
1

On Channel Failures, File Fragmentation Policies,
and Heavy-Tailed Completion Times

Jayakrishnan Nair, Martin Andreasson, Lachlan L. H. Andrew, Steven H. Low and John C. Doyle

Abstract—It has been recently discovered that heavy-tailed
completion times can result from protocol interaction even when
file sizes are light-tailed. A key to this phenomenon is the use of a
restart policy where if the file is interrupted before it is completed,
it needs to restart from the beginning. In this paper, we show that
fragmenting a file into pieces whose sizes are either bounded or
independently chosen after each interruption guarantees light-
tailed completion time as long as the file size is light-tailed;
i.e., in this case, heavy-tailed completion time can only originate
from heavy-tailed file sizes. If the file size is heavy-tailed, then
the completion time is necessarily heavy-tailed. For this case, we
show that when the file size distribution is regularly varying, then
under independent or bounded fragmentation, the completion
time tail distribution function is asymptotically bounded above
by that of the original file size stretched by a constant factor. We
then prove that if the distribution of times between interruptions
has non-decreasing failure rate, the expected completion time is
minimized by dividing the file into equal sized fragments; this
optimal fragment size is unique but depends on the file size.
We also present a simple blind fragmentation policy where the
fragment sizes are constant and independent of the file size and
prove that it is asymptotically optimal. Both these policies are also
shown to have desirable completion time tail behavior. Finally,
we bound the error in expected completion time due to error in
modeling of the failure process.

I. MOTIVATION AND SUMMARY

It has been recently discovered that heavy-tailed file comple-
tion time can result from protocol interaction even when the
file size is light-tailed, provided its distribution has infinite
support [3]–[6]. Indeed, the completion time can be heavy-
tailed even when the file size has a tail that decays exponen-
tially or superexponentially. A key to this phenomenon is the
RESTART feature [3], [4] where if a file is interrupted in the
middle of its processing, the entire file needs to restart from
the beginning, i.e., the work that is partially completed is lost.

A standard mechanism for reducing completion times in an
unreliable service environment is fragmentation. For example,
a file to be transmitted over an unreliable channel is frag-
mented into packets. Similarly, in computing environments, a
file/job is fragmented by introducing checkpoints [7]–[9]. The
purpose of such fragmentation is of course that when a server

Jayakrishnan Nair is with the Department of Electrical Engineering, IIT
Bombay, India

Martin Andreasson is with the ACCESS Linnaeus Centre, KTH Royal
Institute of Technology, Sweden

Lachlan Andrew is with the Centre for Advanced Internet Architectures,
Swinburne University of Technology, Australia

Steven Low and John Doyle are with the Computing and Mathematical
Sciences Department, California Institute of Technology, USA.

A shorter version of this paper appeared in IEEE INFOCOM [1]. A
preliminary version was also presented at the MAMA workshop [2].

failure occurs, the only work lost corresponds to the fragment
being currently processed.

In this paper, we are motivated by the question: Can
fragmentation ‘lighten’ the completion time tail? The main
contribution of this paper is show that the completion time
tail is indeed ‘lightened’ by a large class of fragmentation
policies.

In particular, we consider a model for file transfer over
an unreliable channel and propose fragmentation policies
that guarantee light-tailed completion time for light-tailed file
sizes. In the models of [3]–[6], heavy-tailed completion time
seems to arise from repeated comparison of a sequence of
independent, identically distributed (i.i.d.) random variables
(server/channel availability periods) with the same random
variable (original job/file size) that has an infinite support.
This motivates fragmentation policies that avoid this character.
Specifically, we consider policies that partition files into frag-
ments with independent, or bounded sizes; note that packet
sizes are naturally bounded by network hardware. We show
that these policies produce a light-tailed completion time as
long as the original file size is light-tailed, i.e., in this case,
a heavy-tailed file completion time can only originate from a
heavy-tailed file size (Section III). If the file size is heavy-
tailed, then the file completion time is necessarily heavy-
tailed. In this case, we show that if the file size distribution
is regularly varying, then under independent or bounded
fragmentation, the completion time tail distribution function is
asymptotically bounded above by that of the original file size
stretched by a constant factor. This means that in the degree
sense, the completion time distribution is only as heavy-tailed
as the file size distribution.

While the above results pertain to the tail of the completion
time, another natural (and complementary) metric to consider
is the expected completion time. We prove that if the failure
distribution has a non-decreasing failure rate, it is optimal
(for the expected completion time) to divide the file into
equal sized fragments, whose size depends on the file size
(Section IV-A). We also present a simple blind fragmentation
policy where the fragment size is constant and independent
of the file size and prove that its expected file completion
time is asymptotically optimal (Section IV-B). The optimal
policy as well as the suboptimal blind policy create bounded
fragments, and therefore also produce desirable completion
time tail behavior. Next, we present simple bounds on the error
in expected completion time when there is error in modeling
the failure process (Section V).

Finally, we study a related model for job checkpointing in
a computing environment, and show that our main results for

2

the file fragmentation model can be extended to this setting
(Section VI).

II. MODEL AND PRELIMINARIES

A. Model

Consider a file with a possibly random size L > 0. The
file is fragmented into packets which are then sent over
an unreliable channel with unit transmission rate. A packet
contains a fragment of the file and a fixed-sized overhead
(header, trailer). The larger the packet size, the more likely
the transmission is to fail. This will be the case, e.g., if the
channel randomly introduces independent bit errors so a packet
with more bits has a higher probability of being corrupted
and needing a retransmission; see [10, p. 132] for such a
failure model for satellite and terrestrial communications.
More generally, for the nth transmission attempt, let xn + φ
be the packet size, where xn is the size of the file fragment
and φ is the constant overhead. All sizes are measured in
terms of the transmission time over the channel with unit
rate. Let (An, n = 1, 2, . . .) be i.i.d. non-negative random
variables with common distribution F and independent of L,
with P (A1 > φ) > 0. The nth transmission attempt will be
successful if and only if An ≥ xn + φ.1

To formulate the problem precisely, we abuse notation and
use x = (xn, n = 1, 2, . . .) to denote both the control
(fragmentation) policy and the fragment sizes under the policy,
depending on the context. Let the state ln := lxn be the
remaining file size just after the start of the nth transmission
under control policy x. Then the state ln evolves according to,

ln+1 = ln − xn 1(An ≥ xn + φ), n = 1, 2, . . . (1)
l1 = L (2)

where 1(z) = 1 if z is true and 0 otherwise. We implic-
itly restrict ourselves to admissible policies x under which
0 ≤ xn ≤ ln for all n. We emphasize that the state sequence
(ln, n ≥ 1) depends on the control policy x = (xn, n ≥ 1)
though this is not explicit in the notation. The time between
the nth and the n+ 1st submission is the cost at the nth stage
and is given by:

τn := (xn + φ) 1(ln > 0) (3)

Clearly, the transmission time sequence (τn, n ≥ 1) also
depends on the control x. Let T (L) be the file completion
time under control x as a function of the initial file size L;

T (L) := T x(L) :=
∑
n≥1

τn. (4)

In summary, our file fragmentation model is specified by (1)–
(4) with the i.i.d. random sequence (An, n ≥ 1). In subsequent
sections, we will study the impact of the choice of the fragment
sizes (xn, n = 1, 2, . . .) on the file completion time.

1We note that An does not need to be interpreted as a channel availability
period. Essentially, our model assumes that each packet transmission inde-
pendently succeeds with a probability that is a non-increasing function of the
packet size. The random variable An simply captures the randomness of the
channel that affects the nth packet transmission.

Our model is an adaptation of the model in [3]–[6] where
a server alternates between availability periods and unavail-
ability periods. There, the server availability periods have
durations (An, n ≥ 1) that are i.i.d. random variables. The
unavailability periods have durations (Un, n ≥ 1) that are i.i.d.
and independent of (An, n ≥ 1). Without fragmentation, the
entire file is submitted at the beginning of each availability
period until it completes successfully, xn = L for all n. Our
model here has Un = 0; furthermore, the one-stage cost for
an unsuccessful fragment submission is xn+φ in our case but
An + Un in theirs. Thus, our model captures the scenario in
which the sender is informed of the failure only after the entire
packet has been sent. In contrast, in the model of [3]–[6], the
sender is immediately informed of a server failure (note that
in this model, An has an interpretation as a server availability
period). However, these differences do not qualitatively change
our conclusions; indeed, we present a parallel set of results in
Section VI for a job checkpointing model that is closer to the
model in [3]–[6].

B. Notation and preliminaries

Throughout this paper, lim denotes the limit superior, lim
the limit inferior and E [·] the expectation. For any functions
γ(t) and λ(t),

1) γ(t) ∼ λ(t) means lim
t→∞

γ(t)/λ(t) = 1,

2) γ(t) . λ(t) means lim
t→∞

γ(t)/λ(t) ≤ 1,
3) γ(t) = o(λ(t)) means lim

t→∞
γ(t)/λ(t) = 0.

