 115, 117, 119

1 64, 65, 66, 67, 68, 70, 71, 72, 73, 76, 77, 78, 80, 82, 83, 88, 90, 91,

92, 96, 97, 99, 100, 102, 105, 109, 112, 113, 116, 118, 120

2 65, 66, 67, 68, 69, 71, 72, 73, 74, 77, 78, 79, 81, 83, 84, 89, 91, 92,

93, 97, 98, 100, 101, 103, 106, 110, 113, 114, 117, 119, 121

3 66, 67, 68, 69, 70, 72, 73, 74, 75, 78, 79, 80, 82, 84, 85, 90, 92, 93,

94, 98, 99, 101, 102, 104, 107, 111, 114, 115, 118, 120, 122

4 67, 68, 69, 70, 71, 73, 74, 75, 76, 79, 80, 81, 83, 85, 86, 91, 93, 94,

95, 99, 100, 102, 103, 105, 108, 112, 115, 116, 119, 121, 123

5 68, 69, 70, 71, 72, 74, 75, 76, 77, 80, 81, 82, 84, 86, 87, 92, 94, 95,

96, 100, 101, 103, 104, 106, 109, 113, 116, 117, 120, 122, 124

6 69, 70, 71, 72, 73, 75, 76, 77, 78, 81, 82, 83, 85, 87, 88, 93, 95, 96,

97, 101, 102, 104, 105, 107, 110, 114, 117, 118, 121, 123, 125

7 70, 71, 72, 73, 74, 76, 77, 78, 79, 82, 83, 84, 86, 88, 89, 94, 96, 97,

98, 102, 103, 105, 106, 108, 111, 115, 118, 119, 122, 124, 63

8 71, 72, 73, 74, 75, 77, 78, 79, 80, 83, 84, 85, 87, 89, 90, 95, 97, 98,

99, 103, 104, 106, 107, 109, 112, 116, 119, 120, 123, 125, 64

9 72, 73, 74, 75, 76, 78, 79, 80, 81, 84, 85, 86, 88, 90, 91, 96, 98, 99,

100, 104, 105, 107, 108, 110, 113, 117, 120, 121, 124, 63, 65

10 73, 74, 75, 76, 77, 79, 80, 81, 82, 85, 86, 87, 89, 91, 92, 97, 99, 100,

101, 105, 106, 108, 109, 111, 114, 118, 121, 122, 125, 64, 66

11 74, 75, 76, 77, 78, 80, 81, 82, 83, 86, 87, 88, 90, 92, 93, 98, 100, 101,

102, 106, 107, 109, 110, 112, 115, 119, 122, 123, 63, 65, 67

Continued on next page

CHAPTER 9. CONCLUSION 100

Table 1 – continued from previous page

Hyperplane Adjacent Vertices

12 75, 76, 77, 78, 79, 81, 82, 83, 84, 87, 88, 89, 91, 93, 94, 99, 101, 102,

103, 107, 108, 110, 111, 113, 116, 120, 123, 124, 64, 66, 68

13 76, 77, 78, 79, 80, 82, 83, 84, 85, 88, 89, 90, 92, 94, 95, 100, 102,

103, 104, 108, 109, 111, 112, 114, 117, 121, 124, 125, 65, 67, 69

14 77, 78, 79, 80, 81, 83, 84, 85, 86, 89, 90, 91, 93, 95, 96, 101, 103,

104, 105, 109, 110, 112, 113, 115, 118, 122, 125, 63, 66, 68, 70

15 78, 79, 80, 81, 82, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 102, 104,

105, 106, 110, 111, 113, 114, 116, 119, 123, 63, 64, 67, 69, 71

16 79, 80, 81, 82, 83, 85, 86, 87, 88, 91, 92, 93, 95, 97, 98, 103, 105,

106, 107, 111, 112, 114, 115, 117, 120, 124, 64, 65, 68, 70, 72

17 80, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 94, 96, 98, 99, 104, 106,

107, 108, 112, 113, 115, 116, 118, 121, 125, 65, 66, 69, 71, 73

18 81, 82, 83, 84, 85, 87, 88, 89, 90, 93, 94, 95, 97, 99, 100, 105, 107,

108, 109, 113, 114, 116, 117, 119, 122, 63, 66, 67, 70, 72, 74

19 82, 83, 84, 85, 86, 88, 89, 90, 91, 94, 95, 96, 98, 100, 101, 106, 108,

109, 110, 114, 115, 117, 118, 120, 123, 64, 67, 68, 71, 73, 75

20 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 101, 102, 107, 109,

110, 111, 115, 116, 118, 119, 121, 124, 65, 68, 69, 72, 74, 76

21 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 100, 102, 103, 108, 110,

