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Abstract We consider a queueing system with heterogeneous customers. One
class of customers is eager; these customers are impatient and leave the system
if service does not commence immediately upon arrival. Customers of the
second class are tolerant; these customers have larger service requirements
and can wait for service. In this paper, we establish pseudo-conservation laws
relating the performance of the eager class (measured in terms of the long
run fraction of customers blocked) and the tolerant class (measured in terms
of the steady state performance, e.g., sojourn time, number in the system,
workload) under a certain partial fluid limit. This fluid limit involves scaling
the arrival rate as well as the service rate of the eager class proportionately
to infinity, such that the offered load corresponding to the eager class remains
constant. The workload of the tolerant class remains unscaled. Interestingly,
our pseudo-conservation laws hold for a broad class of admission control and
scheduling policies. This means that under the aforementioned fluid limit, the
performance of the tolerant class depends only on the blocking probability of
the eager class, and not on the specific admission control policy that produced
that blocking probability. Our psuedo-conservation laws also characterize the
achievable region for our system, which captures the space of feasible tradeoffs
between the performance experienced by the two classes. We also provide two
families of complete scheduling policies, which span the achievable region over
their parameter space. Finally, we show that our pseudo-conservation laws also
apply in several scenarios where eager customers have a limited waiting area
and exhibit balking and/or reneging behaviour.

Index terms– Heterogeneous queues, multiclass queues, loss systems, fluid
limits, pseudo-conservation, achievable region, complete policies, reneging, balk-
ing
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1 Introduction

In this paper, we analyse a queueing system serving two distinct classes of
jobs. One class of jobs is eager or impatient – these jobs leave the system
if service does not commence (almost) immediately upon arrival. The other
class of jobs is tolerant to delay. While the relevant performance metric for
the eager class is the blocking probability (i.e., the long run fraction of arrivals
that are denied service), the performance of the tolerant class is determined
by the delay experienced by these jobs.

The above setup is motivated by modern cellular systems, which carry
both voice and data traffic. Voice calls are either admitted or dropped on
arrival, whereas data traffic can tolerate delay. Moreover, the service capacity
in current cellular systems is made up of disjoint channels or resource blocks
(see, for example, Sesia et. al. (2011)) which can be dynamically allocated
to either voice or data traffic. This allows the system operator to share the
available service capacity across voice and data traffic, resulting in a tradeoff
between the quality of service (QoS) experienced by the two classes.

In this paper, we prove ‘policy-independent’ pseudo-conservation laws re-
lating the blocking probability of the eager jobs and the performance expe-
rienced by the tolerant jobs, which can be characterized via the distribu-
tion/moments of the steady state queue occupancy, sojourn time, or workload.
These conservation laws are derived under a partial fluid scaling, where the
arrival and service rates of the eager class are scaled to infinity, such that the
offered load of this class remains constant. We refer to this scaling regime as
the short-frequent jobs (SFJ) scaling. The tolerant workload is not scaled. In
essence, the SFJ scaling corresponds to a timescale separation between the
service of the eager and tolerant class; the eager class being served on a faster
timescale. Our results are proved under the assumption that the scheduling
and admission control policy for the eager class does not depend on the state of
the tolerant jobs in the system.1 In other words, the eager jobs are treated as
a higher priority class, that can pre-empt any tolerant jobs in service. This as-
sumption is motivated by the current practice of awarding voice calls a higher
priority in cellular systems (Tang et al. (2004); Zhang (2006) etc.).

An important implication of our pseudo-conservation laws is that under
the aforementioned partial fluid scaling, the performance experienced by the
tolerant class depends only on the blocking probability of the eager class, and
not on the specific scheduling (and admission control) policy2 that produced
this blocking probability. Moreover, the pseudo-conservation laws characterize
the achievable region for the system, which is the set of performance vectors
that can be achieved across all scheduling policies. Note that this is a par-

1 We categorize the eager customers as those that demand immediate service and at-least
at a certain minimum service rate. Since eager customers once admitted have to be allocated
a certain minimum service capacity, admission control becomes an important aspect of any
scheduling policy for the eager class.

2 Henceforth, we follow the convention that scheduling for the eager class includes admis-
sion control.
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tially static achievable region, in the sense that the eager schedulers under
consideration are blind to the state of the tolerant customers. Of course, such
a characterization of the achievable region is important from the standpoint
of a system operator who has to balance the QoS of the eager and tolerant
class.

Interestingly, in the pre-limit, i.e., for finite arrival and service rates for
the eager class, the achievable region is difficult to characterize. Moreover, it
depends on the scheduling policy of the eager class, and not just on the result-
ing blocking probability. However, the achievable region becomes insensitive to
the scheduling policy of the eager class under the SFJ limit, and even admits
a simple closed form characterization.

Having characterized the achievable region, we introduce two families of
parametrized admission control and scheduling policies for the eager class that
are complete, i.e., these policies span the entire achievable region across their
parameter space.3 Note that a complete policy (more precisely, a complete
family of policies) enables a system operator to achieve any feasible tradeoff
between the QoS of the eager and tolerant classes by tuning the policy pa-
rameters. For example, the system operator might be interested in maximizing
the revenue from serving eager and tolerant jobs, subject to certain QoS con-
straints. A complete policy enables the above optimization to be performed
over its parameter space with no loss of generality.

The first policy, which we call the PS policy, performs processor sharing
between eager jobs (at most K of them) using the entire service capacity.
Tolerant jobs are only served when there are no eager jobs in the system.
The second policy, which we refer to as the capacity-division (CD) policy,
admits upto K concurrent eager jobs, awarding each a fixed fraction of the
service capacity. This seeks to capture the current practice in cellular systems,
of allocating a channel or resource block having a predefined capacity to an
admitted voice call. The residual service capacity is utilized by the tolerant
jobs in the system. The above policies were first analysed under the SFJ limit
using direct (policy specific) methods in our prior work Kavitha et al. (2017a);
the same results follow easily from the general pseudo-conservation laws proved
in this paper.

Our results also extend to certain scenarios where eager jobs have limited
patience, and can wait for service in a buffer of bounded size. This includes
balking models, where customers decide whether or not to join the queue based
on the queue occupancy (in a possibly randomised manner), as well as reneging
models, where customers abandon the queue if their waiting time exceeds a
(possibly random) threshold (e.g., Ancker et al. (1963); Whitt (1999)). So long
as we scale the abandonment times appropriately, our pseudo-conservation
laws extend to these models. In other words, if the service capacity left un-
used by the above eager class is utilized by another class with large service
requirements that can tolerate delay, our psuedo-conservation laws provide an

3 Such complete families are well known in the context of multiclass queueing systems
with different tolerant classes; see, for example, Mitrani et al. (1977).
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approximate closed form expression for the performance of this class (accurate
in the fluid limit), once the loss probability of the eager class is computed (as
is done, for example, in Whitt (1999)).

In many scenarios, it is relatively straightforward to derive closed form ex-
pressions for the stationary measures of the lossy/eager class; this boils down
to the analysis of a single-class loss system. However the challenge is to char-
acterize the performance of the tolerant customers. Indeed, the standard per-
formance metrics for the tolerant class cannot be obtained in closed form even
when the service process seen by it is Markov modulated (see Mahabhashyam
et al. (2005)). However, by our pseudo-conservation laws, the performance of
the tolerant class is characterized as a function of the blocking probability of
the eager class under a certain fluid limit.

The main feature of our models is a high priority eager class with short jobs
and a low priority tolerant class with larger job sizes. There are several other
applications that motivate such models. For example, in a super-market, it is
common practice to provide fast service to short jobs via dedicated express
counters. Alternatively, one could use the same counters to serve both short
and long jobs, with selected (controlled) short jobs pre-empting long jobs, to
obtain an optimal design. Primary and secondary users in cognitive radio can
also be thought of as eager and tolerant classes, respectively. Variations of
the models considered in this paper can be applied to these settings (e.g.,
capturing multi-server, non work-conserving service of tolerant jobs; or when
eager job sizes are also significant but are negligible in comparison with the
tolerant job sizes) and these models would be of future interest for us.

Related literature

To the best of our knowledge, there has not been much focus in the literature
on partially lossy multiclass queueing systems. The only paper we are aware
of that analyses a queueing system with impatient and tolerant job classes
is Sleptchenko et al. (2003).4 In this paper, the authors obtain the performance
measures for each class of jobs in closed form in a multi-server environment,
assuming exponential inter arrival and service times for all classes. The model
in Sleptchenko et al. (2003) is similar to the CD policy proposed in this paper,
except that we consider a work conserving system wherein the tolerant work-
load utilizes all the service capacity left unused by the eager jobs. Also, we
have more tractable characterization of the performance of the tolerant class,
which is accurate under a fluid limit. Additionally, the main contribution of
the present paper is a policy independent pseudo-conservation law under a
partial fluid scaling, for generally distributed service times.

In terms of application, this paper is also related to the sizeable literature
on sharing capacity across voice and data traffic in cellular systems; for ex-
ample, see Li (2004); Tang et al. (2004); Zhang (2006) etc. In this stream of
work, both voice as well as data are assumed to be lossy, but with different
priority levels. For various models for capacity sharing between voice and data

4 Aside from our prior work Kavitha et al. (2017a).
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calls, these papers typically propose algorithms for computing the blocking
probability of each class, assuming exponential inter-arrival and call holding
times. To the best of our knowledge, none of the papers in this space con-
sider the achievable region of performance vectors for cellular systems, which
provides a smooth (continuous) trade-off between the two competing perfor-
mance metrics (e.g., blocking probability of voice calls and mean delay of data
traffic).

Some variants of queueing systems in the literature (e.g., de Haan et al.
(2009); White et al. (1958)) have connections to special cases of some of our
models; we discuss these connections here. White et al. (1958) analyzes an
M/G/1 queue with Poisson interruptions, caused either by server breakdown
or by the arrival of higher priority agents. This system is equivalent to our
PS/CD model, assuming only one eager job is served at a time (K = 1). The
(exponentially distributed) time limited autonomous polling system of de Haan
et al. (2009), with a single class, coincides again with the above. Both papers
provide complicated expressions of performance metrics, while we have simple
closed-form expressions in an appropriate fluid limit.

This paper is also related to the literature on multiclass queueing systems
with multiple tolerant classes and a single server (e.g., conservation laws, pio-
neered by Kleinrock (1965)). The achievable region is well understood for ho-
mogeneous classes, when the performance metric of both the classes is expected
sojourn time. Coffman et al. (1979) were the first to identify such achievable re-
gions. Multi-class single server queueing systems possess nice geometric struc-
ture (polytopes) for the achievable region (e.g., Coffman et al. (1979); Shan-
thikumar et al. (1992)). These results mainly bank upon the work conservation
principle applicable to non-lossy systems with work-conserving scheduling poli-
cies. Our attempt in this paper has been to explore if such a conservation is
possible for lossy systems, in some partial/limited sense. Indeed, we show that
for a partially lossy system with fluid lossy components, there is a conserva-
tion of the performance of the non-lossy class, given the blocking probability
of the lossy class. However, it is important to note that the achievable re-
gion characterization in this paper is over a ‘partially static’ class of policies,
where the scheduling of the eager class is oblivious to the state of the tolerant
queue. Interestingly, the achievable region over the class of ‘dynamic’ policies,
where all scheduling decisions can depend on the complete system state, is a
strict superset of the ‘partially static’ achievable region; this is demonstrated
in Kavitha et al. (2017a,b) by considering a specific dynamic policy. This
presents a contrast from homogeneous systems with multiple tolerant classes,
where the static and dynamic achievable regions are known to coincide.

Finally, complete family of schedulers are well known in the context of ho-
mogeneous queueing systems, that consider only tolerant classes (e.g., Mitrani
et al. (1977)). But we are not aware of such families for queueing systems with
heterogeneous classes, even ones that span a sub-achievable region like our
partially static region.
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Organisation of this paper

The remainder of this paper is organised as follows. In Section 2, we de-
scribe our model and define the SFJ scaling regime. The first set of pseudo-
conservation laws are obtained in Section 3, for the unused service process
of the eager class. Pseudo-conservation laws for performance metrics of the
tolerant class which utilizes the above unused service process are derived in
Section 4. In Section 5, we discuss the achievable region as well as the complete
families of schedulers. Extensions of our model to eager customers with lim-
ited patience are considered in Section 6. We present numerical experiments
in Section 7 and conclude in Section 8.

