Implementation and Analysis of Stereo Vision
Algorithms for different FPGAs

Dual Degree-Project Stage 1

by

T Yashwant Kumar
Roll No: 15D070056

under the guidance of

Prof. Sachin Patkar

Department of Electrical Engineering
Indian Institute of Technology, Bombay
Mumbai - 400076.

2019

Abstract

Perception of the environment is the key component for any task in the robotics or any
industrial automation. For this, one have to precisely map the objects in the 3D space for
the bot to be able to interact with them. Extracting this accurate depth information of
the surrounding is possible through some sensors like LIDAR(Light Detection and Rang-
ing), Time of Flight sensor or a Stereo Camera. One of the most popular approach is via
computation of disparity-map of images obtained from Stereo Camera. This work discusses
a low power, high performance implementation of the complete system on an FPGA which
computes the disparity image using images captured from a Stereo Camera and generates
a 3D Map. Semi Global Matching (SGM) method is a popular choice for good accuracy
with reasonable computation time. To use such compute-intensive algorithms for real-time
applications such as for autonomous aerial vehicles, blind Aid, etc. acceleration using GPU,
FPGA is necessary. We discuss here the design and implementation of a stereo-vision sys-
tem, which is based on FPGA-implementation of More Global Matching(MGM)[7]. MGM
is a variant of SGM. We use 4 paths but store a single cumulative cost value for a corre-
sponding pixel. Our stereo-vision prototype uses Zedboard / PYNQ / Ultrad6 containing an
ARM-based Zyng-SoC, ZED Stereo Camera / ELP Stereo Camera. The power consumption
attributed to the custom FPGA-based acceleration of disparity map computation required
for depth-map is 0.72 watt on Zedboard. The update rate of the disparity map is realistic
10 fps on Zedboard / PYNQ and 16 fps on Ultra96 .

Contents

Abstract i

List of Figures iv

1 Introduction 1

2 Literature Review 2

2.1 SGM . . . e 2

2.2 MGM 3

3 Hardware architecture and Implementation 5

3.1 System Design. 5

3.2 Undistortion and Rectification[22] 6

3.3 SGM Block Architecture 7

3.4 HLS Implementation 9

3.5 Hardware Setup 10

3.6 PYNQ Application Overview 10

4 Simulation and Results 16

4.1 Experimental Results and evaluation 16

4.2 Hardware Utilization and Update Rate comparison across FPGA’s 19

4.2.1 Zedboard 21

4.2.2 AES-ULTRA96-V2-G 21

4.2.3 ZCUI0A e 22

4.3 3D Map visualization using Octomap 22
4.4 Stereo Visual Odometry Application using Disparity form FPGA on PYNQ

board 23

5 Conclusion and Future Work 29

5.1 Conclusion 29

5.2 Future Work 29

6 Appendix 30

6.1 PYNQ Application code 30

6.2 SGM HLS code 32

6.3 Cross-compiling opencv for Arm 40

i

6.4 Cross-compiling octomap for Arm 40
6.5 Cross-compiling userspace application executable for a C++ program. 41

Bibliography 42

7 Publications 44

1ii

List of Figures

2.1

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

4.1
4.2

4.3
4.4
4.5
4.6
4.7
4.8
4.9

Grouping of Paths in MGM L.

Block diagram[21]
Remap operation[22]
Four neighbour paths considered for SGM[21]
SGM Cost Computation. Steps involved in calculating the disparity for the
current pixel.
SGM Array Updation[21].
Section wise division of images for parallel processing[21]

Hardware setup L
PYNQ Application block diagram

SGM results on Middlebury images L.
Qualitative Comparison of our results with some of the Middlebury data set.
1st Row contains the Left Raw Images, 2nd Row contains the ground truth
of the corresponding Images and 3rd Row contains the Output of our Imple-
mentation.o
SGM results on ZED camera image
Scene and disparity image on exported VGA monitor
% Utilization of the systems in different boards
HLS performance estimates for different boards
Octree Visualization of a ground truth disparity
Complete 3D view of an example image using octree
Couple of images from Data set for Odometry(taking right turn)

4.10 Path generated by the Stereo Visual Odometry for 2000 images

iv

Chapter 1

Introduction

For mapping of environment although 2D and 3D LIDARs (Light Detection and Ranging
Sensors) provided accuracy, they did not succeed with the economics of power and bill of
materials for portable goods. Stereo cameras cost less, but need a lot of computational
processing, and this aspect is getting good attention of research community , spurring the
development of FPGA and GPU based acceleration of stereo-vision related computation.
The low power consumption of fpga-based solutions are attractive and crucial for high per-
formance embedded computing too.

This idea of stereo matching is similar to the way we perceive the surroundings with our
eyes. Our brain receives 2 views from 2 eyes with a lot of similarities in them but with few
differences, of which the linear shift in a particular object corresponds to the information of
the how far the object is from us. The objects closer will have a higher shift and the objects
far from us will have less.

This work describes our design and implementation of a real-time stereo depth estimation
system with Zedboard / PYNQ / Ultra96 (housing ARM-SoC based FPGA) at its center.
This system uses Zed stereo camera[16] or ELP stereo-camera for capturing images. Real-
time Raster-Respecting Semi-Global Matching[6] (R3SGM) with MGM[7] at its core along
with Census Transform are used for disparity estimation. The system takes in real-time
data from the cameras and generates a depth image from it. Rectification of the images,
as well as stereo matching, is implemented in the FPGA[22] whereas capturing data from
USB cameras and controlling the FPGA peripherals is done via application programs which
run on the hard ARM processor on Zedboard. Development of the FPGA IP’s is done using
High-Level Synthesis (HLS) tools.

Chapter 2

Literature Review

There has been a lot of research on the topic of disparity map generation dating back to
1980s. [8] reviews most of the works including both software and hardware implementations.

A binocular Stereo Camera estimates disparity or the difference in the position of the pixel
of a corresponding location in the camera view by finding similarities in the left and right
image. There have been various costs governing the extent of the similarity. Some of them
are Sum of Absolute Differences(SAD), Sum of Squared Differences(SSD), Normalized Cross-
Correlation and the recent Rank Transform and Census Transforms. They are window-based
local approaches where the cost value of a particular window in the left image is compared
to the right image window by spanning it along a horizontal axis for multiple disparity
ranges. The window coordinate for which the metric cost is the least is selected which gives
us the disparity for that corresponding center pixel. From the disparity, the depth value is
computed by equation 2.1 where the baseline is the distance between the optical centers of
two cameras and uses focal length of the camera.

Depth = Baseline x (Focal Length) /disparity (2.1)

Local window-based approaches suffer when the matching is not reliable which mostly hap-
pens when there are very few features in the surrounding. This results in the rapid variations
of the disparities owing to a less accurate map. This problem is solved by global approaches
which use a smoothing cost to penalize wide variations in the disparity around a pixel and try
to propagate the cost across various pixels. The following are some of the global approaches.

2.1 SGM

SGM is a stereo disparity estimation method based on global cost function minimization.
Various versions of this method (SGM, SGBM, SGBM forest, MGM) are still among the
top-performing stereo algorithm on Middlebury datasets. This method minimizes the global
cost function between the base image and match image and a smoothness constraint that
penalizes sudden changes in neighboring disparities. Mutual information between images,
which is defined as the negative of joint entropy of the two images, is used in the paper[3]
as a distance metric. Other distance metrics can also be used with a similar effect as has
been demonstrated with census distance metric in our implementation. Since we already
had a Census Implementation[21], we used it for our SGM implementation. The Hamming

2

2.2 MGM

Distance returned by Census stereo matching is used as the matching cost function for
SGM. The parameters for Census are window size 7x7, disparity search range 92. The image
resolution is 640x480.

Simple census stereo matching has a cost computation step in which for a particular pixel
we generate an array of costs (Hamming distances). The length of this array is equal to the
disparity search range. The next step is cost minimization in which the minimum of this
array (minimum cost) is computed and the index of the minimum cost is assigned as disparity.
In SGM, an additional step of cost aggregation is performed between cost computation and
cost minimization. The aggregated cost for a particular pixel p for a disparity index d is
given by equation 2.2.

L.(p,d) = C(p.d) + min(L,(p — r,d),

L.(p—r,d—1)+ P,
Ly(p—r,d+1)+ P, (2.2)

min;(L,(p — r,i) + P»))

—ming(L,.(p — r,k))

For each pixel at direction r, the aggregated cost is computed by adding the current cost and
minimum of the previous pixel cost by taking care of penalties as shown in Equation 2.2.
First-term C(p, d) is the pixel matching cost for disparity d. In our case, it is the Hamming
distance returned by Census window matching. It is apparent that the algorithm is recursive
in the sense that to find the aggregated cost of a pixel L. (p,), one requires the aggregated
cost of its neighbors L/ (p—r,). P, and P, are empirically determined constants. For detailed
discussion refer to [3].

2.2 MGM

As SGM tries to minimize the cost along a line it suffers from streaking effect. When
there is texture less surface or plane surface the matching function of census vector may
return different values in two adjacent rows but due to SGM, the wrong disparity may get
propagated along one of the paths and can result in streaking lines.

MGM]|7] solves this problem by taking the average of the path cost along 2 or more paths
incorporating information from multiple paths into a single cost. It uses this result for the
next pixel in the recursion of Equation 2.2. The resultant aggregated cost at a pixel is then
given by the Equation 2.3

Ly(p,d) = C(p.d) +1/n > (min(L(p — x,d),

we{rn}
L.(p—z,d—1)+ P,
L.(p—x,d+1)+ Py,

min;(L.-(p — z,i) + P»))
—ming(L.(p — x, k)))

(2.3)

2.2 MGM

where n has the value depending on the number of paths that we want to integrate into the
information of single cost. For example, in Figure 2.1a two paths are grouped into 1 so n
has value 2 and there are a total of 4 groups. Thus we need to store 4 cost vectors in this
case and while updating 1 cost value in the center pixel have to read cost vector of the same
group from 2 pixels. Lets say r = 1 for blue boxes group in Figure 2.1a, while updating
the L, for this group of the centre pixel in Equation 2.3 we have x as left and top pixels.
Similarly it can be understood for our implementation2.1b where n = 4 and only 1 group of
4 paths is used resulting in only 1 vector to be stored. From here on SGM refers to MGM
variant of it.

(a) MGM in General (b) Our Implementation

Figure 2.1: Grouping of Paths in MGM

Chapter 3

Hardware architecture and
Implementation

3.1 System Design

Figure 3.1 shows an overview of the implemented system. Using the Processing System(ARM)
raw images are captured through USB. Cameras used in this system transmit video feed
through Universal Video Class(UVC). For the ELP camera the 2 images left and right
stream in 2 different video ports i.e. video0 and videol on the board which is connected to
a single USB2.0 bus. Because of capturing 2 images at 2 different times there is synchroni-
sation problem and we compare the left frame with right frame captured few milli seconds
later. This causes a slight decrement in the accuracy of the disparity image. Zed camera
transmits the left and right images in a single stitched frame which removes the issue of
synchronisation between the frames. For an image with resolution of 640*480 it transmits
a frame of 1280*480 through a single video feed videoO where left half of the frame is left
image and vice versa.

We store these images into some location of the DRAM. Rectification of the stored
images is then done to remove the distortion effect due to the wide angle lens. [22] has
implemented a hardware IP for rectification. This has been used to rectify the ELP camera
images. Rectification uses ReMap Matrices to compute the transform. These matrices are
computed offline for once by calibration functions of opencv library using a checker board.
The resultant 2 matrices for 2 images respectively are read from a .yml file and stored into
the reserved space in dram. This Rmap data is used by the ReMap IP and it stores the
computed Rectified images back in the DRAM. For Zed camera the rectification is done in
the Application program itself on ARM processor. For this Remap function of OpenCV is
used.

These rectified images are read by the SGM block which computes the disparity image
and stores the result. The VGA peripheral continuously displays the data read from the
location where Depth Image is stored. Data transfer between FPGA and DRAM is done
using AXI protocol where the IPs are configured to be as master axi. The PS takes care of
the memory read write requests from the IP and also initates the peripherals to start the
computation.

The resolution of images is fixed to 640x480 and cameras are configured accordingly.

