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Abstract— We propose a network-based opportunistic impro-
visation to adaptive sampling for the forward channel telehaptic
data stream on a time-varying network. The algorithm explores
real-time tuning of the perceptual deadband parameter to
minimize network underutilization, and consequently improves
the quality of telehaptic communication. We describe in detail
the rationale behind the design choices of the proposed sampling
scheme. We perform both real-time telehaptic experiments and
simulations to test the proof of concept. The reconstructed
haptic signals reveal a substantial improvement in average SNR
of 3.57 dB, suggesting that the proposed method outperforms
the conventional adaptive sampling technique to a large extent.
In addition to satisfying the telehaptic Quality of Service
(QoS) requirements, we also demonstrate that our method does
not overwhelm the network or penalize the concurrent traffic
streams.
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I. INTRODUCTION

Telehaptic applications involving exploration/manipulation
of remote objects using haptic, auditory, and visual feedbacks
place very strict timing constraints on the multimedia data
delivery. Haptic information being the most delay-sensitive
amongst the aforementioned media types, necessitates a very
high speed data transfer across the communication medium.
Studies have shown that the Quality of Service (QoS) -
allowable limits on the end-to-end delay, jitter and packet
loss - for the haptic media are 30 ms, 10 ms and 10%,
respectively [1], [2], [3]. A violation of the haptic QoS
constraints potentially causes instability of the haptic control
loop, and a perceivable impairment of the telehaptic activity.

Guaranteeing the stringent QoS requirements of the tele-
haptic applications is challenging over a shared network, like
the Internet, since the telehaptic application has to compete
for network resources with other concurrent traffic flows.
Moreover, the network cross traffic is itself time varying,
making the problem even more challenging.

Several previous works on telehaptic communication use
haptic data packetization at the default sampling rate of 1
kHz, resulting in 1000 packets/sec and a data rate in the
neighborhood of 700 kbps or more (the precise rate depends
on the networking standards and the application layer over-
heads); see, for example, [4], [5], [6]. Transmission at such
a high data rate works well when the network is relatively
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uncongested. However, during periods of network conges-
tion, this can lead to large packet delays and/or frequent
packet drops, making the telehaptic application susceptible
to QoS violations. Transmission at the peak data rate is
also problematic in resource constrained networks, such as
wireless adhoc networks deployed for disaster management.

In order to overcome the risk of QoS violations, re-
searchers have proposed a variety of haptic data compression
techniques; see, for example, [7], [8], [9], [10], [11], [12]. In
this paper, we consider the technique in [8] called adaptive
sampling - a human perception based technique that exam-
ines the percentage change in magnitude between the current
and a reference haptic sample. If this percentage change
exceeds a certain threshold p, known as adaptive sampling
threshold, then the current sample is marked as significant in
terms of signal reconstruction at the receiver. For example,
p = 10% means that the current haptic sample is significant
only if its magnitude is greater (lesser) than 1.1 (0.9)
times the reference magnitude. Hence, a substantial haptic
compression is achieved by not transmitting the insignificant
samples. Adaptive sampling is applied on the velocity and
force updates on the forward (operator to teleoperator) and
backward channels (teleoperator to operator), respectively.
For example, the work in [8] shows an overall reduction
in the haptic data rate of 75% on the forward channel and
90% on the backward channel with the adaptive sampling
thresholds p = 25% and 10%, respectively. For convenience,
we refer to adaptive sampling schemes with a fixed p for a
telehaptic session as static adaptive sampling.

However, in critical applications like telesurgery and tele-
maintenance, the teleoperator is a robotic device that receives
position-velocity updates to reproduce the activity of the op-
erator as precisely as possible. In presence of high-precision
actuators, the teleoperator can execute even the slightest of
position-velocity changes. Thus, in such cases, the use of
adaptive sampling, a technique based on human perceptual
limitations, on the forward channel from the operator to a
robotic teleoperator, is suboptimal, as the full precision of
the teleoperator is never exploited.1 This suboptimality is
particularly significant when the network is uncongested,
since transmitting haptic data at the peak data rate would
lead to a better reproduction of the operator’s actions by the
teleoperator.