2 Model and preliminaries

We consider a single server queueing system serving two classes of jobs: an
eager class and a tolerant class. Eager jobs, also referred to as ε-jobs, if ad-
mitted, require service to commence immediately upon arrival.5 Tolerant jobs,
also referred to as τ -jobs, are always admitted, and can wait in a queue (of
infinite capacity) until they are served. Without loss of generality, we assume
that the server operates at unit speed.

We assume that the ε-customers arrive according to a renewal process
with rate λε, i.e., the inter-arrival times {Aε,n}n≥1 are independent and iden-
tically distributed (IID) with E[Aε,n] = 1/λε for any n. Job sizes (a.k.a. ser-
vice requirements) of ε-jobs are IID, with {Bε,n}n≥1 denoting the job size se-
quence having mean 1/µε. From Section 4 onwards, we will require additional
workload-related assumptions; these will be stated in Section 4.

We now state and discuss the assumptions about the scheduling policies.
We begin with the ε-jobs.

A.1 Admission control and scheduling of ε-jobs is τ -insensitive (i.e., does not
depend on the state of the τ -queue).

A.2 The admission control and scheduling of ε-jobs is based only upon the
number of ε-jobs present in the system.

A.3 The service of an admitted ε-job begins immediately, and each ε-job in
service receives a service rate of at least cmin > 0 at all times.

Assumption A.1 implies that the eager class uses the server as a higher
priority class, oblivious to the tolerant class. This means that the tolerant class
can only utilize the left-over service capacity unused by the eager class at any
time. Assumption A.2 implies that the decision of whether or not to admit an
incoming ε−job depends only on the number of ε−jobs in service at that time.
Finally, Assumption A.3 implies that there exists K ≤ 1/cmin such that, at

5 We consider the case of partially eager customers with limited patience in Section 6.
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most K ε-jobs derive service at any time.6 To give a concrete example, one
scheduling policy for the eager class satisfying the above assumptions is the
following: For some K ∈ N, an ε-arrival is admitted if the number of ε-jobs in
service is strictly less than K. Each admitted ε-job is served at rate 1/K. We
refer to this policy as the capacity division (CD) policy (see Section 5.2).

We also make the following assumptions on the scheduling policy for τ−jobs.

B.1 The τ−scheduler is work-conserving, i.e., it utilizes all the service capacity
unused by ε-jobs, so long as the τ -queue is non-empty.

B.2 The τ -jobs are served in a serial fashion, i.e., τ jobs cannot pre-empt one
another and are served one at a time.

B.3 The τ−scheduler is blind to the sizes of τ−jobs.

Assumption B.1 implies that the tolerant class experiences an exogenous,
time varying, service process. Moreover, note that while the service process of
the τ -queue is regenerative, it is not even necessarily Markovian. Assumptions
B.2-3 imply that we consider τ -schedulers which are non-preemptive and non-
anticipative. Policies in this class include first-come-first-served (FCFS), last-
come-first-served (LCFS), and random-order-of-service (Harchol-Balter 2013,
Chapter 29).

For the multiclass queueing system described above, performance evalua-
tion of the higher priority eager class is typically straightforward. Indeed, under
Assumption A.1, the blocking probability of the eager class can be character-
ized by analysing a single-class loss system. However, the performance evalu-
ation for the (lower priority) tolerant class, which sees an exogenous and time
varying service process, is challenging. For example, even when the service
process evolves as a continuous time Markov chain, standard metrics like the
steady state mean sojourn time cannot be obtained in closed form (Mahab-
hashyam et al. 2005). However, it turns out that under a certain fluid limit, the
performance of the tolerant class becomes tractable. We describe this scaling
regime next.

Short-frequent jobs scaling

We now introduce the partial fluid scaling regime considered in this paper.
Under this scaling regime, the arrival rate as well as the service rate of ea-
ger class is scaled to infinity, while maintaining a constant offered load. Note
however that the workload parameters corresponding to the tolerant class are
not scaled.

The scaling parameter µε corresponds to the service rate of ε jobs. Specif-
ically, a generic service requirement for an ε-job at scale µε is defined as

Bµεε
d
=
B1
ε

µε
, with E

[
B1
ε

]
= 1,

6 We consider exceptions to Assumption A.3 in Section 6, where we also allow the eager
customers to wait in the queue to a limited extent.
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and
d
= representing the equality in distribution. The inter-arrival times of ε-

jobs at scale µε are defined as

Aµεε
d
=
A1
ε

µε
, with E

[
A1
ε

]
= 1/λ1

ε , i.e., λµεε = λ1
εµε.

Note that as µε is scaled to infinity, both the arrival rate as well as the service
rate of the eager class are scaled to infinity proportionately, such that the
offered load ρµεε := λµεε E [Bµεε ] = ρε = λ1

ε remains scale invariant. We refer to
the above scaling as the short-frequent jobs (SFJ) scaling.

3 Pseudo-conservation of ε unused service process/τ service
process

In this section, we focus on the service capacity left unused by the (higher
priority) eager class. Under Assumption B.1, this ε unused service (ε-US)
process is also the service process seen by the (lower priority) tolerant class.
We prove a pseudo-conservation law relating the blocking probability of the
eager class and the ε-US process under the SFJ limit. Specifically, we show
under the SFJ limit, that the ε-US process has a steady rate, determined
purely by the blocking probability of the eager class. In Section 4, we exploit
this characterization of the ε-US process to develop pseudo-conservation laws
for performance metrics of the tolerant class.

Let Ωµε(t) represent the total amount of server capacity unused by the
(higher priority) ε-customers, in the interval [0, t]. It is important to note
under A.1, that the ε-US process {Ωµε(�)} depends only on the admission
control and scheduling policy of the eager class and is completely oblivious
to the τ -system. Our first observation is that the blocking probability of the
eager class, as well as the long run average service rate corresponding to the
ε-US process remain constant under the SFJ scaling for any µε > 0 (i.e., even
pre-limit). We require the following assumption, which will be used throughout
the paper.7

A.0 The interval between the start of two successive busy periods of the the
ε-class has finite expectation.

Lemma 1 Assume A.0-2. The steady state blocking probability of ε-jobs is
the same for all µε under the SFJ scaling regime. Let PB denote the blocking
probability of the eager class. Then for any µε,

lim
t→∞

Ωµε(t)

t
= ντ almost surely, where ντ = ντ (PB) := 1− ρε(1− PB).

Proof: We couple the arrival processes corresponding to the eager class for
different µε as follows. Consider the sequence of ε inter-arrival times and job
sizes {A1

ε,n, B
1
ε,n}n≥1 for µε = 1. Note that E[A1

ε,n] = 1/ρε and E[B1
ε,n] = 1 for

7 However from Section 4 onwards, this assumption is implied by B.4.
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all n. We define the sequence of inter arrival times and job sizes {Aµεε,n, Bµεε,n}n≥1

for any general µε as (without loss of generality):

Aµεε,n =
A1
ε,n

µε
and Bµεε,n =

B1
ε,n

µε
for every n, µε. (1)

Since the scheduling decisions (which include admission control) are in-
dependent of τ -customers (by A.1), one can identify a renewal process cor-
responding to the ε-system, such that each renewal cycle is composed of an
ε-busy period and an ε-idle period. Let Xa, Xtot respectively represent the
number of ε-customers that received service and the number that arrived in
one renewal cycle. By renewal reward theorem (RRT) applied twice we obtain
the blocking probability:

(1− PB) =
E[Xa]

E[Xtot]
. (2)

The above expectations are finite under A.0, as seen below. By A.2, the ad-
mission control and scheduling policy for the eager class depend only upon the
number of ε-customers in the system. Thus, if Xµε(t) represents the number
of ε-customers in the system at time t and scale µε, then

Xµε(t) = X1(µεt). (3)

It follows that Xa and Xtot are insensitive to the scale parameter µε, which
implies that PB remains the same for all µε (see (2)).

The length of a typical renewal cycle at scale µε can be expressed, under
our coupling model, as

Xtot∑
n=1

Aµεε,n =
1

µε

Xtot∑
n=1

A1
ε,n.

By Wald’s lemma, the expected length of a renewal cycle at scale µε = 1
equals E[Xtot]/λ

1
ε . Thus by A.0, E[Xtot] <∞, which also implies that E[Xa] ≤

E[Xtot] <∞.
The total amount of service which the ε-customers utilize over a typical

renewal cycle, for any admission control and scheduling policy, stochastically
equals

Xa∑
n=1

Bµεε,n,

whose expected value equals E[Xa]/µε, again by Wald’s lemma8. Thus, invok-
ing the RRT, we conclude that the rate corresponding to the ε-US process
equals:

lim
t→∞

Ωµε(t)

t
=

E[Xtot]/λ
µε
ε − E[Xa]/µε

E[Xtot]/λ
µε
ε

(4)

= 1− ρε
E[Xa]

E[Xtot]
= 1− ρε(1− PB) = ντ (w.p.1)

8 Because, E[Bµεε,n;Xa < n] = E[Bµεε,n]E[Xa < n].
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The above is true for any µε and for any admission control and scheduling
policy for the eager class. �

Note that the ε-US process Ωµε(t) at any fixed time t is not scale invariant.
However, Lemma 1 states that its asymptotic (in time) growth rate is scale
invariant, i.e., the same for all µε. Moreover, this growth rate ντ depends only
on the blocking probability of the eager class, and not on the admission control
and scheduling policy that produced that blocking probability.

The main result of this section is that as µε → ∞ under the SFJ limit,
the ε-US process Ωµε(t) converges to a linear curve with slope ντ . In other
words, under the SFJ limit, the ε-US process grows at a steady rate, that is
determined purely by the blocking probability of the eager class.

Theorem 1 [ε-US process] Assume A.0-2. As µε → ∞, Ωµε(t) converges
to a constant slope curve ντ t almost surely, uniformly over bounded intervals:

sup
t∈[0,W ]

∣∣Ωµε(t)− ντ t∣∣→ 0 almost surely as µε →∞, for any 0 < W <∞,

and for any initial ε-state.
Let Υµε := inf{t : Ωµε(t) ≥ B}, represent the time taken to derive B units

of service using the ε-US process, where the random variable B is independent
of the ε arrival process. Then Υµε converges to B/ντ almost surely as µε →∞
for any initial ε-state.

Proof: Provided in Appendix A. �
Theorem 1 states that under the SFJ limit, the ε-US process has the same

(linear) form, for any admission control and scheduling policy for the eager
class that produces the blocking probability PB . This gives us our first pseudo-
conservation law – a relationship between the blocking probability of the eager
class and its unused service process (under the SFJ limit), that does not de-
pend on the specifics of the ε scheduling policy beyond the resulting blocking
probability. Theorem 1 also proves pseudo-conservation of the time required
to accumulate B units of service from the ε-US process. Under the SFJ limit,
this time converges to B/ντ almost surely.

In the following section, we explore the performance experienced by the
tolerant class, when served by the ε-US process.

4 Pseudo-conservation laws for τ performance metrics

In the previous section, we analysed the service process seen by the tolerant
class under the SFJ limit. In this section, we focus on the performance ex-
perienced by the tolerant class under the same limit. Specifically, we show
that various performance measures of the τ -system utilizing the ε-US process
converge to values corresponding to a steady service process (with rate ντ )
under the SFJ limit. This implies a pseudo-conservation that characterizes
the performance measures of the tolerant class in terms of the blocking prob-
ability of the eager class, robust to the specifics of the ε-policy that produced
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that blocking probability. Moreover, our pseudo-conservation laws hold for any
scheduling policy for the tolerant class that is non-preemptive (across τ -jobs)
and blind (to τ service requirements).

It is important to note that performance evaluation of the tolerant class
is challenging in the pre-limit, since this class experiences an exogenous, time
varying, service process. Even in the simplest case where this service process is
Markovian, performance measures cannot be expressed in closed form (Mahab-
hashyam et al. 2005). Thus, the SFJ limit is crucial for analytical tractability
of performance measures of the tolerant class.

The results in this section require additional assumptions on the workload
processes of the two classes.

B.4 The eager class has Poisson arrivals (of rate λµεε ). Moreover, sizes Bµεε of
ε-jobs are either exponentially distributed or are bounded by b̄/µε almost
surely.

B.5 The tolerant class has Poisson arrivals with rate λτ . Job sizes of the tolerant
class are IID, with Bτ denoting a generic job size. Moreover, ρτ := λτ

µτ
<

ντ (PB), where µτ := 1/E [Bτ ] (for stability of the τ queue).

By Lemma 6 of Appendix B, B.4 implies A.0. For convergence in expectation
of performance measures, we will also require the following assumption (which
implies certain uniform integrability conditions, in order to ensure convergence
of the required second moments).

B.6 E[B3
τ ] <∞.

