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ABSTRACT
Motivated by cloud services, we consider the interplay of net-
work effects, congestion, and competition in ad-supported
services. We study the strategic interactions between com-
peting service providers and a user base, modeling conges-
tion sensitivity and two forms of positive network effects:
network effects that are either “firm-specific” or “industry-
wide.” Our analysis reveals that users are generally no
better off due to the competition in a marketplace of ad-
supported services. Further, our analysis highlights an im-
portant contrast between firm-specific and industry-wide net-
work effects: firms can coexist in a marketplace with industry-
wide network effects, but near-monopolies tend to emerge in
marketplaces with firm-specific network effects.

1. INTRODUCTION
Cloud based services are increasingly becoming the norm.

While cloud-based email applications have been around for
decades at this point, other cloud services are increasingly
replacing a wide variety of applications that used to be run
locally, e.g., office applications (GoogleDocs, Office365) and
even our hard drives (Dropbox, GoogleDrive, iCloud).

For the purposes of this paper, there are four main fea-
tures of this growing marketplace that are important to
highlight.

(i) A majority of cloud services derive revenue primarily
from advertising and are offered for free to users. For
example, companies like Google and Facebook make
billions of dollars annually from ad supported online
services [10].

(ii) Users of online services are highly delay sensitive. Small
additional delays for users can be traced to significant
declines in revenue for cloud services [9, 13,14].

(iii) Cloud services have positive network effects, i.e., the
experience of users in cloud services often is highly de-
pendent on how many users the service has [6, 11, 12].
For example, social networking services, online gaming
environments, etc.

(iv) Cloud services are often highly competitive [5, 15]. For
example, the competition between Hotmail, Gmail, and
Yahoo mail, or the competition between Facebook and
GooglePlus.

The interplay of these four factors leads to a complicated
cloud marketplace with significant interaction between user
experience (congestion and network effects), service capacity
provisioning, and market share. The goal of this paper is to
investigate the interplay of these factors within an analytic
model.

Network effects and congestion
The impact of network effects is crucial for cloud services.
The more users there are on Facebook, the more appeal-
ing it is to be on Facebook. Similarly, the more users on
GoogleDrive/Dropbox/iCloud, the more value a new user
gets from joining.

However, network effects are not specific to cloud ser-
vices, and have been studied extensively in the economics
and operations management literatures. Most of this lit-
erature focuses on settings where there is no congestion,
e.g., [6,7,12,16,18,19,22], but the literature on “club theory”
focuses on the interaction of network effects and congestion.

The theory of clubs, which originated from [4], deals with
groups of congestion sensitive users sharing a certain re-
source. See [21] for a survey. The setting of cloud ser-
vices can be interpreted as a club good offered by competing
profit maximizing firms; however, throughout the literature
on club goods (and the broader literature on network effects)
it is assumed that the users pay for access, and the revenue of
the provider is made up exclusively of such payments. This
is very different than the situation in cloud services, where
revenue predominantly comes from advertising rather than
user payments. This difference turns out to have a signifi-
cant impact on the applicability of the conclusions from the
models.

The only previous piece of work to consider network ef-
fects and congestion in an ad-supported service is [17], which
focuses on the capacity provisioning of a single service when
faced with a strategic user population with positive network
effects. In this setting, [17] shows that positive network ef-
fects mean that the user base is more tolerant of congestion,
which allows the service provider to run the service with
fewer servers and, thus, derive a larger profit. This effect is
more extreme when the strategic behavior of the user base is
‘cooperative’ than if it is ‘non-cooperative’, but in both cases
positive network effects lead to a worse user experience.

However, [17] studies only the behavior of a single, monop-
olistic service. Thus, no piece of prior work has investigated
the interplay of all four of the factors described above.

Contributions of this paper
The goal of this paper is to understand the interplay of net-
work effects, congestion, and competition in ad-supported
services. Thus, we seek answer questions such as: Does com-
petition lead to improved user experience in ad-supported
services? Can competing firms coexist or will near-monopolies
emerge?

To address such questions, we introduce a new model that
extends the setting of [17] in order to capture competition



between service providers, a.k.a., firms (see Section 3).
The key novelty in this extension is how network effects

are considered. We consider two variations of network effects
in this paper: firm-specific network effects and industry-wide
network effects.

Firm-specific network effects capture settings where the
utility of a user of a particular firm depends only on the pop-
ulation of users of that specific firm. This captures settings
like Facebook, where a user’s utility from joining Facebook
grows as the number of people using Facebook grows. On
the other hand, industry-wide network effects model situa-
tions where the utility of a user of a particular firm depends
on the number of users across all the firms in the industry,
not just the number of users at the specific firm. This cap-
tures applications such as email, where a user’s utility grows
with the number of people that use email, not just with the
number of people that the same email client. Of course
many applications have a combination of these two forms of
network effects, but we focus on the extreme situations in
this paper in order to contrast the effects of each.

Within these models of network effects we study a situa-
tion where users from a user base decide (in either a coop-
erative or a non-cooperative manner) which, if any, of two
services to join based on the congestion and network effects
available at each service. Each of these is a function of the
capacity decision of the profit-maximizing, competing firms.

Our analysis focuses on the setting where the user base
is large, i.e., scaling to infinity. Thus, it is related to the
literature on scaling limits of queueing systems. However,
most commonly in that literature, the traffic regime is im-
posed exogenously, e.g., [3, 8, 20], while the scaling emerges
endogenously in our model.

The main messages that result from our analysis are the
following.

1. As in the case of the single-firm setting in [17], positive
network effects allow firms to run fewer servers, and thus
increase profits. One should expect this effect to diminish
with increased competition. However, surprisingly, our
results highlight that users are generally no better off
due to competition. This is in contrast to results such
as [1, 2], which prove that increased competition among
cloud services result in improved user performance when
paid services are considered.

2. Our results highlight important contrasts between the
firm-specific and industry-wide network effects models.
In particular, Theorems 3, 4 and 5 highlight that firms
can share the market in the case of industry-wide network
effects; however Theorems 6 and 7 highlight that near
monopolies tend to emerge in the case of firm-specific
network effects. This explains what can be informally ob-
served in the cloud service marketplace: Facebook enjoys
near-monopoly status while Gmail, Hotmail, and many
other cloud-based email providers coexist. It also high-
lights that, in order to compete in areas where network
effects are firm-specific, services must build a user base
before entering the market. An example of this is Twit-
ter which, after building a large user base, has started
to position itself as a competitor to Facebook. A similar
example is GooglePlus.

Importantly, the messages described above seem to emerge
because of the ad-supported nature of the services we con-
sider. In particular, they contrast with results from club
theory for settings where the firms charge users directly.

The remainder of the paper is organized as follows. In

Section 2 we derive preliminary results for the case of a
single provider. These results are needed later for the case
of competing firms. Then, in Section 3 we introduce the
models of network effects that we consider in the case of
competing firms. Sections 4 and 5 present our main results
for each of the two network effects models. Finally, we end
with a discussion of the results in Section 6.

2. PRELIMINARIES: A SINGLE FIRM
Before moving to the case of competing firms, it is useful

to start with the case of a single firm. Note that the treat-
ment in this section parallels some of the analysis of [17].
However, [17] considers a different latency function than we
consider here, and so we need new analysis in order to pro-
vide tools for the analysis of the case of competing firms.

2.1 Model
In this section we consider the case of a single firm that

provides a cloud service. There are three main components
to the model: the latency experienced by the users, the
strategic behavior of the users, and the strategic behavior
of the firm. Each is described in the following.

2.1.1 Latency model
We consider a model where each user perceives a non-

negative latency cost f(λ,C) that is a function of both the
arrival rate of users, λ, and the provisioned capacity of the
provider, C. Specifically, we consider the following classes
of latency functions.

1. M/M/1 latency: Here, the latency cost is the average
(stationary) response time in an M/M/1 queue, i.e.,

f(λ,C) =

{
1

C−λ if λ < C

+∞ otherwise

2. Load based latencies: Here, the latency cost is a gen-
eral function of the load ρ = λ/C, i.e.,

f(λ,C) = g

(
λ

C

)
for a strictly increasing, twice differentiable, strictly
convex function g, defined over [0, 1) such that g(0) =
0, and limρ↑1 g(ρ) = ∞. An example of this class of
latency functions is the average (stationary) number
of jobs in an M/M/1 queue, where g(ρ) = ρ

1−ρ .