3.2 Undistortion and Rectification[22]

' ZED-BOARD —> AXlbus
, Left Rmap Reserved space in DDR !
FPGA !
" 2 :
E - Remap > > > > :
y [Raw Rectified SGM Depth Image VGA | !
' Image Images .
: » Remap > > > > !
: £ v ¥ |
" Right Rmap Octomap i
EEm==——- '"""'"""""'""'"""""'"'E..'..'..'..'..'..'..'..'..'..'..'..'..'..'L'..'..'..'.TL'..'..'..'.: """""" !
O O : Host PC i
; : § VGA
Octovis | Monitor
Stereo Camera
... —

Figure 3.1: Block diagram|21]

Each pixel is stored as an eight-bit number. The metric used to profile the computation
times of different peripherals and also the cameras is fps (frames per second). From here on
a frame means 640x480 pixels.

We could have skipped storing the rectified images and passed the output of the Remap
peripheral directly to the stereo matching peripheral. We chose not to do this because our
performance is not limited by memory read-write but by the FPGA peripherals themselves.
We use the AXI4 protocol to perform memory read-write. The read-write rates are 3 orders
of magnitude greater than the compute times of FPGA peripherals.

3.2 Undistortion and Rectification[22]

Stereo camera calibration and rectification (one time step) is done using the OpenCV library.
Calibration and rectification process produces distortion coefficients and camera matrix.
From these parameters, using the OpenCV library, two maps are generated, one for each
camera. Size of a map is the same as image size. Rectified images are built by picking
up pixel values from raw images as dictated by the maps. The map entry (i,j) contains a
coordinate pair (x, y); and the (i, j) pixel in the rectified image gets the value of the pixel
at (x, y) from the raw image. x and y values need not be integers. In such a case, linear
interpolation is used to produce final pixel value. Figure 3.2 shows the remap operation with
4 neighbour bilinear interpolation.

On-chip memory is limited in size, and it is required by the stereo-depth hardware module.
So, we store the maps generated during calibration and rectification in system DDR. The
map entries are in fixed-point format with five fractional bits. Captured images are stored
in DDR too. The hardware module iterates over the maps, and builds up the result (left and
right) images by picking pixels from raw images. Note that, while the maps can be read in a

3.3 SGM Block Architecture

(x0,¥0) p_top (xot1 , yot1) Rectixy)
A B — | '

p_final

(xp,Yyo+1)! p_bottom (xg+1,yp+1)
c D

Original Image Rectified Image

Figure 3.2: Remap operation|22]

streaming manner, the random-access is required for reading the raw images. For fractional
map values, bilinear interpolation (fixed point) is performed. Resulting images are stored
back in DDR. As this hardware module has to only - "read maps and raw images pixels
from DDR, perform bilinear interpolation, and store the pixels back”, it needs less than 5%
resources of the Zynq chip.

3.3 SGM Block Architecture

In Census implementation we scan using row-major order through every pixel in the image
and perform stereo matching. Thus for the SGM implementation built upon this, we consider
only four neighbors for a pixel under processing as shown in red in Figure 3.3. This is done
because we have the required data from neighbors along these paths. The quality degradation
by using 4 paths instead of 8 paths is 2-4%[4]. Figure 3.4 shows the implemented SGM
architecture. The aggregated cost for all paths and disparity indices of one row above the
pixel (full row not shown in figure) and the left adjacent pixel of the current pixel are depicted
as columns of colour yellow, red, blue and green for paths top left, top, top right and left
respectively.We store the resultant accumulated cost which is computed using Equation 2.3.
4 Paths have been used by grouping them into single information as shown in Figure 2.1b.
Thus in Equation 2.3 our n value is 4 and r has a single value for a pixel. The Census metric
cost is stored in an 8bit unsigned char so the total size of memory occupied by the cost is given
as Sizeof RowCostArray = (ImageWidth) = (DisparityRange) * (Noof PathGroups) =
640 %« 92 x 1 = 57.5KB.

Minimum cost across disparity search range is computed once and stored for the above row
and left adjacent pixel. These scalar quantities are shown as small boxes of the same color.
Since the minimum cost values are accessed multiple times, storing the minimum values
instead of recomputing them every time they are required saves a lot of computations. The
pixels in the row above the current pixel can be either top-left, top or top-right neighbors
of the current pixels. Hence costs along the left path (green columns) are not stored for the

3.3 SGM Block Architecture

h 4

L

v

Figure 3.3: Four neighbour paths considered for SGM[21]

row above the pixel. Figure 3.4 also shows the data required and the steps for computing
the aggregated cost for a certain pixel considering all the 4 paths. Smoothing term(2nd part
in the RHS of Equation 2.3) along all paths are summed up to obtain a sum cost which
has to be divided by n(4). Since division is resource-intensive hardware we use left a shift
by 2 to divide by 4. Then the resulting value is added with the current hamming distance
(Ist part in the RHS of Equation 2.3). An upper bound is applied to the sum cost. The
index of the minimum of this modified sum cost is the disparity for this pixel. The costs
for all disparities are stored as they will be required for future pixels of the next row. The
minimum cost across the disparity search range is also computed and stored for all paths.

Figure 3.5 shows the data structures used for storing the costs and the algorithm for
updating them as we iterate over pixels. The cost_row structure has dimensions- image
columns, path groups and disparity search range. It stores the costs for one row above the
current pixel for all paths and disparity indices. The cost_left structure has dimensions-
path groups and disparity search range. It stores the cost for the left adjacent pixel of the
current pixel for all paths and disparity indices. As shown in Figure 3.5 the current pixel
under processing is at row 6 column 20. It requires data from its 4 neighbors: row 5 column
19, row 5 column 20, row 5 column 21 and row 6 column 19.To generate data for current pixel
we use the data of cost_left and 3 pixel vectors of cost_row. As we compute the disparity
for this pixel and also performing the housekeeping tasks of generating the required data, we
update the structures as shown in Figure 3.5. The data from cost_le ft is moved to the top-
left neighbour of the current pixel in cost_row. The top left pixel cost data is not required
anymore and hence is not stored. After this update is done, the currently generated data is
moved into cost_left.

Pixels at the top, left and right edge of the image are considered to have neighbors with
a maximum value of aggregated cost. As SGM cost aggregation step is a minimization
function, they are effectively ignored. The cost_row and cost_left structures are initialized
to a maximum value before the stereo matching process. This initialization has to be done
for every frame.

3.4 HLS Implementation

3.4 HLS Implementation

High-level Synthesis(HLS) platform such as Vivado HLS (from Xilinx) facilitates a suitably
annotated description of compute-architecture in high level language like C or C4++ | which
it converts to a low-level HDL based description of the same computing architecture. The
generated VHDL or Verilog code is then synthesized to target fpgas. We have used Vivado
HLS tools provided by Xilinx to convert our C implementation to HDL and package it to
an IP for further use. The code is attached in the Appendix. The structure of HLS stereo
matching code is as follows.

void stereo_matching _function (){

for (int row=0; row<IMGHEIGHT; row++) {
for (int col=0; col<IMG.WIDTH; col++) {
//Reading pixel from DDR through AXI4
protocol in row—major order
//Shifting the Census Match window in
the left and right blocks
for (int d=0; d<SEARCHRANGE; d++) {
//Match 1_window with r_window [d]
//Update the min cost index
//Add the necessary output to the cost
row and cost left vectors
}

//write disparity image pixel to DDR
}

}

}

There are no operations between the row and col loop, hence they can be effectively
flattened into a single loop. The plan was to pipeline the merged row-column loop. Thus
resulting in increase of frame rate by disparity range times if the pipeline throughput had
been 1. However the resources in fpga device on Zedboard are not enough to permit the
pipelining of row column loop. Hence, only the search range loop was pipelined. The arrays
used in the implementation have been partitioned effectively to reduce the latency. Based
on the availability of Hardware resources we have divided the whole image into sections and
disparity of each section is computed in parallel. It was observed that a frame rate of 2.1 fps
is obtained with the most used resource being Block RAM (BRAM) 17%. The time required
for processing one frame for such an implementation can be given as

T < no. of rows X no. of columns x (3.1)
(search range + pipeline depth) '

The characteristic of this implementation is that the logic synthesized roughly corre-
sponds to the matching of two Census windows, the cost aggregation arithmetic and on-chip
memory to store data for the next iterations. As we sequentially iterate over rows, columns
and disparity search range we reuse the same hardware. Thus, the FPGA resources required
are independent of the number of rows, columns and search range but computation time

3.5 Hardware Setup

required is proportional to these parameters as shown by equation 3.1. This gives us the
idea to divide the images into a number of sections along the rows and process the sections
independently by multiple such SGM blocks. As the most used resource is BRAM at 17%,
we can fit 5 such SGM blocks with each block having to process 5 sections of the image i.e.
128 rows in parallel. Thus we increase resource usage 5 times and reduced the time required
for computation by the same resulting in 10.5 fps.

One flaw to this approach is that if we divide the input image into exactly 5 parts, there
will be a strip of width window size at the center of the disparity image where the pixels
will be invalid. The solution to this is that the height of each section is image_height/5 +
window_size/2. This is shown in Figure 3.6 for an example of 2 sections.

3.5 Hardware Setup

Figure 3.7a shows the hardware setup for zedboard. The Zed camera is connected to a USB
2.0 port of the Zedboard. The Zedboard is booted with petalinux through SD card. The
only other connections to Zedboard are the connection to VGA display and power.

Figure 3.7b shows the hardware setup for Ultra96. The Zed camera is connected to a
USB 3.0 port of the Ultra96. The Ultra96 is booted with PYN(Q OS[18] through SD card. As
the PYNQ OS has a display running, we can connect the board to a VGA monitor through
the UDP port using a UDP to VGA converter or we can export the screen using ssh -XC. As
the Ultrascale+ SOC comes with a GPU the display doesn’t seem to have much computation
trouble.

3.6 PYNQ Application Overview

PYNQ stands for python productivity for ZYNQ. This library has been developed to ease the
development of an embedded system consisting of an accelerated function on a programmable
logic(FPGA) specifically for Zynq and Zynq Ultrascale + devices without having to use
ASIC-style design tools to design programmable logic circuits. The Hardware developer has
to first develop the IP for the programmable logic. Programmable logic circuits are presented
as hardware libraries called overlays. These overlays are analogous to software libraries.
Using this PYNQ library we can write the bitstream to FPGA and interact with IP as an
application programming interface (API). It provides the IP to a software developer as an
python function. So once the overlay has been designed it can be used in any application.
PYNQ provides a Python interface to allow overlays in the PL to be controlled from Python
running in the PS.

A software engineer can select the overlay that best matches their application. In our
case SGM computation is being done on the FPGA so whenever there is need for disparity
image the python function for SGM is called with parameters being left and right images and
this starts the computation on the Programmable Logic and returns the disparity matrix.
An overlay usually includes:

e A bitstream to configure the FPGA fabric

e A Vivado design Tcl file to determine the available TP

10

3.6 PYNQ Application Overview

e A Vivado Hardware Handoff file (.hwh) to determine the base address of the Peripherals
being used.

e Python API that exposes the IPs as attributes

Figure 3.8 shows the block diagram of the python application being run on the PYNQ
/ Ultra96 board to process the real time images from Zedcamera in PL and display the
disparity images. In Figure3.8 the blocks with blue colour use PYNQ library functions to
either configure the hardware or to do the communication between PS(Processing System)
and PL(Programmable Logic) and the blocks with pink colour use functions from OpenCV
library. Reprint of the application Code is attached in the Appendix.

11

3.6 PYNQ Application Overview

d+i —
d —

¢1 = m L
min.

N

\ | Hamming Distance
from Census

1\ 1 [Window Matching

|@| + D

|

Sum Cost ——<<2 (Divide by 4)

Figure 3.4: SGM Cost Computation. Steps involved in calculating the disparity for the
current pixel.

12

3.6 PYNQ Application Overview

Before Update
Current Pixel : Row 6 Col 20

row 6 rowb rowb row 5 row 5 row 5
col17 col18 col 19 col 20 col 21 col 22
cost_row
row 6 row 6
col 19 col 20
cost_left
Updating
,,.—-'-'‘—'---.*
L~

cost_row (
first update this\—/

cost_left \j
then update this

After Update
Current Pixel : Row 6 Col 21

row 6 rowb6 rowb row 5 row 5 row 5
col 18 col 19 col 20 col 21 col 22 col 23

cost_row

row 6 row 6
col 20 col 21

cost_left

Figure 3.5: SGM fgray Updation[21].