111, 112, 116, 117, 119, 120, 122, 125, 66, 69, 70, 73, 75, 77

22 85, 86, 87, 88, 89, 91, 92, 93, 94, 97, 98, 99, 101, 103, 104, 109, 111,

112, 113, 117, 118, 120, 121, 123, 63, 67, 70, 71, 74, 76, 78

23 86, 87, 88, 89, 90, 92, 93, 94, 95, 98, 99, 100, 102, 104, 105, 110,

112, 113, 114, 118, 119, 121, 122, 124, 64, 68, 71, 72, 75, 77, 79

24 87, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 101, 103, 105, 106, 111,

113, 114, 115, 119, 120, 122, 123, 125, 65, 69, 72, 73, 76, 78, 80

25 88, 89, 90, 91, 92, 94, 95, 96, 97, 100, 101, 102, 104, 106, 107, 112,

114, 115, 116, 120, 121, 123, 124, 63, 66, 70, 73, 74, 77, 79, 81

Continued on next page

CHAPTER 9. CONCLUSION 101

Table 1 – continued from previous page

Hyperplane Adjacent Vertices

26 89, 90, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 105, 107, 108, 113,

115, 116, 117, 121, 122, 124, 125, 64, 67, 71, 74, 75, 78, 80, 82

27 90, 91, 92, 93, 94, 96, 97, 98, 99, 102, 103, 104, 106, 108, 109, 114,

116, 117, 118, 122, 123, 125, 63, 65, 68, 72, 75, 76, 79, 81, 83

28 91, 92, 93, 94, 95, 97, 98, 99, 100, 103, 104, 105, 107, 109, 110, 115,

117, 118, 119, 123, 124, 63, 64, 66, 69, 73, 76, 77, 80, 82, 84

29 92, 93, 94, 95, 96, 98, 99, 100, 101, 104, 105, 106, 108, 110, 111,

116, 118, 119, 120, 124, 125, 64, 65, 67, 70, 74, 77, 78, 81, 83, 85

30 93, 94, 95, 96, 97, 99, 100, 101, 102, 105, 106, 107, 109, 111, 112,

117, 119, 120, 121, 125, 63, 65, 66, 68, 71, 75, 78, 79, 82, 84, 86

31 94, 95, 96, 97, 98, 100, 101, 102, 103, 106, 107, 108, 110, 112, 113,

118, 120, 121, 122, 63, 64, 66, 67, 69, 72, 76, 79, 80, 83, 85, 87

32 95, 96, 97, 98, 99, 101, 102, 103, 104, 107, 108, 109, 111, 113, 114,

119, 121, 122, 123, 64, 65, 67, 68, 70, 73, 77, 80, 81, 84, 86, 88

33 96, 97, 98, 99, 100, 102, 103, 104, 105, 108, 109, 110, 112, 114, 115,

120, 122, 123, 124, 65, 66, 68, 69, 71, 74, 78, 81, 82, 85, 87, 89

34 97, 98, 99, 100, 101, 103, 104, 105, 106, 109, 110, 111, 113, 115,

116, 121, 123, 124, 125, 66, 67, 69, 70, 72, 75, 79, 82, 83, 86, 88, 90

35 98, 99, 100, 101, 102, 104, 105, 106, 107, 110, 111, 112, 114, 116,

117, 122, 124, 125, 63, 67, 68, 70, 71, 73, 76, 80, 83, 84, 87, 89, 91

36 99, 100, 101, 102, 103, 105, 106, 107, 108, 111, 112, 113, 115, 117,

118, 123, 125, 63, 64, 68, 69, 71, 72, 74, 77, 81, 84, 85, 88, 90, 92

37 100, 101, 102, 103, 104, 106, 107, 108, 109, 112, 113, 114, 116, 118,

119, 124, 63, 64, 65, 69, 70, 72, 73, 75, 78, 82, 85, 86, 89, 91, 93

38 101, 102, 103, 104, 105, 107, 108, 109, 110, 113, 114, 115, 117, 119,

120, 125, 64, 65, 66, 70, 71, 73, 74, 76, 79, 83, 86, 87, 90, 92, 94

39 102, 103, 104, 105, 106, 108, 109, 110, 111, 114, 115, 116, 118, 120,

121, 63, 65, 66, 67, 71, 72, 74, 75, 77, 80, 84, 87, 88, 91, 93, 95

Continued on next page

CHAPTER 9. CONCLUSION 102

Table 1 – continued from previous page

Hyperplane Adjacent Vertices

40 103, 104, 105, 106, 107, 109, 110, 111, 112, 115, 116, 117, 119, 121,

122, 64, 66, 67, 68, 72, 73, 75, 76, 78, 81, 85, 88, 89, 92, 94, 96

41 104, 105, 106, 107, 108, 110, 111, 112, 113, 116, 117, 118, 120, 122,

123, 65, 67, 68, 69, 73, 74, 76, 77, 79, 82, 86, 89, 90, 93, 95, 97

42 105, 106, 107, 108, 109, 111, 112, 113, 114, 117, 118, 119, 121, 123,