2.1.2 User model
To model the user base, we assume that the users of a

cloud service arrive at rate at most Λ. At an arrival rate
λ ∈ [0,Λ], the users collectively gain a utility U(λ). To model
positive network effects we assume that U is of the form

U(λ) = wλ1+β , (1)

for w > 0 and β ∈ [0, 1], where the network effect becomes
stronger as β increases.1

The rate of arriving users in [0,Λ] gets determined as a
consequence of the strategic decisions of the users, which
seek to maximize their net payoff. We distinguish between
two models: non-cooperative and cooperative. In the non-
cooperative model (also known as the user-optimal model

1The restriction that β ≤ 1 is made for ease of exposition.
Our results also extend to the case β > 1.



in the Wardrop equilibrium literature), each user’s payoff is
her utility minus the latency cost. In the cooperative model
(also known as social-optimal model in the Wardrop equilib-
rium literature), the net utility of all the users subtracted by
the net latency cost is the payoff function that is maximized.

Before discussing the formal details of these models, note
that the non-cooperative model applies when each user takes
an individual and selfish decision whereas the cooperative
model applies when a global decision is taken across all
the users. One can argue that the non-cooperative scenario
models realistic user behaviors whereas the cooperative sce-
nario is an ideal benchmark that users would arrive at if they
were able to take a collective perspective. Importantly, the
cooperative scenario is not what the social planner would
optimize as the social welfare maximization problem would
include the profit(s) of the firm(s) as well.

Non-cooperative user behavior. Recall that, collectively,
the users make a utility U(λ) when the arrival rate is λ.
Therefore, the per user utility is given by V (λ) := U(λ)/λ.
Since the per user latency cost is f(λ,C), the payoff function
that the users maximize is V (λ) − f(λ,C). Therefore, the
arrival rate of users in the non-cooperative model is given
by

λ̂Λ(C) = max{λ ∈ [0,Λ] | V (λ)− f(λ,C) ≥ 0}. (2)

Note that we have chosen the largest Wardrop equilibrium
if multiple solutions exist.2 With U(·) being a convex in-
creasing function with U(0) = 0, it follows from the sub-
gradient inequality that V (·) is an increasing function of λ
with V (0) = U ′(0), the right derivative of U(·) at 0.

Cooperative user behavior. Since the per user latency
cost is f(λ,C), collectively the latency cost is λf(λ,C) and
the payoff function that the social planner maximizes is
given by U(λ) − λf(λ,C). From the non-negativity of f it
follows that the total latency cost is an increasing function
of λ. Therefore, the arrival rate of users in the cooperative
model is given by

λ̂Λ(C) = max{arg max
λ∈[0,Λ]

U(λ)− λf(λ,C)}. (3)

Note that we choose the largest maximizer if multiple solu-
tions exist.3

2.1.3 Modeling the firm
The final piece of the model is the strategic behavior of

the firm, which seeks to choose capacity so as to maximize
profit. We assume that the cloud service provider makes b
dollars per user served from advertising and pays a dollar
per unit cost for each unit of capacity. Thus the firm’s profit
is given by

bλ̂Λ(C)− C. (4)

Owing to the stability constraint, λ̂Λ(C) < C, and so we
necessarily need b > 1 for the firm to consider offering the

2The choice of the largest Wardrop equilibrium is made
to concretely define the behavior of the user base. The re-
sults stated are somewhat robust to this assumption, e.g.,
they continue to hold even if the minimal Wardrop equilib-
rium is picked.

3As before, we pick the largest maximizer for concrete-
ness. The stated results continue to hold if we pick the
smallest maximizer.

service. From this discussion, it is also clear that a firm will
not provision capacity that is greater than bΛ. Therefore,
the firm’s problem can be written as choosing

C∗(Λ) = max{arg max
C∈[0,bΛ]

bλ̂Λ(C)− C}, (5)

Note that we choose the largest capacity if multiple solutions
exist.3

2.2 Results for a single firm
Given the model described in the previous section, our

focus is on characterizing the operating point of the sys-
tem when Λ is large. Specifically, our interest is in the be-

havior of C∗(Λ) and λ∗(Λ) := λ̂Λ(C∗(Λ)) for large Λ, and
the queueing regime (moderate, heavy or very-heavy traffic)
that emerges endogenously.

As we have mentioned, the results that follow parallel
those in [17], providing similar insights. However, [17] fo-
cuses on M/M/k latency functions, and we need results for
M/M/1 and load based latency functions in the analysis of
competing firms later in this paper.

The non-cooperative setting. We start by defining the
unconstrained population response as follows:

λ̃(C) = max{λ ≥ 0 | V (λ)− f(λ,C) ≥ 0},

ρ̃(C) =
λ̃(C)

C
,

where λ̃(C) is the arrival rate the provider can attract when
the provider provisions capacity C, assuming the potential
arrival rate is unlimited. This unconstrained response is a
key analytical tool in the analysis of the operating point of
the system. Specifically, we will see that C∗(Λ) equals that

value of C that satisfies λ̃(C) = Λ.
For the M/M/1 latency function we have the following

characterization of λ̃(C).

Lemma 1. For large enough C, λ̃(C) is continuous and
strictly increasing in C, and

V (λ̃(C))(C − λ̃(C)) = 1.

Note that the above lemma implies that for large enough C,
ρ̃(C) is strictly increasing in C. Moreover, let C̃(λ) denote

the inverse of λ̃(C), i.e., C̃(λ) is the capacity the provider
must provision in order to attract an arrival rate of λ. It
follows from Lemma 1 that for large enough λ,

C̃(λ) = λ+
1

V (λ)
.

We omit the proof of this lemma, since it follows along sim-
ilar lines as Lemma 2 in [17].

Next, we characterize λ̃(C) for the case of load based la-
tency functions.

Lemma 2. If β ∈ [0, 1), then for all C > 0, λ̃(C) is con-
tinuous and strictly increasing in C and is obtained by solv-
ing for the unique positive λ that satisfies

wλβ = g

(
λ

C

)
.

If β = 1, then a non-zero solution exists if and only if w >
g′(0)/C, i.e., for C large enough.



We prove this lemma in Appendix A. Note that the above
lemma implies that for β > 0, ρ̃(C) is strictly increasing

in C. Moreover, let C̃(λ) denote the inverse of λ̃(C), i.e.,

C̃(λ) is the capacity the provider must provision in order to
attract an arrival rate of λ. It follows from Lemma 2 that,
for large enough λ,

C̃(λ) = λ/h(λ),

where

h(λ) := g−1(wλβ).

Building on the above, the following theorem characterizes
the operating point of the service as Λ becomes large.

Theorem 1. Consider case of a single service provider.
Under the non-cooperative user model, for large enough Λ,
the following scaling behaviors hold.

1. For the M/M/1 latency function,

λ∗(Λ) = Λ,

C∗(Λ) = C̃(Λ) = Λ +
1

V (Λ)
.

2. For load based latency functions, if β > 0, or β = 0
and b > 1

h(1)
,

λ∗(Λ) = Λ,

C∗(Λ) = C̃(Λ) =
Λ

h(Λ)
.

It is interesting to note that for the M/M/1 latency func-
tion, the provider operates the service at an extremely heavy
traffic regime, with only a bounded spare capacity. To in-
terpret the capacity provisioning for the load based latency
function, consider the special case of the mean number of
jobs in an M/M/1 queue, i.e., g(ρ) = ρ

1−ρ . In this case,

h(λ) = wλβ

1+wλβ
, implying that

C∗(Λ) = Λ +
1

w
Λ1−β .

Thus, when β = 0, the service is operated at constant uti-
lization w

1+w
(if b > w+1

w
; otherwise, the provider is unable

to operate the service profitably). As β increases, i.e., as the
network effects grow stronger, the firm operates the service
in heavier traffic regimes, with a spare capacity Θ(Λ1−β).
Intuitively, as users derive an increased utility due to net-
work effects, the firm can operate the service at higher levels
of congestion.