3.6 PYNQ Application Qverview

T window size ! 2

Input Image E Disparity Image

T window size / 2

Input Image Section 1 Disparity Image Section 1

Input Image Section 2 Disparity Image Section 2

Input Image Section 1 Input Image Section 1 |:||:> Disparity Image Section 1

Input Image Section 2 Input Image Section 2 :E:> Disparity Image Section 2

Figure 3.6: Section wise division of images for parallel processing[21]

Ultra96-V2

E£XUNX o

(a) Zedboard (b) Ultra96

Figure 3.7: Hardware setup

14

3.6 PYNQ Application Overview

Import libraries of
PYMNQ, OpenCV

l

Initialize the
overlay with the
desired
bitstream

Initialize the

frames

v

A
P .
-~ Capture -
< Frame From ~€—

, -
Qame r@

S

Rectify the Raw,
Images

A

Create Arrays o store
the raw, rectified and
disparity images along
with the remap data

Copy the Rectifies
Images to the
reserved space

.

-~ O

Allocate a
reserved space
in the DRAM to
be used by the

PL

l

Start the PL
peripheral and
wait till it
computes

Write the physical
address of Rectified
Images and Disparity

Images to the IP
offset registers

Display the
isparity using
) i

Figure 3.8: PYNQ Application block diagram

Chapter 4

Simulation and Results

4.1 Experimental Results and evaluation

The obtained frame rate for the implemented system is 10.5 fps with Zedboard running
at 100 MHz. The Power consumption of the computation which is performed in FPGA is
0.72W whereas the on-chip arm processor which is being used to capture the images and
start the FPGA peripherals along with the ELP stereo-camera consumes 1.68 watt , thereby
raising power consumption to 2.4W. A 10mf2, 1W current sense resistor is in series with
the 12V input power supply on the Zedboard. Header J21 straddles this resistor to measure
the voltage across this resistor for calculating Zedboard power[10]. The resource usage is
summarized in Table 4.1. It is observed that the BRAM utilization is the most. This is due
to storing large cost arrays.

BRAM | DSP FF LUT | LUTRAM

Utilization 132 65 | 39159 | 37070 981
Available 140 220 | 106400 | 53200 17400
% Utilization | 94.3 29.5 | 36.8 69.6 5.64

Table 4.1: Resource utilization for the entire design in Zedboard

The algorithmic performance can be measured by percentages of erroneous disparities
with respect to ground truths on the Middlebury test images. A 5 pixel tolerance is consid-
ered due to intensity variation caused by changing resolution of raw image. The percentage
of erroneous disparities for different images is summarized in Table 4.2. It is notable that
no post processing has been done on the SGM output.

Figure 4.1 shows the software and hardware implementation results on Teddy image
from Middlebury 2003 dataset[5]. Figure 4.1c-d show the results of an inhouse software
implementation of SGM and Figure 4.1e shows the result of the hardware implementation.
It can be observed that SGM with 8 paths gives the best results. SGM with 4 paths in
software gives slightly better results than the hardware implementation. The difference
in results is due to the fact that the way the algorithm is implemented in software and
hardware is different. Figure 4.1f shows the SGM disparity image with cost_row and cost_le ft
initialized to zero. Since the cost aggregation function is minimization function, the zeros

16

4.1 Experimental Results and evaluation

T TR

(a) Left image (b) Ground truth

A
A%
3 "

L
oo § < Ry ek
roasr - =

(d) SGM 8 paths software

i sl 3 o

(e) SGM 4 paths hardware (f) SGM with arrays ini-
tialized to zeros

Figure 4.1: SGM results on Middlebury images

from the arrays propagate to further pixels. The trickle down effect causes the degradation
of the disparity image. Similar results with frame rate around 8.3 fps were also achieved
by an inhouse GPU implementation of SGM on Jetson TK1 board which is of MAXWELL
architecture with 256 cores and power consumption < 10 watts. This implementation is
analyzed and optimized by using OpenMP for multi-threading and AVX (Advanced Vector
Extension) registers for vectorization. GPU shared memory is used to reduce the global
memory access. CUDA shuffle instructions are used to speed-up the algorithm and vector
processing is also applied.

Fig 4.3 shows the captured image and the corresponding disparity image obtained using
the SGM implementation.

Figure 4.2 shows the qualitative comparison or our results with Middlebury data set.
We can see that the objects placed near are not accurate this is because we have used the
disparity range of 92 pixels and so it is not able to find a match in the corresponding left and
right images. Thus for a better accuracy, disparity range can be increased with the trade-off
being update rate as the pipeline latency will increase. Table 4.3 shows the comparison of
hardware utilization between our approach and [6] which shows this implementation uses
much lesser Hardware Resources and thus having less power consumption. Furthermore, if
we were to use fpga used in [6], we would have far more liberty with resources that can be

17

4.1 Experimental Results and evaluation

Figure 4.2: Qualitative Comparison of our results with some of the Middlebury data set. 1st
Row contains the Left Raw Images, 2nd Row contains the ground truth of the corresponding
Images and 3rd Row contains the Output of our Implementation.

18

4.2 Hardware Utilization and Update Rate comparison across FPGA’s

Image | SGM
Teddy 11
Dolls 17
Books 20
Moebius 20
Laundry | 27
Reindeer | 27
Art 30

Table 4.2: Percentage error of disparity image pixels as compared to ground truth for Mid-
dlebury images

& (o ol
> o W
3 Z
3 o
Vayr - ;
3 ;i

(a) Left image classroom (b) SGM disparity image
classroom

Figure 4.3: SGM results on ZED camera image

leveraged to further pipeline the design and obtain another order of speedup. However we
have focused on very low power consumption as well as small form factor that is necessary
for drones vision, blind aid etc. We compare the results of our implementation in different
FPGAs in the next section.

Figure 4.4 shows the corresponding disparity image using an exported display on a VGA
monitor. The camera can be seen on the left side of the image.

BRAMISK | DSP | FF LUT | Frame Rate | Power (Approx)

Ours 132 65 | 39159 | 37070 10.5 0.72W
6] 163 - 153000 | 109300 72 3W

Table 4.3: Comparison of FPGA Hardware Resources(Approx) and power consumption
between our approach and [6]

4.2 Hardware Utilization and Update Rate compari-
son across FPGA’s

The Pseudo-code for the SGM IP synthesised using Vivado HLS is as follows with loops
labelled for a better understanding of the HLS results.

19

4.2 Hardware Utilization and Update Rate comparison across FPGA’s

Figure 4.4: Scene and disparity image on exported VGA monitor

void stereo_matching_function (){
initl ,2: //Initializing the cost matrices to a mazr value
Ll:for(int row=0; row<IMGHEIGHT; row++) {
L2:for (int col=0; col<IMGWIDTH; col++) {
//Reading pizel from DDR through AXI] protocol in row—major order
//Shifting the Census Match window in the left and right blocks
sgm_compute: for (int d=0; d<SEARCHRANGE; d++) {
//Match l_window with r_window [d]
//Update the min cost index
//Add the mecessary output to the cost row and cost left wvectors
}
//write disparity image pizel to DDR
}
}
}

The loops L1 and L2 have been flattened into a single loop L1_12 as there is no logic in
between them. We now have a scope to pipeline 2 loops:

e Loop L1.L2 with range of the total number of pixels in the image. For 640x480
resolution we have loop size 307200.

e Loop sgm_compute with range as the total possible disparities or the search range in
the image. In our case its value in 91.

Current Frame rates for the following boards Zedboard and Ultra96 are 10.5 , 16 fps respec-

20

4.2 Hardware Utilization and Update Rate comparison across FPGA’s

tively tested on the hardware and for ZCU104 the estimated frame rate of the synthesised
design is 84 fps.

4.2.1 Zedboard

Zedboard an evaluation board for Xilinx Zyng-7000 SoC. It comes with FPGA part number
XC77020-CLG484-1 and Dual-core ARM Cortex-A9 MPCore. For the efficient utilization of
the resources on zedboard only the sgm_compute loop has been pipelined, scheduling every
next disparity computation for a particular pixel after 1 cycle. This can be seen in Figure
4.6a where sgm_compute initiation interval is 1. Based on the resource utilization we divided
the image into 5 sections which are processed in parallel. Table 4.4 contains the resource
utilization for 5 SGM IP’s along with 2 ReMap IP’s and a VGA peripheral. The Latency
of the SGM block is 9394590 cycles for a 100MHz clock(Figure 4.6a). This computes to a
frame rate of 10.5 fps.

BRAM | DSP FF LUT | LUTRAM
Utilization 132 80 39159 | 37070 2681
Available 140 220 | 106400 | 53200 17400
% Utilization | 94.3 | 36.36 | 36.8 69.6 15.51

Table 4.4: Resource utilization for the entire system on Zedboard

4.2.2 AES-ULTRA96-V2-G

Ultra96 is an ARM-based, Xilinx Zynq UltraScale+ MPSoC development board based on
the Linaro 96Boards specification. It comes with FPGA part number xczu3eg-sbvad84-1-e.
Loop L1_L2 has been pipelined considering there are more number of LUTs available on this
board. From Figure 4.6b it can be seen that the initiation interval of loop L1 1.2 is 17 cycles
compared to the zedboard case Figure 4.6a which has L1_L2 latency o f around 140 cycles.
This shows an improvement of 8 times. It could not achieve the target pipeline initiation
interval of 1 cycle because of the Limited Read-Write ports of the Block Ram. A search
range of 64 has been used for this and the following board. From the execution latency of
5288791 cycles for 100MHz clock we get a frame rate of 18 fps. From the resource utilization
Table 4.5 of ultra96 we can see that maximum utilized resource is LUT which is 53.9%. So
Unlike for the zedboard where we divided the image into 5 sections here we could not do
that. While this design is tested on board the result was not as expected 18 fps but was
less. The reason could be the wrong estimation of HLS by not considering the memory read
write cycles to DRAM correctly. The design explained in section 4.2.1 was also tested on
the ultra96 but with 9 sections instead of just 5 as was the case on zedboard owing to more
resources in the former. This gave 16 fps on realtime input images from zedcamera. One
should note that as we increase the number of sections the accuracy of the disparity image
gets reduced as now the smoothness cost is propagated only to a lesser part of the image.

21

4.8 3D Map visualization using Octomap

BRAM FF LUT | LUTRAM
Utilization 73.5 14240 | 38030 971
Available 216 141120 | 70560 28800
% Utilization 34 10.09 | 53.9 3.37

Table 4.5: Resource utilization on Ultra96

4.2.3 7ZCU104

The ZCU104 is also a Zynq UltraScale+ MPSoC device development board which comes with
FPGA part number XCZUTEV-2FFVC1156 and a quad-core ARM Cortex-A53 applications
processor. The HLS implementation for this board is similar to that of Ultra96 with loop
L1_L2 pipelined. The difference is in this board 5 sections were able to fit. So the estimated
latency of the single section has reduced to 1150784 cycles(Figure ??) achieving a frame rate
of 84 fps.

BRAM FF LUT | LUTRAM

Utilization 367.5 | 58393 | 193402 2605
Available 912 548160 | 274080 | 144000
% Utilization | 40.3 10.65 | 70.56 1.81

Table 4.6: Resource utilization on ZCU104

4.3 3D Map visualization using Octomap

Octomap library has been used to convert the disparity image to point cloud. It has a tree
data structure with each node having 8 child nodes. So the volume cube is subdivided into
8 parts and based on the depth each part is further divided into 8 sub-parts and so on. The
inputs of the program being the origin of the point cloud which is the current pose of camera
and the real co-ordinates of each pixel(X,Y,Z) . A program has been written to generate the
real co-ordinates of each pixel(X,Y,Z) computed using the Equation 4.1,4.2,4.3 where p,q are
the corresponding row and columns and the remaining parameters were obtained through
calibration file and passed to the octomap library. This library has been cross compiled for
ARM processor and has been tested on Zedboard as well as PYNQ board. Point cloud file
is computed on board and the file is visualized using octovis program on a host computer.

Figure 4.7 shows a computed point cloud and its visualization of an online ground truth
disparity image.

Figure 4.8 show the computation of the disparity image and the resulting 3d point cloud
on the zedboard visualized using octovis on a host computer.