124, 66, 68, 69, 70, 74, 75, 77, 78, 80, 83, 87, 90, 91, 94, 96, 98

43 106, 107, 108, 109, 110, 112, 113, 114, 115, 118, 119, 120, 122, 124,

125, 67, 69, 70, 71, 75, 76, 78, 79, 81, 84, 88, 91, 92, 95, 97, 99

44 107, 108, 109, 110, 111, 113, 114, 115, 116, 119, 120, 121, 123, 125,

63, 68, 70, 71, 72, 76, 77, 79, 80, 82, 85, 89, 92, 93, 96, 98, 100

45 108, 109, 110, 111, 112, 114, 115, 116, 117, 120, 121, 122, 124, 63,

64, 69, 71, 72, 73, 77, 78, 80, 81, 83, 86, 90, 93, 94, 97, 99, 101

46 109, 110, 111, 112, 113, 115, 116, 117, 118, 121, 122, 123, 125, 64,

65, 70, 72, 73, 74, 78, 79, 81, 82, 84, 87, 91, 94, 95, 98, 100, 102

47 110, 111, 112, 113, 114, 116, 117, 118, 119, 122, 123, 124, 63, 65,

66, 71, 73, 74, 75, 79, 80, 82, 83, 85, 88, 92, 95, 96, 99, 101, 103

48 111, 112, 113, 114, 115, 117, 118, 119, 120, 123, 124, 125, 64, 66,

67, 72, 74, 75, 76, 80, 81, 83, 84, 86, 89, 93, 96, 97, 100, 102, 104

49 112, 113, 114, 115, 116, 118, 119, 120, 121, 124, 125, 63, 65, 67, 68,

73, 75, 76, 77, 81, 82, 84, 85, 87, 90, 94, 97, 98, 101, 103, 105

50 113, 114, 115, 116, 117, 119, 120, 121, 122, 125, 63, 64, 66, 68, 69,

74, 76, 77, 78, 82, 83, 85, 86, 88, 91, 95, 98, 99, 102, 104, 106

51 114, 115, 116, 117, 118, 120, 121, 122, 123, 63, 64, 65, 67, 69, 70,

75, 77, 78, 79, 83, 84, 86, 87, 89, 92, 96, 99, 100, 103, 105, 107

52 115, 116, 117, 118, 119, 121, 122, 123, 124, 64, 65, 66, 68, 70, 71,

76, 78, 79, 80, 84, 85, 87, 88, 90, 93, 97, 100, 101, 104, 106, 108

53 116, 117, 118, 119, 120, 122, 123, 124, 125, 65, 66, 67, 69, 71, 72,

77, 79, 80, 81, 85, 86, 88, 89, 91, 94, 98, 101, 102, 105, 107, 109

Continued on next page

CHAPTER 9. CONCLUSION 103

Table 1 – continued from previous page

Hyperplane Adjacent Vertices

54 117, 118, 119, 120, 121, 123, 124, 125, 63, 66, 67, 68, 70, 72, 73, 78,

80, 81, 82, 86, 87, 89, 90, 92, 95, 99, 102, 103, 106, 108, 110

55 118, 119, 120, 121, 122, 124, 125, 63, 64, 67, 68, 69, 71, 73, 74, 79,

81, 82, 83, 87, 88, 90, 91, 93, 96, 100, 103, 104, 107, 109, 111

56 119, 120, 121, 122, 123, 125, 63, 64, 65, 68, 69, 70, 72, 74, 75, 80,

82, 83, 84, 88, 89, 91, 92, 94, 97, 101, 104, 105, 108, 110, 112

57 120, 121, 122, 123, 124, 63, 64, 65, 66, 69, 70, 71, 73, 75, 76, 81, 83,

84, 85, 89, 90, 92, 93, 95, 98, 102, 105, 106, 109, 111, 113

58 121, 122, 123, 124, 125, 64, 65, 66, 67, 70, 71, 72, 74, 76, 77, 82, 84,

85, 86, 90, 91, 93, 94, 96, 99, 103, 106, 107, 110, 112, 114

59 122, 123, 124, 125, 63, 65, 66, 67, 68, 71, 72, 73, 75, 77, 78, 83, 85,

86, 87, 91, 92, 94, 95, 97, 100, 104, 107, 108, 111, 113, 115

60 123, 124, 125, 63, 64, 66, 67, 68, 69, 72, 73, 74, 76, 78, 79, 84, 86,

87, 88, 92, 93, 95, 96, 98, 101, 105, 108, 109, 112, 114, 116

61 124, 125, 63, 64, 65, 67, 68, 69, 70, 73, 74, 75, 77, 79, 80, 85, 87,

88, 89, 93, 94, 96, 97, 99, 102, 106, 109, 110, 113, 115, 117

62 125, 63, 64, 65, 66, 68, 69, 70, 71, 74, 75, 76, 78, 80, 81, 86, 88, 89,

90, 94, 95, 97, 98, 100, 103, 107, 110, 111, 114, 116, 118

CHAPTER 9. CONCLUSION 104

A.2 Distribution of Data

Table 2: memory block-Edge Storage Correspondence

memory Block No. Edge numbers in the order in which they are stored
1 0, 63, 126, 315, 378, 567, 1008, 6, 69, 321, 130, 193, 445, 1715, 1904, 581, 1777, 1903, 643, 1776, 12, 705,

