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Abstract—This paper focuses on the design and analysis of
scheduling policies for multi-class queues, such as those found
in wireless networks and high-speed switches. In this context,
we study the response time tail under generalized max-weight
policies in settings where the traffic flows are highly asymmetric.
Specifically, we study an extreme setting with two traffic flows,
one heavy-tailed, and one light-tailed. In this setting, we prove
that classical max-weight scheduling, which is known to be
throughput optimal, results in the light-tailed flow having heavy-
tailed response times. However, we show that via a careful design
of inter-queue scheduling policy (from the class of generalized
max-weight policies) and intra-queue scheduling policies, it is
possible to maintain throughput optimality, and guarantee light-
tailed delays for the light-tailed flow, without affecting the
response time tail for the heavy-tailed flow.

I. INTRODUCTION

The task of scheduling conflicting links is central to a
variety of networking settings, such as wireless networks,
optical networks and high-speed switches. As a result, there is
a large literature studying scheduling policies in these contexts,
most of which is based on the maximum-weight (max-weight)
scheduling framework proposed by Tassiulas and Ephremides
in [1], [2]. At this point, there is a substantial body of literature
devoted to the analysis and application of the max-weight
policy and its variants; for example, see [3]–[9].

Traditionally, the focus of research on max-weight schedul-
ing has been on understanding its ‘stability region’, i.e., the set
of input rates that can be supported. Notably, max-weight has
been shown to be ‘throughput optimal’ in very general settings,
i.e., it has the largest possible stability region among all
scheduling policies [1], [2], [9]. In other words, if there exists
any scheduling policy that can keep the queueing network
stable under a given model of traffic arrival statistics, the max-
weight policy can stabilize the system.

Although throughput is an important first-order performance
metric, a more discerning metric is the response time, a.k.a.,
sojourn time or delay. Indeed, from the standpoint of the
applications sending/receiving information, ensuring small,
predictable response times is crucial. Although the stability
region and throughput optimality properties of the max-weight
framework are well studied, the literature on the delay perfor-
mance is relatively small. Average delay bounds are derived in
[9] using Lyapunov drift techniques; however, these are quite
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loose in general. Tighter delay bounds do exist, e.g., those
in [10] for max-weight scheduling in spatially homogeneous
wireless ad-hoc networks.

In general, results about the response time of max-weight
policies, such as those above, tend to indicate that max-
weight policies perform well in symmetric traffic settings
[1], [11], [12]. This is primarily due to the tendency of
these policies to ‘balance out’ the queues in the system, by
preferentially serving longer queues. For example, [1] contains
a strong sample path optimality result for queue backlogs
under stochastically symmetric traffic to parallel queues; this
is generalized in [11].

On the other hand, the traffic flows encountered in practice
tend to be highly asymmetric, with a wide range of variability
or burstiness. Indeed, in the context of communication net-
works, certain bursty traffic flows may be well modeled using
heavy-tailed arrival processes, and the more benign ones better
modeled using light-tailed processes. For example, an internet
user might generate occasional file download requests with
highly variable file sizes, that can be modeled as being heavy-
tailed. However, routine webpage loading and email traffic
are likely to be far less variable, and thus are better mod-
eled as being light-tailed. In order to capture the interaction
between heterogeneous traffic sources in a queueing network,
multi-class queueing models with a mix of heavy-tailed and
light-tailed traffic sources have been studied [13]–[16]. An
important paper in this category is [13], where the interaction
between light and heavy-tailed traffic flows under generalized
processor sharing (GPS) is studied. Another example is [14],
where the authors obtain the asymptotic workload behavior
under a general coupled-queues framework, which includes
GPS as a special case.

So, on the one hand, max-weight policies are throughput
optimal and provide good response times when the traffic is
largely symmetric. On the other hand, the interaction between
bursty and benign traffic sources is well studied within multi-
class queueing and GPS frameworks, but these policies are not
throughput optimal.

Contributions of this paper
The goal of this paper is to fill this gap by studying

response times under max-weight policies when traffic is
highly asymmetric. The first steps towards filling this gap have
been provided by the recent work of Markakis et al. in [17]
and Jagannathan et al. [18], [19], which analyze a scenario
where heavy-tailed and light-tailed flows interact through a
generalized max-weight policy. Our present paper builds on



these papers; in particular, our model is borrowed from [18].
However, the focus of the above papers is on queue length
asymptotics under different throughput optimal policies, while
in this paper, we analyze the distribution of response times
experienced by the heavy and light-tailed flows.