Consider non-negative random variables X and Y . Let X d
= Y

denote that X and Y are equal in distribution. We will use
the notation X ≤a.s. Y to mean X ≤ Y almost surely. The
notation X ≤st Y means X is stochastically dominated by Y ,
i.e., P (X > t) ≤ P (Y > t) for all t ≥ 0. It is easy to see
that X ≤a.s. Y implies X ≤st Y . The following lemma will
be useful later.

Lemma 1. If random variables A,B,C satisfy A ≤st B ≤st

C, and P (A > x) ∼ P (C > x), then

P (A > x) ∼ P (B > x) ∼ P (C > x) .

The elementary proof is omitted. Let G(x) = P (X ≤ x)
denote the distribution function (df) of the non-negative ran-
dom variable X and G(x) := 1−G(x) denote its tail df.

Definition 1. The df G (or the random variable X) is said to
be heavy-tailed if limx→∞ eθxG(x) = ∞ for all θ > 0. The
df G (or the random variable X) is said to be light-tailed
if it is not heavy-tailed, i.e., if there exists a θ > 0 such that
limx→∞ eθxG(x) = 0.

Intuitively, a distribution is heavy-tailed if its tail df is
(asymptotically) heavier than that of any exponential distri-
bution. Conversely, a distribution is light-tailed if its tail df
is (asymptotically) dominated by that of some exponential
distribution. The following lemma describes some closure
properties of the class of light-tailed distributions we will use
in this paper.

Lemma 2. [Closure properties of light-tailed distributions]

3

1) Let X,Y be non-negative random variables satisfying
X ≤st Y . If Y is light-tailed, then X is light-tailed.

2) Let X,Y be non-negative random variables. If X,Y are
light-tailed, then X + Y is light-tailed.

3) Let (Xi, i ≥ 1) be a sequence of non-negative i.i.d. light-
tailed random variables, and N be an integer random
variable. If N is light-tailed, then the random sum∑N
i=1Xi is light-tailed.

4) Let L be a non-negative random variable and {Xi}i≥1
a sequence of non-negative i.i.d. random variables in-
dependent of L and satisfying P (Xi > 0) > 0. If L is
light-tailed, so is inf{n|

∑n
i=1Xi ≥ L}.

We give the proof of this lemma in Appendix A.
An important class of heavy-tailed distributions is the class

of regularly varying distributions (see [11], Chapter 2 of [12]).

Definition 2. A df G is regularly varying with index/degree
α > 0 (denoted G ∈ RV(α)) if

G(x) = x−αχ(x)

where χ(x) is a slowly varying function, i.e., χ(x) satisfies

lim
x→∞

χ(xy)

χ(x)
= 1 ∀y > 0.

We will abuse notation and use L ∈ RV(α) to mean
the df GL of a random variable L is in RV(α). Regularly
varying distributions are a generalization of the class of Pareto
distributions, also referred to as power-law distributions or
Zipf distributions. Note that a smaller value of α implies
a heavier tail. The following lemmas pertaining to regular
variation will be useful in our proofs.

Lemma 3. Consider non-negative random variables X,Y . If
X ∈ RV(α) and P (X > t) ∼ P (Y > t), then Y ∈ RV(α).

The proof follows from the definition.

Lemma 4. If X ∈ RV(α), then P (X > t) ∼ P (X > t+ c)
for all c ∈ R.

This lemma is a consequence of the fact that regularly
varying distributions are a sub-class of the class of long-tailed
distributions; see [13].

Lemma 5. If χ(x) is slowly varying, then

lim
x→∞

xβχ(x) =

{
∞ if β > 0
0 if β < 0

.

See Prop. 2.6 in [12] for a proof. Lemma 5 leads to the
following corollary.

Corollary 1. If X for RV(α), then for any ε > 0,

t−(α+ε) ≤ P (X > t) ≤ t−(α−ε)

for large enough t.

III. COMPLETION TIME TAIL ASYMPTOTICS

In this section, we study the tail behavior of the completion
time under a broad class of fragmentation policies. To motivate
our results, we first state the following lemma, which considers
the case of no fragmentation.

Lemma 6 ([3]–[6]). Without fragmentation (i.e., xn = L until
the whole file is transmitted successfully), T (L) is heavy-tailed
as long as L has infinite support.

The proof follows from Lemma 1 in [6]. Lemma 6 implies
that without fragmentation, the completion time T (L) can
be heavy-tailed even for light-tailed file sizes, e.g., file size
distributions with an exponential or even superexponential tail
df. Intuitively, this is because large files need to be retransmit-
ted many times, and therefore have a disproportionately large
completion time. Our results in this section (Theorems 1–3)
imply that under a broad class of fragmentation policies, the
completion time T (L) is light-tailed provided L is light-tailed.
Thus, with these policies, heavy-tailed completion times can
only arise from heavy-tailed file sizes.

Of course, if the file size distribution is heavy-tailed, then
the completion time is necessarily heavy-tailed. For a regularly
varying file size distribution, the following lemma tells us how
heavy the completion time tail is with no fragmentation, under
the additional assumption that A1 is light tailed.

Lemma 7. Suppose L ∈ RV(α), and A1 is light-tailed.
Without fragmentation (i.e., xn = L until the whole file is
transmitted successfully),

lim
t→∞

− logP (T (L) > t)

log(t)
= 0.

The proof of this lemma follows easily from the arguments
in the proof of Theorem 2 in [6]. Lemma 7 implies that for
any ε > 0, P (T (L) > t) ≥ t−ε for large enough t, which
means that P (L > t) = o(P (T (L) > t)) (see Corollary 1).
Thus, the completion time tail is asymptotically heavier than
the file size tail. In contrast, the results in this section (Theo-
rems 1–3) imply that under the above mentioned broad class
of fragmentation policies, the tail df of T (L) is bounded above
by a scaled version of the tail df of L. This means that in the
degree sense, the completion time is only as heavy-tailed as
the file size.

A. Results

We now define the three classes of fragmentation policies
studied in this section.
• Independent fragmentation: xn = min{Xn, ln}, n ≥

1, where (Xn, n ≥ 1) is a sequence of i.i.d. strictly
positive light-tailed random variables independent of L
and (An, n ≥ 1) such that P (A1 ≥ X1 + φ) > 0. Note
that xn is the size of the fragment in the nth transmission
attempt. If a fragment is not successfully transmitted, then
that specific fragment is not retransmitted; instead a new
fragment is selected starting from the same point in the
file.

• Bounded fragmentation: xn satisfies min{b, ln} ≤
xn ≤ min{c, ln}, n ≥ 1, for some constants 0 < b ≤ c
such that P (A1 ≥ c+ φ) > 0. Note that the choice of
xn may be random and may depend on L.

• Constant fragmentation: xn = min{b, ln} for some
deterministic constant b > 0 satisfying P (A1 ≥ b+ φ) >
0. This is a special case of independent fragmentation and
of bounded fragmentation.

4

We now state our results for each of these classes.

Theorem 1 (Independent fragmentation). Under an indepen-
dent fragmentation policy

1) If L is light-tailed, then T (L) is light-tailed.
2) If L ∈ RV(α), then

P (L > t) ≤ P (T (L) > t) . P

(
L >

t

σ

)
where

σ =
E [X1] + φ

P (X1 + φ ≤ A1)E [X1|X1 + φ ≤ A1]
. (5)

The next result says that any policy that does not choose
arbitrarily large or arbitrarily small fragment sizes produces
light-tailed completion time provided L is light-tailed.

Theorem 2 (Bounded fragmentation). Under a bounded frag-
mentation policy

1) If L is light-tailed, then T (L) is light-tailed.
2) If L ∈ RV(α), then

P (L > t) ≤ P (T (L) > t) . P

(
L >

t

σ

)
where

σ =
c+ φ

bP (A1 ≥ c+ φ)
.

Intuitively, if packet size is too small, the overhead can
dominate the transmission, reducing efficiency. If the packet
is too large, the failure probability can be too high. Hence we
consider a policy “reasonable” if the fragments it selects are
neither too small nor too large. Theorem 2 then guarantees that
any reasonable fragmentation policy ‘lightens’ the completion
time tail, relative to the case of no fragmentation.

Since constant fragmentation is a special case of indepen-
dent and bounded fragmentation, Theorems 1 and 2 imply
that under constant fragmentation, T (L) is light-tailed if L is
light-tailed. When L is regularly varying, constant fragmen-
tation provides the following sharper characterization of the
asymptotics: T (L) is regularly varying with the same degree.