X(p,q) = (p — Optical Center_X) = Z(p,q)/(Focal Length) (4.1)
Y (p,q) = (¢ — Optical Center YY) x Z(p,q)/(Focal Length) (4.2)
Z(p,q) = Depth(p, q) = Baseline x (Focal Length)/disparity (4.3)

22

4.4 Stereo Visual Odometry Application using Disparity form FPGA on PYNQ board

Loy e LT+ 54%
LUTRAM A 15% WM 3%
FF 37%
BRAM 1 94% FF-J 10%
DSP o 36% BRAM A 34%
10 7% BUFGY 2%
BUFGH1 3% | | | |
g = == =is - 0 25 30 75 100
Utilization (%) Utilization (%)
(a) Zedboard (b) Ultra96
LT 1%
LUTRAM 4 296
FF - 11%
BRAM - 0%
BUFGy 2%
IIIIIIIIZIEIIIIISII:IIIIIT"'ISIIII1IIIII0IIIII
Utilization (%)
(c) ZCU104

Figure 4.5: % Utilization of the systems in different boards

4.4 Stereo Visual Odometry Application using Dispar-
ity form FPGA on PYNQ board

In order to test the disparity computation on hardware an example application of Stereo
Visual odometry was choosen. Given a series of images taken by a stereo camera, stereo
visual odometry is able to give the location or the pose of the camera for the corresponding
image taken.

2000 Stereo Images from kitti dataset were used on PYNQ board with disparity image
being generated on the programmable logic and the pose estimation being computed on
ARM processing system by a code implemented in python. The reference project was taken
from [20]. This project uses opencv disparity generation function but we need to use the
disparity using our custom FPGA solution. This has been implemented using PYNQ overlay
methodology and the updated code is in the following github link. Main file is in src/SVO.py

Couple of images which were used are attached in the Figure 4.9 for reference.

https://github.com/temburuyk/Stereo-visual-odometry.git

23

4.4 Stereo Visual Odometry Application using Disparity form FPGA on PYNQ board

Product family: zynq
Targetdevice: xc7z020clg484-1

Performance Estimates

= Timing (ns)

Summary

= Latency (clock cycles)

& Summary
Latency Interval
min max min max | Type

8947990 9394590 8947991 9394591 none
B Detail

Instance

8 Loop
Latency Initiation Interval

Loop Name min max Iteration Latency achieved target Trip Count Pipelined
-init1 79361 79361 2560 - - Ell no
+init1.1 852 852 4 - - 213 no
+init1.2 852 852 4 - - 213 no
+init1.3 852 852 4 - - 213 no
-init2 426 426 2 - - 213 no
-l 8868200 9314800 139~146 - - 63800 no
+5gm_compute 94 94 7 1 1 89 yes

(a) Zedboard

Product Family: zynquplus
Target device: xczu9eg-ffvb1156-2-i

Performance Estimates

= Timing (ns)

Product family: zynquplus
Target device: xczu3eg-sbvad84-1-e

Performance Estimates

= Timing (ns)

E Summary
Clock Target Estimated Uncertainty
ap_clk 10.00 8.75 1.25
= Latency (clock cycles)
E Summary
Latency Interval
min max min max Type

5288790 5288790 5288791 5288791 none
& Detail

Instance

£ Loop
Latency
Loop Name min max
-init1 82048 82048
+init1.1 1280 1280
-init2 640 640
-l 5206097 5206097

Initiation Interval

1282 -

(b) Ultra96

E Summary
Clock Target Estimated Uncertainty
ap_clk 10.00 8.75 1.25
= Latency (clock cycles)
B Summary
Latency Interval
min max min max Type

1150784 1150784 1150785 1150785 none

B Detail

Instance

£ Loop
Latency
Loop Name min max
init1 65737 65737
852 852
+init1.2 1066 1066
+init1.3 1066 1066
-init2 426 426
-L1_L2 1084616 1084616

Initiation Interval

2988 - - 22
4 - - 213

5 - - 213

5 - - 213

2 - - 213

34 7 1 63800

(c) ZCU104

Iteration Latency achieved target Trip Count Pipelined

no
no
no
no
no
yes

Iteration Latency achieved target Trip Count Pipelined

- 64 no
- 640 no
- 640 no
17 1 306240 yes

Figure 4.6: HLS performance estimates for different boards

24

4.4 Stereo Visual Odometry Application using Disparity form FPGA on PYNQ board

(a) Online Ground Truth disparity Image (b) 3D View(Lateral Inversion

Figure 4.7: Octree Visualization of a ground truth disparity

25

4.4 Stereo Visual Odometry Application using Disparity form FPGA on PYNQ board

U St N
(a) Raw Left Image (b) Disparity Image computed on zedboard

(c¢) 3D Map Visualization (Lateral Inversion)

Figure 4.8: Complete 3D view of an example image using octree

26

4.4 Stereo Visual Odometry Application using Disparity form FPGA on PYNQ board

Figure 4.9: Couple of images from Data set for Odometry(taking right turn)

27

4.4 Stereo Visual Odometry Application using Disparity form FPGA on PYNQ board

Figure 4.10: Path generated by the Stereo Visual Odometry for 2000 images

28

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The hardware implementation of the MGM|7] which is a variant of SGM[3] on Zedboard[10]
/ PYNQ / Ultra96 an FPGA-ARM based SOC inspired by R3SGM[6] has been presented.
In order to reduce the memory consumption, we have grouped 4 paths- left, top left, top,
and top right, whose pixel data are available while processing as a result of row-major order
streaming process. The efficient utilization of hardware resources resulted in a low power
consumption of 0.72W for data processing on FPGA that computes the Rectification and
disparity Map generation and with 1.68W for data acquisition from Cameras along with
starting the peripherals using the on board ARM processor achieving an update rate of
10.5Hz with a good accuracy as was shown in Table4.2 and Figure4.2. This system is highly
suitable to be used in micro UAVs, blind Aids or any portable types of equipment with a
small form factor and high power constraints.

5.2 Future Work

e Implementation of Iterative Closet Point(ICP) Algorithm is to be done in order to
stitch the continuous 3D map being generated by the disparity images.

e After doing a literature review on current Stereo Visual Odometry algorithms a suitable
FPGA implementation is to be implemented for a better performance which will use
the disparity images computed by the current system.

e Try to incorporate SLAM after completing the above tasks.

29

Chapter 6

Appendix

6.1 PYNQ Application code

from pynq import Overlay
from pynq import Xlnk
import numpy as np
import cv2

import cffi

IMG_WIDTH =640
IMG_HEIGHT =480
SECTIONS =10

SECTION_HEIGHT =(int) ((IMG_HEIGHT-2+FILTER_OFFS)/SECTIONS)
DISP_IMG_HEIGHT =SECTIONS*SECTION_HEIGHT

BYTES_PER_PIXEL =1

TOTAL_BYTES =DISP_IMG_HEIGHT*IMG_WIDTH*BYTES_PER_PIXEL
ADDRESS_OFFSET =int (TOTAL_BYTES/SECTIONS)

image_size = int (IMG_WIDTH+IMG_HEIGHT)

ZED_IMAGE_WIDTH =1344

ZED_IMAGE_WIDTH_2 = int(ZED_IMAGE_WIDTH/2)

ZED_IMAGE_HEIGHT =376

This will write the bitstream to the FPGA
overlay = Overlay('path_to_.bit_file')

#Being used to convert FPGA accessable memory to np array
ffi = cffi . FFIQ

#Initialize the frame capture of zedcamera connected to USB2.0
capl = cv2.VideoCapture(0)

#Initializing the arrays to be used for Image frames
imagel = np.zeros((ZED_IMAGE_HEIGHT,ZED_IMAGE_WIDTH) ,dtype=np.ubyte)

30

6.1 PYNQ Application code

imager = np.zeros((ZED_IMAGE_HEIGHT,ZED_IMAGE_WIDTH) ,dtype=np.ubyte)
rectified_left = np.zeros((ZED_IMAGE_HEIGHT,ZED_IMAGE_WIDTH) ,dtype=np.ubyte)
rectified_right = np.zeros((ZED_IMAGE_HEIGHT,ZED_IMAGE_WIDTH),dtype=np.ubyte)
buffer_left = np.zeros((IMG_HEIGHT,IMG_WIDTH),dtype=np.ubyte)

buffer_right = np.zeros((IMG_HEIGHT,IMG_WIDTH) ,dtype=np.ubyte)

fs_left = cv2.FileStorage(\

"left_cam.yml_file", cv2.FILE_STORAGE_READ)
fs_right = cv2.FileStorage(\

"right_cam.yml_file", cv2.FILE_STORAGE_READ)
left_rmap0 = fs_left.getNode("rmap0") .mat()
left_rmapl = fs_left.getNode("rmapl") .mat()
right_rmap0 = fs_right.getNode("rmap0") .mat()
right_rmapl = fs_right.getNode("rmapl") .mat ()

#Prints all the IP names in the PL bitstream
print (overlay.ip_dict.keys())
SGM_GreyCost_0 = overlay.SGM_GreyCost_0O

#sgm offset registers

inL_offs = SGM_GreyCost_0.register_map.inL.address
inR_offs = SGM_GreyCost_0.register_map.inR.address
outD_offs = SGM_GreyCost_0.register_map.outD.address
CTRL_reg_offset = SGM_GreyCost_0.register_map.CTRL.address

#0bject to be created to use a reserved memory space on DRAM for PL
xlnk = Xlnk()

BufferSize = 0x0500000
Image_buf = xlnk.cma_alloc(BufferSize, data_type = "unsigned char")

#converts c data object to python memory readable object
Img_py_buffer = ffi.buffer(Image_buf,BufferSize)
Image_buf_phy_addr = xlnk.cma_get_phy_addr (Image_buf)

#Mapping the left and right images to the buffer space
LeftImg = np.frombuffer(Img_py_buffer, dtype=np.ubyte, \

count = image_size,offset = Oximage_size) .reshape ((IMG_HEIGHT,IMG_WIDTH))
RightImg = np.frombuffer(Img_py_buffer, dtype=np.ubyte, \

count = image_size,offset = 1ximage_size).reshape((IMG_HEIGHT,IMG_WIDTH))
#Mapping the dispartiy images to the buffer space
disp_im_buffer = np.frombuffer(Img_py_buffer, dtype=np.ubyte, \

count = image_size,offset = 2ximage_size) .reshape ((IMG_HEIGHT,IMG_WIDTH))

#Writing the pointer locations of the input images to the IP offset registers

31

6.2 SGM HLS code

SGM_GreyCost_0.write(inL_offs,Image_buf_phy_addr+0O*image_size)
SGM_GreyCost_0.write(inR_offs,Image_buf_phy_addr+l*image_size)
SGM_GreyCost_0.write(outD_offs, Image_buf_phy_addr+2+image_size)

#Continously capturing images and sending the
#frames for computation of disparity inm PL

count = O
while(count < 5000):
#print (count)

count = count +1
ret, framel = capl.read()
image = cv2.cvtColor(framel, cv2.COLOR_BGR2GRAY)
imagel [0:ZED_IMAGE_HEIGHT,0:ZED_IMAGE_WIDTH_2] \
= image [0:ZED_IMAGE_HEIGHT,0:ZED_IMAGE_WIDTH_2]
imager [0:ZED_IMAGE_HEIGHT,O:ZED_IMAGE_WIDTH_2] \
= image[0:ZED_IMAGE_HEIGHT,ZED_IMAGE_WIDTH_2:ZED_IMAGE_WIDTH]
rectified_left = cv2.remap (imagel, left_rmapO,\
left_rmapl, cv2.INTER_LINEAR)
rectified_right = cv2.remap (imager, right_rmapO,\
right_rmapl, cv2.INTER_LINEAR)
buffer_left [0:ZED_IMAGE_HEIGHT,0:640] \
= rectified_left [0:ZED_IMAGE_HEIGHT,0:IMG_WIDTH]
buffer_right [0:ZED_IMAGE_HEIGHT,0:640] \
= rectified_right [0:ZED_IMAGE_HEIGHT,O:IMG_WIDTH]
np.copyto(LeftImg,buffer_left)
np.copyto(RightImg,buffer_right)
#Starting the peripheral
SGM_GreyCost_8.write(CTRL_reg_offset,0b00000001)
cv2.imshow('disparity',disp_im_buffer)
cv2.waitKey (1)

#Freeing up reserved memory space and turntg off the camera feed
capl.release()
x1lnk.cma_free(Image_buf)

6.2 SGM HLS code

#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <stdio.h>
#include <hls_stream.h>
#include <ap_azi_sdata.h>
#include "ap_int.h"