We omit the proof of Theorem 1 as it follows easily from
Lemmas 1 and 2 using similar arguments as in [17].

The cooperative setting. As in our analysis of the non-
cooperative model, we define the unconstrained population
response

λ̃(C) = max{arg max
λ≥0

U(λ)− λf(λ,C)},

ρ̃(C) =
λ̃(C)

C
.

As before, it turns out that the unconstrained population
response determines the operating point of the system, i.e.,
C∗(Λ) equals that value of C that satisfies λ̃(C) = Λ.

The following lemma characterizes λ̃(C) under the M/M/1
latency function.

Lemma 3. For large enough C, λ̃(C) is continuous and
strictly increasing with respect to C. Also, for large enough
C, λ̃(C) satisfies√

U ′(λ̃(C))C(1− ρ̃(C)) = 1.

It follows from the above lemma that for large enough C,
ρ̃(C) is strictly increasing. As before, define C̃(λ) to be the

inverse of λ̃(C). It follows from Lemma 3 that

C̃(λ) = λ+

√
λ

U ′(λ)
+ o

(√
λ

U ′(λ)

)
.

We give the proof of Lemma 3 in Appendix B.
Next we consider load based latency functions.

Lemma 4. If β ∈ [0, 1), then for all C > 0, λ̃(C) is con-
tinuous and strictly increasing in C, and is obtained by solv-
ing for the unique positive solution of

w(1 + β)λβ =
λ

C
g′
(
λ

C

)
+ g

(
λ

C

)
.

If β = 1, then a non-zero solution exists if and only w >
g′(0)/C, i.e., for C large enough.

We prove the above lemma in Appendix C. Note that
Lemma 4 implies that for β > 0, ρ̃(C) is strictly increasing
in C, since l(x) := xg′(x) + g(x) is an increasing function.

Moreover, let C̃(λ) denote the inverse of λ̃(C), i.e., C̃(λ) is
the capacity the provider must provision in order to attract
an arrival rate of λ. It follows from Lemma 3 that for large
enough λ,

C̃(λ) = λ/h(λ),

where we now have

h(λ) := l−1(w(1 + β)λβ).

Finally, Lemmas 3 and 4 lead to the following character-
ization of the operating point of the service as Λ becomes
large.

Theorem 2. Consider case of a single service provider.
Under the cooperative user model, for large enough Λ, the
following scaling behaviors hold.

1. For the M/M/1 latency function,

λ∗(Λ) = Λ,

C∗(Λ) = C̃(Λ) = Λ +

√
Λ

U ′(Λ)
+ o

(√
Λ

U ′(Λ)

)
.

2. For load based latency functions, if β > 0, or β = 0
and b > 1

h(1)
,

λ∗(Λ) = Λ,

C∗(Λ) = C̃(Λ) =
Λ

h(Λ)
.

It is instructive to compare the operating point of the coop-
erative user model with that for the non-cooperative model.
For the M/M/1 latency function, note that the provider

provisions Θ(Λ(1−β)/2) spare capacity in the cooperative
model, compared to a bounded spare capacity in the non-
cooperative case. This is a ‘tragedy of the commons’ phe-
nomenon, wherein anarchy in the user base drives the system
into a more congested state.



Also, note that the spare capacity in the cooperative case
shrinks as β increases, i.e., as the network effects become
stronger. Again, intuitively, this is because the service provider
is able to exploit the stronger network effects to operate the
system in a higher state of congestion.

Finally, let us turn to the load based latency function.
We see that the operating point looks structurally similar
to that in the non-cooperative model. Note, however, that
the function h is different for both cases. To interpret the
operating point, consider again the special case of the mean
number of jobs in an M/M/1 queue, i.e., g(ρ) = ρ

1−ρ . In this

case, l(x) = x(2− x)/(1− x)2, and

h(λ) = 1− 1√
1 + w(1 + β)λβ

.

Employing a Taylor expansion, one can show that

Λ

h(Λ)
= Λ +

1√
w(1 + β)

Λ1−β/2 + o(Λ1−β/2).

As expected, the spare capacity, which is Θ(Λ1−β/2), shrinks
as the network effects grow stronger. Moreover, note that
as a result of the ‘tragedy of the commons’ effect, the spare
capacity exceeds that under the non-cooperative model.

We omit the proof of Theorem 2 as it follows easily from
Lemmas 3 and 4 using similar arguments as in [17].

3. COMPETING FIRMS
So far we have discussed the case of a single cloud provider

(firm) and compared the capacity scalings achieved for both
the (realistic) non-cooperative and (idealistic) cooperative
scenarios. Of course, in reality cloud providers always have
competition. Thus, we now move from a single firm to com-
peting firms. Our goal is to study the interplay of network ef-
fects, congestion, and competition in ad-supported services.

To maintain analytic tractability, we focus on the case of
two competing firms. This is clearly a small number of firms,
but it is already enough to highlight the role of competition.
Of course, moving beyond two firms is an interesting, chal-
lenging direction for future work.

The model we consider in the remainder of the paper is
an extension of the setting introduced in Section 2 to the
case of two competing firms. In this extension, the latency
model described in Section 2.1.1 remains the same. How-
ever, the models for the user population and the firm need
to be adapted. We discuss these models in this section and
then present our results in Sections 4 and 5.

3.1 User model
Given the existence of two firms, a total population of

users Λ results in an arrival rate λ that is split across the
firms such that firm i has arrival rate λi and λ = λ1 + λ2.

The key change to the user model comes in the consider-
ation of network effects. As described in the introduction,
there are two contrasting notions of network effects that are
relevant to cloud services: industry-wide network effects and
firm-specific network effects. If network effects are industry-
wide, than the experience of a user is improved by having a
larger aggregate population of users across all firms, while
if network effects are firm-specific then the experience of a
user is improved by having a large population of users at the
same firm. A canonical example of industry-wide network
effects is email, and a canonical example of firm-specific net-
work effects is social networking.

More formally, when network effects are industry-wide
then, irrespective of where the users obtain their service,
the total utility of the users is

U(λ) := wλ1+β

and the per user utility is V (λ) := U(λ)/λ, as in the single
firm case.

In contrast, when network effects are firm specific the total
utility of users subscribed to firm i is

Ui(λi) := wiλ
1+βi
i

and the per user utility is Vi(λi) = Ui(λi)/λi. In this case,
we insist on different utility functions for the users from
the different firms. The latency cost, however, remains ex-
actly the same, i.e., the collective latency cost for users sub-
scribed to firm i is λif(λi, Ci) and the per user latency cost
is f(λi, Ci).

In each case, the specific split of traffic across the two
firms depends on whether users are cooperative or non-
cooperative. We discuss the details of these two models in
the case of industry-wide and firm-specific network effects
Sections 4 and 5, respectively, where we also present our
results for each setting.

3.2 Modeling competing firms
Not much change is needed to extend the model of a single

firm in Section 2.1.3 to competing firms. In particular, each
firm i = 1, 2 uses the same model described in Section 2.1.3,
except now the traffic they receive is λi and the revenue per
user served is bi dollars. Thus, firm i chooses capacity Ci
such that

Ci ∈ arg max
Ci≥0

biλi − Ci (6)

Note that λi is a function λ̂i(C1, C2) of (C1, C2) that de-
pends on the particular user model considered, i.e., industry-
wide vs. firm-specific network effects and cooperative vs.
non-cooperative behavior.

The key change to the model of the firms comes from
the interaction due to competition. Since the traffic split
depends on the capacity provisioning of both firms, the de-
cisions of the two firms get coupled. We study this via a
game and consider the Nash equilibria.

To be precise, we define (λ1, λ2, C1, C2) to be an equi-
librium of our system if (λ1, λ2) is the response of the user
base to the service capacities (C1, C2) and (C1, C2) is a Nash
equilibrium between the providers, i.e.,

λi = λ̂i(C1, C2) for i = 1, 2

C1 ∈ arg max
c≥0

b1λ̂1(c, C2)− c

C2 ∈ arg max
c≥0

b2λ̂2(C1, c)− c.