1836, 1899, 198, 68, 131, 383, 1, 64, 316, 1045, 1108, 1171, 1234, 1297, 1486, 1801, 1595, 1721, 335, 1898,

260, 827, 1655, 1781, 521, 1593, 1782, 459, 1654, 1717, 1843, 1535, 1787, 212, 1897, 7, 889, 2, 254, 947, 618,

681, 744, 870, 933, 996, 1500, 1474, 1600, 88, 1653, 1716, 1842, 1107, 1170, 1296, 1594, 1909, 397, 1659,

1722, 1848, 1351, 1414, 1540, 1837, 136, 766, 192, 255, 507, 434, 497, 560, 686, 749, 938, 1316, 1475, 1727,

26, 926, 1052, 1619, 1051, 1114, 1240, 1413, 1476, 1665, 1534, 1660, 274, 1352, 1415, 1541, 1775, 1838, 74,

985, 1363, 1741, 372, 435, 498, 624, 687, 876, 1254, 1290, 1353, 1605, 803, 866, 1181, 865, 928, 991, 1046,

1109, 1235, 1536, 1599, 150, 1230, 1419, 1923, 986, 1175, 1679, 558, 810, 1377, 187, 250, 313, 502, 565,

754, 1195, 1228, 1291, 1480, 619, 682, 871, 804, 1119, 1560, 1113, 1176, 1302, 984, 1047, 1425, 1357, 1420,

1546, 680, 743, 932, 311, 374, 815, 125, 188, 251, 440, 503, 692, 1133, 1229, 1292, 1481, 620, 809, 1439,

742, 805, 1057, 864, 927, 990, 496, 559, 748, 1169, 1358, 1862, 373, 436, 625, 249, 312, 564

2 127, 190, 253, 442, 505, 694, 1135, 189, 252, 504, 195, 258, 510, 4, 67, 319, 1778, 1841, 77, 1840, 139, 769,

1839, 1902, 201, 9, 72, 324, 5, 257, 950, 65, 128, 191, 380, 443, 632, 1073, 1360, 1423, 1549, 1658, 1784,

524, 71, 134, 386, 1718, 1907, 584, 1656, 1719, 1845, 1780, 1906, 646, 1598, 1724, 338, 133, 196, 448, 3,

66, 129, 318, 381, 570, 1011, 807, 1122, 1563, 1537, 1663, 277, 1779, 15, 708, 1233, 1422, 1926, 1657, 1720,

1846, 1596, 1785, 462, 1477, 1603, 91, 1900, 10, 892, 1048, 1111, 1174, 1237, 1300, 1489, 1804, 623, 812,

1442, 1538, 1790, 215, 989, 1178, 1682, 988, 1366, 1744, 1539, 1602, 153, 1597, 1912, 400, 1478, 1730, 29,

1901, 263, 830, 621, 684, 747, 873, 936, 999, 1503, 561, 813, 1380, 1416, 1479, 1668, 929, 1055, 1622, 1054,

1117, 1243, 1172, 1361, 1865, 1662, 1725, 1851, 1293, 1356, 1608, 1049, 1112, 1238, 437, 500, 563, 689,

752, 941, 1319, 376, 439, 628, 1354, 1417, 1543, 745, 808, 1060, 867, 930, 993, 987, 1050, 1428, 1110, 1173,

1299, 1231, 1294, 1483, 806, 869, 1184, 375, 438, 501, 627, 690, 879, 1257, 314, 377, 818, 1355, 1418, 1544,

683, 746, 935, 868, 931, 994, 1116, 1179, 1305, 622, 685, 874, 1232, 1295, 1484, 499, 562, 751

3 320, 446, 509, 698, 824, 1454, 1832, 568, 631, 820, 630, 693, 882, 384, 447, 636, 382, 508, 886, 14, 518,

1589, 13, 76, 328, 75, 138, 390, 135, 261, 702, 259, 322, 385, 574, 763, 1393, 1771, 506, 569, 1514, 1612,

1738, 352, 1847, 1910, 209, 197, 323, 1331, 143, 332, 1025, 1908, 81, 1530, 205, 394, 1087, 1850, 23, 1409,

73, 199, 262, 514, 640, 1270, 1711, 444, 759, 1893, 1059, 1374, 492, 1726, 1789, 844, 267, 456, 1149, 1485,

1548, 414, 19, 271, 964, 1911, 147, 1470, 1666, 1729, 1855, 11, 137, 200, 452, 578, 1208, 1649, 1426, 229,

922, 875, 1064, 245, 1664, 1916, 1286, 1241, 1304, 1493, 1303, 43, 799, 1728, 783, 1224, 1786, 1849, 85,

1604, 1667, 722, 1301, 1364, 1427, 1553, 1616, 167, 860, 1188, 1251, 1818, 939, 1758, 183, 1794, 1920, 660,