Theorem 3 (Constant fragmentation). Under a constant frag-
mentation policy

1) If L is light-tailed, then T (L) is light-tailed.
2) If L ∈ RV(α), then P (T (L) > t) ∼ P

(
L > t

g(b)

)
where

g(x) =
x+ φ

xP (A1 ≥ x+ φ)
.

Theorem 3 motivates choosing the constant fragment size
a := arg minx>0 g(x). Within the class of constant frag-
mentation policies, this choice produces in some sense the
lightest possible completion time tail asymptotics. We will
prove in Section IV-B that this policy also almost minimizes
the expected completion time.

B. Proofs of Theorems 1–3

The proofs of Theorems 1–3 rely on the following.

Lemma 8. Let L be a random variable, and (Xn, n ≥ 1)
be a sequence of i.i.d. strictly positive light-tailed random
variables independent of L and (An, n ≥ 1) such that
P (A1 > X1 + φ) > 0. Let

Yn := Xn1(Xn + φ ≤ An),

M := inf

{
m :

m∑
n=1

Yn ≥ L

}
, (6)

T̃ (L) :=

M∑
n=1

(Xn + φ). (7)

1) If L is light-tailed, then T̃ (L) is light-tailed.
2) If L ∈ RV(α), then P

(
T̃ (L) > t

)
∼ P (L > t/σ)

where σ is given by (5).

The proof of this lemma for the case of regularly varying
L is based on the following lemma, proved in [14].

Lemma 9 ([14]). Let L ∈ RV(α). For t ≥ 0, let R(t) be a
non-negative, almost surely non-decreasing stochastic process
independent of L satisfying the following conditions:

1) For some γ ∈ (0, 1), limt→∞R(t)/t = γ a.s..
2) For some positive finite constant K, P (R(t)/t < K) =

o(P (L > t)).

Then P (L > R(t)) ∼ P (L > γt).

Proof of Lemma 8: We consider the cases of light-tailed
and regularly varying L separately.

Case 1: L is light-tailed. Under the assumptions of
the lemma, (Yn, n ≥ 1) is an i.i.d. sequence satisfying
P (Y1 > 0) > 0. Invoking Lemma 2(4), we conclude from
(6) that M is light-tailed. It follows that T̃ (L) is light-tailed
from (7) invoking Lemma 2(3).

Case 2: L ∈ RV(α).Let N(t) := sup{n :
∑n
i=1(Xi +

φ) ≤ t}, R(t) :=
∑N(t)
i=1 Yi. Note that P

(
T̃ (L) > t

)
=

P (R(t) < L). To complete the proof, it suffices to show that
the process R(t) satisfies conditions (1) and (2) of Lemma 9
with γ = 1/σ.

Condition (1) of Lemma 9 is verified using the renewal
reward theorem.

lim
t→∞

R(t)

t
=

E [Y1]

E [X1 + φ]
=

1

σ

almost surely. Note that σ > 1 since φ > 0. To verify
Condition (2), pick K ∈ (0, 1/σ). Since K < 1/σ, we can find
η, ν > 0 such that K = ην, η < E [Y1] and ν < 1/E [X1 + φ].

5

Then

P (R(t) < Kt) = P

N(t)∑
i=1

Yi < Kt

= P (N(t) < tν)− P

N(t)∑
i=1

Yi ≥ Kt ∧N(t) < tν

+ P

N(t)∑
i=1

Yi < Kt ∧N(t) ≥ tν

≤ P (N(t) < tν) + P

N(t)∑
i=1

Yi < Kt ∧N(t) ≥ tν

≤ P

btνc∑
i=1

(Xi + φ) ≥ t

+ P

dtνe∑
i=1

Yi < Kt

≤ P

btνc∑
i=1

(Xi + φ) ≥ btνc
ν

+P

dtνe∑
i=1

Yi < η dtνe

.
Noting that 1/ν > E [X1 + φ] and η < E [Y1], and that X1, Y1
are light-tailed, we can use the Chernoff bound to argue that
there exist positive constants C, λ such that for large enough
t,

P (R(t) < Kt) ≤ Ce−λt.

Since P (L > t) = t−αχ(t) for slowly varying χ, this implies

lim
t→∞

P (R(t) < Kt)

P (L > t)
≤ lim
t→∞

Ce−λt

t−αχ(t)
= lim
t→∞

Ctα+1e−λt

tχ(t)
= 0.

The last step above uses Lemma 5. It follows that
P (R(t) < Kt) = o(P (L > t)). This completes the proof.

We are now ready to prove Theorems 1–3.
Proof of Theorem 1: Consider the completion time T̃ (L)

under the policy x̃n := Xn. Clearly T (L) ≤a.s. T̃ (L).
If L is light-tailed, then from Lemma 8, we conclude

that T̃ (L) is light-tailed, which implies T (L) is light-tailed
(Lemma 2(1)).

If L ∈ RV(α), then from Lemma 8, we conclude that
P
(
T̃ (L) > t

)
∼ P

(
L > t

σ

)
. Since T (L) ≤a.s. T̃ (L), it

follows that P (T (L) > t) . P
(
L > t

σ

)
.

Proof of Theorem 2: Define L̃ := cL/b. With file size L̃,
consider the policy x̃n = min{c, l̃n}, n ≥ 1, where l̃1 = L̃, l̃n
denotes the remaining file size just after the nth submission.
Note that this policy satisfies the conditions of Theorem 1
with xn = c. Denote the completion time under this scheme
by T c(L̃).

We will now argue that T (L) ≤a.s. T
c(L̃). Consider a

sample path, determined by the realization of L, (An, n ≥ 1)
and the fragment sizes (xn, n ≥ 1). For any n, if fragment
submission x̃n succeeds, then submission xn succeeds. Hence
ln ≤ bl̃n/c for all n ≥ 1. This implies T (L) ≤ T c(L̃).

If L is light-tailed, so is L̃. Theorem 1 then implies
that T c(L̃) is light-tailed, which implies T (L) is light-tailed
(Lemma 2(1)).

If L ∈ RV(α), then L̃ ∈ RV(α). Theorem 1 implies that

P
(
T c(L̃) > t

)
. P

(
L̃ >

tcP (A1 ≥ c+ φ)

c+ φ

)
= P

(
L >

tbP (A1 ≥ c+ φ)

c+ φ

)
= P

(
L >

t

σ

)
.

Since T (L) ≤a.s. T c(L̃), we have P (T (L) > t) .
P
(
L > t

σ

)
.

Proof of Theorem 3:
Since constant fragmentation is a special case of indepen-

dent and bounded fragmentation, the proof for the case of
light-tailed L follows directly from Theorems 1 or 2.

Assume then that L ∈ RV(α). We will invoke Lemma 8
with Xn := b, n ≥ 1. Define

L̂ := b

⌊
L

b

⌋
, L̃ := b

⌈
L

b

⌉
.

It is easy to see that

T̃ (L̂) ≤a.s. T (L) ≤a.s. T̃ (L̃).

We will now argue that L̂, L̃ ∈ RV(α). Clearly,

max{L− b, 0} ≤a.s. L̂ ≤a.s. L ≤a.s. L̃ ≤a.s. L+ b.

Using Lemma 4, we see that P (max{L− b, 0} > t) ∼
P (L+ b > t). This implies, using Lemma 1, that

P
(
L̂ > t

)
∼ P (L > t) ∼ P

(
L̃ > t

)
,

which in turn implies L̂, L̃ ∈ RV(α) (see Lemma 3). By
Lemma 8, we see that

P
(
T̃ (L̂) > t

)
∼ P

(
T̃ (L̃) > t

)
∼ P

(
L >

t

g(b)

)
.

This implies P (T (L) > t) ∼ P
(
L > t

g(b)

)
by Lemma 1.

IV. MINIMIZING THE AVERAGE COMPLETION TIME

studied the tail asymptotics of the completion time; in this
section, we turn our attention to its mean. Specifically, under
the assumption that F has a non-decreasing failure rate, we
derive the fragmentation policy that minimizes the expected
completion time. We show that this policy divides the file into
equal sized fragments, whose size depends on the file size L,
but for all L remains close to a value determined solely by F .
We also present a fragmentation policy that is blind to the file
size, but is asymptotically optimal. We show that under both
these policies, the completion time is light-tailed so long as L
is light-tailed. If L is regularly varying, then the completion
time is regularly varying with the same index.

Consider

min
x

E [T x(L)] := min
x

(
lim
N→∞

E

[
N∑
n=1

τn | l1 = L

])
(8)

An optimal policy is one that achieves the minimum of (8). We
will restrict ourselves to the class of stationary Markov policies
where the decision at time n depends only on the state ln and

6

not on the time n nor on past states. Since any optimal policy
will never choose fragment sizes xn with P (A1 ≥ xn +φ) =
0, we will assume without loss of generality that P (A1 ≥
xn + φ) > 0 for the class of policies that we consider. Our
discussion in this section (except in IV-C, which deals with
completion time tail asymptotics) will be for some generic
realization of the initial file size L > 0.