Given this definition, our goal in the remainder of the
paper is to study the equilibria that can emerge among firms
when Λ is large.

4. INDUSTRY-WIDE NETWORK EFFECTS
In this section we present our results characterizing two

competing, ad-supported firms in the context where network
effects are industry-wide. We study both the case of a co-
operative and a non-cooperative user population. In each
case, we start by describing the details of the user model



and then present our results. Results are presented tersely
here and then discussed in Section 6.

4.1 The non-cooperative setting

Non-cooperative user behavior. In the non-cooperative
scenario with industry-wide network effects, users getting
service from firm i = 1, 2 see a net per-user-payoff of V (λ)−
f(λi, Ci) where it is only the latency cost that is different
across providers. Whichever firm yields a higher payoff sees
an increase in the number of subscribers as the users are
driven to maximize their individual payoffs. Then, since
the latency cost increases with the arrival rate, it is easy to
argue that the net payoffs will equalize, if possible.

More formally, a traffic split (λ1, λ2) such that λ1+λ2 = λ
is a Wardrop equilibrium if the following condition hold for
i = 1, 2

λi > 0⇒ V (λ)− f(λi, Ci) = max
j=1,2

{V (λ)− f(λj , Cj)} (7)

Note that (λ, 0) and (0, λ) can also be Wardrop equilibria,
but only if they also satisfy (7).

For a given (λ,C1, C2), where λ < C1+C2, it is easy to ver-
ify that the Wardrop equilibrium [λ1(λ,C1, C2), λ2(λ,C1, C2)]
is the unique solution of the following convex optimization.

min
λ1,λ2

2∑
i=1

∫ λi

0

f(x,Ci)dx

subject to

2∑
i=1

λi = λ

(8)

Note that the objective function above is strictly convex,
since f(λ,C) is strictly increasing in λ.

We define the net arrival rate of the users as follows.

λ̂(C1, C2) = max
{
λ ∈ [0,Λ] ∩ [0, C1 + C2) |

max
j=1,2

{
V (λ)− f(λj(λ,C1, C2), Cj)

}
≥ 0
} (9)

The user behavior [λ̂1(C1, C2), λ̂2(C1, C2)] is then defined by

λ̂j(C1, C2) = λj(λ̂(C1, C2), C1, C2),

for j = 1, 2. Note that we have suppressed the dependence
of the user behavior on Λ for simplicity. Note also that,
in the above definition, not only do we choose the highest
possible arrival rate that yields non-negative payoff, but also
the best possible feasible traffic split corresponding to each
arrival rate.

Results. For the non-cooperative setting, we provide results
for both the M/M/1 latency and load based latency func-
tions. The basic message of both results is that the compet-
ing firms can co-exist in the market when network effects
are industry-wide.

We start by presenting results for the M/M/1 latency
function.

Theorem 3. Consider a non-cooperative user base with
industry-wide network effects, and take f to be the M/M/1
latency function. For large enough Λ, the following state-
ments hold.

1. If b1, b2 > 2, then no equilibrium exists.

2. If b1 > 2, b2 ≤ 2, then the only equilibrium is a full
monopoly of Provider 1:

λ1 = Λ, C1 = Λ +
1

V (Λ)
, λ2 = C2 = 0

3. If b1, b2 ∈ (1, 2], then a continuum of equilibria ex-
ist, including monopoly configurations. Moreover, any
equilibrium is of one of the following forms.

(a) Monopoly for Firm 1: λ1 = Λ, C1 = Λ + 1
V (Λ)

,

λ2 = C2 = 0

(b) Monopoly for Firm 2: λ2 = Λ, C2 = Λ + 1
V (Λ)

,

λ1 = C1 = 0

(c) Firms 1 and 2 share the market such that λ1 +
λ2 = Λ, and

λi ≥
1

(bi − 1)V (Λ)
,

Ci = λi +
1

V (Λ)
,

for i = 1, 2.

Note that the cases of the theorem correspond to differing
comparisons of the advertising efficiencies of the firms. In
Case 1, the firms are both extremely efficient. In contrast,
Case 2 corresponds to the case when the firms have differing
advertising efficiencies, with one being extremely efficient
(b1 > 2). In this case the more profitable firm is able to drive
the competitor out of the market. Finally, in Case 3, the two
firms have differing, but not incredibly good, advertising
efficiencies, which results in a multitude of possible ways for
the firms to divide the market.

Proof. We prove the three claims in the theorem in turn.
Claim 1: Suppose that (λ1, λ2, C1, C2) is an equilibrium.

Note that it not possible that C1 = C2 = 0, since in such
a configuration, it is beneficial for any firm to provision ca-
pacity Λ + 1

V (Λ)
, and command the full market, as in the

single provider case.
Consider then the possibility of an equilibrium satisfy-

ing C1 > 0, C2 = 0. Such an equilibrium must necessarily
have C1 = Λ + 1

V (Λ)
, since that is the optimal provisioning

for Firm 1, given that Firm 2 does not offer the service.
However, this cannot be an equilibrium, since Firm 2 can
increase its capacity to match Firm 1, leading to λ2 = Λ/2,

and a profit of ( b2
2
− 1)Λ− 1

V (Λ)
, which is positive for large

enough Λ.
Finally, we consider the possibility of an equilibrium sat-

isfying C1, C2 > 0. Such an equilibrium must necessarily
satisfy λ1, λ2 > 0, since any provider with zero arrivals
would just decrease capacity to zero. Consider now the ac-
tion of Firm 1 increasing its capacity by a small ε. Since
the Wardrop split keeps the spare capacity balanced, Firm
1 would receive an additional arrival rate of at least ε/2 as
a result of this change. Since b1 > 2, this change would be
profitable to Firm 1, implying that the proposed configura-
tion is not an equilibrium.

Claim 2: We first argue that the proposed monopoly con-
figuration is an equilibrium. Note that the user response is
consistent with the capacities provisioned, since the users
see a single provider. Similarly, from our discussion of the
single provider case, it is clear that the provisioning of Firm
1 is optimal, given that Firm 2 does not offer the service.
Finally, note that if Firm 2 is to increase its capacity to c,



the Wardrop split implies that she will receive an arrival
rate of at most c/2, which is not profitable, since b2 ≤ 2.

Next, we rule out the possibility of an equilibrium with
C2 > 0. Clearly, such a equilibrium would have λ2 > 0. If
λ1 > 0, then it is easy to see that a capacity increase of
ε by Firm 1 would increase its arrival rate by at-least ε/2,
increasing its profit. On the other hand, if λ1 = 0, the
equilibrium must satisfy C2 = Λ + 1

V (Λ)
. But Firm 1 could

now just match the capacity of Firm 1, share the market
equally, making a profit of ( b2

2
−1)Λ− 1

V (Λ)
, which is positive

for large enough Λ.
Claim 3: We first prove that the claimed configurations

are in fact equilibria. The proof that the two monopoly
configurations are equilibria follows along the same lines as
the proof of Claim (2) above. We now show that configu-
rations (λ1, λ2, C1, C2) satisfying the conditions in Part (c)
are equilibria. It is easy to see that user behavior is consis-
tent with our model. For Provider i, consider the capacity
provisioning Ci = λi + 1

V (Λ)
. Note that the lower bound on

λi implies the provider makes a non-negative profit. It is
not profitable for the provider to increase capacity further,
since any increase c in capacity would lead to an increase of
c/2 in the arrival rate (since the Wardrop split balances the
spare capacity across providers); this is not favorable given
bi ≤ 2. Consider next the action of decreasing capacity by
c, leading to a Wardrop split (λ′1, λ

′
2). Clearly, if λ′1 = 0, the

action is unfavorable. Else, from the Wardrop condition, we
must have

(C1 − c)− λ′1 ≥
1

V (λ′)
≥ 1

V (Λ)
,

where λ′ = λ′1 + λ′2. The above inequalities imply that
λ′1 ≤ λ1 − c, which implies a decrease in profit. Thus, each
provider has no incentive to adapt capacity, implying our
configuration is an equilibrium.