1118, 1370, 614, 1180, 1432, 676, 1424, 1487, 1676, 1788, 906, 1347, 1545, 1734, 1041, 995, 1058, 1121,

1247, 1436, 1940, 554, 878, 1130, 59, 691, 817, 1636, 1606, 598, 1165, 997, 1879, 430, 1056, 1182, 1497,

1239, 1365, 105, 1362, 1488, 291, 1672, 1798, 538, 814, 877, 940, 1003, 1192, 1696, 121, 753, 816, 1068, 629,

755, 1007, 1607, 1859, 1103, 998, 1313, 368, 1120, 1183, 1309, 1242, 1557, 738, 937, 1126, 307, 1547, 476,

980

4 1017, 1080, 1143, 1206, 1269, 1458, 1773, 1202, 1391, 1895, 1324, 1387, 1513, 1323, 1386, 1512, 1329, 1392,

1518, 1201, 1264, 1453, 1085, 1148, 1274, 958, 1147, 1651, 957, 1335, 1713, 590, 653, 716, 842, 905, 968,

1472, 1141, 1330, 1834, 1262, 1325, 1577, 37, 289, 982, 776, 1091, 1532, 1079, 1142, 1268, 836, 899, 962,

837, 900, 963, 898, 1024, 1591, 406, 469, 532, 658, 721, 910, 1288, 1018, 1081, 1207, 1200, 1263, 1452,

1689, 1752, 1878, 592, 781, 1411, 1023, 1086, 1212, 36, 99, 351, 775, 838, 1153, 714, 777, 1029, 344, 407,

470, 596, 659, 848, 1226, 956, 1019, 1397, 103, 166, 418, 1694, 1757, 1883, 530, 782, 1349, 1871, 1934, 233,

1933, 295, 862, 468, 531, 720, 652, 715, 904, 159, 222, 285, 474, 537, 726, 1167, 41, 104, 356, 1629, 1944,

432, 1569, 1695, 309, 345, 408, 597, 1811, 47, 740, 1810, 1873, 109, 227, 290, 542, 591, 654, 843, 97, 160,

223, 412, 475, 664, 1105, 1688, 1751, 1877, 1571, 1634, 185, 1510, 1762, 61, 283, 346, 787, 1690, 1816, 556,

1812, 1938, 678, 1932, 42, 924, 165, 228, 480, 35, 98, 161, 350, 413, 602, 1043, 1570, 1822, 247, 1509, 1635,

123, 1448, 1511, 1700, 221, 284, 536, 1628, 1817, 494, 1750, 1939, 616, 1872, 171, 801, 1630, 1756, 370

5 579, 642, 768, 831, 1146, 1398, 1587, 765, 891, 1647, 887, 1328, 1769, 946, 1072, 1891, 945, 1134, 1638, 825,

888, 951, 949, 1012, 1390, 707, 770, 1022, 580, 1084, 1336, 457, 520, 583, 709, 961, 1213, 1528, 86, 149,

401, 826, 1267, 1519, 1010, 1136, 1451, 1864, 1927, 226, 272, 461, 1154, 764, 1205, 1709, 395, 458, 647, 333,

396, 585, 210, 273, 399, 525, 903, 1092, 1407, 28, 154, 595, 703, 829, 1459, 1074, 1578, 1830, 1437, 1815,

366, 25, 214, 1222, 519, 645, 1275, 1800, 288, 603, 334, 523, 1468, 148, 211, 337, 463, 841, 1030, 1345, 92,

911, 1163, 641, 704, 893, 1678, 40, 481, 1253, 1379, 119, 152, 278, 719, 1745, 296, 674, 1618, 1681, 736,

90, 216, 657, 24, 87, 276, 339, 780, 969, 1284, 1860, 411, 978, 1805, 419, 797, 1314, 1755, 243, 1443, 1884,

57, 30, 849, 1101, 1559, 1937, 110, 1558, 1621, 172, 1739, 164, 920, 1677, 1740, 1803, 1866, 102, 543, 858,

1861, 349, 727, 1499, 1562, 428, 1193, 1256, 1823, 1069, 1132, 1258, 1921, 535, 1039, 1375, 1438, 1564,

1623, 48, 552, 1617, 1743, 357, 1252, 1315, 1441, 1504, 1693, 1945, 181, 1799, 1925, 665, 1318, 1381, 1633,

1131, 1194, 1320, 1070, 1574, 1763, 1922, 473, 788, 1376, 1502, 305, 1498, 1876, 490, 1683, 234, 612

Continued on next page

CHAPTER 9. CONCLUSION 105

Table 2 – continued from previous page

memory block No. Edge Numbers and the order in which they are stored
6 391, 706, 832, 1210, 1273, 1462, 1525, 453, 894, 1272, 828, 1395, 1584, 1013, 1517, 1706, 883, 1009, 1576,

1071, 1575, 1827, 699, 1581, 1644, 760, 1075, 1516, 329, 644, 1211, 144, 522, 648, 1089, 1152, 1278, 1404,