A. Optimal policy

A stationary Markov policy is a function x(l) of the
remaining file size l with the following interpretation. Given
l, a packet of size x(l) + φ is formed. If the packet is
successfully transmitted, the remaining file size will be l−x(l).
If the transmission fails, the file size remains unchanged and
therefore the next fragment remains x(l), until the packet
is successfully transmitted. Recall that F is the distribution
function of Ai. The expected time it takes to successfully
transmit a fragment is (x(l)+φ)/F (x(l)+φ), the cost per trial
multiplied by the expectation of the number of trials, which
is geometrically distributed with parameter F (x(l) + φ). This
implies that if we let J(l) := E [T (l)] denote the expected
completion time when the file size is l under a generic Markov
policy x(l), then

J(l) = J(l − x(l)) +
x(l) + φ

F (x(l) + φ)
.

Given any Markov policy x(l), consider the sequence of
fragments x1, x2, . . . , generated from an initial file size L,
defined recursively as:

x1 := x(L); xi+1 := x(L− xi), i ≥ 1

such that
∑
k xk = L. Define the expected time to successfully

transmit a segment of size x as

h(x) =
x+ φ

F (x+ φ)
. (9)

The expected completion time is thus

J(L) =
∑
k

h(xk).

Since h(x) ≥ h(0) > φ > 0 for all x ≥ 0, an optimal policy
must only have finitely many terms in J(L). Let J∗(L) denote
the (minimum) expected completion time under an optimal
policy x∗.

Consider the following optimization problem:

H∗ := min
K

min
y1,...,yK

K∑
k=1

h(yk) (10a)

subject to
K∑
k=1

yk = L (10b)

yk > 0, k = 1, . . . ,K (10c)
K = 1, 2, (10d)

We now argue that, given L > 0, the sequence of fragment
sizes x∗ := (x∗1, x

∗
2, . . . , x

∗
K∗) generated by a Markov policy

x∗(l) minimizes the expected completion time E [T (L)] if and
only if (K∗, x∗) is a minimizer of (10a)–(10d). Now, any

finite K and sequence (x1, x2, . . . , xK) with
∑K
k=1 xk = L,

xk > 0 is a feasible solution of (10a)–(10d). Hence, H∗ ≤
J∗(L). Conversely, given any minimizer (K∗, y∗) of (10a)–
(10d), we will exhibit a Markov policy x(l) that generates
the sequence of fragment sizes that coincide with the given
y∗ = (y∗1 , . . . , y

∗
K∗). This implies the minimum expected

completion time satisfies J∗(L) ≤ H∗. Hence, J∗(L) = H∗.
We can thus focus on solving (10a)–(10d). Indeed, we will

show that under Assumption A1 below, (10a)–(10d) has a
unique solution with x∗n = x∗ for all n, implying that the
optimal policy divides the file into equal sized fragments.2

Parametrize the optimization problem (10a)–(10d) by the
file size in (10b), and write any minimizer as (K∗(l), y∗(l))
when the file size is l. Consider the Markov policy x(l) that
solves (10a)–(10d) with file size l and selects the segment
size x(l) = y∗1(l), i.e., the policy uses the first element of
the solution y∗(l) as the segment size when the remaining file
size is l. The next segment size under policy x(l) therefore
comes from the solution of (10a)–(10d) with file size l−x(l),
i.e., x(l − x(l)) = y∗1(l − y∗1(l)). But y∗1(l − y∗1(l)) must be
(equal to) the second element in the original solution, i.e.,
y∗1(l − y∗1(l)) = y∗2(l), for otherwise, y∗(l) could not have
been a minimizer. This implies by induction that the Markov
policy x(l) generates the sequence of fragment sizes from L
that coincides with (K∗, y∗).

The main result of this section is the following theorem that
says that the optimal policy creates equal sized fragments. The
optimal fragment size depends on the file size. Define

g(x) =
x+ φ

xF (x+ φ)
(11)

and
a = arg min

x
g(x), x ∈ R+ (12)

Note that g(x) = h(x)/x where h(x) is the expected cost
(time) to successfully transmit a segment of size x defined
in (9). Hence we can interpret g(x) as the per-bit cost for a
fragment of size x, and a as the fragment size that minimizes
the per-bit cost. It will become clear below that the optimal
fragment size x∗ is close to a and the minimum cost J∗(L)
is close to Lg(a), under the following assumption:

Assumption A1: The density function F ′ =: f exists.
Moreover, the failure rate λ(x) := f(x)/F (x) is continuous
and non-decreasing.3

Theorem 4 (Optimal fragmentation). Under Assumption A1,
for any L > 0, minimizers (K∗, x∗) of (10) are given by:

1) K∗ equals bL/ac or dL/ae whichever produces a
smaller value of g(L/K∗).

2) x∗k = L/K∗ for k = 1, . . . ,K∗.

Therefore, the optimal policy divides the file into K∗

fragments of equal size. Each fragment is (re)submitted to
the channel until the transmission is successful.

2We abuse notation and use x to denote a fragmentation policy, a vector of
fragment sizes, or a scalar representing a constant fragment size, depending
on the context; x∗ denotes these quantities under an optimal policy.

3If f(x) = F (x) = 0, define λ(x) = ∞.

7

Proof of Theorem 4: We will first prove that, given
any K, the minimizer x∗ of the inner minimization exists,
is unique, and x∗k = L/K for all k. We then prove that the
optimal K∗ is as stated in the theorem.

Given any integer K > 0, by (9), the KKT condition [15]
for the inner optimization problem in (10a) implies that the
optimum x∗ = (x∗1, . . . , x

∗
K) satisfies, for all k = 1, . . . ,K,

h′(x∗k) =
1

F (x∗k + φ)
+ (x∗k + φ)

f(x∗k + φ)(
F (x∗k + φ)

)2 = µ (13)

where µ is a Lagrange multiplier associated with (10b), inde-
pendent of k. By assumption A1, λ(x) = f(x)/F (x) is non-
decreasing. Moreover 1/F (x) is non-decreasing, and x/F (x)
is strictly increasing. Therefore h′(x) is strictly increasing,
which is equivalent to h(x) being strictly convex. Thus the in-
ner minimization problem is strictly convex and the KKT con-
dition is also sufficient. A unique solution x∗ = (x∗1, . . . , x

∗
K)

exists. Moreover, since all x∗k are uniquely determined by (13),
they are the same and hence x∗k = L/K for all k.

This reduces the minimization (10) to:

min
K

K
L/K + φ

F (L/K + φ)
= min

K
L

L/K + φ

L/KF (L/K + φ)

Since L is constant, this is equivalent to solving

x∗ = arg min
x

g(x), x =

{
L,
L

2
,
L

3
, . . .

}
(14)

where g is defined in (11). The derivative of g(x) is

dg(x)

dx
=

(x2 + φx)f(x+ φ)− φF (x+ φ)(
xF (x+ φ)

)2
Since λ(x) = f(x)/F (x) is continuous by assumption, and
since limx→0 g(x) = ∞ and limx→∞ g(x) = ∞, an optimal
x∗ ∈ {L,L/2, L/3, . . . } and hence optimal K∗ exists. More-
over, any unconstrained minimum a of g(x) must also be a
stationary point. But g′(x) = 0 for x satisfying

ξ(x) :=
f(x+ φ)

F (x+ φ)
· x(x+ φ)

φ
= 1.

Since f(x + φ)/F (x + φ) is non-decreasing, x(x + φ)/φ is
strictly increasing, ξ(0) = 0, limx→∞ ξ(x) = ∞, and f(x)
is continuous, it follows that the equation ξ(x) = 1 will have
a unique solution, which is the unique minimizer a of g(x)
defined in (12). Moreover, it implies that g(x) is unimodal.
This means that K∗ equal to bL/ac or dL/ae, whichever
produces a smaller g(x) value.

Note that since g(0) =∞, the theorem implies that K∗ = 1
if L ≤ a.

[16] provides a useful sufficient condition for Assumption
A1: if f is log-concave, so is F . Since F is log-concave if
and only if its failure rate is non-decreasing, a log-concave f
satisfies A1. The result of Theorem 4 applies to two failure
models described in [10, pp. 131] — a model for satellite
communication wherein Ai is exponentially distributed (i.e.,
bit errors occur according to a Poisson process) and a model
for terrestrial communication, wherein Ai has a uniform
distribution.

We now show that, when L is large, the unique optimal
fragment size x∗ is close to a; indeed, x∗ approaches a as L
increases.

Lemma 10. Suppose L > a. Under Assumption A1, the
optimal fragment size x∗(L) satisfies:

1) a/2 < x∗(L) ≤ 2a.
2) a/(1 + a/L) < x∗(L) ≤ a/(1− a/L).