Finally, we have to show that any equilibrium (λ1, λ2, C1, C2)
satisfying λ1, λ2 > 0 must be of the form postulated. First,
we argue that it must hold that λ := λ1 + λ2 = Λ. In-
deed, if λ < Λ, it is easy to see that a capacity increase of
ε by any provider implies an increase of at-least ε, which is
profitable. Now, given that λ = Λ, Provider i must clearly
provision a capacity at-least Ci ≥ λi + 1

V (Λ)
. Also, we must

have C1 − λ1 = C2 − λ2 =: s. If s > 1
V (Λ)

, then it easy to

see that either provider has an incentive to decrease capac-
ity.

It is important to note that in every equilibrium con-
figuration demonstrated in Theorem 3, the user base sees
exactly the same congestion (measured, for the M/M/1 la-
tency function, in terms of the spare capacity) as in the
case of a single provider (See Theorem 1). Thus, we see
that competition in the marketplace does not improve the
payoff experienced by the user base.

The second class of latency functions we consider are load
based latencies, for which f(λ,C) = g(λ/C). Recall that
h(λ) := g−1(wλβ). Thus, h(λ) < 1, and limλ→∞ h(λ) = 1
for β > 0.

Theorem 4. Consider a non-cooperative user base with
industry-wide network effects, and take f to be a load based
latency function. If the per unit rewards (b1, b2) are such
that

b1, b2 >
1

h(Λ)
,

and

1
b1

+ 1
b2
≥ h(Λ),

then a continuum of equilibria (λ1, λ2, C1, C2) exist, charac-
terized by the conditions

C1 + C2 =
Λ

h(Λ)
,

λ1 = Λ
C1

C1 + C2
, λ2 = Λ

C2

C1 + C2
,

1− 1

b1h(Λ)
≤ C1

C1 + C2
≤ 1

b2h(Λ)
.

This theorem highlights that, if the advertising efficiencies
of the two providers are not too large, then they can co-exist
with each gaining a significant share of the market. Interest-
ingly, though the overall message matches that of Theorem
3, the specific equilibria that emerge are quite different.

Further, note that, if β > 0, then for any b1, b2 such that
1
b1

+ 1
b2

> 1, using the property that limλ→∞ h(λ) = 1,

we can find Λ large enough such that min(b1, b2) > 1
h(λ)

for every λ ≥ Λ. Therefore, 1
b1

+ 1
b2

> 1 is sufficient for

Theorem 4 to hold for sufficiently large Λ.

Proof. Consider a tuple (λ1, λ2, C1, C2) satisfying the
conditions of the theorem. It is easy to see that the tuple
is a Wardrop equilibrium for the users, since the utilization
with both providers equals h(Λ).

Next, we argue that Firm 1 has no incentive to increase
her capacity. Suppose that Firm 1 increases its capacity by
δ, and let us denote the new Wardrop split by (λ1 +ε, λ2−ε)
(it is easy to see that the total arrival rate remains Λ). Then
we must have

λ1 − ε
C1 + δ

=
λ2 − ε
C2

.

Noting that λ1
C1

= λ2
C2
, it follows that

ε =
λ2δ

C1 + C2 + δ
≤ λ2δ

C1 + C2
.

The change in profit of Firm 1 equals

b1ε− δ ≤ δ
(

b1λ2

C1 + C2
− 1

)
= δ

(
b1h(Λ)C2

C1 + C2
− 1

)
≤ 0,

where the last inequality follows from our restriction on the
value of C1

C1+C2
. This proves that Firm 1 has no incentive to

increase its capacity.
Next, we show that Firm 1 has no incentive to decrease

her capacity. Suppose that Firm 1 decreases its capacity

to C′1 < C1, leading to a new arrival rate λ′1. Let ρ′1 =
λ′
1
C′

1

denote its new utilization. Clearly, ρ′1 ≤ h(Λ). The new
profit of Firm 1 now equals

b1λ
′
1 − C′1 = C′1(b1ρ

′
1 − 1)

≤ C1(b1h(Λ)− 1) = b1λ1 − C1.

Thus, Firm 1 has no incentive to decrease its capacity.
Symmetric arguments apply to Firm 2, which completes

the proof.



Once again, we note that in every equilibrium configu-
ration demonstrated in Theorem 4, the congestion experi-
enced by the user base (measured by the load, under the
load based latency functions) is exactly the same as in the
case of a single provider (See Theorem 1).

4.2 The cooperative setting

Cooperative user behavior. In the cooperative scenario
with industry-wide network effects, the traffic split is deter-
mined by maximizing the collective payoff. That is, the user
base solves the following optimization problem.

max U(λ)−
2∑
i=1

λif(λi, Ci)

subject to

2∑
i=1

λi = λ,

λ ≤ Λ,

λ1, λ2 ≥ 0

(10)

If multiple solutions exist, the one with the largest value of
net arrival rate λ is chosen. Note that given λ, the split
(λ1, λ2) is the solution of the following optimization.

min
λ1,λ2

2∑
i=1

λif(λi, Ci)

subject to

2∑
i=1

λi = λ,

λ1, λ2 ≥ 0

(11)

Since the objective function is strictly convex, the split (λ1, λ2)
is unique.

Results. For the cooperative setting, our results focus only
on the class of load based latency functions, e.g., mean occu-
pancy of an M/M/1. The key message of the results paral-
lels that in the non-cooperative setting: multiple competing
firms can coexist when network effects are industry-wide. In
fact, the equilibria that emerge behave similarly to the equi-
libria in the non-cooperative case. This is a consequence of
the traffic split in both cases being proportional to the ca-
pacities provisioned.

Recall that for this set of results, h(λ) = l−1(w(1 + β)λβ)
where l(x) = xg′(x) + g(x), and limλ→∞ h(λ) = 1 for β > 0.

Theorem 5. Consider a cooperative user base with industry-
wide network effects, and take f to be a load based latency
function. If the per unit rewards (b1, b2) are such that

b1, b2 >
1

h(Λ)
,

and

1
b1

+ 1
b2
≥ h(Λ),

then a continuum of equilibria (λ1, λ2, C1, C2) exist, charac-

terized by the conditions

C1 + C2 =
Λ

h(Λ)
,

λ1 = Λ
C1

C1 + C2
, λ2 = Λ

C2

C1 + C2
,

1− 1

b1h(Λ)
≤ C1

C1 + C2
≤ 1

b2h(Λ)
,

It is important to realize that, even though the equilibria
in the cooperative case behave in a similar manner as the
equilibria in the non-cooperative case, the actual scaling is
different owing to the different h(λ) functions.

Also, note that, like in the non-cooperative case, if β > 0,
1
b1

+ 1
b2

> 1 is sufficient for the theorem to hold for large

enough Λ.

Proof. Recall that, under the cooperative model, the
traffic is the unique solution of the optimization (11). Spe-
cializing to the load based latency function, the first order
condition for this optimization is the following.

g

(
λ1

C1

)
+
λ1

C1
g′
(
λ1

C1

)
= g

(
λ2

C2

)
+
λ2

C2
g′
(
λ2

C2

)
Now, it is easy to see that, as in the non-cooperative case,
the optimal split of traffic is given by λi/Ci = λ/(C1 +C2).

Next, we note that the optimization objective of the firm
can be written as

U(λ)− λ1g(
λ1

C1
)− λ2g(

λ1

C1
) = U(λ)− λg(

λ

C
),

where C = C1+C2. Thus, we see that the total arrival rate is
determined exactly as in the single provider case, taking the
capacity of the single provider to be C. It then follows from
Theorem 2 that for a net capacity C = Λ

h(Λ)
provisioned,

the net arrival rate equals Λ, and the traffic split is given by
λi = ΛCi

C
. From here on, the proof follows exactly along the

same lines as the proof of Theorem 4.

Just as we saw before in the case of a non-cooperative user
base, note that in each equilibrium configuration demon-
strated in Theorem 5, the user base experiences the same
congestion (measured here in terms of the load) as in the
single provider configuration (see Theorem 2). Thus, we
conclude that phenomenon of competition not improving
the payoff of users cannot be attributed to anarchy in the
user base.