To summarize, the literature proposes two extreme tech-

1However, the deadband approach works well in the backward channel
due to the human operator on the receiving end.



niques for telehaptic communication over a network. On
one hand, transmitting haptic data at the peak rate works
well when the network is uncongested, but is problematic
when the network is congested. On the other hand, adaptive
sampling works well when the network is congested, but
is suboptimal when the network is uncongested, especially
in applications where the teleoperator is a robotic device.
The key issue with both the aforementioned approaches is
that they are insensitive to the state of congestion of the
network. This motivates us to consider opportunistic schemes
for telehaptic communication that adapt their transmission
rate depending on the level of congestion in the network.

In this work, we propose a network-based opportunis-
tic method for adaptive sampling on the velocity updates
at the operator. In addition to satisfying the haptic QoS
specifications, the goal of the opportunistic scheme is to
to maximize the transmitted haptic packet rate, subject to
network resource constraints. The assumption here is that
at any point in time, the network supports the minimum
haptic data rate corresponding to static adaptive sampling. By
monitoring the end-to-end delays on the forward channel, we
estimate the congestion level in the network, and the oppor-
tunistic adaptive sampling algorithm appropriately adapts the
adaptive sampling threshold p. The method is opportunistic
as it constantly looks for an opportunity to pump more
haptic packets without violating the QoS constraints. To
validate our approach, we record real-world haptic signals
using a real-time telepottery experiment with several human
subjects. We conduct simulations on the recorded signals,
using a discrete event network simulator NS3 [13]. Our
experiments demonstrate a substantial improvement in the
packet rate as well as the reconstructed velocity signal
at the teleoperator, compared to static adaptive sampling.
Additionally, we analyze the interplay between the telehaptic
traffic and other network sources, and conclude that the
opportunistic algorithm is friendly to exogenous cross traffic
flows, in terms of resource sharing.

II. TYPICAL TELEHAPTIC ENVIRONMENT
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Fig. 1: Representation of a telehaptic setup on a shared
network. Notations used: SN - shared network, P - position,
V - velocity, F - force, A - audio, Vi - video.

In this section, we describe a typical telehaptic envi-
ronment using a point-to-point application model shown
in Figure 1. The operator transmits the position-velocity
information corresponding to the hand movements to the
teleoperator on the forward channel. On reception of the
position-velocity commands, the teleoperator follows the
trajectory created by the operator. The interaction forces

generated between the teleoperator and the remote objects
are transmitted to the operator on the backward channel.
Additionally, the teleoperator transmits auditory and visual
information of the remote scene. In a realistic scenario, the
telehaptic traffic can encounter asymmetric network behav-
ior, which means that the forward and backward channels can
have non-identical end-to-end delays, jitter and packet losses.
The asymmetric behavior is primarily due to the different
network traffic conditions, as well as different routing and
buffering schemes at the intermediate routers on the two
channels.

III. THE PROPOSED SAMPLING FRAMEWORK
In this section, we describe in detail the constituent

modules of the proposed opportunistic adaptive sampling
method; see Figure 2.
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Fig. 2: Block diagram representation of the communication
module showing the proposed sampling framework for the
forward channel.

A. Network Analyzer

It is essential for the operator to be aware of the congestion
on the forward channel so as to be able to carry out
adaptation of the telehaptic data rate. The end-to-end delays
on the forward and backward channels are different due to
the asymmetric behavior of the channels. Therefore, the end-
to-end delays on the backward channel do not convey the
state of congestion on the forward channel. We exploit the
bidirectional nature of the telehaptic communication for noti-
fying the operator of the forward channel delays. The forward
channel monitoring is carried out by the network analyzer.
We use the end-to-end delay on the forward channel as an in-
dicator of congestion. The forward channel end-to-end delays
are measured at the teleoperator based on packet timestamps,
and are piggybacked as part of the headers in the telehaptic
packets transmitted on the backward channel. The trends
followed by the end-to-end delays precisely suggest network
congestion or underutilization. For network monitoring, we
use an exponentially weighted moving average filter on the
end-to-end delays defined by