Main Results

We first state our results, the different pseudo-conservation laws. The proofs
are discussed later. We begin with the pseudo-conservation law for the sta-
tionary number of tolerant customers in the system. Specifically, we show that
under the SFJ limit, the stationary number of tolerant jobs in the system con-
verges in distribution as well as in expectation to the stationary number of
jobs in a dedicated M/G/1 queue operating at speed ντ . As before, note that
under the SFJ limit, the steady state number of tolerant jobs in the system
depends only on the blocking probability of the eager class, and not on the
ε-policy that produced that blocking probability.

Theorem 2 [Number in system] Assume A.1-3 and B.1-5. As µε → ∞
under the SFJ scaling, the steady state number of τ -jobs in the system con-
verges in distribution to the steady state number of jobs in an M/G/1 queue
with arrival rate λτ , service times Bτ and server speed ντ . If we also assume
B.6, then we also have convergence of the expectations and the limit equals

ρτ
ντ

+
λ2
τE[B2

τ ]

2ν2
τ (1− ρτ/ντ )

. �



12 Veeraruna Kavitha1 Jayakrishnan Nair2 and Raman Kumar Sinha1

It is important to note that Theorem 2 is not a direct consequence of
Theorem 1, which characterizes the service process of the tolerant stream
under the SFJ limit, as well as the time required to serve a single τ -job. In
particular, the time-varying service process introduces dependencies across the
service times of different tolerant jobs. Thus, part of the challenge in proving
Theorem 2 is in showing that these dependencies get washed out under the
SFJ limit.

Our second result is pseudo-conservation of the expected stationary sojourn
time, which is a corollary of the first result by Little’s law. Note that the
sojourn time of a job is the total time spent in the system by the job.

Corollary 1 [Sojourn time] Assume A.1-3 and B.1-6. As µε →∞ under
the SFJ scaling, the steady state sojourn time of τ -jobs converges in expectation
to the steady state sojourn time of the limit M/G/1 queue of Theorem 2, i.e.,

1

µτντ
+

λτE[B2
τ ]

2ν2
τ (1− ρτ/ντ )

. �

Our final result in this section establishes a pseudo-conservation of the
steady state tolerant workload. Note that the workload in the system is defined
as the total amount of unfinished work, i.e., the sum total of job sizes of all
the waiting customers plus the residual service requirement of the customer
in service (if any).

We require two additional assumptions.

W.1 The sizes of τ -jobs are light-tailed, i.e., there exists an ā > 1 such that
E[āBτ ] <∞.

W.2 The embedded Markov chain {ζn}n corresponding to ε-queue with µε =
1, obtained by sampling at ε-arrival/departure epochs, is ergodic with
stationary distribution π∗. Further with 0 representing the empty ε-state,

P (ζn = 0)→ π∗(0) > 0 as n→∞,

and the rate of convergence is uniform across all the initial states.

With exponentially sized ε-jobs, the state space describing the ε-queue
is finite (see Appendix C for further details) and hence the uniform rate of
convergence required by W.2 is readily achieved. With bounded ε-jobs, we
have a compact state space, which also makes W.2 non-restrictive (see, for
example, the policies in Section 5).

Theorem 3 [Workload] Assume A.1-3, B.1-5, and W.1-2. As µε → ∞
under the SFJ scaling, the steady state workload of the τ -class converges in
distribution as well as in expectation to the steady state workload of the limit
M/G/1 queue of Theorem 2. The limit of the expected workload equals

λτE[B2
τ ]

2ντ (1− ρτ/ντ )
. �

Theorem 2 is proved in Appendix B, and Theorem 3 is proved in Ap-
pendix C. In the remainder of this section, we provide a sketch of the proof of
Theorem 2.
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Fig. 1: A typical ΥOn spanning over several ε-busy periods, starting within one.

Sketch of the proof of Theorem 2

The steady number of τ -customers immediately after a τ -departure matches
(in distribution as well as in expectation) the steady state number of τ -
customers as seen by a τ -arrival, which by PASTA also matches (in distri-
bution as well as in expectation) the steady state number of τ -customers in
the system. We thus study the convergence of Xn, the number of τ -customers
in system immediately after n-th τ -departure. For any serial, non-anticipative
service policy for τ customers (i.e., under B.1-3), the evolution of this number
can be represented in terms of ε-US process(es) as below:

Xn+1 = (Xn − 1)+ +An+1(Υµεn ), with (5)

Υµεn = inf{t : Ωµεn (t) ≥ Bτ,n}, where (6)

– Ωµεn (�) is the ε-US process associated with n-th τ -customer, i.e., Ωµεn (t)
for any t equals the total amount of server capacity available for the n-th
τ -customer for time duration t after its service has started9,

– Υµεn , as defined in Theorem 1, is the time taken to serve job requirement
of size Bτ,n using the n-th ε-US process, and

– An+1(Υµεn ) is the number of τ -arrivals during the n-th τ -service time Υµεn .

Further Ωµεn (t), Υµεn and hence An+1, Xn+1 depend on state of the ε-system at
the instance the n-th τ -service starts. This state can be characterized by Yn
the ε-number in system, and Rs

n the vector of residual service times (of dimen-
sion K) of the ε-customers present, immediately after (n − 1)-th τ -customer
departure. Note that Rs

n, has only Yn meaningful entries, the rest are taken to
be zero. Indeed, (Yn,R

s
n) completely determines the n-th US process Ωµεn (�)

utilized by the nth τ -job.

9 It is important to note here that we have one ε-US process for each τ -customer, which
starts at the instance the n-th τ -service starts. This is done to simplify the notations.
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Define Zn := (Xn, Yn,R
s
n), and note that {Zn}n≥1 is a Markov chain. For

exponentially distributed ε-jobs, Zn := (Xn, Yn) is already a Markov chain, as
the residual job requirements are again exponentially distributed. This spe-
cial case is an example of a queueing system with Markov modulated service
process. The weak convergence of the sequence {Xn} to its stationary distri-
bution is proved for this case in Mahabhashyam et al. (2005). For (generally
distributed) bounded ε-jobs, by Theorem 6 in Appendix B, {Zn} and hence
the sequence {Xn} is stationary and ergodic.

The idea of our proof is to approximate the original τ system with an
equivalent M/G/1 system. However the sequence of service times, the ‘actual
times’ taken to serve τ -customers, {Υµεn }n≥1 is not IID. Note that in general,
the service of a tolerant customer may start in the middle of an ε-busy cycle,
and may also end in a (potentially different) ε-busy cycle, which results in cor-
relations between consequent service times (see Figure 1). Hence, we construct
two fictitious M/G/1 queues, an upper system and a lower system, such that
both these systems see the same τ -arrivals as our original system. However, the
service times {ΥUn }n≥1 and {ΥLn≥1}n in these systems are defined such that the
service times of the original system are sandwiched between these two almost
surely:

ΥLn ≤ ΥOn := Υµεn ≤ ΥUn for all n.

– To achieve this, for any n we construct (using certain coupling rules a busy
period Θµεn of a fictitious infinite buffer and infinite server queuing system
in Lemma 6 of Appendix B, which would almost surely (or stochastically)
upper bound the residual ε-busy cycle starting the n-th τ -service.

– Zero service is offered during Θµε for τ -customer in the upper system, while
service at full capacity is offered in the lower system. Then the service is
continued identically in all three systems, until service completion in the
original system.

– The service in lower system ends before that of original system, while the
upper system continues with independent copies of ε-busy periods. Further,
the residual of the ε-busy period in which the original customer departs, is
also continued with independent copies of the required random variables.

We thus dominate the number of τ -customers in the original system with
the number in two M/G/1 queues in either direction, where both the dom-
inating queues are served by the same τ -service discipline. We further show
that the performance metrics of the two dominating queues converge to the
same limit under the SFJ scaling, which equals the corresponding performance
metrics in an M/G/1 system with constantly reduced service speed ντ . The
details of the proof are provided in Appendix B.

5 Achievable region and Complete families

The achievable region for an n-class system with common resources is the
set of relevant performance vectors (pm1, · · · , pmn), obtained by all possible
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scheduling policies (e.g., Shanthikumar et al. (1992); Federgruen et al. (1988);
D. Bertsimas et al. (1994)). The two classes of users considered in this pa-
per have different goals and hence naturally have different qualities of service
(QoS) metrics. For the eager class, steady state blocking probability PB is
the natural metric. For the tolerant class, the performance metric could be,
for example, the steady state average sojourn time, the steady state probabil-
ity of there being m or more τ -jobs in the system, the steady state average
τ -workload, etc.

For simplicity, we will take the steady state average sojourn time to be the
performance metric for the tolerant class. In this case, the achievable region
is the set of all possible pairs of blocking probability of the eager class and
expected sojourn time of the tolerant class, i.e.,

Ahetero = {(PB(β),E[Sτ (β)]) : β is a scheduler}.

If ρε > 1, it is not possible to have PB = 0. More generally, it is necessary
that (1 − PB)ρε < 1 or equivalently, PB > 1 − 1/ρε. Similarly it follows from
Theorem 1 that one requires λτE[Bτ ] < ντ (PB) for τ -stability; see B.5. Hence,
using Corollary 1, the achievable region under SFJ limit is given by:

Aheterops =

{(
pB ,

1

µτντ (pB)
+

λτE[B2
τ ]

2ν2
τ (1− ρτ/ντ (pB))

) ∣∣∣∣∣λτ < µτντ (pB),

[1− 1/ρε]+ < pB ≤ 1

}

Here, [x]+ := max(0, x). This is actually a sub-achievable region because it is
obtained by the sub-class of schedulers such that the ε-scheduling rules are
oblivious to τ -state and also satisfy assumptions A.1-3 and B.1-6. We call
this the partially static achievable region. If Bτ is exponentially distributed
with mean 1/µτ , this region is given by:

Aheterops =

{(
pB ,

1

µτντ (pB)− λτ

) ∣∣∣∣∣λτ < µτντ (pB), [1− 1/ρε]+ < pB ≤ 1

}
(7)

Complete families

We now demonstrate two families of schedulers which achieve all the points
of the above (partially static) achievable region. Such families are generally
referred to as complete families. The performance of the following complete
families is analysed under the SFJ limit using direct methods (i.e., without
invoking the general pseudo-conservation laws proved in this paper) in Kavitha
et al. (2017a); see also the extended version Kavitha et al. (2017b). These
papers additionally characterize the rate of convergence of the performance
measures under the SFJ limit.
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In the following, we assume exponential service times for both τ as well as
ε customers.

5.1 Processor sharing PS-(p,K) schedulers

Eager arrivals are admitted into the system with probability p, so long as there
are strictly less than K ε-jobs in the system at that time. Thus, at most K
ε-jobs can be served in parallel. The ε-jobs present in the system are served in
a processor sharing fashion using the complete server capacity, i.e., if there are
1 ≤ l ≤ K ε-jobs in the system, each receives service at rate 1/l. Under this
policy, τ -jobs get service only if there are no ε-jobs in the system. We refer to
this as the βPSp,K scheduling policy.

The performance of the βPSp,K policy under the SFJ limit can be derived
using Corollary 1:

Lemma 2 The PS achievable region, the possible pairs of {(PB(p), E[S](p))}
achieved by PS schedulers {(p,K)} under SFJ limit is given by

APS =

{(
(1− p) + p(ρε,p)KνPSK ,

1(
µτνPSK − λτ

)) ∣∣∣∣λτ < νPSK µτ , 0 ≤ p ≤ 1,K <∞
}

with νPSK :=

 K∑
j=0

ρjε,p

−1

and ρε,p := ρεp.

Proof: It is straightforward to characterize the blocking probability of the
eager class under the βPSp,K policy (see Kavitha et al. (2017a)). Having done
this, the statement of the lemma follows easily from Corollary 1. We omit the
details. �

The following lemma proves that the PS family is a complete family.

Lemma 3 PS schedulers FPS :=
{
βPSp,K , 0 ≤ p ≤ 1,K <∞

}
are a complete

family, i.e., APS = Aheterops .

Proof: Consider first the case ρε ≤ 1. For this case, as K increases to ∞, it
can be verified that the blocking probability PPSB (1) with p = 1 (see Lemma
2) decreases to zero. Also it is easy to verify that the function, p 7→ PPSB (p),
is continuous in p for any K. Thus by the intermediate value theorem, all the
points of the achievable region can be achieved by PS schedulers.

When ρε > 1, it is easy to verify as K →∞ that (see Lemma 2):

ρKε∑K
l=0 ρ

l
ε

=
1∑K

l=0 ρ
−(K−l)
ε

=
1∑K

l=0 ρ
−l
ε

→ 1− 1

ρε
.