5. FIRM-SPECIFIC NETWORK EFFECTS
In this section we present our results characterizing two

competing, ad-supported firms in the context where network
effects are firm-specific. We study both the case of a cooper-
ative and a non-cooperative user population. In each case,
we start by describing the details of the user model and then
present our results. Results are presented tersely here and
then discussed in Section 6.

5.1 The non-cooperative setting

Non-cooperative user behavior. In the non-cooperative
scenario with firm-specific network effects the traffic split
is once again obtained using a Wardrop equilibrium. How-
ever, in contrast to the industry-wide network effects model,



the utility obtained and the latency costs are both differ-
ent across firms. Specifically, with a traffic split of (λ1, λ2),
users subscribed to Firm 1 have a per-user payoff given by
V1(λ1) − f(λ1, C1) whereas the users subscribed to Firm 2
have a per-user payoff of V2(λ2)− f(λ2, C2).

Given this distinction, the Wardrop equilibrium condition
now becomes

λi > 0⇒ Vi(λi)− f(λi, Ci) = max
j=1,2

{
Vj(λj)− f(λj , Cj)

}
(12)

Note that, if non-zero traffic is present for both firms, then
the per-user payoff in both firms is the same at a Wardrop
equilibrium. This follows for exactly the same reasons as in
the industry-wide network effects model.

In this section, we restrict ourselves to the case of linear
utilities (β1 = β2 = 0), i.e., Ui(λi) = wiλi with wi > 0 for
i = 1, 2. This assumption allows us to formally define the
Wardrop split as follows. For a given (λ,C1, C2), where λ <
C1+C2, the Wardrop equilibrium [λ1(λ,C1, C2), λ2(λ,C1, C2)]
is the unique solution of the following convex optimization.

min
λ1,λ2

2∑
i=1

∫ λi

0

(−wi + f(x,Ci))dx

subject to

2∑
i=1

λi = λ

(13)

Note that the objective function above is strictly convex,
implying the solution is unique.4

Having defined the Wardrop split, we can now define the
user behavior model as before. We define the net arrival
rate of the users as follows.

λ̂(C1, C2) = max
{
λ ∈ [0,Λ] ∩ [0, C1 + C2) |

max
j=1,2

{
Vj(λj(λ,C1, C2))− f(λj(λ,C1, C2), Cj)

}
≥ 0
}

The user behavior [λ̂1(C1, C2), λ̂2(C1, C2)] is then defined by

λ̂j(C1, C2) = λj(λ̂(C1, C2), C1, C2),

for j = 1, 2. Note that as in the previous section, we choose
the highest possible arrival rate that yields non-negative
payoff, using a Wardrop traffic split corresponding to each
arrival rate.

Results. In this case, we present results for the M/M/1
latency function and linear utilities.

Note that if w1 = w2, then we recover the industry-wide
network effects model. Recall from Theorem 3 that in this
case, a continuum of equilibria are possible, with both firms
sharing the market. We therefore focus here on the case
w1 6= w2. Let us assume, without loss of generality, that
w1 > w2.

The following theorem shows that, for the M/M/1 latency
function, any equilibrium is necessarily a near-monopoly for
Firm 1. That is, Firm 2 can never gather more than a

4The reason we are unable to handle the case βi > 0 in
our analysis of firm-specific network effects is that this would
make the optimization that defines the Wardrop equilibrium
non-convex. Indeed, it can be shown that multiple Wardrop
equilibria are possible, making a precise definition of the
user behavior problematic.

bounded arrival rate, and thus a negligible fraction of the
user population.5

Theorem 6. Consider a non-cooperative user base with
firm-specific network effects such that β1 = β2 = 0 and w1 >
w2 > 0. Further, take f to be the M/M/1 latency function.
For large enough Λ, any equilibrium (λ1, C1, λ2, C2) must
satisfy

λ1 ≥ Λ− 1

b1 − 1

(
b1w2

w1(w1 − w2)
+

1

w1

)
.

While the above theorem does not provide an exact char-
acterization of the congestion experienced by users at equi-
librium (assuming one exists), the proof that follows shows
that, at any equilibrium (λ1, C1, λ2, C2), the arrivals into
Firm 1 will only see a bounded spare capacity C1 − λ1.

To see this, note that the profit of Firm 1 equals

(b1 − 1)λ1 − (C1 − λ1) ≤ (b1 − 1)Λ− (C1 − λ1).

Combining this with the lower bound on the provider’s profit
from the proof below, we see that

C1 − λ1 ≤
b1w2

w1(w1 − w2)
+

1

w1
.

This suggests that the congestion experienced by the user
base at equilibrium is of the same order as that in the case
of a single firm. In other words, competition does not sig-
nificantly improve the payoff of users.

Proof. Suppose that (λ1, C1, λ2, C2) is an equilibrium.
We will show that

Profit of Firm 1 ≥ (b1 − 1)Λ−
(

b1w2

w1(w1 − w2)
+

1

w1

)
.

This implies the statement of the lemma, since

(b1 − 1)λ1 ≥ Profit of Firm 1.

For any C2, consider the response by Firm 1 setting ca-
pacity to C1 = Λ + 1

w1
. Now, if C2 ≤ 1

w2
, then λ1 = Λ, and

our claim on the profit follows easily. If C2 >
1
w2
, then the

population split is determined by

w1 −
1

C1 − λ1
= w2 −

1

C2 − λ2
.

Define the ‘spare capacities’ s1 = C1−λ1, s2 = C2−λ2. Note
that the spare capacities uniquely determine the population
split. We have

1

s1
− 1

s2
= ∆ =: w1 − w2,

s1 + s2 = s =: C2 +
1

w2
,

along with s1 ≥ 1
w1
, s2 ≥ 1

w2
. Solving the above equations

yields

s1 =
s

2
+

1

∆
−
√
s2

4
+

1

∆2
≤ 1

∆
.

Accordingly, we obtain

λ1 = C1 − s1 ≥ Λ +
1

w1
− 1

∆
.

5We do not address here the issue of existence of an equi-
librium.



It follows that under the response of Firm 1, its profit is at
least equal to

b1

(
Λ +

1

w1
− 1

∆

)
− (Λ1 +

1

w1
)

= (b1 − 1)Λ−
(

b1w2

w1(w1 − w2)
+

1

w1

)
.

We therefore conclude that the profit of Firm 1 at an equi-
librium can only be greater.

5.2 The cooperative setting

Cooperative user behavior. In the cooperative scenario
with firm-specific network effects the traffic split is chosen to
maximize the collective payoff. Since users that subscribe to
firm i = 1, 2 receive a collective payoff of U(λi)−λif(λi, Ci),

the user behavior [λ̂1(C1, C2), λ̂2(C1, C2)] is defined to be
the solution of the following optimization problem.

max
λ1,λ2

2∑
i=1

[U(λi)− λif(λi, Ci)]

subject to

2∑
i=1

λi ≤ Λ, λi ≥ 0, i = 1, 2.

As in the previous section we restrict attention to linear
utilities (β1 = β2 = 0), i.e., Ui(λi) = wiλi with wi > 0 for
i = 1, 2. Since the objective function is strictly convex in
(λ1, λ2) it follows that the traffic split is unique.

Results. In this case, we again present results for the M/M/1
latency function and linear utilities.

In order to make a comparison with our results for the
non-cooperative user model, we restrict ourselves to the case
of linear utilities (β1 = β2 = 0.) Recall that that the case of
w1 = w2 reduces to the industry-wide network effects model.
Therefore, the case of interest is w1 > w2.

As in the non-cooperative case, the following theorem
shows that, for the response time latency function, any equi-
librium is necessarily a near-monopoly for Firm 1.6 That is,
Firm 2 can never gather an arrival rate of more than O(

√
Λ)

as the market size Λ grows large. Thus, we see that whether
the user base behaves cooperatively or non-cooperatively,
a near-monopoly for the ‘better’ firm emerges in the firm-
specific network effects model.