Proof: We know that for some integer K:

L

K + 1
≤ a < L

K
(15)

and

x∗ =
L

K
or x∗ =

L

K + 1

In the first case, x∗K/(K + 1) ≤ a < x∗ implying x∗/2 ≤
a < x∗, i.e., a < x∗ ≤ 2a. In the second case, x∗ ≤ a <
x∗(K + 1)/K ≤ 2x∗ implying a/2 < x∗ ≤ a. Combining
these yields a/2 < x∗ ≤ 2a.

From (15) we get

L

a
− 1 ≤ K <

L

a

implying

a <
L

K
≤ a

1− a/L
and

a

1 + a/L
<

L

K + 1
≤ a

Hence
a

1 + a/L
< x∗ ≤ a

1− a/L

This admits the following useful corollary.

Corollary 2.
lim
L→∞

x∗(L) = a.

B. Simple blind policy x(l) = min{a, l}
The optimal fragmentation policy in Theorem 4 depends

on the file size L. Consider the L-independent blind policy
x(l) = min{a, l} where the fragment size a, given by (12), is
always used until the remaining file size drops below a when it
is transmitted in a single packet. We will again abuse notation
and use a to denote both this blind policy and the fragment
size under this policy. Let Ja(L) denote the expected file
completion time under policy a when the file size is L. Recall
that J∗(L) denotes the minimum expected completion time.
From Corollary 2, we know that policy a is asymptotically
optimal, i.e., x∗(L)→ a. Hence we would expect Ja(L) and
J∗(L) to be close for large L. The following result bounds
their distance by a constant independent of L, namely the
expected time to transmit a packet of size a.

Lemma 11. Under Assumption A1, for any L > 0,

0 ≤ J∗(L)− Lg∗ ≤ h(a)

Ja(L)− J∗(L) ≤ h(a)

where h(x) is defined in (9) and g∗ := g(a) is defined by (11)
and (12).

8

Proof: If L = ka for some integer k, the proof of
Theorem 4 shows that the policy a is optimal, in which case
Ja(L) = J∗(L). Suppose then that ka < L < (k + 1)a for
some integer k. Clearly, Ja(L) = kh(a) + h(L − ka). Since
h is monotone, we have

kh(a) ≤ Ja(L) ≤ (k + 1)h(a) (16)

Since J∗(L) is monotone in L, we have

kh(a) = J∗(ka) ≤ J∗(L) ≤ J∗((k + 1)a) = (k + 1)h(a)
(17)

Combining (16) and (17), we get that Ja(L)−J∗(L) ≤ h(a).
This proves the sub-optimality bound. Moreover, (17) also
implies Lg∗ ≤ J∗(L) ≤ Lg∗ + h(a), as desired.

We make the following remarks:
1) Under both the optimal policy x∗ and the blind policy a,

the expected completion time grows (roughly) linearly in
the file size, the approximating proportionality constant
being the minimum per-bit cost g(a).

2) The sub-optimality in expected completion time under
the blind policy a is bounded by a constant independent
of the file size.

C. Tail asymptotics under policies x∗ and a

Denote by T ∗(L) and T a(L) respectively the completion
times under the policies x∗ and a.

Theorem 5. 1) If L is light-tailed, then T ∗(L) and T a(L)
are light-tailed.

2) If L ∈ RV(α), then

P (T ∗(L) > t) ∼ P (T a(L) > t) ∼ P
(
L >

t

g(a)

)
Since the blind policy a belongs to the class of constant

fragmentation policies (see Section III), the tail asymptotics
of T a(L) stated in the theorem follow from Theorem 3.
Lemma 10 implies that the optimal policy x∗ is a bounded
fragmentation policy (see Section III). It follows then from
Theorem 2 that T ∗(L) is light-tailed if L is light-tailed. How-
ever, the exact tail asymptotics of T ∗(L) when L ∈ RV(α)
claimed above requires a separate proof, which we provide in
Appendix B.

V. ROBUSTNESS TO FAILURE PROCESS

Although the blind policy of Section IV-B does not require
knowledge of the file size L, it assumes knowledge of the
statistics of the failure process (An, n ≥ 1). In this section, we
derive bounds on the penalty for applying either the optimal
policy x∗ or blind policy a of Section IV designed for a failure
distribution F̂ , when the actual distribution is F . Variables
with a hat will be used to denote quantities defined with respect
to F̂ , e.g., â and x̂∗ are the the blind and optimal policy,
respectively, for the design distribution F̂ , while a and x∗ are
those for the true distribution F . Further, let g∗ := g(a) =
minx g(x) where g is defined in (11).

We will compare the expected cost J â(L) under F of the
blind policy â designed for F̂ , and the expected cost J x̂

∗
(L)

under F of the policy x̂∗ optimal for F̂ , with the true minimum

cost J∗(L). The following result specifies the cost increment
in terms of the per-bit cost function g defined in (11).

Theorem 6. Under assumption A1

lim
L→∞

J â(L)− J∗(L)

L
= g(â)− g∗

lim
L→∞

J x̂
∗
(L)− J∗(L)

L
= g(â)− g∗

Proof: To establish the first limit, note that for any
constant fragment size x,

Jx(L) =

⌊
L

x

⌋
xg(x) + x′g(x′),

where x′ = (L − bL/xcx) ∈ [0, x). Since x′g(x′) = h(x′),
and h(·) is non-decreasing, this implies

|Jx(L)− Lg(x)| < h(x). (18)

We also have Lg∗ ≤ J∗(L) ≤ Lg∗ + h(a) from Lemma 11.
Setting x = â in (18) then gives

J â(L)− J∗(L) = L (g(â)− g∗) + α(L)h(max(a, â))

for some α : R+ → (−1, 1). Dividing the inequality by L and
taking the limit as L→∞ gives the result.

The second inequality follows by setting x = x̂∗ in (18)
and following the same argument, noting that x̂∗ → â and g
is continuous.

We make two remarks. First, without modeling error, F̂ =
F , Lemma 11 implies that the per-bit cost penalty approaches
zero as L increases. With modeling error, this penalty ap-
proaches g(â)− g∗ which has the intuitive interpretation that
the per-bit cost over the entire file approaches the per-bit cost
over a packet. Second, an immediate corollary of Theorem 6
is that the overall per-bit costs of policies â and x̂∗ are
asymptotically the same, i.e.

lim
L→∞

J â − J x̂∗

L
= 0 (19)

which is also intuitive given x̂∗ → â.
The limit g(â) − g∗ in Theorem 6 implies a bound on the

per-bit cost penalty in terms of the error bound between the
design distribution F̂ and the true distribution F . Specifically,
suppose the tail distributions satisfy

1− F (x) = (1− F̂ (x))(1 + ∆(x)) (20a)

where
−∆min ≤ ∆(x) ≤ ∆max (20b)

for some ∆min and ∆max. In that case, the cost penalty can
be quantified in terms of the known quantities ĝ∗ := ĝ(â) =
minx ĝ(x), ∆min and ∆max.

Theorem 7. Under assumption A1

lim
L→∞

J â(L)− J∗(L)

L
≤ ∆max + ∆min

(1 + ∆max)(1−∆min)
ĝ∗

Proof: By Theorem 6, it suffices to show that the right
hand side is at least g(â)− g∗. By insertion of equation (20)
into equation (11) we see that

ĝ(x)

1 + ∆max
≤ g(x) ≤ ĝ(x)

1−∆min
(21)

9

Since equation (21) holds for a, we get

ĝ∗

1 + ∆max
≤ ĝ(a)

1 + ∆max
≤ g∗. (22)

Since it also holds for â, we get

g(â) ≤ ĝ∗

1−∆min
. (23)

Combining inequalities (22) and (23), we get

g(â)− g∗ ≤ ĝ∗

1−∆min
− ĝ∗

1 + ∆max

=
∆max + ∆min

(1 + ∆max)(1−∆min)
ĝ∗

as required.

Corollary 3. If ∆min = ∆max, under assumption A1,

lim
L→∞

J â(L)− J∗(L)

L
≤ 2∆max

1− (∆max)2
ĝ∗

VI. A MODEL FOR CHECKPOINTING ON AN UNRELIABLE
SERVER

In this section, we introduce a model for job fragmenta-
tion/checkpointing on an unreliable server [7]–[9]. This model
is a variant of the file fragmentation model described earlier,
and the results we have proved for the file fragmentation model
can be extended to this checkpointing model. Since these
results make an independent contribution to the checkpointing
literature (see Section VII), we state them in this section,
and also describe other scenarios where these results are
applicable.