Thus PPSB (1) → 1 − 1/ρε and all points of Aheterostatic are achieved again by
intermediate value theorem. �

It is important to note here that the completeness of the above class of
schedulers is achieved by letting K → ∞. However, a larger K also implies a
smaller service rate for ε-customers.
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5.2 Capacity Division (CD) Policies

Under the PS policy, an admitted ε-customer pre-empts any ongoing τ -service
and the entire system capacity is transferred to the ε-customer. In contrast,
under the CD policy, only a fixed fraction of the server capacity is allocated to
each admitted ε-customer. The tolerant class uses the residual service capacity,
if any.

The details of the policy are as follows. Eager arrivals are admitted into
the system with probability p, so long as there are strictly less than K ε-jobs
in the system at that time. Thus, at most K ε-jobs can co-exist in the system
at any time. Moreover, each ε-customer is served at rate 1/K. Thus, if there
are 1 ≤ l ≤ K number of ε-customers receiving the service, then the tolerant
class is served at rate (K − l)/K.

The CD-achievable region can also be derived using Corollary 1:

Lemma 4 The CD achievable region, the possible pairs of {(PB(p), E[S](p))}
achieved by CD schedulers {(p,K)} under SFJ limit is given by

ACD =

{(
(1− p) + p

(Kρε,p)K

K!ǎ0
,

1(
µτνCDK − λτ

)) : λτ < µτν
CD
K , 0 ≤ p ≤ 1

}
, with

νCDK =
η

ǎ0
, ǎ0 :=

K∑
j=0

(
Kρε,p

)j
j!

and η :=

K−1∑
j=0

(
Kρε,p

)j
j!

K − j
K

.

Proof: As before, having characterized the blocking probability of the eager
class (see Kavitha et al. (2017a)), the statement of the lemma follows easily
from Corollary 1. We omit the details. �

This family is also a complete family of schedulers:

Lemma 5 CD schedulers FCD :=
{
βCDp,K , 0 ≤ p ≤ 1,K <∞

}
are a complete

family, i.e., ACD = Aheterops .

Proof: This result can be proved using the same line of arguments as in the
proof of Lemma 3. We omit the details (see Kavitha et al. (2017a,b)). �

6 Eager customers with limited patience

While the previous sections considered eager customers with zero patience to
wait, we now consider the case where ε-customers have partial/limited pa-
tience (referred to as pε). For example customers may enter the system with
probability en if the queue length is n as in balking or may wait at maximum
for a random time distributed as Γ as in reneging (Whitt (1999)). As before,
the pε-system is assumed to be high priority and operates oblivious to the
τ -system, with the τ -system utilizing the service capacity left unused by the
eager class. In this section, we obtain pseudo-conservation laws for the system
with pε and τ customers under SFJ limit. Towards this, we modify Assumption
A.3 as below:
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A.3′ There exists a K ∈ N such that, at most K pε-jobs exist in the system.
So long as the pε-system is non-empty, at least one pε-job is served.
There exists cmin > 0 such that once service beings for an pε-job, its
service rate is at least cmin until service completion.

Basically the above assumption ensures that an eager busy period ends,
only when the eager queue is empty and then the analysis of the previous
sections is applicable again. We obtain performance analysis of this heteroge-
neous queueing system with pε customers under one of the following additional
assumptions:

A.4(a) The pε service requirements are IID and there exists an upper bound b̃
on the time spent by a pε customer in the system, which scales inverse
linearly with µε (i.e., b̃µε = b̃1/µε). If reneging is allowed, then the
reneging (impatience) times of pε-customers are IID, and also scale
inverse linearly with µε.

A.4(b) Exponential IID pε-job sizes and IID reneging times which are expo-
nentially distributed with rate α. Further α also scales linearly with
µε, i.e., αµε = α1µε.

A.4(c) Exponential IID pε-jobs and at any time, upto K1 ≤ K number of
customers are served at a fixed rate. In other words, ε-customers are
served exactly like in an M/M/K1/K queue.

It is important to note that for the partially patient eager class, the blocking
probability PB , defined as the long run fraction of customers denied service,
including those blocked on arrival (as in balking) and those who abandon the
queue while waiting (as in reneging). 10 Our main result is the following.

Theorem 4 Assume A.1-2, B.1-6.. Assume A.3′ in place of A.3 and fur-
ther assume either A.4(a) or A.4(b) or A.4(c). Then the conclusions of
Theorem 2 and Corollary 1 are true.

Proof: It is straightforward to prove Lemma 1 when there is no reneg-
ing (satisfying A.4(a) or A.4(c)). For reneging models (satisfying A.4(a) or
A.4(b)), since we assume that reneging times scale inverse linearly with µε,
we can couple the reneging times such that Equation (3) continues to hold,
allowing us to prove Lemma 1.

For the case with partially eager customers, few pε-customers would wait
for service, while others would be in service. We would now require addi-
tional component in the Markov chains considered in Section 4, Yn gets split
into two components Ys,n, Yw,n which respectively represent the number of
pε-customers in service and the number of waiting pε-customers. Vector Rs

n

(of size K) as before represents the vector of residual service times of the pε-
customers in service out of which only the first Ys,n of them have non-zero
components. It is again easy to verify that the Theorems 6 and 2 go through
for this case, once Lemma 6 of Appendix B is true. In Lemma 11 of Appendix
D we prove this is true, even for pε customers, under the given hypotheses. �

10 Note that the models considered here allow for reneging/abandonment while waiting,
but not during service.
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A wide variety of models are captured by our assumptions. Consider the
case of balking where en = 0 for all n > K and say at maximum K1 ≤ K
customers are served in parallel each with rate 1/K1. If the pε-job sizes are
generally distributed and bounded as in B.4, then maximum time spent by
any pε-customer in the system equals, (K −K1 + 1)b̄/(µεK1). Hence the as-
sumption A.4 (a) is satisfied and the pseudo-conservation law is applicable.
The blocking probability PB of such a system is well understood (e.g., see
Ancker et al. (1963); Whitt (1999)), and so the τ -performance can be readily
estimated in SFJ limit. The analysis is also applicable if the pε-jobs are ex-
ponentially distributed; in this case, A.4(b) is satisfied. When one considers
reneging and balking together with en = 0 for all n > K then assumption
A.4.(b) or A.4(a) is satisfied depending upon the nature of pε-jobs.

An example

We consider balking and reneging model with mutli-server mode as in Model 1
of Whitt (1999). The system serves at maximum K1 pε-customers in parallel.
The limited patience eager customers are discouraged if they have to wait
and hence would balk (i.e., depart without service) with probability δ, when
(waiting) queue size is bigger than 0. The system allows at maximum K −K1

customers to wait for service. Even the customers that entered the waiting
room, can become impatient if service is not offered quickly. They depart after
exponentially distributed (impatience) time with parameter α, if their service
has not yet started. This model is easy to analyze (e.g., Whitt (1999)) and the
probability of blocking equals:

PB(µε, ρε, α) =

∑K−1
k=K1+1 πk(1− ϑk + δϑk) + πK∑

k πk
with (8)

ϑk =

(
1− kα

K1µε + kα

)(
1− (k − 1)α

K1µε + (k − 1)α

)
· · ·
(

1− α

K1µε + α

)
and

πk =


ρkε
k!

(
ρK1
ε

K1!

)−1

if k ≤ K1

ρkε (1−δ)k

Kk
1

(
ρK1
ε (1−δ)K1

K
K1
1

)−1
1(

1+ α
K1µε

)(
1+ 2α

K1µε

)
···

(
1+

(k−K1)α
K1µε

) if k > K1.

The above is the expression if each pε customer is served at unit rate. But
say the system allocates only fraction ξ to pε customers, then each of them is
served at ξ/K1. In that case we need to replace µε with µεξ/K1 and ρε with
ρεK1/ξ and further α by αµε as demanded by Assumption A.4 (b). Thus the
probability of blocking with scale parameter µε is given by

PB(µεξ/K1, ρεK1/ξ, αµε). (9)

Clearly this is independent of µε. Now consider that the system also supports
long job tolerant customers using the pε-US process. Because of our Psuedo-
conservation laws, for example, the stationary expected workload in the τ -
system (with Poisson arrivals and exponential jobs) under SFJ limit equals
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Average Sojourn time for =-Class Customers
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

B
lo

ck
in

g 
pr

ob
ab

ili
ty

 fo
r 

0
-C

la
ss

 C
us

to
m

er
s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Simul. result with 7
0
 = 20.

Simul. result with 7
0
 = 100.

Theoritical result.

Configuration: K=8,
     6

=
=4, 7

=
 = 8.

;
0
 = 0.3

;
0
 = 0.5

Fig. 2: Achievable region: Sim-
ulated and Theoretical results

Simulation Theoretical

p µε PPSB E[Sτ ] PPSB E[Sτ ]

0
20 1.000 0.250 1.000 0.250
80 1.000 0.250 1.000 0.250
120 1.000 0.250 1.000 0.250

0.25
20 0.750 0.353 0.750 0.333
80 0.750 0.339 0.750 0.333
120 0.750 0.337 0.750 0.333

0.50
20 0.500 0.567 0.500 0.500
80 0.500 0.515 0.500 0.500
120 0.500 0.511 0.500 0.500

0.75
20 0.250 1.238 0.250 0.999
80 0.250 1.042 0.250 0.999
120 0.250 1.037 0.250 0.999

1
20 0.002 110.22 0.002 127.8
80 0.002 112.12 0.002 127.8
120 0.002 127.20 0.002 127.8

Table 1: PS model: Comparison of Sim-
ulated, theoretical metrics

(with PB given by (9)):

E[U∗] =
λτ

µτ (µτντ − λτ )
, ντ = (1− ρε(1− PB)).

The system has to provide service to both pε as well τ customers, it may chose
an optimal system configuration (e.g., tune parameters ξ, K1, K) such that
the required trade-off between the two system performances PB and E[U∗] is
achieved/optimized.

This kind of a system is motivated by super market system with express
service counter for short job customers. This also models a cellular system that
supports data-voice calls. This system supports at maximum K1 voice calls,
which are provided in total ξ fraction of the serving capacity of the serving
base station and where K − K1 voice calls can be queued-up. One does not
drop a voice call immediately: a voice call may decide to wait (with probability
δ) and when it decides to wait, it might wait for a brief period (exponential
waiting time with parameter αµε) before dropping. The data calls use the
dedicated (1 − ξ) fraction as well as the server capacity left unused by the
voice customers.

7 Numerical examples

7.1 Accuracy of fluid approximation

We conduct Monte-Carlo simulations to estimate the performance of both
the scheduler families proposed in Section 5. We generate random trajectories
of the two arrival processes, job requirements and study the system evolution
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when it schedules agents according to PS/CD policy. We estimate the blocking
probability and expected sojourn time for ε and τ -agents respectively, using
sample means, for different values of (p,K).

In Figure 2, we compare the theoretical expressions with the ones estimated
using Monte-Carlo simulations for the PS policy. We consider two different
values of ρε. We notice negligible difference between the theoretical and sim-
ulated values when µε = 100. However even with µε = 20, the difference is
about 10-12% for most of the cases.

We consider another example of the PS policy in Table 1 with, K = 8,
λτ = 4, µτ = 8 and ρε = 0.5. As the service rate of ε-agents increases with fixed
load factor (ρε), the estimated results are close to the theoretical results. The
performance is very close to that of theoretical SFJ approximation, for values
of µε greater than 120. For µε = 80, the error is at most5%. Even at values as
low as 20, the simulator performance is within 10% of the theoretical values
for most cases. Thus the theoretical results well approximate the simulated
ones, in most of the scenarios. Especially in the cases with large µε, λε.

The Achievable region is also plotted in Figure 2 for different values of ρε.
Towards this, we plot EPS [Sτ (p)] versus PPSB (p), for p ∈ {iδ : 0 ≤ i ≤ 1/δ}
with sufficiently small δ > 0. It is a convex curve. We notice a downward
shift (improvement) in the curve with smaller ρε, as anticipated. However the
formula derived, helps us understand the exact amount of shift.

7.2 Comparison of the two policies

We compare the achievable regions of PS and CD policies by plotting ACD
and APS . We set λτ = 5.6, µτ = 8, K = 3 or 5 and ρε = 0.9/K (i.e, ρε = 0.3
when K = 3 and ρε = 0.18 when K = 5).