268, 1339, 1465, 275, 464, 1157, 637, 952, 1456, 821, 1703, 1766, 478, 541, 730, 20, 398, 1028, 575, 890,

1457, 206, 710, 1151, 82, 460, 586, 1027, 1090, 1216, 1342, 336, 966, 1281, 217, 847, 1036, 1333, 1396, 1522,

948, 1137, 1641, 1248, 51, 240, 151, 340, 1033, 582, 771, 1401, 1863, 540, 855, 1917, 27, 279, 846, 909, 972,

1098, 526, 967, 1219, 1856, 155, 785, 515, 767, 1334, 1867, 355, 733, 1127, 1505, 1820, 89, 908, 1160, 107,

170, 422, 169, 232, 484, 1613, 1802, 1928, 416, 479, 668, 794, 213, 402, 1095, 600, 663, 852, 1742, 293, 671,

1440, 1881, 54, 1065, 1317, 1821, 93, 786, 975, 1433, 299, 425, 1684, 46, 487, 1554, 1680, 1806, 231, 294,

546, 609, 354, 417, 606, 1735, 1924, 601, 1310, 113, 302, 1004, 1382, 1760, 1321, 1699, 1951, 1795, 31, 724,

1501, 1942, 178, 1371, 237, 363, 1494, 1620, 1746, 45, 108, 360, 549, 1189, 1378, 1882, 1673, 791, 917, 1255,

1444, 1948, 1698, 1761, 1887, 1196, 1259, 1826, 662, 725, 914, 1565, 1943, 116, 1561, 1624, 175

7 266, 392, 1337, 1400, 1463, 1526, 1652, 454, 1399, 1714, 327, 516, 1461, 513, 576, 1521, 635, 761, 1580,

1639, 1702, 1828, 819, 1701, 1764, 573, 1707, 1896, 697, 1579, 1642, 80, 269, 1214, 1277, 1340, 1466, 1592,

18, 207, 1215, 142, 1276, 1402, 1031, 1094, 1220, 700, 1582, 1645, 758, 884, 1640, 604, 667, 856, 83, 1217,

1343, 638, 1520, 1835, 1611, 1674, 666, 729, 792, 918, 1044, 145, 1279, 1405, 21, 1155, 1533, 1918, 973,

1099, 451, 1585, 1774, 822, 1704, 1767, 1311, 114, 303, 1915, 970, 1096, 204, 330, 1338, 1492, 1555, 358,

421, 547, 610, 925, 1854, 1161, 1350, 1093, 1156, 1282, 1793, 1037, 1289, 389, 1460, 1523, 1552, 544, 607,

1190, 1946, 371, 971, 1034, 1412, 359, 485, 863, 1369, 1495, 235, 298, 361, 550, 802, 605, 731, 983, 1032,

1158, 1473, 1671, 789, 915, 482, 545, 734, 1125, 117, 495, 1002, 1128, 1947, 1857, 912, 1227, 173, 236, 488,

1308, 1434, 111, 174, 300, 426, 741, 420, 483, 672, 1614, 669, 795, 790, 853, 1168, 50, 176, 617, 1886, 1949,

248, 1825, 1888, 124, 850, 913, 976, 1249, 52, 241, 1246, 1372, 49, 112, 238, 364, 679, 1431, 297, 423, 1063,

55, 433, 1736, 728, 1106, 1066, 1885, 310, 1005, 1824, 186, 944, 1952, 62, 1733, 1796, 851, 1187, 179, 557

8 256, 571, 634, 823, 1705, 1768, 1894, 140, 203, 455, 202, 265, 517, 264, 1524, 1650, 387, 450, 639, 194, 572,

1643, 379, 757, 1765, 441, 756, 1890, 132, 762, 1833, 8, 449, 512, 701, 1583, 1646, 1772, 1844, 17, 1403, 270,

1341, 1467, 16, 79, 331, 1661, 1913, 1283, 70, 511, 1708, 317, 695, 1829, 1675, 793, 919, 146, 1280, 1406,

1905, 78, 141, 393, 1464, 1527, 1590, 1359, 1737, 981, 1783, 208, 1531, 84, 1218, 1344, 1792, 1162, 1225,

325, 388, 577, 633, 696, 885, 1185, 177, 555, 1852, 1159, 1348, 1115, 1367, 1430, 1556, 548, 611, 800, 1177,

1429, 673, 1791, 1035, 1287, 1723, 22, 1471, 1919, 974, 1100, 326, 1586, 1712, 1615, 670, 796, 1001, 56, 308,

1601, 1853, 1097, 992, 1244, 1307, 1496, 362, 551, 677, 1306, 424, 739, 1298, 1550, 857, 1914, 1221, 1410,

1482, 1797, 1104, 1490, 608, 923, 1062, 180, 369, 750, 1191, 246, 1542, 1731, 1038, 934, 1123, 1186, 1312,

115, 304, 493, 1245, 489, 615, 1491, 735, 861, 1236, 1551, 732, 1609, 916, 1042, 1373, 239, 365, 626, 1067,