davg(m) = β ∗ davg(m− 1) + (1− β) ∗ d(m), (1)

where 0 < β < 1. Here, d(m) and davg(m) denote the
m′th end-to-end delay and m′th weighted average delay



measurement, respectively. If davg(·) shows N continuous
increasing measurements, then the network is detected to
be congested. If the end-to-end delays do not manifest a
continuous increase or decrease, then the network is in an
uncongested state. Upon detection of presence or absence
of congestion, the network analyzer updates a flag C called
the congestion decision to 1 or 0, respectively. The filter
described by Equation 1 is reset after each update. Further
details on the end-to-end delay trend detection and piggy-
backing mechanism are not included in the paper due to
space constraints. The use of data packets in the backward
channel as carriers of the forward channel end-to-end delay
provides a very fast estimate of the network congestion
state without incurring much additional packet overhead,
thus enabling quick adaptations to the fluctuating network
conditions. In our simulations (see Section V), we set β =
0.6 and N = 10.

B. Opportunistic Adaptive Sampler

The objective of the opportunistic adaptive sampler is to
transmit as many haptic packets as the network supports
at a given instant. It achieves this by dynamically tuning
the adaptive sampling threshold, based on the congestion
decision C. Note that increasing the adaptive sampling
threshold results in a wider deadband, which in turn results
in a lower haptic data rate.

The adaptive sampling threshold p (in %) is varied over
the range [0, pmax] in steps of γ. Here, pmax and γ are
algorithm parameters, with pmax being an integral multiple
of γ. The opportunistic adaptive sampler updates the current
adaptive sampling threshold, denoted by pcurr, each time the
congestion decision C is updated, as follows.2

If C =,1 the opportunistic adaptive sampler sets pcurr =
pmax. In other words, when congestion is detected, the
algorithm aggressively cuts its data rate to the lowest level
permissible. This is in line with the classical additive-
increase/multiplicative-decrease (AIMD) approach [14] in
network congestion control literature. Indeed, the signal
C =1 suggests that the buffers at the intermediate routers
on the forward channel are either fast filling or overflowing.
Thus, a rapid transmission rate reduction enables the network
buffers to clear, and minimizes the chance of QoS violations.

If C =0, then the opportunistic adaptive sampler reduces
the adaptive sampling threshold pcurr by γ (in %), so long
as pcurr > 0. The algorithm takes C =0 as a signal that
the network is uncongested, and thus attempts to increase
the haptic data rate. The increase in the haptic data rate is
performed in a controlled, multistep manner, also in line with
the AIMD approach.

To summarize, the update of the current adaptive sampling
threshold pcurr is performed as follows.

pcurr ← pmax ∗ C + (1− C) ∗ [1(pcurr>0) ∗ (pcurr − γ)].

Here, 1(Z) equals 1 if Z is true and 0 otherwise.

2Any instance of detection of presence/absence of congestion is consid-
ered to be an update. Note that the value of C need not change at an update.

The opportunistic sampler operates at an initial
pcurr = pmax as the network condition is unknown
at the beginning of the telehaptic session, and it is safer to
the start transmission at the minimal haptic data rate.

Time-Out Strategy: The forward channel end-to-end delays
are measured at the teleoperator only upon haptic packet
reception. The freshly calculated delays are then piggy-
backed on the force-audio-video packets transmitted on the
backward channel. This means that the operator can learn
the forward channel condition only when it transmits new
packets. During intervals when the operator carries out very
slow hand movements, adaptive sampling at threshold pcurr
might discard several successive haptic samples, giving rise
to a long period without any transmissions from the operator.
This in turn results in a long period where the operator
is starved of feedback on delays on the forward channel,
thus temporarily pausing the adaptive sampling threshold
adjustment.

To circumvent this condition, the operator starts a timer
after the latest haptic packet transmission. If the time elapsed
after the latest transmission exceeds the time-out interval, de-
noted by To, then the operator reads a haptic sample directly
from the device drivers and transmits it, irrespective of its
significance. After the transmission, the timer is restarted.
This strategy ensures that the operator is not starved of
the end-to-end delay feedbacks, and thereby avoids network
underutilization.