In Figure 3, we plot the achievable region for both the policies, i.e, we plot
E[Sτ (p)] versus PB(p), for different p. In Figures 4-5, we plot the performance
measures PB(p) and E[Sτ (p)] respectively versus p with K = 3. From Figure 3,
the two achievable (sub) regions overlap, however we observe from the Figures
4-5 that the performance measures of the two policies are different for the
same (p,K). But if we choose a p and p′ such that PCDB (p) = PPSB (p′), we
observe that the two expected sojourn times are equal. Because of this the
two achievable regions overlap in Figure 3. This observation is precisely the
pseudo-conservation law given by Theorem 2. Whatever the policy used, once
the blocking probabilities are the same the expected sojourn times are the
same.

Now we will discuss a slightly different, yet, a related important aspect.
We would compare the two sets of policies, when K (maximum number of
parallel calls) is the same. As seen from the figures the sub-achievable region
of CD policy, with fixed K, is a strict subset of that of the PS policy. This is
because the best possible blocking probability with CD policy,
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is greater than that with the PS policy. In Figure 3 the best PB with CD
and PS policies respectively is 0.002 and 0.0002 (0.05 and 0.019) when K = 5
(K = 3). Thus it appears that the static achievable region would overlap for
different policies, however the sub-regions covered by different policies can be
different when K is fixed.
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In Figure 6, we plot the pseudo-conservation law (7). We also plot the
performance of PS/CD policies with K = 3 and for varying p. We see that the
three curves exactly overlap, again validating (7). For the same configuration
we plot performance of PS policies with a bigger K = 50, in Figure 7. With
K = 50 we are able to achieve a bigger part of the achievable region. One can
achieve a similar result with CD policy. With even bigger K one can achieve
further lower parts of the pseudo-conservation curve. However, as mentioned
before, one may not be able to use a larger K because of other QoS restrictions.
For example, the ε customers may not agree for a very small service rate
(µε/K) which can prolong their stay in the system. It is in this context that
the PS could be better than the CD policies. Even though both the sets of
policies are complete, PS policy achieves a bigger sub-region than the CD
policy for the same K (see Figures 3 and 6).

8 Concluding remarks

We analysed a queueing system serving (higher priority) eager customers who
require service immediately upon arrival, and (lower priority) tolerant cus-
tomers who can wait for service. For the class of scheduling policies that ad-
mit and serve eager customers oblivious to the state of the tolerant queue, we
derive pseudo-conservation laws relating the blocking probability of the eager
class and the performance of the tolerant class under a (partially) fluid limit.
We also demonstrated two complete families of scheduling policies, which span
the space of all performance vectors achievable by the (partially static) class
of scheduling policies under consideration. We further extended the pseudo-
conservation laws to eager jobs with limited patience, which captures a wide
range of balking and/or reneging models.

The main feature of our models is the co-existence of a lossy sub-system of
high-priority jobs and a non-lossy sub-system of delay-tolerant, lower-priority
jobs. This distinction also implies that the relevant performance metrics of
the two classes are different, e.g., blocking probability for the lossy class and
average response time for the non-lossy class. To the best of our knowledge,
the achievable region for such heterogeneous multi-class systems has not been
studied in the literature. While performance evaluation of such systems is
highly challenging and policy-specific, we identify a certain partial fluid limit
under which the achievable region is policy-independent and has a closed form
characterization; albeit with certain restrictions on the class of scheduling
policies.

This work motivates generalizations along several dimensions. Immediate
generalizations include extending the psuedo-conservation laws derived here to
the distribution of τ -sojourn time, and to pre-emption based policies for τ -jobs,
like processor sharing and SRPT. One could also analyse the achievable region
under a richer class of dynamic policies, which schedule both classes based on
the complete system state. Some of our preliminary investigations show that
this region is a strict superset of the partially static achievable region analysed
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here. Another interesting extension would be to multi-server (and therefore
non-work-conserving) settings. Finally, specializing these models to capture
particular application scenarios, including supermarkets, cognitive radio, and
cloud computing environments, present avenues for future work.
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Appendix A: Proofs related to the pseudo-conservation of the ε-US
process

This appendix is devoted to the proof of Theorem 1. The proof requires the
following functional version of the RRT.

Theorem 5 (Functional RRT) Let Ω1(t) represent a time-monotone non-
negative cumulative reward function of the ε-renewal process when µε = 1,
with ν as its RRT limit:

Ω1(t)

t
→ ν almost surely as t→∞.

Then, for any W <∞ and irrespective of the initial condition:

sup
s∈[0,W ]

∣∣∣∣Ω1(µs)

µ
− νs

∣∣∣∣→ 0 as µ→∞ almost surely.

Proof: For any δ > 0 there exists a Tδ (for any initial state) such that:∣∣∣∣Ω1(t)

t
− ν
∣∣∣∣ ≤ δ ∀ t ≥ Tδ. (10)

Now pick s ∈ [0,W ]. If µs ≥ Tδ we have∣∣∣∣Ω1(µs)

µs

s

W
− ν s

W

∣∣∣∣ ≤ s

W
δ ≤ δ. (11)

If µs < Tδ, ∣∣∣∣Ω1(µs)

µ
− νs

∣∣∣∣ ≤ Ω1(µs)

µ
+ νs ≤ Ω1(Tδ)

µ
+ ν

Tδ
µ
≤ δ (12)

for large enough µ, chosen appropriately for any initial condition.
It follows that

sup
s∈[0,W ]

∣∣∣∣Ω1(µs)

µ
− νs

∣∣∣∣ ≤ δ
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for large enough µ. This completes the proof. �
Proof of Theorem 1: As in the proof of Lemma 1, we couple the arrival
processes corresponding to the eager class for different µε as per (1). Under
this construction, it is easy to see that

Ωµε(t)

t
=
Ω1(µεt)

µεt
, which implies Ωµε(t) =

Ω1(µεt)

µε
.

Thus by Theorem 5, for any W > 0,

sup
t∈[0,W ]

∣∣Ωµε(t)− ντ t∣∣ = sup
t∈[0,W ]

∣∣∣Ω1(µεt)

µε
− ντ t

∣∣∣→ 0 a.s., as µε →∞. (13)

This proves the statement about the asymptotic (in time) growth rate of the
ε-US process.

We now prove the claim regarding the time required to obtain B units of
service from the ε-US process. By continuity of probability measure, one can
assume that (13) is satisfied together for a sequence of {Wn} with Wn →∞,
almost surely. Define the event A as follows.

A :=

{
sup

t∈[0,Wn]

∣∣Ωµε(t)− ντ t∣∣→ 0 for all n

}
and note P (A) = 1.

For any outcome ω ∈ A, consider a Wn > (B(ω) + 1)/ντ . For every δ ∈ (0, 1),
there exists µ̄ > 0 such that:

sup
t∈[0,Wn]

∣∣Ωµε(t)− ντ t∣∣ ≤ δ for all µε ≥ µ̄.

Thus ντ t − δ ≤ Ωµε(t) ≤ ντ t + δ for all t ≤ Wn. Now in particular for t =
(B(ω) + δ)/ντ < Wn, we have:

Ωµε(B(ω)/ντ + δ/ντ ) ≥ ντ ((B(ω) + δ)/νt)− δ = B(ω),

which implies Υµε ≤ (B(ω) + δ)/ντ . Similarly, for t = (B(ω) − δ)/ντ < Wn,
we have:

Ωµε(B(ω)/ντ − δ/ντ ) ≤ ντ ((B(ω)− δ))/νt) + δ = B(ω).

Thus, Υµε ≥ (B(ω)− δ)/ντ . We conclude that∣∣∣Υµε −B(ω)/ντ

∣∣∣ ≤ δ

ντ
∀ µε ≥ µ̄.

This completes the proof. Note that the above argument applies for any initial
condition of the ε-state, as Theorem 5 is true for any initial state. �

Appendix B: Proof of Theorem 2

This section is devoted to the proof of Theorem 2.
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Stochastic upper bound on residual ε-busy periods

The first step in the proof is the construction of a stochastic upper bound
on the residual ε-busy period Ψ̃ starting from any ε-state. Let sε denote the
state of the ε-subsystem. For the case of bounded eager service requirements,
sε = (y, r) ∈ {0, 1, · · · ,K} × [0, b̄/µε]

K , for any µε. Here, y is the number
of ε-jobs present, and the vector r holds the residual service requirements of
these ε-jobs at the start of Ψ̃ . Note that r has exactly y positive entries; the
remaining K − y entries are set to zero. For the case of exponential eager
service requirements, the ε-state sε = y, the number of ε-jobs in the system.

Lemma 6 Assume A.1-3 and B.4. Let Ψ̃µε(sε) denote the residual ε-busy
period starting with ε-state sε. One can construct an upper bound Θµε inde-
pendent sε that almost surely dominates Ψ̃µε , i.e.,

Ψ̃µε(sε) ≤a.s. Θ
µε .

uniformly over sε. Further, as µε →∞ under the SFJ scaling,

Θµε → 0 almost surely, (14)

E
[(
Ψ̃µε(sε)

)k]
≤ E

[
(Θµε)

k
]
→ 0 ∀ k ∈ N. (15)

Proof: We begin with the case of bounded service requirements. Let Θ =
Θ1, be the random time distributed as the busy period in a fictitious M/G/∞
system with infinite buffer space (no loss system), when started with exactly K
users each demanding b̄ amount of service (see assumption B.4), and seeing
the same ε-arrival stream as in our model at scale µε = 1. Each server in
this fictitious system operates at a service rate that equals the lowest possible
service rate cmin > 0 of ε-jobs under the given ε-scheduling policy. By the
way of our special construction, Θµε := Θ/µε will be the busy period of the
same system for any arbitrary µε, with the understanding that the initial
residual service requirement of each job equals b̄/µε. This immediately implies
the statement about almost sure convergence of Θµε under the SFJ limit. The
statement about convergence of kth moment holds, so long as E[(Θ1)k] <∞.
To show that E[(Θ1)k] <∞, divide time into blocks of length b̄

cmin
. Since b̄

cmin
is the maximum time spent by a job in our fictitious system, the busy period
ends if there is no arrival in any block of time. Thus, for m ≥ 2,

P

(
Θ1 ≥ m b̄

cmin

)
≤ (1− p)m−1, (16)

where p := e
−λε b̄

cmin is the probability of no arrival in any block. Upper bound
(16) implies that all moments of Θ1 are bounded.

It is not hard to see that Θ dominates Ψ̃1; indeed, the fictitious system has,
at any time, a larger number of ε-jobs, each with a greater residual service re-
quirement, as compared to the original system. While the original system may
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have losses, the fictitious system does not. One can obtain the required domi-
nance in almost sure sense when the following coupling11 rules are employed:
a) the ε-arrival epochs in the beginning of the Θµε system are exactly the
same as those that evolved Ψ̃ in the original system; b) the job demands of the
subsequent customers of Θµε system are exactly the same as the ones corre-
sponding to the original system; and c) we complete construction of Θµε , using
independent copies of ε-job requirements and inter arrival times as required.
By above construction, it is clear that Θµε is independent of ε-initial state
sε = (y, r).

For exponential ε-jobs, similar arguments are applicable, except that we
further couple the service times of the first y customers with the (residual)
service times of the y customers of the original system. The remaining (K−y)
customer in upper bound system are independent copies of exponential distri-
bution with parameter µε. In fact we replace the (residual) service times of the
y customers of the original system with IID copies, and the same realizations
are used by Θµε customers. This does not change the stochastic description
of the original system. Thus for exponential ε-jobs, Θµε almost surely upper
bounds Ψ̃(sε) (for any sε = y) and is independent of the residual service times
of the ε customers present at the start of Ψ̃ . �

Ergodicity

The next step in the proof of Theorem 2 is to establish ergodicity of the
number of jobs in the tolerant sub-system. For the case of exponential ε-service
requirements, ergodicity follows from Mahabhashyam et al. (2005). Thus, we
focus only on the case of bounded ε-service requirements. As discussed in
Section 4, we analyse the evolution of the system across departure instants
of tolerant jobs, via the Markov process Zn := (Xn, Yn,R

s
n). The following

theorem states that this Markov process is ergodic for µε large enough.

Theorem 6 Assume A.1-3, B.1-6 and general bounded ε-jobs. There exists
a µ̄ < ∞ such that Zn is positive recurrent and aperiodic for every µε ≥ µ̄.
Hence it has a stationary distribution and the state at time n converges to the
stationary distribution in total variation norm. Thus we have the convergence
of the marginals also, i.e., with X∗ representing the stationary quantity

sup
j
|Eµε [Xn = j]− Eµε [X∗ = j]| → 0 as n→∞ for all µε ≥ µ̄.