A. Model

Consider a server that alternates between states of avail-
ability and unavailability according to a semi-Markov process.
This can model, for example, a server that is prone to failure:
the unavailability period corresponding to the server downtime
after a failure. The server availability (unavailability) periods
are distributed as A (U) respectively. A job of random size
L, independent of the server availability process, is to be
processed by the server. If the server becomes unavailable
when the job is still being processed, we assume that the job
needs to be restarted from the beginning, i.e., the work that
is partially completed is lost. This is the RESTART model in
queueing literature (see [4]). Recently, the following result has
been proved about the job completion time under RESTART
[4], [6].

Lemma 12 ([4], [6]). Under RESTART, if the distribution of
the job size L has unbounded support, then the job completion
time is heavy-tailed. Moreover, if L ∈ RV(α) and A is light-
tailed, then the completion time T (L) satisfies

lim
t→∞

− logP (T (L) > t)

log(t)
= 0.

This means that under RESTART, the completion time tail is
asymptotically much heavier than the job size tail. Intuitively,
this is because large jobs get restarted many times before

they complete, and therefore have disproportionately large
completion times.

Lemma 12 obviously motivates the use of fragmenta-
tion/checkpointing strategies to reduce the job completion
time.4 Accordingly, let us now consider the RESTART model
allowing for job fragmentation. We assume from this point on
that the server availability periods are exponential, i.e., A is ex-
ponential with mean 1/µ. We let arbitrary portions/fragments
of the job to be submitted to the server at a time. However,
there is a fragmentation cost φ > 0, i.e., the processing time of
a submitted fragment gets padded by φ. One interpretation of
φ is the check-pointing overhead, i.e., the time taken to save
the current state of the job to disk. Of course, if the server
becomes unavailable before the submitted fragment completes
processing, then no useful work gets done and we submit
another fragment when the server becomes available again. We
may model the job submission process as follows. Let {tn}n≥1
denote the instants at which we make fragment submissions to
the server; t1 = 0, tn is the time instant of the nth submission.
Let ln denote the size of the remaining (yet unprocessed) part
of the job at time tn, with l1 = L. At time tj , we submit a
fragment of work of size xn to the server. The ln evolve as
follows.

ln+1 = ln − xn1(xn + φ ≤ An)

Note that the fragment size is measured in terms of its pro-
cessing time. Here, {An}n≥1 is an i.i.d. sequence of random
variables distributed as A. Note that since the server availabil-
ity periods are memoryless (exponential), the nth submission
completes successfully with probability P (An ≥ xn + φ),
independent of past and subsequent submissions. In the event
of a failure, i.e., An < xn + φ, tn + An is interpreted as the
instant of server failure.

The cost τn accumulated at time-step n is simply the time
until the next submission, i.e., tn+1 − tn.

τn = ((xn + φ)1 (An ≥ xn + φ)

+ (An + Un)1 (An < xn + φ)) 1(ln > 0)

Here, {Uj}j≥1 is an IID sequence distributed as U , inde-
pendent of {Aj}j≥1. This equation is to be interpreted as
follows. If the fragment submitted at tj gets processed to
completion, then the time cost is just the processing time
xj +φ. However, if the server becomes unavailable before the
fragment is processed, the time cost is sum of the time until
the server became unavailable Aj , and an unavailability period
Uj . Note that the above cost model differs from that for the file
fragmentation model (3) in the event of a failure. Specifically,
in the above model, failure is detected immediately, whereas
in the file fragmentation model, failure is detected only after
the fragment processing time. Moreover, the present model
allows for a non-negligible unavailable time after a failure.

4Intuitively, a good fragmentation policy would seek to minimize the lost
work in each availability period, such that the completion time is close to
that under the RESUME model [17], [18]. In the RESUME model, the job is
simply ‘paused’ when the server becomes unavailable, and is resumed from
the same point (with no overhead) when the server becomes available again.

10

Finally, the job completion time T (L) is given by

T (L) =
∑
n≥1

τn.

This completes the model description. Note that the above
modeling assumptions are standard in the checkpointing liter-
ature (see, for example, [7]–[9], [19], [20]).

B. Results

The results in Sections III and IV for the file fragmentation
model extend naturally to the job checkpointing model. We
state the main results here.

As in the file fragmentation model, it can be proved that
checkpointing policies that generate independent or bounded
fragments guarantee: i) light-tailed completion times for light-
tailed job sizes, ii) optimal (in the order sense) completion time
tails for regularly varying job sizes. In light of Theorem 12,
this means that a large class of checkpointing policies ‘lighten’
the completion time tail relative to no checkpointing. To keep
this presentation brief, we state here only the theorem for the
case of independent fragmentation.

Theorem 8 (Independent fragmentation). Suppose that
{Xj}j≥1 is an i.i.d. sequence of strictly positive random
variables independent of L and the server availability process.
Under the fragmentation policy xn = min{Xn, ln},

1) If L and U are light-tailed, then T (L) is light-tailed.
2) If U is light-tailed and L ∈ RV(α), then

P (T (L) > t) . P
(
L > t

σ

)
where

σ =
E [A1 + U1] (1− P (A1 ≥ X1 + φ))

P (X1 + φ ≤ A1)E [X1|X1 + φ ≤ A1]
.

Next, we turn to the problem of minimizing the average
completion time. As before, it turns out that the optimal
policy creates equally sized fragments; i.e., equally spaced
checkpoints. To describe the optimal policy, we need the
following definitions:

1) h(x) = (E [A1] + E [U1])
(
eµ(x+φ) − 1

)
,

2) g(x) = h(x)/x,
3) a = arg minx>0 g(x).

These definitions are parallel to those for the file fragmentation
model. Specifically, h(x) is the expected time for completion
of a fragment of size x (assuming it is (re)submitted until it
completes). g(x) is therefore the cost per unit fragment size
for a fragment of size x, and a is the fragment size that leads
to the minimum cost per unit fragment size. In terms of these
quantities, the optimal policy is identical to that for the file
fragmentation model:

Theorem 9. Optimal fragmentation policy x∗: The expected
job completion time is minimized by fragmenting the job into
K∗ fragments of equal size x∗ = L

K∗ , where K∗ is given by

K∗ =

 1 for L ≤ a
arg min

k∈{dLa e,bLa c}
g(L/k) for L > a .

Each fragment is (re)submitted to the server till it gets
processed completely. Denote the completion time under the
optimal policy by T ∗(L). Then

1) If L and U are light-tailed, then T ∗(L) is light-tailed.
2) If U is light-tailed, and L ∈ RV(α), then

P (T ∗(L) > t) ∼ P
(
L > t

g(a)

)
.

It is important to note that the optimal fragmentation policy
does not depend on the server unavailability period distribu-
tion U .

Finally, as before, it is possible to fragment close to opti-
mally while remaining blind to the job size.

Theorem 10. Sub-optimal blind fragmentation policy a:
Consider the following simple fragmentation policy ua.

xj = min{lj , a}

For a job of size l, let Ja(l) denote the expected completion
time under this policy. Then

Ja(l)− J∗(l) ≤ h(a),

where J∗(l) is the expected completion time under the optimal
policy for a job of size l. Let T a(L) denote the completion time
under this policy. Then

1) If L and U are light-tailed, then T a(L) is light-tailed.
2) If U is light-tailed, L ∈ RV(α), then P (T a(L) > t) ∼

P
(
L > t

g(a)

)
.

C. Scenarios of Applicability

In addition to the case of an unreliable server in a computing
environment, the model and results of this section are also
applicable to the following scenarios.

1) Priority queue: Consider a queue that serves jobs of two
priority levels. Low priority jobs use the server when
there are no high priority jobs in the system. If a high
priority job arrives when the server is processing an low
priority job, the low priority job is pre-empted and needs
to be restarted. In this scenario, our job fragmentation
model applies to a low priority job. U denotes the busy
period induced by high priority jobs and A denotes the
time between these busy periods. If high priority jobs
arrive as per a Poisson process, then A is exponential.

2) File fragmentation in cognitive radio setting: Consider
a secondary user that is allowed to use a wireless channel
to transfer its file of size L whenever primary (high
priority) users are not using it. The secondary user must
abort its transmission whenever primary users want to
use the channel. Our model corresponds to file frag-
mentation for the secondary user. The availability period
for the secondary users will be exponentially distributed
if the primary users initiate transfers according to a
Poisson process.

VII. RELATED WORK

The work in this paper is motivated by recent work [3]–
[6] which showed that heavy-tailed completion times can
result from RESTART/retransmission mechanisms. Indeed,
this effect has subsequently been shown to be robust to several
schemes aimed at alleviating it. The fragmentation scheme
of [21], which uses the sizes of the previous k + m server

11

availability periods, lightens the completion time tail by adding
k additional moments, but the resulting tail is still heavy.
Multipath is explored in [22] to mitigate power-law completion
time. It is shown there that redundant routing, where the
entire file is sent along multiple paths and the completion
time is the time when the first copy arrives at the destination
correctly, preserves the power law. Split routing, where disjoint
fragments of the file are sent along multiple paths and the
completion time is the time when the last fragment arrives,
also retains a power-law completion time though the tail can
be lightened with a larger index. Having a bounded file size
distribution of course eliminates the heavy-tailed completion
time; however, it is shown in [23], [24] that when the upper
bound on the file size distribution is large, the completion
time distribution retains a power-law body. To the best of
our knowledge, this work is the first to show that heavy-
tailed completion times are actually quite fragile, and can be
removed by a large class of simple fragmentation schemes.