IV. EXPERIMENTAL SETUP

In this section, we describe the setup of our experiments
to assess the performance of the proposed telehaptic trans-
mission scheme.

A. Haptic Data Generation

We leverage a real-time telepottery model [5] to generate
real-world telehaptic signals. In a real-time telepottery sys-
tem, the human operator manipulates a remotely rendered
volume conserving pottery object [15] using audio, video
and haptic information from the remote scene. Eight human
subjects, six males and two females, aged between twenty
three and fifty two years participated in the telepottery
experiment. Out of them, three were regular users of the
haptic devices. Nevertheless, ample time was provided to
the subjects prior to data collection to get accustomed to the
telehaptic environment. During the data collection phase, we
record the velocity traces generated by each of the subjects
over the telepottery interaction.

B. NS3 Simulation Testbed

The velocity traces captured during the telepottery inter-
action are utilized in NS3 simulations for evaluating the
performance of the opportunistic adaptive sampling scheme.
The shared network topology used in the simulations is
shown in Figure 3.

The unidirectional links have a capacity of 1500 kbps.
The one-way propagation delay between the operator and
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Fig. 3: Network topology designed for the simulations. l1 -
bottleneck link on the forward channel.

the teleoperator is configured to 12 ms, thus resulting in
a round-trip propagation delay of 24 ms. We choose pmax

= 30%, γ = 2%, and To = 20 ms for our experiments.
We compare our opportunistic scheme with static adaptive
sampling operating at a fixed threshold of p = 30%. Due to
the chosen network configuration, l1 acts as the bottleneck
link on the forward channel. At the teleoperator, a zero-hold
strategy is used for haptic signal reconstruction.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the op-
portunistic sampler in terms of the haptic QoS conformance,
and enhancement of the reconstructed haptic signal at the
teleoperator. Additionally, we assess the friendliness of the
algorithm to the concurrent traffic streams in the network.

A. Telehaptic-CBR Cross Traffic Interplay

In this section, we carry out detailed study of the interplay
between telehaptic and constant bitrate (CBR) cross traffic.

1) SNR-Throughput Measurements: Each of the recorded
velocity signals are initially transmitted on a 100 Mbps
network, and the corresponding reconstructed velocity sig-
nals are considered as benchmark, for each specific human
subject. For convenience, we denote the CBR cross traffic
intensity on the forward channel as Rcbr.

Fig. 4: SNR improvement of opportunistic over static adap-
tive sampling measured for the velocity updates.

First, we discuss the SNR improvement achieved by
the proposed opportunistic sampler over the static adaptive
sampler across the different real-world velocity traces. For
these simulations, we set Rcbr = 980 kbps. Our results are
presented in Figure 4. Note that the opportunistic sampler
achieves an average SNR improvement of 3.57 dB over
the static adaptive sampling strategy. This is because the
static method underutilizes the network, and loses out on
the possibility of transmitting a higher resolution haptic

signal. Our proposed method opportunistically senses the
available bandwidth in the network and transmits a higher
haptic data rate, while still complying with the telehaptic
QoS constraints.

Next, we study the gain in telehaptic throughput and the
SNR improvement of the proposed method over the static
adaptive sampler over a range of CBR cross traffic intensity.
From now on, for brevity, we only present the results
corresponding to the velocity trace generated by Subject 5.
However, the nature of the findings remains consistent across
subjects.

The haptic data rate due to the static adaptive sampling for
Subject 5 turns out to be 221 kbps. Figure 5 demonstrates
the correlation between the telehaptic throughput and SNR
improvement of the opportunistic sampler over the static
adaptive sampling scheme. It can be observed that for Rcbr ≤
804 kbps, the opportunistic scheme achieves the peak haptic
data rate of 696 kbps, thereby resulting in a near error-less
signal reconstruction.3 The SNR improvement is very large
in this range (not captured in the figure) as the error between
the benchmark signal and the reconstructed signal due to the
opportunistic sampling is negligible.