Proof: Let P (z, .) represent the probability transition Kernel of the Markov
chain. Consider the Lyaponuv function V (z) = x for all z = (x, y, r) = (x, sε).
Note that PV (z) = E[V (Z1)|Z0 = z]. For any x ≥ 1 it is clear from (5),

11 To compare two stochastic systems, we use realizations of some random quantities of
one system in defining the other system so as to ensure the required dominance in almost
sure sense. Where required we use independent copies of some other random quantities.
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∆V (z) = PV (z)− V (z) = (x− 1) + E[An+1(Υµεn )|sε]− x
= Esε [An+1(Υµεn )]− 1, and by conditioning on Υµεn ,

= λτEsε [Υµεn ]− 1 ≤ λτ sup
s′ε

Es′ε [Υ
µε
n ]− 1.

By Lemma 8 given below, with δ := (1 − λτ (E[Bτ ]/ντ )/2 (which is greater
than 0 by B.5) there exists a µ̄ <∞ such that, for any µε ≥ µ̄:

sup
s′ε

Es′ε [Υ
µε
n ] ≤ E[Bτ ]/ντ + δ/λτ , hence λτ sup

s′ε

Es′ε [Υ
µε
n ]− 1 ≤ −δ < 0.

Thus one can choose a δ > 0 and a µ̄ <∞, such that for all µε ≥ µ̄
∆V (z) < −δ when x ≥ 1. (17)

The above negative drift is true for all z ∈ Cc where

C := {(x, y, r) : x = 0}. (18)

For any z ∈ C, i.e., when x = 0 and for any (sε), again using Lemma 8

∆V (z) = PV (z)− V (z) = Esε [An+1(Υµεn )] ≤ λτ sup
s′ε

Es′ε [Υ
µε
n ] <∞.

By Lemma 7 of Appendix B, C is a small set and is aperiodic. Thus, by (Meyn
et. al. 1993, Theorem 13.0.1, pp. 313, equation 13.4), we have convergence of
the stationary distribution in total variation norm and hence the theorem. �

Lemma 7 Set C of (18) is a small set and the Markov chain is aperiodic.

Proof: Let P (z, .) represent the probability transition kernel of the Markov
chain. For any event A and any z ∈ C (i.e., when z = (0, sε)) it is clear to see
that

P (z,A) ≥ P (z, A ∩ {(0, 0,0)}) = Prob(z, (0, 0,0))1{(0,0,0)∈A}. (19)

Starting from any z ∈ C one can uniformly lower bound Prob(z, (0, 0,0)) by
the probability of the following event: a) there are no τ or ε arrivals for a

time b̄
µεcmin

, by which time all existing ε-customers would have been served

(note that ε-jobs have a maximum size of b̄/µε, and are served at a minimum

rate of cmin) ; b) the first arrival after time b̄
µεcmin

is a τ -job; c) there are
no τ or ε arrival for time Bτ , which is the service requirement of this newly
arrived τ -job. Under this event, it is clear that state of the system after the
next τ -departure would be (0, 0,0). Thus for any z ∈ C,

Prob(z, (0, 0,0)) ≥ e−
(λτ+λε)b̄
µεcmin

(
λτ

λτ + λε

)∫
e−(λε+λτ )sdGτ (s) =: κ, (20)

where Gτ is the distribution of the τ -service times Bτ . Thus from (19),

P (z,A) ≥ P (z, A ∩ {(0, 0,0)}) ≥ κ1{(0,0,0)∈A} for any z ∈ C. (21)
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Hence the one step transition probability measure (19), is lower bounded uni-
formly for all z ∈ C, with a non-trivial measure (need not be probability)
that concentrates only on {(0, 0,0)} and hence C is a small set (see (Meyn et.
al. 1993, Equation (5.14), pp.109) for definition of small set). This also shows
that the ‘significant’ atom {(0, 0,0)} (see (Meyn et. al. 1993, page 103) for
definition of atom) is aperiodic and hence that the Markov chain is aperiodic.
�

Lemma 8 Assume A.1-3, B.1-6. Let Υµε denote the time required for the
tolerant class to receive service Bτ , starting with ε-state sε. There exists a
uniform (over initial ε-states) almost sure upper bound Ῡµε of Υµε , such that
Ῡµε → Bτ

ντ
almost surely as µε →∞. Moreover,

supsε E [Υµε | sε] ≤ E
[
Ῡµε

]
and limµε→∞ E

[
Ῡµε

]
= E[Bτ ]

ντ
,

supsε E
[

(Υµε)
2
∣∣∣ sε] ≤ E

[(
Ῡµε

)2]
and limµε→∞ E

[(
Ῡµε

)2]
=

E[B2
τ ]

ν2
τ
.

Proof of Lemma 8: Let Υµε(sε) represent the time taken to serve a τ -
customer with job requirement Bτ (see (6)) when ε-state at τ -service start
equals sε. We construct a fictitious upper system such that ΥU,µε , the time
taken to serve the same (realization of the) job Bτ in the upper system, upper
bounds Υµε(sε) of original system uniform over all sε and almost surely. The
starting residual ε-busy period Ψ̃ of the original system (for any sε) is replaced
by Θµε of Lemma 6 in the upper system, so that,

Ψ̃(sε) ≤ Θµε almost surely for any sε.

Zero τ -service is offered during Θµε . And after Ψ̃ in the original system
(respectively Θµε in upper system), the remaining Bτ (entire Bτ in upper
system) is completed using the server capacity available to the τ -class when
the ε-jobs in both the systems are driven with same realizations of the random
quantities like further arrival times, ε-job requirements etc. Further, both the
systems use the same ε-scheduling policy. This ensures required almost sure
domination12. Thus Υµε(sε) ≤ ΥU,µε for all sε a.s. and hence

sup
sε

E [Υµε | sε] ≤ E
[
ΥU,µε

]
for any µε and observe that ΥU,µε

d
= Θµε+Υµε(0).

It now follows from Theorem 1 and Lemma 6 that ΥU,µε → Bτ
ντ

almost surely
as µε →∞.

Statements about convergence in expectation follow once we show uni-

form integrability of {ΥU,µε}µε . Define ˆ̄Υµε(0) as the time taken to serve
Bτ amount of work for the tolerant class, when the τ -customers are served
only during ε-idle periods. Note this also implies that the tolerant class ser-

vice has not started till the first ε-busy period is over in ˆ̄Υµε(0). Clearly,

12 The τ -customer receives some (respectively zero) service in original (respectively upper)
system during Ψ̃ (respectively during bigger Θµε ) and after (Ψ̃ , Θµε ) τ -service is received in
exactly the same way, in both the systems.
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Υµε(0) ≤a.s.
ˆ̄Υµε(0) (dominated almost surely). Via exactly the same analysis

as in Theorem 1, one can show that

ˆ̄Υµε(0)→ B

ν̄τ
almost surely, where ν̄τ =

1/ρε
1/ρε + E1[Ψ1]

=
1

1 + ρεE1[Ψ1]
,

equals the long run fraction of time the ε-queue is idle. Also, because of the
simplistic τ -server availability rules and because of memoryless ε-arrivals, one
can express

ˆ̄Υµε(0) = Bτ +

N(Bτ )∑
i=1

Ψi,

where N(Bτ ) is the number ε-arrivals (or ε-interruptions) during time period
B and {Ψi} are resulting ε-busy cycles. Note these are IID. By the special
construction (1) and from Lemma 6 (Ψ1 is a partial busy period with sε = 0):

Eµε [(Ψ1)k] =
E1[(Ψ1)k]

µkε
for any k.

Further by conditioning first on Bτ ,

E
[

ˆ̄Υµε (0)
]

= E[Bτ ] + λεE[Bτ ]Eµε [Ψ1] = E[Bτ ] + ρεE[Bτ ]E1[Ψ1] = E[Bτ ]/ν̄τ , for any µε and

E
[(

ˆ̄Υµε (0)
)2]

= E[B2
τ ] + 2E[BτN(Bτ )]Eµε [Ψ1] + E[N(Bτ )]Eµε [(Ψ1)2]

+E[N(Bτ )(N(Bτ )− 1)] (Eµε [Ψ1])2

= E[B2
τ ] + 2E[B2

τ ]ρεE1[Ψ1] + ρεE[Bτ ]
E1[(Ψ1)2]

µε
+ ρ2εE[B2

τ ]
(
E1[Ψ1]

)2
→ E[B2

τ ] + 2E[B2
τ ]ρεE1[Ψ1] + 0 + ρ2εE[B2

τ ]
(
E1[Ψ1]

)2
= E

[
B2
τ

ν̄2τ

]
, as µε →∞.

Thus and further using (15) of Lemma 6, there exists a µ̄ε large enough such
that:

sup
µε≥µ̄ε

Eµε
[(
ΥU,µε

)2] ≤ E
[
B2

ν̄2
τ

]
+ δ.

Thus {ΥU,µε}µε are uniformly integrable and hence we obtain L1 convergence.
Using analogous arguments, it can be shown that

sup
µε≥µ̄ε

Eµε
[(
ΥU,µε

)3]
<∞,

which implies that {(ΥU,µε)2}µε are uniformly integrable and hence we also
obtain L2 convergence. �
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Fig. 8: ΥOn spanning over several ε-busy periods, starting with Ψ̃n and ending
with Ψ̈n.

Proof of Theorem 2

We are now ready to prove Theorem 2. The main idea of the proof is that the
number of tolerant customers in the system at any time can be bounded from
above and below by two M/G/1 systems, such that the performance metrics
for the two bounding systems converge to the same value under the SFJ limit.

We begin with construction of the dominating queues for the scenario with
bounded ε-jobs. The case with exponential ε-job requirements is considered
at the end. The key challenge is to ensure IID service times in the bounding
systems. Note that τ -service times in the original system are not in general
independent (since successive τ -jobs might begin service within the same ε-
busy period).

– Let ΥO be defined as the total time period between the service start and
the service end of a typical τ -agent (in original system) and we refer this
as the effective server time (EST). A typical EST (say ΥOn ) begins with
a residual ε-busy period (call this Ψ̃n) and then might span over multiple
ε-busy periods, before ending with another partial ε-busy period (call this
Ψ̈n) (for e.g., see Figure 8). Thus Ψ̈n and Ψ̃n+1 together form the ε-busy
period in between which the n-th τ -customer departs (if it does not leave
behind an τ -queue empty), which leads to correlations in original system.

– We construct Θµεn (for any arbitrary µε, n), which almost surely domi-
nates Ψ̃n (for any ε-state sε at τ -service start) as described in Lemma 6 of
Appendix B.

– The τ -service in original system begins with Ψ̃n, while that in the two
bounding systems begins with Θµεn . During this period the τ customer in
lower system has access to the complete system capacity (i.e., it is served
at rate 1) while in upper system it has access to zero capacity. After Θµεn
in bounding systems (respectively after Ψ̃n in original system) the two
bounding systems continue with τ -service exactly as in original system.
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This continues at maximum for the full-ε-busy periods of the original sys-
tem, over which the τ -service of the customer under consideration in the
original system, spans completely (Figure 8).

– We continue the same for the ‘last’ partial busy period Ψ̈n, till which the
service of the current τ -customer continues (in the original system). From
this point onwards subsequent ε-inter-arrival times and the service times of
the subsequent new ε-arrivals are continued with IID copies. We however
couple the departure epochs of the ε-customers (Yn+1 of them) deriving
service at the (n-th) τ -departure epoch in the original system.

– This ensures that the modified ‘last’ ε-busy period used by the dominating
systems is stochastically the same as the usual ε-busy period, because of
memoryless property of ε-Poisson arrivals. And further this period is in-
dependent of Θµεn+1 (constructed by coupling the subsequent ε-inter-arrival

times and service times in Lemma 6) which dominates Ψ̃n+1 of the next
τ -customer.

– The span of the time during which the τ -job is completed, in each system,
becomes the service time of the corresponding customer in the respective
dominating systems.

– The Ψ̃n+1 of any customer can be correlated with Ψ̈n of the previous cus-
tomer in original system. However after Ψ̈n, ε-busy period of previous cus-
tomer is continued using independent quantities in the dominating systems,
except for departure epochs of the ε-customers existing at τ -departure,
and Θµεn+1 dominating Ψ̃n+1 of the next customer is independent of these ε-
departure epochs. Thus correlations are avoided in the dominating systems
and hence they are M/G/1 queues.

– To summarize, by way of the construction the IID service times in the
dominating queues equal:

ΥU = Θµε + Υ (0, Bτ ), (22)

ΥO = Υ (sε, Bτ ) and

ΥL = min

{
Θµε , Bτ

}
+ Υ (0, [(Bτ −Θµε)1{Bτ>Θµε}]),

where Υ (sε, b) represents the time taken to complete job requirement b,
when ε-state at τ -service start is sε.