In the context of file fragmentation or packet sizing, op-
timal fragmentation that minimizes average completion time
or maximizes throughput is a classical problem. A good
reference is the early work [10, pp. 131–134]. However, to
the best of our knowledge, completion time tail behavior has
not been analysed in this setting (except in the recent work
listed above). Of course, studying the completion time tail is
particularly relevant in light of the recent results in [3]–[6].

Similarly, there is a sizeable literature on checkpointing;
see [19] for an early survey and also references in, e.g.,
[25]. Considering various model variations, several papers
analyse the problem of optimal checkpointing to minimize
average completion time; for example, [7]–[9], [19], [20],
[25]–[27]. However, to the best of our knowledge, except for
the recent work listed above, none of these papers analyse the
completion time tail. Once again, we note that an analysis of
the completion time tail is particularly relevant in light of the
recent results in [3]–[6].

From a practical point of view, tail performance is also of
increasing importance. In highly parallel systems, performance
in the typical case depends on tail performance, since the
overall delay is determined by the maximum delay of many
tasks. Consequently, companies like Google make many de-
sign decisions based on tail performance [28].

APPENDIX A
PROOF OF LEMMA 2

Proof of Lemma 2:
Proofs are Statements (1) and (2) are elementary and are

omitted.
a) Proof of Statement (3): Let Z =

∑N
i=1Xi. Pick β ∈

(0, 1/E [X1]).

P (Z > t) = P (Z > t; N ≤ βt) + P (Z > t;N > βt)

≤ P

bβtc∑
i=1

Xi > t

+ P (N > βt) .

≤ P

bβtc∑
i=1

Xi >
bβtc
β

+ P (N > βt)

=: I + II.

Using the Chernoff bound, we conclude that there exists α1 >
0 such that I ≤ e−α1bβtc. Also, since N is light-tailed, there
exists α2 > 0 such that II ≤ e−α2βt for large enough t. Since
we have an exponentially decaying upper bound on the tail of
Z, it follows that Z is light-tailed. This completes the proof
of Statement (3).

b) Proof of Statement (4): Define

N := inf{n ∈ N|
n∑
i=1

Xi ≥ L}.

Let us first consider the case that Xi are light-tailed. Pick
β ∈ (0,E [X1]).

P (N > n) = P

(
n∑
i=1

Xi < L

)

≤ P

(
n∑
i=1

Xi < L; L > βn

)

+P

(
n∑
i=1

Xi < L; L ≤ βn

)

≤ P (L > βn) + P

(
n∑
i=1

Xi < βn

)
=: I + II.

Since L is light-tailed, there exists α1 > such that I ≤ e−α1n

for large enough n. Also, using the Chernoff bound, we
conclude that there exists α2 > 0 such that II ≤ e−α2n.
Since we now have an exponentially decaying upper bound
on the tail d.f. of N , it follows that N is light-tailed. This
completes the proof in the case that Xi is light tailed.

If instead the Xi are heavy-tailed, then we may define
Yi = Xi1(Xi ≤ y) for some y > 0 such that P (Yi > 0) > 0.
Then Ñ := inf{n ∈ N|

∑n
i=1 Yi ≥ L} is light-tailed.

However, since N ≤a.s. Ñ , this implies N is light-tailed (from
Statement (1) of this lemma).

APPENDIX B
PROOF OF THEOREM 5: TAIL ASYMPTOTICS OF T ∗(L)

This section is devoted to proving the tail behavior of T ∗(L)
claimed in the statement of Theorem 5, i.e., we prove that if
L ∈ RV (α) then

P (T ∗(L) > t) ∼ P
(
L >

t

g(a)

)
. (24)

The proof of (24) is based on stochastically bounding the
optimal completion time T ∗(l) from both sides. We need
the following notation. Let W (z) denote a random variable
distributed as the time to successfully transmit a fragment
of size z > 0. Note that h(z) = E

[
W (z)

]
, and that W (z)

is stochastically increasing in z. Since W (z) d
=
∑N
i=1(z +

φ), where N is a geometric random variable with mean
1/P (A1 ≥ z + φ), we infer from Lemma 2 that W (z) is light-
tailed. Let (W

(z)
i , i ≥ 1) denote a sequence of i.i.d. random

variables independent of L distributed as W (z). Note that

T ∗(l)
d
=

K∗(l)∑
i=1

W
(x∗(l))
i .

12

Now, pick ε ∈ (0, a). Since x∗(l)
l↑∞→ a by Corollary 2,

there exists an l0 > 0 such that x∗(l) ∈ (a− ε, a+ ε) for all
l ≥ l0. Note that for l ≥ l0,⌊

l

a− ε

⌋
≥ K∗(l) ≥

⌈
l

a+ ε

⌉
.

Define

T̂ (l) :=

0 for 0 ≤ l < l0
d l
a+εe∑
i=1

W
(a−ε)
i for l ≥ l0

,

T̃ (l) :=

T ∗(l) for 0 ≤ l < l0
b l
a−εc∑
i=1

W
(a+ε)
i for l ≥ l0

.

It is easy to check that T̂ (l) ≤st T
∗(l) ≤st T̃ (l) for all l,

which implies that

T̂ (L) ≤st T
∗(L) ≤st T̃ (L). (25)

The following lemmas characterize the tail asymptotics of
T̂ (L) and T̃ (l).

Lemma 13. For the chosen ε ∈ (0, a),

P
(
T̂ (L) > t

)
∼ P

(
L >

t(a+ ε)

h(a− ε)

)
.

Lemma 14. For the chosen ε ∈ (0, a),

P
(
T̃ (L) > t

)
∼ P

(
L >

t(a− ε)
h(a+ ε)

)
.

Now (24) follows by combining (25) and Lemmas 13
and 14. Indeed, it follows from (25) and Lemma 14 that

lim sup
t→∞

P (T ∗(L) > t)

P
(
L > t

g(a)

) ≤ lim sup
t→∞

P
(
T̃ (L) > t

)
P
(
L > t

g(a)

)
= lim sup

t→∞

P
(
L > t(a−ε)

h(a+ε)

)
P
(
L > t

g(a)

)
=

(
a

a− ε
h(a+ ε)

h(a)

)α
.

The last step above follows from the definition of regular
variation. Similarly, it follows from (25) and Lemma 13 that

lim inf
t→∞

P (T ∗(L) > t)

P
(
L > t

g(a)

) ≥ (a

a+ ε

h(a− ε)
h(a)

)α
.

Now, (24) follows by letting ε ↓ 0.

It remains now to prove Lemmas 13 and 14. We give the
proof of Lemma 14 below. The proof of Lemma 13 follows
along similar lines, and is omitted.

Proof of Lemma 14: Define L̃ = L 1(L ≥ l0). Also, let
us take T̃ (0) = 0. For t > 0,

P
(
T̃ (L) > t

)
= P

(
T̃ (L) > t; L ≥ l0

)
+ P

(
T̃ (L) > t; L < l0

)
= P

(
T̃ (L̃) > t

)
+ P

(
T̃ (L) > t; L < l0

)
=: I + II.

We now study the terms I and II separately. Specifically, we
will show that Term I accounts for the claimed tail asymptotics
of T̃ (L), while Term II makes an asymptotically negligible
contribution.

We start by analyzing Term I , which is defined as the tail
of a random sum:

I = P

⌊
L̃
a−ε

⌋∑
i=1

W
(a+ε)
i > t

 .

Since
⌊

L̃
a−ε

⌋
is regularly varying, and W (a+ε)

i is light-tailed,
it follows from standard results on tails of random sums (see
Theorem A3.20 in [29]) that

I ∼ P

(⌊
L̃

a− ε

⌋
>

t

h(a+ ε)

)

∼ P
(
L̃ >

t(a− ε)
h(a+ ε)

)
∼ P

(
L >

t(a− ε)
h(a+ ε)

)
.

It now remains to prove that II = o(I) as t→∞. To prove
this, it suffices to show that Term II decays exponentially with
respect to t. It follows from Theorem 4 and Lemma 10 that
for l ∈ (0, l0), K∗(l) ≤ d2l0/ae, and x∗(l) ≤ 2a. This means
that for l ∈ (0, l0),

T ∗(l) ≤st Z :=

d2l0/ae∑
i=1

W
(2a)
i .