32

6.2 SGM HLS code

using namespace std;

#define FILTER_SIZE 7
#define FILTER_OFFS int (FILTER_SIZE/2) //4

#define SECTIONS 5

#define IP_IMG_HEIGHT 480

#define IMG_HEIGHT (int ((IP_IMG_HEIGHT-2*FILTER_OFFS)/SECTIONS)

+ 2+FILTER_OFFS);
//480-2%4 = 472 is the full op img height
//As it ts divisible by SECTIONS, <t can be divided into
//integer no. of sections.
//To avotd top-bottom discontinuities we read FILTER_OFFS
//no of rows at top and bottom

#define IMG_WIDTH 640
#define SEARCH_RANGE IMG_WIDTH/77 //Searching 1/10 of timage width
#define X (FILTER_SIZE)* (FILTER_SIZE)

#define SMALL_PENALTY 2
#define LARGE_PENALTY 20

#define PATHS 4
#define MAX_COST 127 [/ 2x*T - 1
#define MAX_SUM 1023 // 2%%x10 - 1

typedef ap_uint<8> cost_t;
typedef ap_uint<8> sum_t;
typedef unsigned char pix_t;

cost_t census_incremental(pix_t windowL[FILTER_SIZE] [FILTER_SIZE],
pix_t windowR [FILTER_SIZE] [FILTER_SIZE]);

sum_t cost_along_path(sum_t mfd_cost_d, sum_t mfd_cost_dminus,
sum_t mfd_cost_dplus, sum_t mfd_cost_min);

sum_t min(sum_t varl, sum_t var2, sum_t var3, sum_t var4);

void SGM_GreyCost(pix_t* inL,pix_t* inR,pix_t* outD)
{

#pragma HLS INTERFACE m_azi port=inL offset=slave
#pragma HLS INTERFACE m_azi port=inR offset=slave
#pragma HLS INTERFACE m_azt port=outD offset=slave
#pragma HLS INTERFACE s_azilite port=return

cost_t ham_dist [SEARCH_RANGE] ;

short int row, col;

33

6.2 SGM HLS code

pix_t disparity;

pix_t windowL [FILTER_SIZE] [FILTER_SIZE];

// sliding window

#pragma HLS ARRAY_PARTITION wvariable=windowL complete dim=0
pix_t windowR[FILTER_SIZE] [FILTER_SIZE];

// sliding window

#pragma HLS ARRAY_PARTITION wvariable=windowR complete dim=0

pix_t right_colL[FILTER_SIZE];
// right-most, incoming column
pix_t right_colR[FILTER_SIZE];
// right-most, incoming column

static pix_t line_bufferL [FILTER_SIZE] [IMG_WIDTH];

// line-buffers

#pragma HLS ARRAY_PARTITION wariable=line_bufferL complete dim=1
static pix_t line_bufferR[FILTER_SIZE] [IMG_WIDTH];

// line-buffers

#pragma HLS ARRAY_PARTITION wvariable=line_bufferR complete dim=1

pix_t windowR_shift [FILTER_SIZE] [FILTER_SIZE];
// sliding window
#pragma HLS ARRAY_PARTITION wariable=windowR_shift complete dim=0

J/RRkkk ARk KKk * k%% DEFINED FOR SGM kkokokk kKKK KKK KKK KKK KKK NSNS SK KKK KKK))
#pragma HLS ARRAY_PARTITION wariable=cost_row cyclic factor=1 dim=1

sum_t min_cost_row[IMG_WIDTH] ;
//#pragma HLS ARRAY_PARTITION variable=min_cost_row cyclic factor=3

//initialize cost_row to maxzimum 7 bit number
initl:for(int i=0; i<SEARCH_RANGE; i++)

{
#pragma HLS unroll factor=3
for(int j=0; j<IMG_WIDTH; j++)
{
#pragma HLS unroll factor=3
cost_row[j] [i] = MAX_SUM;
}
X

//initialize min_cost_row
init2:for(int j=0; j<IMG_WIDTH; j++)
{

34

6.2 SGM HLS code

#pragma HLS unroll factor=3
min_cost_row[j] = MAX_SUM;

sum_t cost_left [SEARCH_RANGE] ;

//stores modified cost for left adjacent pizel

#pragma HLS ARRAY_PARTITION wvariable=cost_left complete
//#pragma HLS RESOURCE wvariable=cost_left core=RAM_2P_BRAM

sum_t min_cost_left;
//stores min cost for left adjacent pizel

sum_t cost[4] ,testl1=0 ;
sum_t min_cost,path_cost;
#pragma HLS ARRAY_PARTITION wvariable=cost complete dim=1

sum_t sum_cost;
sum_t min_sum_cost;
sum_t buffer_col_1_cost[SEARCH_RANGE] ;
#pragma HLS RESOURCE wariable=buffer_col_1_cost core=RAM_Z2P_BRAM
#pragma HLS ARRAY_PARTITION wariable=buffer_col_1_cost complete
//inttialize cost_left
for(int i=0; i<SEARCH_RANGE; i++)
{
#pragma HLS unroll
cost_left[i] = MAX_SUM;

min_cost_left = MAX_SUM;
min_cost = MAX_SUM;

L1: for(row = 0; row < IMG_HEIGHT; row++)
{
L2: for(col = 1; col < IMG_WIDTH-1; col++)
{
//printf("row Zd col Zd\n",row,col);
#pragma HLS loop_flatten
//#pragma HLS pipeline II=1
//initialize all to mazimum, as min is computed on the fly
min_sum_cost = MAX_SUM;

pix_t winning disp=1;

for(unsigned char ii = 0; ii < FILTER_SIZE-1; ii++)
{

35

6.2 SGM HLS code

#pragma HLS unroll
right_colL[ii]=1line_bufferL[ii] [col]=1ine_bufferL[ii+1] [col];
right_colR[ii]=1ine_bufferR[ii] [col]l=1ine_bufferR[ii+1] [col];

pix_t pix_1 = inL[row*IMG_WIDTH+(col)];

right_colL[FILTER_SIZE-1] = line_bufferL[FILTER_SIZE-1][col] = pix_1;
pix_t pix_r = inR[row*IMG_WIDTH+(col)];
right_colR[FILTER_SIZE-1] = line_bufferR[FILTER_SIZE-1][col] = pix_r;

//Shift from left to right the sliding window to make Toom for the ne
for(unsigned char ii = 0; ii < FILTER_SIZE; ii++)

{
#pragma HLS unroll
for(unsigned char jj = 0; jj < FILTER_SIZE-1; jj++)
{
#pragma HLS unroll
windowL[ii] [jj] = windowL[ii] [jj+1];
windowR[ii] [jj] = windowR[ii] [jj+1];
b
+
for(unsigned char ii = 0; ii < FILTER_SIZE; ii++)
{
#pragma HLS wunroll
windowL [ii] [FILTER_SIZE-1] = right_colL[ii];
windowR[ii] [FILTER_SIZE-1] = right_colR[ii];
+

//Taking a copy of right window into local window
for(unsigned char ii=0;ii<FILTER_SIZE;ii++)

{
#pragma HLS unroll
for(unsigned char jj=0;jj<FILTER_SIZE;jj++)
{
#pragma HLS unroll
windowR_shift[ii] [jjl=windowR[ii] [jj];
b
+

sum_t top_left_d_prev,top_left_d,top_left_d_forw;
sum_t top_d_prev,top_d,top_d_forw;

sum_t top_right_d_prev,top_right_d,top_right_d_forw;
sum_t left_d_prev,left_d,left_d_forw;

top_left_d_prev = cost_row[0] [col-1];

36

6.2 SGM HLS code

top_left_d = cost_row[1] [col-1];
top_right_d_prev = cost_row[0] [col+1];
top_right_d = cost_row[1] [col+1];
top_d_prev = cost_row[0] [col];

top_d = cost_row[1] [col];

left_d_prev = cost_left[0];

left_d = cost_left[1];

//sum_t buffer_col_1_cost[SEARCH_RANGE] ;

sgm_compute:for (int d = 1; d < SEARCH_RANGE-1; d++)

{

cost_row[col-1] [d] left_d;
top_left_d_forw = cost_row[col-1][d+1];
top_right_d_forw = cost_row[col+1][d+1];
top_d_forw = cost_row[col] [d+1];
left_d_forw = cost_left[d+1];

#pragma HLS pipeline II=1

ham_dist[d] = census_incremental(windowL, windowR_shift);
//returns Hamming Distance

cost[0] = cost_along_path(top_left_d, top_left_d_prev,
top_right_d_forw , min_cost_row[col-1]);

cost[1] = cost_along_path(top_d, top_d_prev, top_d_forw,
min_cost_row[col]);

cost[2] = cost_along_path(top_right_d, top_right_d_prev,
top_right_d_forw, min_cost_row[col+1]);

cost[3] = cost_along_path(left_d, left_d_prev, left_d_forw,
min_cost_left);

top_left_d_prev = top_left_d;
top_left_d = top_left_d_forw;
top_right_d_prev = top_right_d;
top_right_d = top_right_d_forw;
top_d_prev = top_d;

top_d = top_d_forw;

left_d_prev = left_d;
left_d = left_d_forw;

//sum up costs along all paths
path_cost = (cost[0] + cost[1] + cost[2] + cost[3]);

37

6.2 SGM HLS code

sum_cost = ham_dist[d] + (path_cost)>>2;

//Impose upper limit on sum
if (sum_cost > PATHS*(MAX_COST + LARGE_PENALTY))
{

//printf("greater cost \n");

sum_cost = PATHS*(MAX_COST + LARGE_PENALTY);

//MGM takes the sum cost as the comparing cost
//after updating top left, update left
cost_left[d] = sum_cost;

//find minimum sum cost
if (sum_cost < min_sum_cost)

{
min_sum_cost = sum_cost;
winning disp = d;
}
for(unsigned char ii = 0; ii < FILTER_SIZE; ii++)
{
#pragma HLS unroll
for(unsigned char jj = FILTER_SIZE-1; jj >0; jj—-)
{
#pragma HLS unroll
windowR_shift[ii] [jj] = windowR_shift[ii] [jj-1];
+
b
for(unsigned char ii = 0; ii < FILTER_SIZE; ii++)
{
#pragma HLS unroll
windowR_shift[ii] [0] = line_bufferR[ii] [(col)-(d)-FILTER_SIZE];
b

}Y//loop_sad_compute
if (row >= FILTER_OFFS && row < (IMG_HEIGHT-FILTER_OFFS))
outD [(row-FILTER_OFFS) *IMG_WIDTH + col] = winning_disp;

//update top left
min_cost_rowl[col-1] = min_cost_left;

//after updating top left, update left
min_cost_left = min_sum_cost;

38

6.2 SGM HLS code

Y//L2
}Y//L1

// cout << endl;
}Y//function

cost_t census_incremental (pix_t windowL [FILTER_SIZE] [FILTER_SIZE],

{

/7

pix_t windowR[FILTER_SIZE] [FILTER_SIZE])

#pragma HLS inline

pix_t left_center = windowL[FILTER_OFFS] [FILTER_OFFS];
pix_t right_center = windowR[FILTER_OFFS] [FILTER_OFFS];
cost_t cost = 0;

ap_uint<X> hd,census_vectorL,census_vectorR = 0;
int hd=0;
for(unsigned char i=0; i<FILTER_SIZE; i++)
{
#pragma HLS wunroll
for(unsigned char j=0; j<FILTER_SIZE; j++)
{
#pragma HLS unroll
#pragma HLS loop_flatten

census_vectorL[i*FILTER_SIZE + j] =
(windowL[i] [j] > left_center)?1:0;

census_vectorR[i*FILTER_SIZE + j] =
(windowR[i] [j] > right_center)?1:0;

hd = census_vectorl ~ census_vectorR;

for(short int k=0; k<FILTER_SIZE+FILTER_SIZE; k++)

{
#pragma HLS unroll

cost += hd[k];

return cost;

sum_t cost_along_path(sum_t mfd_cost_d, sum_t mfd_cost_dminus,

39

6.3 Cross-compiling opencuv for Arm

sum_t mfd_cost_dplus, sum_t mfd_cost_min)

{
#pragma HLS inline
return min(mfd_cost_d, mfd_cost_dminus + SMALL_PENALTY, \
mfd_cost_dplus + SMALL_PENALTY, mfd_cost_min + LARGE_PENALTY)
- mfd_cost_min;
}
sum_t min(sum_t varl, sum_t var2, sum_t var3, sum_t var4)
{
#pragma HLS inline
cost_t wval, val2, val3;
val2 = (varl < var2) 7 : var2;
val3 = (var3 < var4) 7 : vard;
val = (val2 < val3) 7 : val3;
return val;
}

6.3 Cross-compiling opencv for Arm

Note that this is required only for Zedboard with petalinux but for PYNQ / Ultra96 the OS
image comes with pre installed Opencv Libraries.