More specifically, in this paper, we consider a stylized
setting where the traffic asymmetry is extreme. We consider a
system consisting of two traffic classes contending for service
from a single server, where one class is heavy-tailed, and the
other is light-tailed (see Fig. 1). Both classes experience a time
varying connectivity with the server, and the server can serve
a single packet from a connected queue in each slot. Note that
this model captures a wireless uplink/downlink scenario with
two nodes communicating with an access point or base station
via fading channels. For this queueing system, we study the
tail of the (stationary) response time distribution each traffic
class experiences under generalized max-weight policies.

In this context, there are two scheduling decisions: the inter-
queue scheduling and the intra-queue scheduling. The inter-
queue scheduling policy determines which queue to serve in
each slot, whereas the intra-queue scheduling policies specify
which waiting packet to serve from the queue selected for
service by the inter-queue scheduling policy.

The first contribution of this paper is to prove that the
classical max-weight policy, which serves the longest con-
nected queue in each slot, causes the light-tailed flow to
experience heavy-tailed response times. This means that the
classical max-weight policy, while being throughput optimal,
severely throttles (starves) the light-tailed flow. Thus, while
max-weight performs well in symmetric settings, it can have
poor performance in asymmetric settings. Intuitively, this is
because the max-weight policy starves the light-tailed flow of
service for a long period of time when the heavy-tailed flow
generates its (frequent) large bursts.

The second contribution of this paper is to show that it
is possible to design a throughput optimal scheduling policy
that avoids the problems experienced by the classical max-
weight policy. In particular, we present a policy that provably
guarantees light-tailed response times for the light-tailed flow.
Importantly, our results suggest that the response time tail
for the heavy-tailed flow remains unaffected; we prove this
formally for the special case in which both queues are always
connected to the server.

Our policy design entails a careful choice of the inter-
queue scheduling policy, as well as intra-queue scheduling
policies. Our inter-queue policy is the so called ‘log-max-
weight policy’, which belongs to the class generalized max-
weight policies [6] and awards a significant priority to the
light-tailed flow, while maintaining throughput optimality. Our
intra-queue policy differs between the heavy-tailed and the
light-tailed queues: within the heavy-tailed queue, Preemptive-
Last-Come-Fist-Served (PLCFS) is used, while within the
light-tailed queue, First-Come-First-Served (FCFS) is used.

Our analysis provides a clear insight into the intricate
interplay between the intra-queue and inter-queue scheduling
policies. Indeed, our results reveal that even with a good inter-
queue scheduling policy, the correct choice of intra-queue
scheduling policies is crucial in order to obtain good response
time tail behavior. In fact, the difference in response times
between two intra-queue policies can be significantly larger
under generalized max-weight inter-queue scheduling than in
a single server queue.

Finally, it is worth commenting that in attaining the re-
sults described above, we also settle an an open question in
[19, pp. 171] regarding the asymptotics of log-max-weight
scheduling. In particular, we prove that under log-max-weight
scheduling, the (stationary) queue length distribution corre-
sponding to the light-tailed queue is light-tailed (Theorem 9),
via a novel application of Lyapunov bounds from [6].

II. MODEL AND PRELIMINARIES

A. System model
Our goal is to study multi-class queues in a setting where the

traffic flows are highly asymmetric. To that end, we consider a
simple model where the asymmetry is extreme. In particular,
we consider a scenario where two parallel queues contend
for service from a single server. One of the queues sees a
heavy-tailed arrival process, whereas the other sees a light-
tailed arrival process. We refer to the former queue as the
heavy queue, and the latter queue as the light queue.

Each queue experiences a stochastically time varying con-
nectivity with the server. Fig. 1 provides an illustration of our
setup. Time is slotted, and in each slot, the server can provide
a single unit of service to a connected queue. Henceforth, we
refer to this unit of service as a packet, and say the server can
process a single packet from a connected queue in each slot.
Let t denote the time index.

Fig. 1: A network consisting of two parallel queues, with one
of them fed with heavy-tailed traffic. The channels connecting
the queues to the server are unreliable ON/OFF links.

In each slot, a job, comprising a burst of packets, can arrive
stochastically into each queue. Let H(t) and L(t) denote,
respectively, the size of the job (in number of packets) arriving
into the heavy queue and the light queue in time slot t. We
adopt the convention that the size of the incoming job is zero
if there is no arrival in a slot.