122, 880, 943, 1006, 1669, 1732, 1858, 872, 1061, 1124, 1250, 53, 242, 431, 1435, 301, 427, 1053, 1368, 486,

811, 1000, 118, 1421, 1610, 854, 688, 1129, 184, 942, 1950, 60, 566, 881, 1889, 1670, 977, 1166

9 63, 64, 65, 66, 67, 69, 70, 71, 72, 75, 76, 77, 79, 81, 82, 87, 89, 90, 91, 95, 96, 98, 99, 101, 104, 108, 111,

112, 115, 117, 119, 64, 65, 66, 67, 68, 70, 71, 72, 73, 76, 77, 78, 80, 82, 83, 88, 90, 91, 92, 96, 97, 99, 100,

102, 105, 109, 112, 113, 116, 118, 120, 65, 66, 67, 68, 69, 71, 72, 73, 74, 77, 78, 79, 81, 83, 84, 89, 91, 92,

93, 97, 98, 100, 101, 103, 106, 110, 113, 114, 117, 119, 121, 66, 67, 68, 69, 70, 72, 73, 74, 75, 78, 79, 80, 82,

84, 85, 90, 92, 93, 94, 98, 99, 101, 102, 104, 107, 111, 114, 115, 118, 120, 122, 67, 68, 69, 70, 71, 73, 74, 75,

76, 79, 80, 81, 83, 85, 86, 91, 93, 94, 95, 99, 100, 102, 103, 105, 108, 112, 115, 116, 119, 121, 123, 68, 69,

70, 71, 72, 74, 75, 76, 77, 80, 81, 82, 84, 86, 87, 92, 94, 95, 96, 100, 101, 103, 104, 106, 109, 113, 116, 117,

120, 122, 124, 69, 70, 71, 72, 73, 75, 76, 77, 78, 81, 82, 83, 85, 87, 88, 93, 95, 96, 97, 101, 102, 104, 105,

107, 110, 114, 117, 118, 121, 123, 125

A.3 Generating the points of PG(5, GF (2))

The table gives the points of GF (26) generated via the primitive polynomial x6 +x+ 1.

CHAPTER 9. CONCLUSION 106

Index 1-D subspace

0 {0,1}

1 {0, x1}

2 {0, x2}

3 {0, x3}

4 {0, x4}

5 {0, x5}

6 {0, x1 + 1}

7 {0, x2 + x}

8 {0, x3 + x2}

9 {0, x4 + x3}

10 {0, x5 + x4}

11 {0, x5 + x1 + 1}

12 {0, x2 + 1}

13 {0, x3 + x}

14 {0, x4 + x2}

15 {0, x5 + x3}

16 {0, x4 + x1 + 1}

17 {0, x5 + x3 + x2}

18 {0, x3 + x2 + x+ 1}

19 {0, x4 + x3 + x2 + x}

20 {0, x5 + x4 + x3 + x2}

21 {0, x5 + x4 + x3 + x+ 1}

22 {0, x5 + x4 + x2 + 1}

23 {0, x5 + x3 + 1}

24 {0, x4 + 1}

25 {0, x5 + x1}

26 {0, x2 + x1 + 1}

27 {0, x3 + x2 + x1}

28 {0, x4 + x3 + x2}

29 {0, x5 + x4 + x3}

30 {0, x5 + x4 + x+ 1}

31 {0, x5 + x2 + 1}

Index 1-D subspace

32 {0, x3 + 1}

33 {0, x4 + x}

34 {0, x5 + x2}

35 {0, x3 + x+ 1}

36 {0, x4 + x2 + x}

37 {0, x5 + x3 + x2}

38 {0, x4 + x3 + x+ 1}

39 {0, x5 + x4 + x2 + x}

40 {0, x5 + x3 + x2 + x+ 1}

41 {0, x4 + x3 + x2 + 1}

42 {0, x5 + x4 + x3 + x}

43 {0, x5 + x4 + x2 + x+ 1}

44 {0, x5 + x3 + x2 + 1}

45 {0, x4 + x3 + 1}

46 {0, x5 + x4 + x}

47 {0, x5 + x2 + x+ 1}

48 {0, x3 + x2 + 1}

49 {0, x4 + x3 + x}

50 {0, x5 + x4 + x2}

51 {0, x5 + x3 + x+ 1}

52 {0, x4 + x2 + x}

53 {0, x5 + x3 + x}

54 {0, x4 + x2 + x+ 1}

55 {0, x5 + x3 + x2 + x}

56 {0, x4 + x3 + x2 + x+ 1}

57 {0, x5 + x4 + x3 + x2 + x}

58 {0, x5 + x4 + x3 + x2 + x+ 1}

59 {0, x5 + x4 + x3 + x2 + 1}

60 {0, x5 + x4 + x3 + 1}

61 {0, x5 + x4 + 1}

62 {0, x5 + 1}

Table 3: Points of PG(5,GF(2))

References

[1] Noga Alon. Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory.