$] mkdir opencv_setup

$] cd opencv_setup

$] # Download zip file from https://github.com/opencv/opencv.git

$] unzip opencv-master.zip

$] mkdir build

$] cd build

$] export PATH=$PATH:/opt/Xilinx/petalinux-v2017.1/tools/linux-i386/gcc-arm-linux-g

$] cmake -DCMAKE_TOOLCHAIN_FILE=../opencv-master/platforms/linux/arm-gnueabi.toolch
. ./opencv-master/

$] make

$] make install

$] 1s install

We used opencv version 4.0.1, which was latest at the time of setup.
Above process generates opencv libraries in install/1ib/ directory.
6.4 Cross-compiling octomap for Arm

The below procedure is for Zedboard for running the binary in petalinux. For PYNQ /
Ultra96 it has a pre installed GCC compiler so we just need to copy the copy the project
folder from below mentioned link and use cmake to build.

40

6.5 Cross-compiling userspace application executable for a C++ program.

$] mkdir octomap_setup

$] cd octomap_setup

$] # Download zip file from https://github.com/temburuyk/octomap.git
$] unzip octomap.zip

$] mkdir build_arm

$] mkdir -p platforms/linux

$] cp path-to-opencv-master/platforms/linux/* platforms/linux/

$] source /opt/Xilinx/petalinux-v2017.1/settings.sh

$] cd build_arm

$] cmake -DCMAKE_TOOLCHAIN_FILE=../platforms/linux/arm-gnueabi.toolchain.cmake \
-DBUILD_OCTOVIS_SUBPROJECT=0FF -DBUILD_DYNAMICETD3D_SUBPROJECT=0FF \
-v -DOpenCV_DIR=path-to-opencv-master/build_arm ../

$] cmake ..

$] make

$] make install

$] 1s install

Above process generates octomap binary files in /bin directory. File dep_image_to_bt_single_image
in bin folder converts disparity image to point cloud which is written into .bt file. This file

can be copied to a local workstation and can be visualized using octovis. Please note that

we have to export the opencv install path in the board so that octomap uses the shared
libraries. Below are the command to be run on the board

#Export the opencv library path

$] export LD_LIBRARY_PATH=/mnt/install/lib/

#Parameters are the image file , Convention for distance whcic is

#false for a convention where higher intensity depicts near objects

$] bin/dep_image_to_bt_single_image disparity_image.png false

#In the pwd a custom.bt file will be written which has the point cloud information

6.5 Cross-compiling userspace application executable
for a C++4 program.

For PYNQ / Ultrad96 compilation can be done on board. For Zedboard follow the below
mentioned instructions which are to be executed on a host computer.

$] source /opt/Xilinx/petalinux-v2017.1/settings.sh
$] arm-linux-gnueabihf-g++ -Wall -g3 -c -fmessage-length=0 -o app.o app.cpp
$] arm-linux-gnueabihf-g++ -o app.elf app.o

These steps compile the application C++ file app.cpp into an object file app.o, and then
creates an executable app.elf from it.

41

Bibliography

1]

2]

[9]

R. Zabih and J. Woodfill [Non-parametric local transforms for computing visual corre-
spondence] In Proc. ECCV, pages 151158, 1994

T. Kanade [Development of a video-rate stereo machine] Proceedings of International
Robotics and Systems Conference (IROS’95), Pittsburgh, Pennsylvania, Aug. 5-9, 1995,
pp- 95-100.

H. Hirschmuller [Stereo Processing by Semiglobal Matching and Mutual Information]
IEEE Trans. Pattern Anal. Mach. Intell., 2008,30, (2), pp. 328341

M. Roszkowski and G. Pastuszak [FPGA design of the computation unit for the semi-
global stereo matching algorithm| doi: 10.1109/DDECS.2014.6868796

D. Scharstein and R. Szeliski [High-accuracy stereo depth maps using structured light]
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2003), volume 1, pages 195-202, Madison, WI, June 2003

Oscar Rahnama, Tommaso Cavallari, Stuart Golodetz, Simon Walker and Philip
H. S. Torr . [R3SGM: Real-time Raster-Respecting Semi-GlobalMatching for Power-
Constrained Systems] International Conference on Field-Programmable Technology
(FPT), Vietnam, 2018.

G. Facciolo, C. de Franchis, and E. Meinhardt [MGM: A Significantly More Global Match-
ing for Stereovision.] BMVC, 2015.

Rostam Affendi Hamzah and Haidi Ibrahim [Literature Survey on Stereo Vision Disparity
Map Algorithms]vol. 2016, Article ID 8742920, 23 pages, 2016.

W.Daolei, K.B.Lim, [Obtaining depth maps from segment-based stereo matching using
graph cuts], J.Vis.Commun. Image R.22 (2011)325-331.

[10] Zedboard datasheet:(2019,August 25) Retrieved from

http://zedboard.org/sites/default/files/documentations/ZedBoard " HW _UG_v2_2.pdf

[11] Zynqg 7000 datasheet:(2019,August 25) Retrieved from

https://www.xilinx.com /support/documentation/data_sheets/ds190-Zynq -7000-
Overview.pdf

42

BIBLIOGRAPHY

[12] Vivado HLS user guide:(2019,August 25) Retrieved from
https://www.xilinx.com/support/documentation /sw_manuals/xilinx2014 _1/ug902-
vivado-high-level-synthesis.pdf

[13] Vivado Synthesis user guide:(2019,August 25) Retrieved from
https://www.xilinx.com/support/documentation /sw_manuals/xilinx2017 -3/ug901-
vivado-synthesis.pdf

[14] XSCT reference guide:(2019,August 25) Retrieved from
https://www.xilinx.com/support/documentation /sw_manuals/xilinx2016 ~ _2/ug1208-
xsct-reference-guide.pdf

[15] Intel Realsense D435i Depth Camera:(2019,August 25) Retrieved from
https://www.intelrealsense.com/depth-camera-d435i/

[16] Zed Camera:(2019,August 25) Retrieved from www.stereolabs.com

[17] OpenCV:(2019,August 25) Retrieved from https://opencv.org/

[18] PYNQ 0O8:(2019,August 25) Retrieved from http://avnet.me/ultra96-pynq-image-v2.4
[19] PYNQ 0OS:(2019,August 25) Retrieved from: https://pynq.readthedocs.io

[20] Stereo Visual Odometry:(2019,August 25) Retrieved from:
https://github.com/cgarg92 /Stereo-visual-odometry.git

[21] Prathmesh Sawant, FPGA Implementation of a Real Time Stereo Vision System, Mtech
Dissertation Report.

[22] Nikhar Gangrade,Stereo Image Rectification Module implemented on FPGA, M.Tech
Dissertation Report.

43

Chapter 7

Publications

The following paper which is re write up of the report was submitted to National Conference
on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG
2019).

44

Single Storage Semi-Global Matching for Real
Time Depth Processing

Abstract—Depth-map is the key computation in computer
vision and robotics. One of the most popular approach is via
computation of disparity-map of images obtained from Stereo
Camera. Semi Global Matching (SGM) method is a popular
choice for good accuracy with reasonable computation time.
To use such compute-intensive algorithms for real-time appli-
cations such as for autonomous aerial vehicles, blind Aid, etc.
acceleration using GPU, FPGA is necessary. In this paper, we
show the design and implementation of a stereo-vision system,
which is based on FPGA-implementation of More Global Match-
ing(MGM) [7]. MGM is a variant of SGM. We use 4 paths but
store a single cumulative cost value for a corresponding pixel.
QOur stereo-vision prototype uses Zedboard containing an ARM-
based Zynq-SoC [10], ZED-stereo-camera / ELP stereo-camera
/ Intel RealSense D435i, and VGA for visualization. The power
consumption attributed to the custom FPGA-based acceleration
of disparity map computation required for depth-map is just 0.72
watt. The update rate of the disparity map is realistic 10.5 fps.

Index Terms—Semi Global Matching(SGM), More Global
Matching(MGM), Field Programmable Gate Array(FPGA), Sys-
tem on Chip(SoC), Zedboard, Census Transform, High Level
Synthesis(HLS)

I. INTRODUCTION

Although 2D and 3D LIDARs (Light Detection and Ranging
Sensors) provided accuracy, they did not succeed with the
economics of power and bill of materials for portable goods.
Stereo cameras cost less, but need a lot of computational
processing, and this aspect is getting good attention of research
community , spurring the development of FPGA and GPU
based acceleration of stereo-vision related computation. The
low power consumption of fpga-based solutions are attractive
and crucial for high performance embedded computing too.

This paper describes our design and implementation of a
real-time stereo depth estimation system with Zedboard [10]
(housing ARM-SoC based FPGA) at its center. This system
uses Zed stereo camera [16], Intel RealSense D435i [15]
or ELP stereo-camera [?] for capturing images. Real-time
Raster-Respecting Semi-Global Matching [6] (R3SGM) along
with Census Transform are used for disparity estimation. The
system takes in real-time data from the cameras and generates
a depth image from it. Rectification of the images, as well
as stereo matching, is implemented in the FPGA whereas
capturing data from USB cameras and controlling the FPGA
peripherals is done via application programs which run on the
hard ARM processor on Zedboard. Development of the FPGA
IP’s is done using High-Level Synthesis (HLS) tools. A VGA
monitor is interfaced to Zedboard to display the computed
depth image in real-time.

Our approach is inspired by R3SGM [6] a hardware im-
plementation of SGM. Table III (at the later portion of the
paper) shows the comparison of hardware utilization between
our approach and [6] which shows ours uses much lesser
Hardware Resources and thus having less power consumption.
It may be emphasized that we have focused on very low power
consumption as well as small form factor that is necessary for
drones vision, blind aid etc.

II. LITERATURE REVIEW

There has been a lot of research on the topic of disparity
map generation dating back to 1980s. [8] reviews most of the
works including both software and hardware implementations.

A binocular Stereo Camera estimates disparity or the differ-
ence in the position of the pixel of a corresponding location
in the camera view by finding similarities in the left and right
image. There have been various costs governing the extent
of the similarity. Some of them are Sum of Absolute Differ-
ences(SAD), Sum of Squared Differences(SSD), Normalized
Cross-Correlation and the recent Rank Transform and Census
Transforms. They are window-based local approaches where
the cost value of a particular window in the left image is
compared to the right image window by spanning it along
a horizontal axis for multiple disparity ranges. The window
coordinate for which the metric cost is the least is selected
which gives us the disparity for that corresponding center
pixel. From the disparity, the depth value is computed by
equation 1 where the baseline is the distance between the
optical centers of two cameras.

Depth = Baseline % (Focal Length) /disparity (1)

Local window-based approaches suffer when the matching is
not reliable which mostly happens when there are very few
features in the surrounding. This results in the rapid variations
of the disparities. This problem is solved by global approaches
which use a smoothing cost to penalize wide variations in the
disparity and trying to propagate the cost across various pixels.
The following are some of the global approaches.

A. SGM

SGM is a stereo disparity estimation method based on
global cost function minimization. Various versions of this
method (SGM, SGBM, SGBM forest) are still among the
top-performing stereo algorithm on Middlebury datasets. This
method minimizes the global cost function between the base
image and match image and a smoothness constraint that
penalizes sudden changes in neighboring disparities. Mutual

information between images, which is defined as the negative
of joint entropy of the two images, is used in the paper [3] as a
distance metric. Other distance metrics can also be used with
a similar effect as has been demonstrated with census distance
metric in our implementation. Since we already had a Census
Implementation, we used it for our SGM implementation. The
Hamming Distance returned by Census stereo matching is used
as the matching cost function for SGM. The parameters for
Census are window size 7x7, disparity search range 92. The
image resolution is 640x480. Sum of Absolute Differences
(SAD) was also considered as a matching cost function. But
it was observed that SAD implementation consumes more
FPGA resources than the Census implementation with same
parameters. This may be due to the fact that SAD computation
is an arithmetic operation whereas Census computation is a
logical operation.