Fig. 5: Telehaptic throughput adaptation along with the cor-
responding SNR improvement over static adaptive sampling
for a real-world velocity signal.

As Rcbr is increased from 804 to 1130 kbps, the op-
portunistic scheme gradually reduces its transmission rate,
thus ensuring that the concurrent flows are not throttled.
Consequently, the SNR improvement over the static adaptive
sampler also reduces gradually with increasing Rcbr. We note
that the CBR flow attains full throughput and sustains no
losses over this range of Rcbr, though this is not apparent
from the figure. For Rcbr > 1130 kbps, the opportunistic
scheme is unable to transmit at a rate higher than the static
adaptive sampler, and is consequently unable to produce an
SNR improvement.

To demonstrate that our opportunistic scheme meets the
telehaptic QoS requirements, Table I gives a comparison of
the experimental observations and the corresponding QoS
limits of the end-to-end delays and jitter, with Rcbr = 1100
kbps. Note that the haptic flow does not lose any packets.
Thus, we conclude that even under very high cross traffic

3It turns out that in our setting, the peak haptic data rate on the forward
channel equals 696 kbps. Thus, 804 kbps is the largest possible network
cross traffic data rate such that the haptic source can transmit at its peak
rate, given that the bottleneck link has a capacity of 1500 kbps.



End-to-end delay (ms) Jitter (ms)
QoS 30 10

Expt. Max 23.995 0.636
Avg 16.645 0.165

TABLE I: QoS performance of the proposed opportunistic
scheme when Rcbr = 1100 kbps.

intensity, the opportunistic scheme adheres well to the QoS
specifications.

Fig. 6: Telehaptic throughput adaptation along with the cor-
responding SNR improvement over static adaptive sampling
for a synthetic velocity signal.

Finally, we evaluate the performance of the proposed
sampler for a synthetic velocity trace generated using a
standard statistical model, in order to provide a task or
subject independent analysis of its performance. For this
purpose, we generate a white Gaussian signal, smoothed
using a simple moving average filter with a cutoff frequency
of 100 Hz. We feed this signal in place of the velocity trace
generated by the operator, and test the performance of the
proposed sampler over a wide range of mean and standard
deviation of the source Gaussian signal. For brevity, we
report the observations for mean and standard deviation
of 0.3 cm/s and 0.3 cm/s, respectively. The chosen values
are realistic, since rapid hand movements are unlikely to
occur in a practical telehaptic application. Figure 6 presents
the telehaptic throughput and SNR improvement of the
proposed sampler as a function of Rcbr. We note that the
results are quite similar to those from the subject trace as
shown in Figure 5. This demonstrates that the performance
enhancement of the opportunistic adaptive sampler is robust
with respect to the haptic source.

2) Temporal Behavior: We now describe the temporal
behavior of the proposed opportunistic adaptive sampler.
Throughout this section, we use the velocity trace corre-
sponding to Subject 5.

First, we depict the temporal variation of the end-to-end
delays and the adaptive sampling threshold pcurr. For this
experiment, we set Rcbr = 1100 kbps. The sample-wise
end-to-end delay encountered by the velocity updates, along
with the corresponding pcurr is presented in Figure 7. It can
be observed that when the forward channel is uncongested,
the delays exhibits a steady behavior, and the opportunistic
algorithm reduces the adaptive sampling threshold pcurr
based on the threshold update scheme presented in Section

Fig. 7: End-to-end delay encountered by the haptic samples,
along with the corresponding adaptive sampling thresholds.

III-B. It is clear from the graph that when the network
is congested, the algorithm performs a quick congestion
control through the aggressive fall back approach without
significantly building up the delay. The switch to pmax is
deferred after the start of a delay build-up (for example, from
600 ms to 650 ms) primarily due to the propagation delays of
the forward and the backward channels. The periods where
pcurr < pmax are when the opportunistic scheme transmits
at a higher rate than the static adaptive sampler, resulting
in a better velocity signal reconstruction compared with the
static adaptive sampler.