– The service time ΥL in the lower system (with same realization of Bτ ) is
less or equal to ΥO, because τ -customer in lower system receives service
at the maximum rate during the (bigger) interval Θµε , as compared to the
time varying rate (which is less than or equal to the maximum rate) with
which the service is offered in original system during the (smaller) interval
Ψ̃ . After Ψ̃ and Θµε (respectively), the service rate available for τ -customer
evolves in exactly the same way for both the systems. Thus, the customer
of lower system leaves before that in the original system.

– Similarly, the service time ΥU in the upper system is greater than or equal
to ΥO. There is a possibility that service is not completed in the same ε-
busy period (which was modified for bounding system) in the upper system
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as in the original system. If so, the rest of the service is completed using
independent copies of ε-busy periods as required.

Thus departure instances of τ -customers are delayed in the upper system
in comparison with that of the original system almost surely, while they occur
sooner in lower system almost surely. Hence the number customers at time t
in the three systems:

XL(t) ≤ XO(t) ≤ XU (t) almost surely, for all t. (23)

This implies the following dominance at τ -departure epochs

XL
n ≤ XO

n ≤ XU
n almost surely and for all n. (24)

Stationary Performance: Let Xm
∗ (with m = U or L or O) be the random

variable distributed as the stationary number in the system, if the correspond-
ing stationary distribution exists. The upper system may not be stable for all
µε because of Θµε . By Lemma 9 of Appendix B and B.5, the upper system
is stable (i.e., λτE[ΥU ] < 1) for all large enough µε. Consider larger µε, if
required, for which the original system is also stationary as given by Theorem
6. Thus, for large enough µε, we have the weak convergence

XL
n =⇒ XL

∗ , XO
n =⇒ XO

∗ , XU
n =⇒ XU

∗ .

The three weak convergence results along with stochastic domination13 as
given by (24) gives the following for any large enough µε < ∞ by (Shaked et
al. 2007, Theorem 1.A.3(c), pp. 6):

XL
∗ ≤st X

O
∗ ≤st X

L
∗ . (25)

Convergence in distribution: It follows from (25) that the moment
generating functions (MGFs) corresponding to XL

∗ , X
O
∗ , and XU

∗ satisfy the
following relation14, for z ∈ (0, 1).

Eµε
[
zX

L
∗

]
≥ Eµε

[
zX

O
∗

]
≥ Eµε

[
zX

U
∗

]
(for large enough µε). (26)

Now, as µε → ∞, Lemma 9 below implies that the ΥU , ΥL
d→ Bτ

ντ
. It

follows from the continuity theorem for Laplace transforms (see (Feller 1972,

13 Almost sure dominance given by (24) easily implies the stochastic dominance:

P (XU
n ≥ x) ≥ P (XO

n ≥ x) ≥ P (XL
n ≥ x) for all x, n.

14 Stochastic dominance implies the dominance of expected values of any increasing func-
tion (e.g., (Shaked et al. 2007, Equation (1.A.7), pp. 4)), i.e.,:

E[φ(XU
n )] ≥ E[φ(XO

n )] ≥ E[φ(XL
n )] for any increasing function, φ.
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Theorem 2, Chapter 13.1)) that the corresponding Laplace transforms satisfy,
for s > 0,

Eµε
[
e−sΥ

U
]
,Eµε

[
e−sΥ

L
]
→ E

[
e−s

Bτ
ντ

]
as µε →∞.

Given the representation of the MGF of the steady state number in system of
an M/G/1 queue in terms of the Laplace transform of the job size distribution
(see (Harchol-Balter 2013, Chapter 26)), it follows that

lim
µε→∞

Eµε
[
zX

U
∗

]
= lim
µε→∞

Eµε
[
zX

L
∗

]
= E

[
zX∗

]
,

whereX∗ denotes the stationary number in system corresponding to an M/G/1
queue with arrival rate λτ and job sizes Bτ

ντ
. We now conclude from (26) that

lim
µε→∞

Eµε
[
zX

O
∗

]
= E

[
zX∗

]
,

which implies, from the continuity theorem for MGFs (see (Feller 1968, Sec-

tion 11.6) that XO
∗

d→ X∗.
Convergence in expectation:
Similarly, it follows from (25) that

Eµε(XL
∗ ) ≤ Eµε(XO

∗ ) ≤ Eµε(XU
∗ ). (27)

From Lemma 9 below, we have, as µε → ∞, the job requirements of the two
bounding queues, satisfy

Eµε [ΥU ] → E[Bτ ]

ντ
, Eµε [ΥL]→ E[Bτ ]

ντ
and

Eµε [(ΥU )2] → E[(Bτ )2]

ν2
τ

, Eµε [(ΥL)2]→ E[(Bτ )2]

ν2
τ

.

Thus the stationary expected number in the system with µε in the two bound-
ing systems converges to the stationary performance E[X∗] of the M/G/1
system with the same arrival rate and with service times Bτ/ντ :

Eµε(XL
∗ )→ E(X∗) and Eµε(XU

∗ )→ E(X∗).

Hence the performance of both the dominating systems converge to the same
constant and hence the sand-witched performance of the original system from
(27) also converges to

Eµε(XO
∗ )→ E [X∗] .

This completes the proof for bounded ε-jobs, when we observe that X(t)
performance of M/G/1 system with service times Bτ/ντ and unit rate server
is same as that in the M/G/1 system with service times Bτ and ντ -rate server.

For exponential ε-jobs, the construction is almost the same, except that we
need not couple the departure epochs of ε-customers present at the end of Ψ̈
in the dominating systems. This is because these departure epochs are after
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exponentially distributed times (by memoryless property). More importantly
we replace these departure epochs in Ψ̃ corresponding to the next customer of
the original system by an IID copy and further couple the same with Θµε con-
struction. This does not change stochastic description of the original system.
At the start of each τ -service at state sε = y in the original system, we con-
struct Θµε (see Lemma 6) using K (fresh) IID exponential random variables
to capture the residual service requirements. The residual service requirement
of the y ε-jobs in the original system is taken to as the first y of the same ran-
dom variables. This coupling ensures that the Θµε almost surely dominates the
residual ε-busy period in the original system, and is additionally independent
of any previous upper bound constructions in the same ε-busy period. This
ensures that the service requirements in the two bounding systems remain IID.
The rest of the proof follows along exactly similar lines. �

Lemma 9 For the upper and lower bounding system constructed in the proof
of Theorem 2, as µε →∞,

ΥU , ΥL
d→ Bτ
ντ
,

Eµε
[
ΥU
]
, Eµε

[
ΥL
]
→ E [Bτ ]

ντ

Eµε
[
(ΥU )2

]
, Eµε

[
(ΥL)2

]
→

E
[
B2
τ

]
(ντ )2

Proof of Lemma 9: For any ε-state at the start of τ -service, almost
sure convergence of ΥU , ΥL under the SFJ limit follow from Theorem 1 and
Lemma 6.

Convergence of the first and second moment of ΥU , ΥL under the SFJ limit
follow from the uniform integrability arguments in the proof of Lemma 8. �

Appendix C: Proofs for Theorem 3, workload pseudo-conservation

Proof of Theorem 3: By PASTA the workload seen by the arriving cus-
tomers equals the stationary workload. Hence we consider an alternate embed-
ded Markov chain of the original system, that observed at τ -arrival instances
to study the τ -workload. We also consider an additional Markov chain, that
defined in assumption W.2. This chain is updated at every ε-arrival/departure
epoch and hence evolves at a much faster rate than the former τ state repre-
senting Markov chain. Further the {ζn}n chain is defined with µε = 1, however
by Equations (1) and (3) also represents the Markov chain for any µε, when
the residual ε-job size component of the ε-state is scaled down by 1/µε. With
exponential ε-jobs its state space is finite, i.e., ζ ∈ {0, 1, · · · ,K} and hence the
uniform rate of convergence required by W.2 is immediate. With bounded
ε-jobs ζ ∈ {0, 1, · · · ,K} × [0, b̄]K , i.e., we have a compact state space.

Theorem 1 is again applicable. We obtain the ergodicity as well as the
convergence in distribution/mean, both by establishing geometric ergodicity
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of the alternate embedded Markov chain, just discussed. Let Un represent the
workload seen by n-th τ -arrival and redefine (Yn,R

s
n) to again represent the

ε-number and the ε-residual service times vector respectively, but now at τ -
arrival instances and we study the redefined Markov chain Zn = (Un, Yn,R

s
n).

Firstly
Un+1 = (Un +Bτ,n −Ωµεn (Aτ,n+1))

+
,

where the start of Ωµεn (the total server capacity available to τ -customer for
a duration Aτ,n+1) is dictated by (Yn,R

s
n), Bτ,n is the service time of n-th τ

customer and Aτ,n+1 is the inter-arrival time before the (n+ 1)-th τ arrival.
Lyaponuv Function: By Lemma 10 given below, for any given δ > 0, one

can chose µ̄, ū such that for any µε ≥ µ̄, u ≥ ū and for any sε:

Esε
[
a(u+Bτ,1−Ωµεn (Aτ,1))+

]
≤ E

[
a(u+Bτ,1−ντAτ,1)

]
+ auδ. (28)

The above is true for any 1 < a ≤ ā by W.1, however ū, µ̄ can depend upon
a, δ. Consider V (z) = V (u) = au and we will choose a suitable ā ≥ a > 1, to
obtain the appropriate Lyapunov function. Consider any such a, any δ > 0, and
u > ū(a, δ), µε ≥ µ̄(a, δ). Then, with P (�, �) being the transition probability
kernel and PV (z) = Eµεz [V (U1, Y1,R

s
1)] = Eµεz [V (U1)], we have

PV (z)− V (z) ≤ au(g(a) + δ − 1) = V (z)(g(a) + δ − 1) with

g(a) := E[aBτ−ντAτ,1 ].

One can chose an a in neighbourhood of 1 such that g(a) < 1 because of the
following reasons:

g(1) = 1 for a = 1, and
dg

da

∣∣∣
a=1

= E[Bτ − ντAτ ] < 0.

Basically the derivative is less than 0, is continuous in a, and hence would
remain negative in some neighbourhood of a = 1. Thus g(�) is decreasing
beyond a = 1 in neighbourhood of a = 1. Thus choose an a ≤ ā, for which
g(a) < 1 and further choose a δ > 0 such that g(a) < 1 − δ. By Lemma 10
choose ū, µ̄ for this (δ, a) and then the geometric drift condition is satisfied
with β := g(a) + δ < 1 because,

∆V (z) = PV (z)− V (z) = V (z)(β − 1) for all u > ū and

∆V (z) ≤ K∆ for all u ≤ ū with

K∆ := sup
u≤ū

PV (u) = sup
u≤ū

Eµεsε
[
a(u+Bτ,1−Ωµεn (Aτ,1))+

]
≤ aūE[aBτ ] <∞.

Note that K∆ and β are the same for every µε ≥ µ̄.
Small set: We prove that one of the following sets is a small set:

C := [0, ū]× {0, 1, · · · ,K} × [0, b̄/µε]
K

for bounded ε-jobs

C := [0, ū]× {0, 1, · · · ,K} for exponential ε-jobs. (29)
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The embedded ε-Markov chain {ζn}n changes at every ε-arrival/departure
epoch. Thus if the number of arrivals increases, the number of transitions
increase to infinity, and then it converges to the stationary distribution π∗

given by W.2. Further as already mentioned, by equations (1) and (3), it
also represents the Markov chain for any µε. Let Sµε represent the state of ε-
Markov process, immediately after the last ε-change before τ -arrival instance,
Aτ . Note that Sµε = (Y1,R

s
1). As µε → ∞, the number of ε-arrivals within

one τ -inter arrival time, N ε(Aτ ) → ∞. Hence by W.2 as µε → ∞ (rate of
convergence independent of sε),

Pµε(Sµε = (0,0)|sε)→ π∗(0,0) for any sε.

Choose further large µ̄ such that:

Pµε(Sµε = (0,0)|sε) ≥ π∗(0,0)/2 for all µε ≥ µ̄ and all sε.

For all such µε, when z = (u, sε) ∈ C (see (29)), i.e., when u ≤ ū:

P (z,A) ≥ P (z, A ∩ {(0, 0,0)}) = P (z, (0, 0,0))1{(0,0,0)∈A}

≥ κµε1{(0,0,0)∈A}, where

κµε := Pµεsε (ū+Bτ < Ωµε(Aτ ))π∗(0,0)/2

= Pµεsε (Υµε(ū+Bτ ) < Aτ )π∗(0,0)/2 = Eµεsε
[
e−λτΥ

µε (ū+Bτ )
]
π∗(0,0)/2.