Combinatorica, 6(3):207–219, 1986.

[2] John B. Anderson and Mohan Seshadri. Source and Channel Coding: An Algorithmic

Approach. Kluwer Academic Publishers, 1991.

[3] Alexander Barg and Gilles Zemor. Error Exponents of Expander Codes. IEEE

Transactions on Information Theory, 48(6):1725–1729, 2002.

[4] Yeow Meng Chee and San Ling. Highly Symmetric Expanders. Finite Fields and

Their Applications, 8(3):294 – 310, 2002.

[5] Tom Hoholdt and Heeralal Janwa. Optimal Bipartite Ramanujan Graphs from Bal-

anced Incomplete Block Designs: Their Characterizations and Applications to Ex-

pander/LDPC Codes. International Symposium on Applied Algebra, Algebraic Algo-

rithms and Error-Correcting Codes, pages 53–64, 2009.

[6] Tom Hoholdt and Jorn Justensen. Graph Codes with Reed-Solomon Component

Codes. International Symposium on Information Theory, pages 2022–2026, 2006.

[7] http://www.ecma-international.org/. Standard ECMA-130: Data Interchange on

Read-only 120 mm Optical Data Disks (CD-ROM), 1996.

[8] http://www.ecma-international.org/. Standard ECMA-267: 120 mm DVD - Read-

Only Disk, 2001.

[9] Xilinx Inc. Reed-Solomon Decoder v7.0 Datasheet. http://www.xilinx.com/

support/documentation/ip_documentation/rs_decoder.pdf, 2009.

107

http://www.xilinx.com/support/documentation/ip_documentation/rs_decoder.pdf
http://www.xilinx.com/support/documentation/ip_documentation/rs_decoder.pdf

REFERENCES 108

[10] ISO,International Organization for Standardization, and IEC, International Elec-

trotechnical Commission. ISO/IEC 23912:2005, Information technology 80 mm

(1,46 Gbytes per side) and 120 mm (4,70 Gbytes per side) DVD Recordable Disk

(DVD-R), 2005.

[11] Narendra Karmarkar. A New parallel architecture for sparse matrix computation

based on finite projective geometries. Proceedings of Supercomputing, 1991.

[12] Michael Sipser and Daniel Spielman. Expander Codes. IEEE Transactions on Infor-

mation Theory, 42(6):1710–1722, 1996.

[13] Wikipedia. Disc Storage Devices. http://en.wikipedia.org/wiki/Disk_storage,

2010.

[14] Gilles Zemor. On Expander Codes. IEEE Transactions on Information Theory,

47(2):835–837, 2001.

http://en.wikipedia.org/wiki/Disk_storage

	Abstract
	List of Tables
	List of Figures
	Introduction
	Previous work
	Linear Codes
	Expander Codes
	Expander Graphs
	Construction of Expander Codes
	Good Expander Codes
	RS Codes as Good Component Codes
	Good Expander Graphs
	PG Graphs as Ramanujan Graphs
	Advantages of Using PG Graphs

	Background Information
	Zemor's Construction of Expander Codes
	Decoding Algorithm
	Error Correction

	ECMA-130: The CD-ROM Standard
	Main steps of Encoding
	Cross Interleaved Reed-Solomon Code
	Main steps of Decoding

	Projective Space over Finite Fields

	Detailed Description of Code Construction
	Code Construction
	Performance of Code for Random Errors
	Performance of Code for Burst Errors
	A side note on Encoding

	Derivation of Bound for Random Errors
	Introduction
	Propositions
	Vector Space Representation of Geometry
	Cardinalities Related to PG(5,GF(2))
	Related Proofs
	Important Lemmas
	Main Proofs

	An Eigenvalue Based approach for getting

	Applications
	Application to CD-ROM
	Scheme 1
	Scheme 2

	Application to DVD-R
	Present DVD-R Error correction blocks
	Analysis of Error Correction in DVD-R
	A New ECC Scheme for DVD-R

	Possibility of Building Other Expander-like Codes
	Choice of Projective Space
	Choice of RS Code

	Detailed Design Description of Hardware Prototyping
	Construction of the Graph
	Recapitulation of Decoding Algorithm
	Decoder Implementation Strategy 1
	Decoder Implementation Strategy 2
	Interconnect of Decoder
	Folding the Interconnect

	Memory Block Design
	RS Decoder Design
	Control Path Design
	1st State Machine
	2nd State Machine
	3rd State Machine

	Multiplexers used in Control Path
	Schedule for Decoder Iteration
	Detailed Decoding Process
	A modification to include Erasures
	Performance Modeling and Analysis
	Results of Implementation on the board

	Folding of PG based point-hyperplane graphs
	Introduction
	Description of the Computations
	Folding computations for PG(5,GF(2)) - Propositions
	Proofs

	Generalization to PG(m,GF(q))

	Conclusion
	Future Work
	Appendix
	The Graph used for the decoder
	Distribution of Data
	Generating the points of PG(5,GF(2))

	Bibliography