Simple census stereo matching has a cost computation
step in which for a particular pixel we generate an array
of costs (Hamming distances). The length of this array is
equal to the disparity search range. The next step is cost
minimization in which the minimum of this array (minimum
cost) is computed and the index of the minimum cost is
assigned as disparity. In SGM, an additional step of cost
aggregation is performed between cost computation and cost
minimization. The aggregated cost for a particular pixel p for
a disparity index d is given by equation 2.

L,(p,d) = C(p.d) + min(L.(p — r,d),
L.(p—r,d—1)+ Py,
L.(p—r,d+1)+ P, 2)

min;(L.(p —r,i) + P2))
—ming(L.(p — 1, k))

For each pixel at direction r, the aggregated cost is computed
by adding the current cost and minimum of the previous pixel
cost by taking care of penalties as shown in Equation 2. First-
term C(p, d) is the pixel matching cost for disparity d. In our
case, it is the Hamming distance returned by Census window
matching. It is apparent that the algorithm is recursive in
the sense that to find the aggregated cost of a pixel L..(p,),
one requires the aggregated cost of its neighbors L/ (p —r,).
P, and P, are empirically determined constants. For detailed
discussion refer to [3].

B. MGM

As SGM tries to minimize the cost along a line it suffers
from streaking effect. When there is texture less surface or
plane surface the matching function of census vector may
return different values in two adjacent rows but due to SGM,
the wrong disparity may get propagated along one of the paths
and can result in streaking lines.

MGM [7] solves this problem by taking the average of the
path cost along 2 or more paths incorporating information from
multiple paths into a single cost. It uses this result for the next

pixel in the recursion of Equation 2. The resultant aggregated
cost at a pixel is then given by the Equation 3

L.(p,d)=C(p.d)+1/n Z (min(L.(p — z,d),

ze{rn}
L.(p—x,d—1)+ Py,
L.(p—x,d+1)+ Py,
min;(L.(p — z,1) + P))
—ming(L.(p — z,k)))

where n has the value depending on the number of paths that
we want to integrate into the information of single cost. For
example, in Figure la two paths are grouped into 1 so n has
value 2 and there are a total of 4 groups. Thus we need to
store 4 cost vectors in this case and while updating 1 cost
value in the center pixel have to read cost vector of the same
group from 2 pixels. Lets say = 1 for blue boxes group in
Figure 1a, while updating the L, for this group of the centre
pixel in Equation 3 we have z as left and top pixels. From
here on SGM refers to MGM variant of it.

3

(a) MGM in General

Fig. 1: Grouping of Paths in MGM

(b) Our Implementation

III. HARDWARE ARCHITECTURE AND IMPLEMENTATION
A. System Design

Figure 2 shows an overview of the implemented system.
Left and right images captured from the Zed camera [16] are
stored into DDR RAM (off-chip RAM). Maps required for
the stereo rectification of the images are statically generated
offline using OpenCV [17]. These maps are also stored into
DDR RAM. We need two Remap peripherals which perform
stereo rectification for the left and right images respectively.
The Remap peripheral reads the raw image frame and the
corresponding map and generates a rectified image frame.
The rectified images are again stored into DDR. The Intel
RealSense camera requires USB3.0 or higher to stream left
and right images. However, Zedboard does not have USB3.0.
Hence the camera cannot be directly interfaced to the board.
So images were continuously captured and streamed from a
computer using ethernet. The left and right image streams were
received by a socket client running on the ARM processor on
Zedboard. The camera outputs rectified images, hence remap
peripheral is not required in this case. The images received
from the socket client are stored into DDR RAM. We have also
implemented it for Zed Camera [16]. For both camera modules
in Binocular cameras, the stereo matching peripheral (SGM

block in the figure2) then reads the left and right rectified
frame and generates disparity image which is again stored into
DDR. The VGA peripheral is configured to read and display
the disparity image onto a VGA monitor. FPGA peripherals
perform memory access using the AXI4 protocol.

| ZED-BOARD
'

Raw
Image

S L

VGA
Monitor

Reserved space in DDR
FPGA |

l

Rectified
Images

Depth

SGM —>
Image

Stereo Camera

Fig. 2: Block diagram

The resolution of images is fixed to 640x480 and cameras
are configured accordingly. Each pixel is stored as an eight-bit
number. The metric used to profile the computation times of
different peripherals and also the cameras is fps (frames per
second). From here on a frame means 640x480 pixels.

We could have skipped storing the rectified images and
passed the output of the Remap peripheral directly to the
stereo matching peripheral. We chose not to do this because
our performance is not limited by memory read-write but by
the FPGA peripherals themselves. We use the AXI4 protocol
to perform memory read-write. The read-write rates are 3
orders of magnitude greater than the compute times of FPGA
peripherals.

The images are captured using application programs running
on the ARM processor on Zedboard. The programs make use
of v412 library for image capture. The ARM processor is also
used to control the FPGA peripherals.

B. Undistortion and Rectification

Stereo camera calibration and rectification (one time step) is
done using the OpenCV library. Calibration and rectification
process produces distortion coefficients and camera matrix.
From these parameters, using the OpenCV library, two maps
are generated, one for each camera. Size of a map is the same
as image size. Rectified images are built by picking up pixel
values from raw images as dictated by the maps. The map
entry (i,j) contains a coordinate pair (X, y); and the (i, j) pixel
in the rectified image gets the value of the pixel at (x, y) from
the raw image. X and y values need not be integers. In such a
case, linear interpolation is used to produce final pixel value.
Figure 3 shows the remap operation with 4 neighbour bilinear
interpolation.

On-chip memory is limited in size, and it is required by
the stereo-depth hardware module. So, we store the maps
generated during calibration and rectification in system DDR.
The map entries are in fixed-point format with five fractional
bits. Captured images are stored in DDR too. The hardware

(X0, Yo) P_top (Xo+1 , yo+1)
A B

Rectiy)

p.final

(Xo,Yo+1)i p_bottom (xo+1,y,+1)

c D

Original Image Rectified Image

Fig. 3: Remap operation

module iterates over the maps, and builds up the result (left
and right) images by picking pixels from raw images. Note
that, while the maps can be read in a streaming manner, the
random-access is required for reading the raw images. For
fractional map values, bilinear interpolation (fixed point) is
performed. Resulting images are stored back in DDR. As this
hardware module has to only - “read maps and raw images
pixels from DDR, perform bilinear interpolation, and store the
pixels back”, it needs less than 5% resources of the Zynq chip.

C. SGM Block Architecture

In Census implementation we scan using row-major order
through every pixel in the image and perform stereo matching.
Thus for the SGM implementation built upon this, we consider
only four neighbors for a pixel under processing as shown in
red in Figure 4. This is done because we have the required data
from neighbors along these paths. The quality degradation by
using 4 paths instead of 8 paths is 2-4% [4]. Figure 5 shows

Fig. 4: Four neighbour paths considered for SGM

the implemented SGM architecture. The aggregated cost for
all paths and disparity indices of one row above the pixel
(full row not shown in figure) and the left adjacent pixel of
the current pixel are depicted as columns of colour yellow,
red, blue and green for paths top left, top, top right and left
respectively.We store the resultant accumulated cost which
is computed using Equation 3. 4 Paths have been used by
grouping them into single information as shown in Figure
1b. Thus in Equation 3 our n value in 4 and r has a single
value for a pixel. The Census metric cost is stored in an 8bit
unsigned char so the total size of memory occupied by the
cost is given as Sizeof RowCostArray = (ImageWidth) *
(DisparityRange) * (Noof PathGroups) = 640 x 92 x 1 =
57.5KB.

Minimum cost across disparity search range is computed
once and stored for the above row and left adjacent pixel.
These scalar quantities are shown as small boxes of the same
color. Since the minimum cost values are accessed multiple
times, storing the minimum values instead of recomputing
them every time they are required saves a lot of computations.
The pixels in the row above the current pixel can be either top-
left, top or top-right neighbors of the current pixels. Hence
costs along the left path (green columns) are not stored for
the row above the pixel. Figure 5 also shows the data required

del —

dl = [l

min [l

Hamming Distance
from Census
Window Matching

Sum Cost —<<2 (Divide by 4)

Fig. 5: SGM Cost Computation. Steps involved in calculating
the disparity for the current pixel.

and the steps for computing the aggregated cost for a certain
pixel considering all the 4 paths. Smoothing term(2nd part
in the RHS of Equation 3) along all paths are summed up
to obtain a sum cost which has to be divided by n(4). Since
division is resource-intensive hardware we use left a shift by
2 to divide by 4. Then the resulting value is added with the
current hamming distance (1st part in the RHS of Equation 3).
An upper bound is applied to the sum cost. The index of the
minimum of this modified sum cost is the disparity for this
pixel. The costs for all disparities are stored as they will be
required for future pixels of the next row. The minimum cost
across the disparity search range is also computed and stored
for all paths.

Figure 6 shows the data structures used for storing the costs
and the algorithm for updating them as we iterate over pixels.
The cost_row structure has dimensions- image columns, path
groups and disparity search range. It stores the costs for one
row above the current pixel for all paths and disparity indices.
The cost_left structure has dimensions- path groups and
disparity search range. It stores the cost for the left adjacent
pixel of the current pixel for all paths and disparity indices.

Before Update
Current Pixel : Row 6 Col 20

rowé row6 row5 row 5 row5 row5
col 17 col 18 col 19 col20 col21 col 22
cost_row feeeeinns
row 6 row 6
col 19 col 20
cost_left
Updating
>

cost_row - = - N

first update !his\/

cost_left

\Jthen update this

After Update
Current Pixel : Row 6 Col 21

row6 rowé row5 row 5 row5 row5
col 18 col 19 col 20 col 21 col22 col 23

cost_row |... - - S

row 6 row 68
col 20 col 21

cost_left

Fig. 6: SGM Array Updation.

As shown in Figure 6 the current pixel under processing is at
row 6 column 20. It requires data from its 4 neighbors: row
5 column 19, row 5 column 20, row 5 column 21 and row 6
column 19.To generate data for current pixel we use the data of
cost_left and 3 pixel vectors of cost_row. As we compute the
disparity for this pixel and also performing the housekeeping
tasks of generating the required data, we update the structures
as shown in Figure 6. The data from cost_left is moved to
the top-left neighbour of the current pixel in cost_row. The
top left pixel cost data is not required anymore and hence is
not stored. After this update is done, the currently generated
data is moved into cost_left.

Pixels at the top, left and right edge of the image are consid-
ered to have neighbors with a maximum value of aggregated
cost. As SGM cost aggregation step is a minimization function,
they are effectively ignored. The cost_row and cost_left
structures are initialized to a maximum value before the stereo
matching process. This initialization has to be done for every
frame.

D. HLS Implementation

High-level Synthesis(HLS) platform such as Vivado HLS
(from Xilinx) facilitates a suitably annotated description of

compute-architecture in high level language like C or C++ ,
which it converts to a low-level HDL based description of the
same computing architecture. The generated VHDL or Verilog
code is then synthesized to target fpgas. We have used Vivado
HLS tools provided by Xilinx to convert our C implementation
to HDL and package it to an IP for further use. The structure
of HLS stereo matching code is as follows.

void stereo_matching_function (){
for(int row=0; row<IMG_HEIGHT; row++) {
for(int col=0; col<IMG_WIDTH; col++) {
// Reading pixel from DDR through AXI4
protocol in row—major order
// Shifting the Census Match window in
the left and right blocks
for (int d=0; d<SEARCH RANGE; d++) {
//Match 1_window with r_window[d]
// Update the min cost index
//Add the necessary output
row and cost left vectors
}
/]l write disparity
}
}
}

There are no operations between the row and col loop, hence
they can be effectively flattened into a single loop. The plan
was to pipeline the merged row-column loop. Thus resulting in
increase of frame rate by disparity range times if the pipeline
throughput had been 1. However the resources in fpga device
on Zedboard are not enough to permit the pipelining the row
column loop. Hence, only the search range loop was pipelined.
The arrays used in the implementation have been partitioned
effectively to reduce the latency. Based on the availability of
Hardware resources we have divided the whole image into
sections and disparity of each section is computed in parallel.
It was observed that a frame rate of 2.1 fps is obtained with the
most used resource being Block RAM (BRAM) 17%. The time
required for processing one frame for such an implementation
can be given as

to the cost

image pixel to DDR

T x no. of rows X no. of columns x 4

(search range + pipeline depth) @

The characteristic of this implementation is that the logic
synthesized roughly corresponds to the matching of two
Census windows, the cost aggregation arithmetic and on-chip
memory to store data for the next iterations. As we sequentially
iterate over rows, columns and disparity search range we
reuse the same hardware. Thus, the FPGA resources required
are independent of the number of rows, columns and search
range but computation time required is proportional to these
parameters as shown by equation 4. This gives us the idea to
divide the images into a number of sections along the rows
and process the sections independently by multiple such SGM
blocks. As the most used resource is BRAM at 17%, we can
fit 5 such SGM blocks with each block having to process

5 sections of the image i.e. 128 rows in parallel. Thus we
increase resource usage 5 times and reduced the time required
for computation by the same resulting in 10.5 fps.