As in Lemma 8 one can show that

Eµεsε
[
e−λτΥ

µε (ū+Bτ )
]
→ Eµε

[
e−λτ (ū+Bτ )/ντ

]
as µε →∞ uniformly over all sε,

and hence, if required by choosing even larger µ̄, we have

κµε ≥ Eµε
[
e−λτ (ū+Bτ )/ντ

]
π∗(0,0)/4 := κ∞ for all µε ≥ µ̄.

Thus in all, C is a small set with uniform lower bound measure as below for
all µε ≥ µ̄:

P (z,A) ≥ κ∞γ(A) for all z ∈ C,

where measure γ(.) is a Dirac measure at (0, 0,0), i.e.,

γ(A) = 1{(0,0,0)∈A} and for all events A.

Without loss of generality start with U0 = 0 and note V (0) = 1. By
(Baxendale 2005, Theorem 1.1), with P representing the transition function
of {Zn}n: a) there exists a unique stationary distribution π∗τ ; and b)

||Pnφ− π∗τφ|| :=
∣∣Eµεsε [φ(Un+1)]− Eµε [φ(U∗)]

∣∣ ≤ rnC for all n, sε,
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where constants r < 1 and C <∞ are same for all µε ≥ µ̄ (because constants
κ∞, β, K∆ are the same for all such µε), and for any function φ that is
dominated by V :

|φ(u)| ≤ V (u) for all u or equivalently %|φ(u)| ≤ V (u)

for some constant % > 0 and for all u. (30)

In particular we are interested in stationary average, i.e., when φ(u) = u.
Consider the function

h(u) := u− V (u) = u− au and note that h′(u) = 1− au(ln(a)).

It is clear that h′(u) > 0 only for all 0 ≤ u ≤ ū where aū = 1/ln(a) and
h′(u) < 0 for u > ū. Thus eventually V (u) dominates and hence φ(u) = u
satisfies (30) and hence we have

|Eµε0,sε
[Un+1]− Eµε [U∗]| ≤ rnCV (0) = rnC.

Note that the above upper bounds are uniform for all µε ≥ µ̄ and for all sε
and we always start with u = 0. And then we have for any sε and n

|Eµε [U∗]− E∞[U∗]| ≤
∣∣∣Eµεsε [Un]− Eµε [U∗]

∣∣∣+
∣∣∣E∞sε [Un]− E∞[U∗]

∣∣∣
+
∣∣∣Eµεsε [Un]− E∞sε [Un]

∣∣∣.
Given an ε > 0 choose nε large enough such that the sum of the first two
terms is less than ε/2 (for any µε ≥ µ̄ and for any sε), further using ergodicity
of the limit system represented by evolution:

U∞n+1 = (U∞n +Bτ,n+1 − ντAτ,n+1)
+
.

Finally for this n = nε,∣∣∣Eµεsε [Un]− E∞[Un]
∣∣∣ =

∣∣∣Esε [Uµεn ]− E[U∞n ]
∣∣∣

=
∣∣∣Eµεsε [(Uµεn−1 +Bτ,n −Ωµε(Aτ,n))+ − (U∞n−1 +Bτ,n − ντAτ,n)+

] ∣∣∣
≤ Eµεsε

[∣∣∣(Uµεn−1 +Bτ,n −Ωµε(Aτ,n))− (U∞n−1 +Bτ,n − ντAτ,n)
∣∣∣]

≤ Eµεsε
[∣∣∣ (Uµεn−1 − U∞n−1

) ∣∣∣+
∣∣∣ (Ωµε(Aτ,n))− ντAτ,n)

∣∣∣]
...

≤
∑
k≤nε

Eµεsε
[∣∣∣Ωµε(Aτ,k)− ντAτ,k

∣∣∣] .
Using similar arguments to those in the proof of Theorem 1, it can be shown
that Ωµε(Aτ,k) → ντAτ,k almost surely as µε → ∞, for each k. Moreover,
Ωµε(Aτ,k) ≤ Aτ,k, with E [Aτ,k] <∞, implying we also have uniform integra-
bility:

Eµεsε
[∣∣∣Ωµε(Aτ,k)− ντAτ,k

∣∣∣]→ 0 as µε →∞.
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It follows that for µε large enough,∣∣∣Eµεsε [Un]− E∞[Un]
∣∣∣ ≤ ε/2.

Since ε is arbitrary, this proves the convergence in expectation.
Choosing φ(u) := zu (for any 0 < z < 1) in (30) we obtain the convergence

of MGF and hence the convergence in distribution as in the proof of Theorem 2.
�

Lemma 10 Consider any 1 < a < ā of W.1. Let Ωµn+1 := Ωµn(Aτ,n+1), be
the server capacity totally available to τ -customer for time duration Aτ,n+1.
Let Ω∞n+1 := Aτ,n+1ντ , be the total server capacity available to τ -customer in
time Aτ,n+1 for the limit system. For any given ε > 0, there exists a µ̄ < ∞
and ū <∞ such that for any µε ≥ µ̄ and for any u ≥ ū we have∣∣∣Esε [a(u+Bτ,n−Ωµn+1)

+]
− E

[
a(u+Bτ,n−Ω∞n+1)

] ∣∣∣ ≤ auε for any sε.

Proof: By Theorem 5, equation (13) and exactly as in the proof of Theorem 1
one can prove that Ωµn+1 → Ω∞n+1 almost surely as µ→∞.
Further as in Lemma 8 of Appendix B, for any given ε > 0, there exists a
µ̄ <∞ such that for any µ ≥ µ̄ (we use shorter notation µ = µε and it is only
meant for ε-customers) and any u

sup
sε

∣∣∣Esε (u+Bτ,n −Ωµn+1

)+ − E
(
u+Bτ,n −Ω∞n+1

)+ ∣∣∣
≤ sup

sε

Esε
∣∣∣ (u+Bτ,n −Ωµn+1

)+ − (u+Bτ,n −Ω∞n+1

)+ ∣∣∣
≤ sup

sε

Esε
∣∣∣Ωµn+1 −Ω∞n+1

∣∣∣ ≤ ε/2. (31)

Define ξµ :=
(
u+Bτ,n −Ωµn+1

)+
, ξ∞ :=

(
u+Bτ,n −Ω∞n+1

)+
and then for

any C <∞:

sup
sε

∣∣∣Esεaξµ − Eaξ
∞
∣∣∣ ≤ sup

sε

Esε
[∣∣∣aξµ − aξ∞∣∣∣ ; |Ωµ −Ω∞| > C

]
+ sup

sε

Esε
[∣∣∣aξµ − aξ∞ ∣∣∣ ; |Ωµ −Ω∞| ≤ C]

≤ sup
sε

Esε
[∣∣∣aξµ − aξ∞∣∣∣ ; |Ωµ −Ω∞| > C

]
+ sup

sε

Esε
[
aξ
∞
∣∣∣aξµ−ξ∞ − 1

∣∣∣ ; |Ωµ −Ω∞| ≤ C]
because |ax − 1| is uniformly Lipschitz on bounded interval [0, C]

≤ 2 sup
sε

Esε
[
au+Bτ ; |Ωµ −Ω∞| > C

]
+C̃(C) sup

sε

Esε
[
au+Bτ

∣∣∣ξµ − ξ∞∣∣∣ ; |Ωµ −Ω∞| ≤ C] .
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Thus and using Markov inequality,

a−u sup
sε

∣∣∣Esεaξµ − Eaξ
∞
∣∣∣

≤ 2E[aBτ ] sup
sε

Esε [|Ωµ −Ω∞| > C] + C̃(C) sup
sε

E
[
aBτ

]
Esε

[∣∣∣Ωµ −Ω∞∣∣∣]
≤
(

2

C
+ C̃(C)

)
E
[
aBτ

]
sup
sε

Esε
[∣∣∣Ωµ −Ω∞∣∣∣] ≤ ε/2, for all µ ≥ µ̄,

if sufficiently large µ̄ is chosen by (31). Now

a−u sup
sε

∣∣∣Esεa(u+Bτ,n−Ωµn+1)
+

− Ea(u+Bτ,n−Ω∞n+1)
∣∣∣

≤ a−u sup
sε

∣∣∣Esεa(u+Bτ,n−Ωµn+1)
+

− Ea(u+Bτ,n−Ω∞n+1)
+
∣∣∣

+a−u
∣∣∣Ea(u+Bτ,n−Ω∞n+1)

+

− Ea(u+Bτ,n−Ω∞n+1)
∣∣∣

≤ ε/2 + ε/2 = ε.

In the above the last term is so upper bounded because, as u → ∞, by
integrability:

a−u
∣∣∣Ea(u+Bτ,n−Ω∞n+1)

+

− Ea(u+Bτ,n−Ω∞n+1)
∣∣∣

= a−uE
(
aAτ,n+1ντ−Bτ,n−u; u < Aτ,n+1ντ −Bτ,n)

)
≤ a−uE

(
aAτ,n+1ντ−Bτ,n ; u < Aτ,n+1ντ −Bτ,n)

)
→ 0. �

Appendix D: Proofs for eager customers with limited patience

Lemma 11 When A.3 is replaced by A.3′ and if additionally one of the as-
sumptions of A.4 is satisfied, one can construct an upper bound Θµε which
uniformly dominates any partial ε-busy period uniformly over all ε-states sε =
(ys, yw, r) and converges to zero as µε →∞ exactly as in Lemma 6.

Proof: The construction of Θµε is the same for the first two conditions and
is similar15 to that in Lemma 6. We first define Θ1 and then Θµε = Θ1/µε.
Consider a fictitious M/G/∞ (infinite server) queue when started with K
initial customers, whose service times are given by: a) b̃1, the upper bound on
the time spent by any ε-customer in the system (with µε = 1), when A.4(a)
is satisfied; b) the sum Γ 1 +Bε, where Γµε is the reneging time, when A.4(b)
is satisfied. Then Θ1 is the busy period of the above fictitious queue. By using
appropriate coupling rules as in Lemma 6, Θµε almost surely dominates Ψ̃(sε)
for any initial state sε. This is because the fictitious M/G/∞ again accepts

15 For the case with A.4(a) assumption, the proof follows exactly as in Lemma 6. We
provide an alternate proof which also works for assumption A.4(b).
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all the arrivals, any customer accepted in original system spends longer time
in the fictitious M/G/∞ queue etc.

We first observe few simple facts. The busy period BK of an M/G/∞ when
started with K customers and with general IID service times {BG,n}n is al-

most surely larger than that of an M/G/∞ queue (B̂1) when started with 1
customer and whose IID service times are given by the maximum ofK indepen-
dent service times of the original M/G/∞ queue, i.e., if service time of n-th
customer in upper M/G/∞ queue equals B̂G,n := max1≤j≤K BG,(n−1)K+j .
Therefore (Takács (1962)),

E[BK ] ≤ E[B̂1] =
eλεE[B̂G,1] − 1

λε
≤ eKλεE[BG,1]−1

λε
<∞.

In a similar way
E[B2

K ] ≤ E[B̂2
1] <∞.

Thus the first two moments of Θ1 are bounded. Hence the conclusions of
Lemma 6 are true under A.4(a) and A.4(b).

When A.4(c) is satisfied: Here Θµε is the busy period of a fictitious
M/G/K1/2K queue, and when started with K customers. We would couple
the inter arrival times, job sizes etc., as before in both the systems.

System with 2K servers (each of same capacity as before), when started
with K ε-customers and: a) if ys number of ε-customers are deriving service
at the beginning of Ψ̃(sε), the service times of those ys customers also equal
the service time requirements of the first ys customers of the 2K system and
these are independent of residual service times16; b) the service times of the
remaining (K1 − ys) ε-customers are independent copies of the exponential
random variable with the same parameter; c) further inter arrival times and
service times of all the new ε-customers coincide with that in the original
system; and d) if a customer is not accepted in original system, we consider
an independent service time for that customer. With this construction, an
ε-customer departure during Ψ̃(sε), of the original system definitely marks
a departure in 2K system also, any customer accepted in original system is
also accepted in the 2K system (it has double 2K holding capacity). Thus
the busy period Θµε of the 2K system dominates the residual ε-busy period
Ψ̃(sε), irrespective of the state sε = (ys, yw) of the original system at the start
of Ψ̃(sε).

Rest of the arguments are as in Lemma 6. �

16 As before this replacement with independent copies does not change the original system
stochastically.
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