Next, we present the temporal variation in the haptic
packet rate, when the cross-traffic is time-varying. We sim-
ulate two CBR cross traffic sources on the forward channel:
C1 with a data rate of 900 kbps, and C2 with a data rate
of 200 kbps. We use different combinations of the two CBR
sources to design a cross traffic scheme as shown in Equation
(2).

Rcbr =


0, for 0 < t ≤ 3s

900 kbps (C1), for 3 < t ≤ 5s

1100 kbps (C1 and C2), for 5 < t ≤ 7s

200 kbps (C2), for t > 7s

(2)

Fig. 8: Temporal behavior of the haptic packet rates due
to the opportunistic algorithm under intermittent CBR cross
traffic conditions.

Our results are shown in Figure 8. Until 3 seconds,
the telehaptic source transmits at 1000 packets/sec as there
are no concurrent flows on the forward channel. After 3
seconds, the available capacity on the forward channel is
insufficient to sustain the peak haptic data rate. Accordingly,



the opportunistic scheme dynamically lowers its packet rate.
The reduction in the haptic packet rate due to CBR source
C1 alone is clearly observable between 3 and 5 seconds.
At 5 seconds, the additional traffic due to the CBR source
C2 results in a further reduction in the haptic packet rate.
C1 aborts transmission at 7 seconds, after which point the
telehaptic source resumes transmission at 1000 packets/sec.

B. Telehaptic-TCP Cross Traffic Interplay

Fig. 9: Demonstration of TCP-friendliness of the opportunis-
tic algorithm.

In this section, we study the interaction of our proposed
scheme with Transmission Control Protocol (TCP) cross-
traffic. As before, we use the velocity trace generated by Sub-
ject 5. Figure 9 presents the haptic and TCP throughput per
stream, for a varying number of TCP NewReno streams, each
with an infinite backlog of data. In absence of TCP flows, the
telehaptic source gains its peak throughput of 696 kbps. It
is clear from the graph that in presence of TCP sources, the
telehaptic source attains a maximum throughput of 221 kbps.
The presence of multiple TCP sources increases packet drops
in the network. Therefore the telehaptic throughput gradually
reduces even though the telehaptic source rate remains at
221 kbps. Thus, in the presence of TCP cross-traffic, our
opportunistic scheme backs off to its minimum rate. This is
because our opportunistic sampler has a much faster response
to network changes as compared to TCP. Due to this, the
telehaptic source responds to congestion much earlier than
the TCP sources, resulting in haptic data rate back-off. On
the other hand, the TCP sources, being more sluggish in their
congestion response, benefit from this early back-off by the
telehaptic stream.

Thus we conclude that the proposed opportunistic adaptive
sampling scheme is highly TCP-friendly, albeit at the cost
of QoS violations. A finer analysis of the interplay between
telehaptic congestion control and TCP is beyond the scope
of the present paper, and represents an interesting avenue for
future work.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we explored a possible solution for enhancing
the telehaptic communication based on an opportunistic
network utilization approach on the forward channel. We
demonstrated that the proposed algorithm enhances the tele-
haptic throughput by a fairly considerable extent, without
overwhelming the underlying shared network. The results

presented show haptic QoS adherence under adverse cross
traffic scenarios. The SNR measurements reveal that the
opportunistic adaptive sampler outperforms the static adap-
tive sampler in terms of the quality of signal reconstruc-
tion at the teleoperator. We also demonstrated the cross-
traffic friendliness behavior of the opportunistic scheme.
The aforementioned characteristics make the opportunistic
adaptive sampler a potential sampling scheme for delay-
critical telehaptic applications on a time-varying network.

In this paper, the opportunistic adaptive sampling scheme
is assumed to be independent of the statistics of the haptic
data generation process. The possibility of tuning the rate
adaptation to the data statistics would be an interesting
problem. Also, the implication of the SNR improvement on
the precision of the telehaptic task is yet to be investigated.
We also intend to extend the idea of opportunistic sampling
to other type of adaptive sampling schemes, for example,
level crossings [10].
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