One flaw to this approach is that if we divide the input image
into exactly 5 parts, there will be a strip of width window size
at the center of the disparity image where the pixels will be
invalid. The solution to this is that the height of each section is
image_height /5 + window_size/2. This is shown in Figure
7 for an example of 2 sections.

T window size /2

Input Image Disparity Image

T window size / 2

Input Image Section 1 Disparity Image Section 1

Input Image Section 2 Disparity Image Section 2

]

Input Image Section 1 Disparity Image Section 1

Input Image Section 1

| Disparity Inage Seciion 2

Input Image Section 2 Input Image Section 2

Fig. 7: Dividing the input image into two sections to be
processed by two blocks simultaneously

E. Hardware Setup

Figure 8 shows the hardware setup. The Zed camera is
connected to a USB 2.0 port of the Zedboard. The Zedboard
is booted with petalinux through SD card. In the case where
Intel RealSense camera is used, we require ethernet to receive
the images. The only other connections to Zedboard are the
connection to VGA display and power.

Fig. 8: Hardware setup

IV. EXPERIMENTAL RESULTS AND EVALUATION

The obtained frame rate for the implemented system is
10.5 fps with Zedboard running at 100 MHz. The Power

consumption of the computation which is performed in FPGA
is 0.72W whereas the on-chip arm processor which is being
used to capture the images and start the FPGA peripherals
along with the ELP stereo-camera consumes 1.68 watt |,
thereby raising consumption to 2.4W. A 10mf), 1W current
sense resistor is in series with the 12V input power supply on
the Zedboard. Header J21 straddles this resistor to measure
the voltage across this resistor for calculating Zedboard power
[10]. The resource usage is summarized in Table L. It is
observed that the BRAM utilization is the most. This is due
to storing large cost arrays.

BRAM | DSP FF LUT | LUTRAM
Utilization 132 65 39159 | 37070 981
Available 140 220 | 106400 | 53200 17400
% Utilization 94.3 29.5 36.8 69.6 5.64

TABLE I: Resource utilization for the entire design in Zed-
board

(a) Left image

L
L%
S
s o
:

3
.

(c) SGM 4 paths software

(d) SGM 8 paths software

g et oo
(f) SGM with arrays initialized to
Zeros

(e) SGM 4 paths hardware

Fig. 9: SGM results on Middlebury images

The algorithmic performance can be measured by percent-
ages of erroneous disparities with respect to ground truths on
the Middlebury test images. A 5 pixel tolerance is considered
due to intensity variation caused by changing resolution of raw
image. The percentage of erroneous disparities for different
images is summarized in Table II. It is notable that no post
processing has been done on the SGM output.

Image SGM
Teddy 11
Dolls 17
Books 20
Moebius 20
Laundry 27
Reindeer 27
Art 30

TABLE II: Percentage error of disparity image pixels as
compared to ground truth for Middlebury images

(a) Left image with IR blaster on

(b) Left image with IR blaster cov-
ered

(c) Disparity image from camera
with blaster on

(d) Disparity image from camera
with IR blaster covered

&1

(f) SGM hardware disparity image
with IR blaster covered

(e) SGM disparity image with
blaster on

Fig. 10: SGM results on Realsense image: effect of texture

Figure 9 shows the software and hardware implementation
results on Teddy image from Middlebury 2003 dataset [5].
Figure 9c-d show the results of an inhouse software imple-
mentation of SGM and Figure 9e shows the result of the
hardware implementation. It can be observed that SGM with
8 paths gives the best results. SGM with 4 paths in software
gives slightly better results than the hardware implementation.
The difference in results is due to the fact that the way
the algorithm is implemented in software and hardware is
different. Figure 9f shows the SGM disparity image with
cost_row and cost_left initialized to zero. Since the cost
aggregation function is minimization function, the zeros from
the arrays propagate to further pixels. The trickle down effect
causes the degradation of the disparity image. Similar results

Fig. 11: Qualitative Comparison of our results with some of the Middlebury data set. 1st Row contains the Left Raw Images,
2nd Row contains the ground truth of the corresponding Images and 3rd Row contains the Output of our Implementation.

with frame rate around 8.3 fps were also achieved by an
inhouse GPU implementation of SGM on Jetson TK1 board
which is of MAXWELL architecture with 256 cores and power
consumption < 10 watts. This implementation is analyzed and
optimized by using OpenMP for multi-threading and AVX
(Advanced Vector Extension) registers for vectorization. GPU
shared memory is used to reduce the global memory access.
CUDA shuffle instructions are used to speed-up the algorithm
and vector processing is also applied.

Fig 12 and 13 shows the captured image and the correspond-
ing disparity image obtained using the SGM implementation.
The Intel RealSense camera also provides a disparity image.
This is shown in Figure 13b. The convention followed here is
opposite i.e closer objects appear darker.

il

(a) Left image classroom (b) SGM disparity image classroom

Fig. 12: SGM results on ZED camera image

The Intel RealSense camera has an infrared (IR) light
projector which projects structured light onto the scene. This

(c) SGM hardware disparity image

Fig. 13: SGM results on Realsense image: lab

pattern can be seen in Figure 13a. Figure 10 shows the effect
of the infrared projector on disparity estimation. Figure 10ace
show the captured left image from the camera, disparity image
obtained from the camera and the computed disparity image
when IR blaster was on. Figure 10bdf show the same images
when the IR blaster was covered. Incase of 10e although the
image contains salt noise, it can be easily filtered out. The fan
blades can be easily seen in the disparity image. In 10f there

are more number of white pixels which imply that the object
is very near to the camera which is a false result. As can be
seen, the structured light projector helps in stereo matching
by adding texture to non-textured surfaces.

Figure 14 shows the scene and the corresponding disparity
image obtained on the VGA monitor. The camera can be seen
on the left side of the image.

Figure 11 shows the qualitative comparison or our results
with Middlebury data set. We can see that the objects placed
near are not accurate this is because we have used the disparity
range of 92 pixels and so it is not able to find a match in
the corresponding left and right images. Thus for a better
accuracy, disparity range can be increased with the trade-off
being update rate as the pipeline latency will increase.

Fig. 14: Scene and disparity image on VGA monitor

Finally we inform the reader about our comparison with
R3SGM [6] work. Table III shows the comparison of hardware
utilization between our approach and [6] which shows ours
uses much lesser Hardware Resources and thus having less
power consumption. Furthermore, if we were to use fpga used
in [6], we would have far more liberty with resources that
can be leveraged to further pipeline the design and obtain
another order of speedup. However we have focused on very
low power consumption as well as small form factor that is
necessary for drones vision, blind aid etc. We can extrapolate
the frame rate likely to be achieved by our design on ZC706
board as below. We can replicate the hardware four times
(assuming other resources are under limit) to utilize all of
the BRAM, and get 40fps performance. However, it would
increase the power consumed by zynq chip, as well as by
camera and DDR subsystems for this higher frame capture
and processing rate.

V. CONCLUSION

In this paper we presented the hardware implementation of
the MGM [7] which is a variant of SGM [3] on Zedboard [10]
an FPGA-ARM based SOC inspired by R3SGM [6]. In order
to reduce the memory consumption, we have grouped 4 paths-

BRAMIBK | DSP FF LUT Frame Power
Rate (Approx)
Ours 132 65 39159 37070 | 10.5 0.72W
[6] 163 - 153000 | 109300 | 72 3W
TABLE III: Comparison of FPGA Hardware

Resources(Approx) and power consumption between our
approach and [6]

left, top left, top, and top right, whose pixel data are available
while processing as a result of row-major order streaming pro-
cess. The efficient utilization of hardware resources resulted
in a low power consumption of 0.72W for data processing
on FPGA that computes the Rectification and disparity Map
generation and with 1.68W for data acquisition from Cameras
along with starting the peripherals using the on board ARM
processor achieving an update rate of 10.5Hz with a good
accuracy as was shown in Tablell and Figurell. This system
is highly suitable to be used in micro UAVs, blind Aids or
any portable types of equipment with a small form factor and
high power constraints.

REFERENCES

[1] R. Zabih and J. Woodfill [Non-parametric local transforms for comput-
ing visual correspondence] In Proc. ECCV, pages 151158, 1994

[2] T. Kanade [Development of a video-rate stereo machine] Proceedings of
International Robotics and Systems Conference (IROS’95), Pittsburgh,
Pennsylvania, Aug. 5-9, 1995, pp. 95-100.

[3] H. Hirschmuller [Stereo Processing by Semiglobal Matching and Mutual
Information] 1IEEE Trans. Pattern Anal. Mach. Intell., 2008,30, (2), pp.
328341

[4] M. Roszkowski and G. Pastuszak [FPGA design of the computation
unit for the semi-global stereo matching algorithm] doi: 10.1109/D-
DECS.2014.6868796

[5] D. Scharstein and R. Szeliski [High-accuracy stereo depth maps using

structured light] IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR 2003), volume 1, pages 195-

202, Madison, WI, June 2003

Oscar Rahnama, Tommaso Cavallari, Stuart Golodetz, Simon Walker

and Philip H. S. Torr . [R3SGM: Real-time Raster-Respecting Semi-

GlobalMatching for Power-Constrained Systems] International Confer-

ence on Field-Programmable Technology (FPT), Vietnam, 2018.

[71 G. Facciolo, C. de Franchis, and E. Meinhardt [MGM: A Significantly

More Global Matching for Stereovision.] BMVC, 2015.

Rostam Affendi Hamzah and Haidi Ibrahim [Literature Survey on Stereo

Vision Disparity Map Algorithms]vol. 2016, Article ID 8742920, 23

pages, 2016.

[9] W.Daolei, K.B.Lim, [Obtaining depth maps from segment-based stereo

matching using graph cuts], J.Vis.Commun. Image R.22 (2011)325-331.

Zedboard datasheet:(2019,August 25) Retrieved from

http://zedboard.org/sites/default/files/documentations/ZedBoard

_HW_UG_v2_2.pdf

Zynq 7000 datasheet:(2019,August 25) Retrieved from

https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq

-7000-Overview.pdf

Vivado HLS user guide:(2019,August 25) Retrieved from

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2014

_1/ug902-vivado-high-level-synthesis.pdf

Vivado Synthesis user guide:(2019,August 25) Retrieved from

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017

_3/ug901-vivado-synthesis.pdf

XSCT reference guide:(2019,August 25) Retrieved from

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2016

_2/ug1208-xsct-reference-guide.pdf

Intel Realsense D435i Depth Camera:(2019,August 25) Retrieved from

https://www.intelrealsense.com/depth-camera-d435i/

Zed Camera:(2019,August 25) Retrieved from www.stereolabs.com

OpenCV:(2019,August 25) Retrieved from https://opencv.org/

[6

[8

[10]

(1

[12]

[13]

[14]

[15]

[16
[17

	Title
	Abstract
	Table of Contents

	List of Figures
	Introduction
	Literature Review
	SGM
	MGM

	Hardware architecture and Implementation
	System Design
	Undistortion and Rectificationnikharreport
	SGM Block Architecture
	HLS Implementation
	Hardware Setup
	PYNQ Application Overview

	Simulation and Results
	Experimental Results and evaluation
	Hardware Utilization and Update Rate comparison across FPGA's
	Zedboard
	AES-ULTRA96-V2-G
	ZCU104

	3D Map visualization using Octomap
	Stereo Visual Odometry Application using Disparity form FPGA on PYNQ board

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	PYNQ Application code
	SGM HLS code
	Cross-compiling opencv for Arm
	Cross-compiling octomap for Arm
	Cross-compiling userspace application executable for a C++ program.

	Bibliography
	Publications