Theorem 7. Consider a cooperative user base with firm-
specific network effects such that β1 = β2 = 0 and w1 >
w2 > 0. Further, take f to be the M/M/1 latency function.
As Λ becomes large, any equilibrium (λ1, C1, λ2, C2) (if it
exists) must satisfy

λ1 ≥ Λ−
√

Λ

(
b1

(b1 − 1)
√
w1 − w2

− 1√
w1

)
+ o(
√

Λ).

While the above theorem does not give an exact character-
ization of the congestion experienced by the user base, the
proof that follows does give a bound on the congestion expe-
rienced by arrivals into Firm 1 at an equilibrium. Following
the same line of argument as for the non-cooperative model,
it follows that, at an equilibrium, Firm 1 provisions O(

√
Λ)

6Once again, we do not deal here with the issue of exis-
tence of an equilibrium.

spare capacity, which is of the same order as in the case of
a single firm. This suggests that, as in the non-cooperative
case, competition does not significantly improve the payoff
of the user base.

Proof. For any action C2 by Firm 2, consider Firm 1’s
response of setting C1 = C∗w1

(Λ), where C∗w1
is the equilib-

rium response in the single provider case (given by Theo-
rem 2). Note that we emphasize here the dependence of this
response on w1;

C∗w1
(Λ) = Λ +

√
Λ

w1
+ o

(√
Λ
)
.

Let us denote the emerging population split resulting from
Firm 1’s action by (λ1(Λ, C2), λ2(Λ, C2)). We will obtain a
lower bound on λ1(Λ, C2), and therefore a lower bound on
Firm 1’s profit. Specifically, we will show that that

λ1(Λ, C2) ≥ λ1(Λ,∞) = Λ−
√

Λ

(
1√
∆
− 1√

w1

)
+ o(
√

Λ).

(14)
Above, λ1(Λ,∞) represents the split if Firm 2 has infinite ca-
pacity, i.e., it has no congestion cost. To prove (14), we first
note that irrespective of the value of C2, for large enough Λ,
λ1(Λ, C2)+λ2(Λ, C2) = Λ. Indeed, if λ1(Λ, C2)+λ2(Λ, C2) <
Λ, then it is easy to see that the user base could further in-
crease its payoff by increasing the arrival rate into Firm 1.
Now, if λ1(Λ, C2) = Λ, the inequality (14) is trivially true.
Assuming then that λ1(Λ, C2) < Λ, we note that λ1(Λ, C2)
is the solution of the following convex optimization.

max ψ(λ1) := w1λ1 + w2(Λ− λ1)− λ1
C1−λ1

− Λ−λ1
C2−Λ+λ1

s.t. 0 ≤ λ1 ≤ Λ
(15)

Now, it is clear that λ1(Λ, C2) > 0, for large enough market
size. This is because

ψ(0) ≤ w2Λ

≤ ψ(Λ) = w1Λ−
√
w1Λ + o(

√
Λ)

for large enough Λ. Therefore, λ1(Λ, C2) must satisfy the
first order condition corresponding to (15):

w1 − w2 −
C1

(C1 − λ1)2
+

C2

(C2 − Λ + λ1)2
= 0.

This in turn implies that λ1(Λ, C2) satisfies

w1 − w2 −
C1

(C1 − λ1)2
≤ 0.

It then follows that λ1(Λ, C2) ≥ λ1(Λ,∞), since λ1(Λ,∞)
satisfies the first order condition corresponding to the fol-
lowing optimization.

max w1λ1 + w2(Λ− λ1)− λ1
C1−λ1

s.t. 0 ≤ λ1 ≤ Λ
(16)

Having shown that λ1(Λ, C2) ≥ λ1(Λ,∞), it now remains to
characterize λ1(Λ,∞). Note that the objective function of

(16) can be equivalently written as ∆λ1 − λ1
C1−λ1

. This im-

plies that λ1(Λ,∞) can be characterized using our analysis



of the single provider case. Since ∆ < w1, it follows that

λ1(Λ,∞) = C1 −
√
C1

∆

= C∗w1
(Λ)−

√
C∗w1

(Λ)

∆

= Λ +

√
Λ

w1
−
√

Λ

∆
+ o(
√

Λ).

This completes the proof of (14).
Now, (14) implies that

Profit of Firm 1 = b1λ1(Λ, C2)− C1

≥ b1

[
Λ +

√
Λ

w1
−
√

Λ

∆
+ o(
√

Λ)

]

−

(
Λ +

√
Λ

w1
+ o(
√

Λ)

)

= (b1 − 1)

(
Λ +

√
Λ

w1

)
− b1

√
Λ

∆
+ o(
√

Λ).

It follows then that the above lower bound on profit must
hold at any equilibrium (λ1, C1, λ2, C2), implying that

(b1 − 1)λ1 ≥ (b1 − 1)

(
Λ +

√
Λ

w1

)
− b1

√
Λ

∆
+ o(
√

Λ),

which implies that

λ1 ≥ Λ−

(
b1

b1 − 1

√
Λ

∆
−
√

Λ

w1

)
+ o(
√

Λ).

This completes the proof.

It is possible to extend the above result to the case of super-
linear utilities, i.e., βi > 0. Indeed, it can be shown that
if β1 > β2, or β1 = β2 and w1 > w2, any equilibrium is
necessarily a near-monopoly for Firm 1.

6. DISCUSSION AND CONCLUSIONS
We end with a discussion contrasting the results obtained

in Sections 4 and 5, which have characterized the equilib-
ria that emerge in settings capturing all mixtures of coop-
erative and non-cooperative users with industry-wide and
firm-specific network effects.

Perhaps the most striking conclusion from these results is
about the impact of competition on the user experience. The
message that emerges is that competition does not help. In
particular, even with competition, the firms provision the
same order of magnitude of capacity as does a single mo-
nopolistic firm, which can exploit positive network effects to
increase profit by taking advantage of the fact that positive
network effects make users more tolerant of congestion. Im-
portantly, this is not a result of anarchy (non-cooperation
among the users). Competition does not help even when
the user base is cooperative. Thus, an important take away
from the results is that adding competition does not help
reduce congestion if firms cannot compete on prices. This is
in contrast to settings such as [1,2] where price competition
does reduce congestion.

Another striking message that emerges from the results
in Sections 4 and 5 is about the impact of competition on
market structure. In particular, the structure of the market,

i.e., the market shares of the firms, is highly dependent on
the type of service, i.e., the network effects of the service.
If there are no network effects, or if the network effects are
industry-wide, then multiple firms can co-exist, sharing the
market (unless there is considerable asymmetry in the ad-
vertising efficiency of the firms). In other words, in such
situations it is hard for firms to grab market share from
each other and the distinction between the firms disappears
from user’s point of view. However, if network effects are
firm-specific, then near-monopolies tend to emerge. More-
over, the firm that obtains a near-monopoly is the one with
the ‘better’ service, i.e., greater network effect. Surprisingly,
advertising efficiency does not help. Thus, for example, the
advertising efficiency of Google may seem to give an advan-
tage to GooglePlus over Facebook, but the models suggest
that the impact of this is outweighed by the service quality
comparison. Further, even minor differences in utilities are
sufficient to ensure a monopoly. Again, the results for the
cooperative setting highlight that these conclusions are not
a result of anarchy in the user base, since they appear in
cooperative model as well as the non-cooperative model.

The results in this paper provide important messages about
the role of network effects, congestion, and competition in
ad-supported services; however, further analytic work re-
mains in order to assess the robustness and generality of the
conclusions described above. In particular, we have focused
on two classes of latency functions here, M/M/1 latencies
and load based latencies, and it would be interesting to un-
derstand how the results are impacted when other latency
functions are considered. The results in this paper have al-
ready highlighted that the form of the latency function can
have an impact.

Additionally, this paper has focused entirely on the case of
two competing firms. It is important to extend the analysis
to larger markets. While it is intimidating to attempt exact
analysis in the case of an arbitrary number of firms, it may
be possible to study the asymptotic behavior of the market
for a large number of firms.