Now,

II = P
(
T̃ (L) > t; L < l0

)
= P (T ∗(L) > t; L < l0)

≤ P (Z > t) .

Since Z is light-tailed, it follows that there exists φ > 0 such
that II ≤ e−φt for large enough t, which implies that II =
o(I).

ACKNOWLEDGMENT

We thank Adam Wierman, Lijun Chen and Mani Chandy for
helpful discussions. We acknowledge support of ARO through
MURI Grant W911NF-08-1-0233, NSF through the NetSE
grant, the Caltech Lee Center for Advanced Networking,
and Australian Research Council grant DP0985322. The first
author also acknowledges support from an NWO VIDI grant.

13

REFERENCES

[1] J. Nair, M. Andreasson, L. Andrew, S. Low, and J. Doyle, “File
fragmentation over an unreliable channel,” in Proceedings of IEEE
INFOCOM, 2010.

[2] J. Nair and S. H. Low, “Optimal job fragmentation,” SIGMETRICS
Performance Evaluation Review, vol. 37, no. 2, pp. 21–23, 2009.

[3] R. Sheahan, L. Lipsky, P. M. Fiorini, and S. Asmussen, “On the com-
pletion time distribution for tasks that must restart from the beginning if
a failure occurs,” ACM SIGMETRICS Performance Evaluation Review,
vol. 34, no. 3, pp. 24–26, 2006.

[4] S. Asmussen, P. Fiorini, L. Lipsky, T. Rolski, and R. Sheahan, “Asymp-
totic behavior of total times for jobs that must start over if a failure
occurs,” Mathematics of Operations Research, vol. 33, no. 4, pp. 932–
944, 2008.

[5] P. R. Jelenković and J. Tan, “Characterizing heavy-tailed distributions
induced by retransmissions,” Advances in Applied Probability, vol. 45,
no. 1, pp. 106–138, 2013.

[6] ——, “Can retransmissions of superexponential documents cause subex-
ponential delays?” in Proceedings of IEEE INFOCOM, 2007.

[7] A. Duda, “The effects of checkpointing on program execution time,”
Information Processing Letters, vol. 16, no. 5, pp. 221–229, 1983.

[8] V. Grassi, L. Donatiello, and S. Tucci, “On the optimal checkpointing of
critical tasks and transaction-oriented systems,” Software Engineering,
IEEE Transactions on, vol. 18, no. 1, pp. 72–77, Jan 1992.

[9] V. Kulkarni, V. Nicola, and K. S. Trivedi, “Effects of checkpointing
and queueing on program performance,” Communications in Statistics
– Stochastic Models, vol. 6, no. 4, pp. 615–648, 1990.

[10] M. Schwartz, Telecommunication networks: Protocols, modeling and
analysis. Addison-Wesley Longman Publishing Co., 1986.

[11] N. Bingham, C. Goldie, and J. Teugels, Regular variation. Cambridge
University Press, 1989.

[12] S. Resnick, Heavy-Tail Phenomena: Probabilistic and Statistical Mod-
eling. Springer, 2007.

[13] K. Sigman, “Appendix: A primer on heavy-tailed distributions,” Queue-
ing Systems, vol. 33, no. 1, pp. 261–275, 1999.

[14] F. Guillemin, P. Robert, and B. Zwart, “Tail asymptotics for processor-
sharing queues,” Advances in Applied Probability, vol. 36, no. 2, pp.
525–543, 2004.

[15] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[16] M. Bagnoli and T. Bergstrom, “Log-concave probability and its
applications,” Department of Economics, University of California Santa
Barbara, Economics Working Paper Series, 2004. [Online]. Available:
http://ideas.repec.org/p/cdl/ucsbec/1989d.html

[17] V. Kulkarni, V. Nicola, and K. Trivedi, “On modelling the performance
and reliability of multimode computer systems,” Journal of Systems and
Software, vol. 6, no. 1, pp. 175–182, 1986.

[18] ——, “The completion time of a job on multimode systems,” Advances
in Applied Probability, pp. 932–954, 1987.

[19] K. Chandy, “A survey of analytic models for rollback and recovery
strategies,” Computer, vol. 8, no. 5, pp. 40–47, 1975.

[20] E. Coffman Jr and E. Gilbert, “Optimal strategies for scheduling check-
points and preventive maintenance,” IEEE Transactions on Reliability,
vol. 39, no. 1, pp. 9–18, 1990.

[21] P. R. Jelenković and J. Tan, “Dynamic packet fragmentation for wireless
channels with failures,” in Proceedings of ACM MobiHoc, 2008.

[22] J. Tan, W. Wei, B. Jiang, N. Shroff, and D. Towsley, “Can multipath
mitigate power law delays? - Effects of parallelism on tail performance,”
SIGMETRICS Performance Evaluation Review, vol. 38, no. 1, pp. 381–
382, 2010.

[23] J. Tan and N. B. Shroff, “Transition from heavy to light tails in
retransmission durations,” in Proceedings of IEEE INFOCOM, 2010.

[24] P. R. Jelenković and E. D. Skiani, “Distribution of the number of re-
transmissions of bounded documents,” arXiv preprint arXiv:1210.8421,
2012.

[25] Y. Ling, J. Mi, and X. Lin, “A variational calculus approach to optimal
checkpoint placement,” IEEE Transactions on Computers, vol. 50, no. 7,
pp. 699–708, 2001.

[26] P. Lécuyer and J. Malenfant, “Computing optimal checkpointing strate-
gies for rollback and recovery systems,” IEEE Transactions on Comput-
ers, vol. 37, no. 4, pp. 491–496, 1988.

[27] A. Ziv and J. Bruck, “An on-line algorithm for checkpoint placement,”
IEEE Transactions on Computers, vol. 46, no. 9, pp. 976–985, 1997.

[28] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[29] P. Embrechts, T. Mikosch, and C. Klüppelberg, Modelling extremal
events: for insurance and finance. London, UK: Springer-Verlag, 1997.

Jayakrishnan Nair received his BTech and MTech
in Electrical Engg. (EE) from IIT Bombay (2007)
and Ph.D. in EE from California Inst. of Tech.
(2012). He has held post-doctoral positions at
California Inst. of Tech. and Centrum Wiskunde
& Informatica. He is currently an Assistant Pro-
fessor in EE at IIT Bombay. His research focuses
on modeling, performance evaluation, and design
issues in queueing systems and communication
networks.

Martin Andreasson received the M.Sc. degree
in engineering physics KTH Royal Institute of
Technology, Stockholm, Sweden, in 2011. He
is currently a PhD Student at the Automatic
Control Laboratory, KTH Royal Institute of
Technology, Stockholm, Sweden. His research
interests include distributed control of multi-
agent systems, and control of power systems.

Lachlan Andrew (M97-SM05) received the B.Sc.,
B.E. and Ph.D. degrees in 1992, 1993, and 1997,
from the University of Melbourne, Australia.
Since 2008, he has been an associate professor at
Swinburne University of Technology, Australia,
and since 2010 he has been an ARC Future
Fellow. From 2005 to 2008, he was a senior re-
search engineer in the Department of Computer
Science at Caltech. Prior to that, he was a senior
research fellow at the University of Melbourne
and a lecturer at RMIT, Australia. His research

interests include energy-efficient networking and performance analysis
of resource allocation algorithms. He was co-recipient of the best paper
award at IGCC2012, IEEE INFOCOM 2011 and IEEE MASS 2007. He
is a member of the ACM.

Steven H. Low (F’08) is a Professor of the De-
partment of Computing & Mathematical Sciences
and the Department of Electrical Engineering at
Caltech. Before that, he was with AT&T Bell Lab-
oratories, Murray Hill, NJ, and the University of
Melbourne, Australia. He was a co-recipient of
IEEE best paper awards, the R&D 100 Award,
and an Okawa Foundation Research Grant. He
is a Senior Editor of the IEEE Transactions
on Control of Network Systems and the IEEE
Transactions on Network Science & Engineering,

is on the editorial boards of NOW Foundations and Trends in Networking,
and in Electric Energy Systems, as well as Journal on Sustainable Energy,
Grids and Networks. He received his B.S. from Cornell and PhD from
Berkeley, both in EE.

Professor of Control and Dynamical Systems,
Electrical Engineer, and BioEngineering at Cal-
tech. BS, MS EE, MIT (1977), PhD, Math, UC
Berkeley (1984). Research is on mathematical
foundations for complex networks with applica-
tions in biology, technology, medicine, ecology,
and neuroscience. Paper prizes include IEEE
Baker, IEEE Automatic Control Transactions
(twice), ACM Sigcomm, and ACC American
Control Conference. Individual awards include
AACC Eckman, IEEE Control Systems Field, and

IEEE Centennial Outstanding Young Engineer Awards. Has held national
and world records and championships in various sports.