Finally, we have considered two extreme forms of network
effects when in reality many services experience a combina-
tion of both industry-wide and firm-specific network effects.
It would be interesting to extend the analysis here to such a
setting to understand how these types of network effects in-
teract and, specifically, to understand when the interaction
is such that multiple firms can coexist in the market and
when the interaction is such that near-monopolies emerge.

Acknowledgements
The authors gratefully acknowledge the support of the NSF
through grants CNS-1319820 and CNS-0846025. The first
author also acklowledges support from an NWO VIDI grant.

7. REFERENCES
[1] J. Anselmi, D. Ardagna, J. C. Lui, A. Wierman, Y. Xu, and

Z. Yang. The economics of the cloud: Price competition
and congestion. In Proceedings of NetEcon, 2013.

[2] J. Anselmi, U. Ayesta, and A. Wierman. Competition
yields efficiency in load balancing games. Performance
Evaluation, 68(11):986–1001, 2011.

[3] R. Atar. A diffusion regime with non-degenerate slowdown,
2013. To appear.

[4] J. Buchanan. An economic theory of clubs. Economica,
32(125):1–14, 1965.

[5] D. Durkee. Why cloud computing will never be free. Queue,
8(4):20, 2010.



[6] J. Farrell and P. Klemperer. Coordination and lock-in:
Competition with switching costs and network effects.
Handbook of Industrial Organization, 3:1967–2072, 2007.

[7] J. Farrell and G. Saloner. Standardization, compatibility,
and innovation. The RAND Journal of Economics,
16(1):70–83, 1985.

[8] S. Halfin and W. Whitt. Heavy-traffic limits for queues
with many exponential servers. Operations Research,
29(3):567–588, 1981.

[9] J. Hamilton. The cost of latency, October 2009.
URL:http://perspectives.mvdirona.com/2009/10/31/
TheCostOfLatency.asp.

[10] IAB Internet Advertising Revenue Report, 2011.
[11] R. Johari and S. Kumar. Congestible services and network

effects, 2009.
[12] M. Katz and C. Shapiro. Network externalities,

competition, and compatibility. The American Economic
Review, 75(3):424–440, 1985.

[13] R. Kohavi, R. Longbotham, D. Sommerfield, and R. Henne.
Controlled experiments on the web: survey and practical
guide. Data Mining and Knowledge Discovery,
18(1):140–181, 2009.

[14] S. Lohr. For impatient web users, an wye blink is just too
long to wait. New York Times, 2012. Published Feb. 29.

[15] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and
A. Ghalsasi. Cloud computingthe business perspective.
Decision Support Systems, 51(1):176–189, 2011.

[16] B. Metcalfe. Metcalfe’s law: A network becomes more
valuable as it reaches more users. Infoworld, 17(40):53–54,
1995.

[17] J. Nair, A. Wierman, and B. Zwart. Provisioning of large
scale systems: The interplay between network effects and
strategic behavior in the user base. In Under submission,
2013.

[18] A. Odlyzko and B. Tilly. A refutation of metcalfe’s law and
a better estimate for the value of networks and network
interconnections, 2005.

[19] S. Oren and S. Smith. Critical mass and tariff structure in
electronic communications markets. The Bell Journal of
Economics, pages 467–487, 1981.

[20] J. Reed. The G/GI/N queue in the Halfin-Whitt regime.
Annals of Applied Probability, 19:2211–2269, 2009.

[21] T. Sandler and J. Tschirhart. Club theory: Thirty years
later. Public Choice, 93(3):335–355, 1997.

[22] A. Sundararajan. Network effects, nonlinear pricing and
entry deterrence, 2003.

APPENDIX
A. PROOF OF LEMMA 2

For β = 0, the result follows directly from g(·) be function
increasing in λ with g(0) = 0 and limx→1 g(x) = +∞.

Next consider β ∈ (0, 1). Since g(·) is an increasing convex
function, its inverse g−1(·) is also increasing but concave.
Note also that wλβ is a concave function of λ for β ∈ (0, 1].
Therefore, by the composition rule for concave functions,
g−1(wλβ) is also a concave function.

Note that g−1(0) = 0 by our assumptions on g(·). There-
fore, using the sub-gradient inequality for concave function
h(λ) := g−1(wλβ), it follows that h(λ)/λ is a decreasing
function of λ with limλ→0 h(λ)/λ =∞ and limλ→∞ h(λ)/λ =

0. Thus there is a unique λ̃(C) such that h(λ) = λ/C and
this is the largest λ such that h(λ) ≥ λ/C; by the earlier
properties of h(·), λ = 0 automatically satisfies the inequal-
ity.

Finally consider the case of β = 1, it immediately follows
that w ≤ g′(0) implies that λ = 0 is the only solution to
wλβ ≥ g( λ

C
) and otherwise there exists a unique positive λ

that satisfies wλ = g( λ
C

) which is also continuous and in-

creasing in C. Thus, the result also follows for C sufficiently
large when β = 1.

B. PROOF OF LEMMA 3
The choice of arrival rate is made by optimizing λκ(λ),

where κ(λ) = V (λ)− f(λ,C).
From Lemma 1, there is a λ′(C) such that for all λ ≥

λ′(C), κ(λ) ≤ 0. Let λ̄(C) be the largest λ in [0, λ′(C)] such
that κ′(λ) = 0.

Clearly λ̃(C) is the λ ∈ [λ̄(C), λ′(C)] such that the deriva-
tive of λκ(λ) is 0.

C. PROOF OF LEMMA 4
For β = 0, the arrival rate is chosen to maximize a strictly

concave function wλ − λg( λ
C

). It is easily verified from the
first-order conditions that the maximizer is the unique non-
negative solution to

w =
λ

C
g′
(
λ

C

)
+ g

(
λ

C

)
.

By differentiating the above equation, we can readily verify
that λ̃(C) is strictly increasing in C.

Next consider β ∈ (0, 1). The arrival rate is chosen to
be the maximizer of λκ(λ) where κ(λ) = wλβ − g( λ

C
) is a

strictly concave function of λ.
From Lemma 2 it follows that h(λ) ≤ 0 for λ ≥ λ′(C)

where λ′(C) is the unique positive solution to wλβ = g( λ
C

).

Additionally, κ(·) is maximized at λ̄(C) ∈ (0, λ̃(C)) where
h(λ̄(C)) > 0 and λ̄(C) is the unique positive solution to

wβλβ−1 =
λ

C
g′
(
λ

C

)
+ g

(
λ

C

)
.

The derivative of the objective function of the cooperative
scenario traffic split is given by

λκ′(λ) + κ(λ),

which is positive at λ̄(C) and negative at λ̃(C), and by tak-
ing a derivative it can be verified that the second derivative
is negative. Therefore, the objective function is strictly con-
cave between λ̄(C) and λ′(C). Thus, the unique optimizer
is the solution in [λ̄(C), λ′(C)] of λκ′(λ) + κ(λ) = 0, i.e.,

w(1 + β)λβ =
λ

C
g′
(
λ

C

)
+ g

(
λ

C

)
. (17)

Finally we note that λκ(λ) is increasing in λ for λ ∈
[0, λ̄(C)]. Therefore, λ̃(C) is also the unique positive so-
lution to (17). For β = 1, following Lemma 2 if C is large
enough, then same proof can be used.

Differentiating in (17) and rearranging terms, we obtain

∂λ̃(C)

∂C
=(
λ̃(C)
C

)2 [
2g′
(
λ̃(C)
C

)
+ λ̃(C)

C
g′′
(
λ̃(C)
C

)]
λ̃(C)
C

[
2g′
(
λ̃(C)
C

)
+ λ̃(C)

C
g′′
(
λ̃(C)
C

)]
− w(1 + β)λ̃β(C)β

.

Using (17) to substitute for w(1+β)λ̃β(C) the denominator



is now(
λ̃(C)

C

)2

g′′
(
λ̃(C)

C

)
+ (1− β)

λ̃(C)

C
g′
(
λ̃(C)

C

)
+
λ̃(C)

C
g′
(
λ̃(C)

C

)
− βg

(
λ̃(C)

C

)
,

which in turn is positive as β ∈ [0, 1], g(·) is convex and

increasing with g(0) = 0. This proves that λ̃(C) strictly
increases in C.