Our stochastic model for the arrival processes is the fol-
lowing. The sequences L(·) and H(·) are i.i.d. across time
slots, and independent of one another. The random variable
L(t) is light-tailed, and the random variable H(t) is heavy-
tailed. Specifically, we assume that H(t) is regularly varying
with index θH > 1.1 Let λH := E [H(t)] and λL := E [L(t)]
denote the mean arrival rates into the heavy queue and the
light queue, respectively.

Next, we describe the stochastic model for the connectivity
of each queue with the server. The connectivity of the heavy
queue and the light queue are described, respectively, by
Bernoulli sequences {ηH(t)} and {ηL(t)}. ηH(t), ηL(t) ∈
{0, 1}, with a value of 1 indicating that the corresponding
queue is connected to the server in time slot t. We as-
sume that the sequences {ηH(t)} and {ηL(t)} are mutually

1We formally define light-tailed and regularly varying distributions in
Section II-D.



independent and independent of the arrival processes. Let
pH := P (ηH(t) = 1) and pL := P (ηL(t) = 1) denote,
respectively, the probabilities that the heavy queue and the
light queue are connected to the server in each time slot.
We assume that pL, pH > 0. We refer to the special case
of our model in which the two queues are always connected
to the server, i.e., pL = pH = 1, as the wireline scenario. For
technical reasons, we exclude from consideration the scenario
where only one of the queues is always connected to the
server, i.e., we exclude the cases pL = 1, pH ∈ (0, 1) and
pH = 1, pL ∈ (0, 1). Finally, we assume that the server can
detect the connectivity state of both queues, as well as the
queue size (in number of packets) of a connected queue in
each slot. Note that our model captures an uplink/downlink
setting with two wireless nodes connected to a base station or
access point via independent fading channels.

Let qH(t) and qL(t) denote, respectively, the lengths (in
number of packets) of the heavy queue and the light queue
in the beginning of time slot t. The queue lengths evolve as
follows.

qH(t+ 1) = H(t) + qH(t)− 1{heavy queue got service in slot t},

qL(t+ 1) = L(t) + qL(t)− 1{light queue got service in slot t}.

If both queues are connected to the server in a certain slot, the
scheduling policy determines which queue will receive service.
If only one of the queues is connected to the server in a certain
slot, then that queue receives service if it has any waiting
packets. We refer to such slots as exclusive slots. We use qH
and qL to denote, respectively, the stationary queue lengths of
the heavy queue and the light queue. We use VH to denote
the steady state response time experienced by a job in the
heavy queue, and VL to denote the steady state response time
experienced by a job in the light queue.

B. Stability region
The stability region for the queueing system defined above,

i.e., the set Λ of (λH , λL) pairs that are stabilizable, is well
understood. It follows from [1] that

Λ = {(λH , λL) | 0 ≤λH < pH , 0 ≤ λL < pL,

λH + λL < pH + pL − pHpL}.

The constraints defining the stability region are intuitive:
the average arrival rate into each queue cannot exceed its
maximum possible service rate (defined by fraction of time
it is connected to the server), and the sum total of the arrival
rates cannot exceed the maximum possible aggregate service
rate of the two queues (defined by the fraction of time at least
one queue is connected to the server). The stability region
is visualized in Fig. 2. We seek scheduling policies that are
throughput optimal, i.e., policies that stabilize the queueing
system over the entire stability region.

Let p̄L := pL(1 − pH). Note that p̄L is the probability
that only the light queue is connected to the server in a slot,
i.e., the probability that a slot is exclusive to the light queue.
If λL < p̄L, then the arrivals into the light queue can be
stably supported by just exclusive slots, implying the light
queue essentially does not need to compete for service with
the heavy queue. This case is uninteresting when analyzing the
light queue, since the response time distribution is guaranteed
to be light-tailed, irrespective of the inter-queue or intra-queue
scheduling policy. For the same reason, the case λH = 0

Fig. 2: The stability region Λ is the pentagonal region above.
The subset Λ′ of interest is shaded.

is uninteresting. Therefore, when studying the response time
distribution in the light queue, we restrict our attention to the
subset Λ′ of the stability region over which λL > p̄L, and
λH > 0. The set Λ′ is depicted in Fig. 2. Note that in the
wireline scenario, p̄L = 0, and Λ′ is simply the interior of the
stability region.

C. Scheduling

We decouple the scheduling design as follows. The inter-
queue scheduling policy determines which queue to serve in
each slot, given the connectivity state and length (in number
of packets) of each queue. In the queue selected for service
by the inter-queue policy, the intra-queue scheduling policy
determines which packet to serve in that slot, given the full
state of the queue. We consider a variety of possible policies,
described below, for each.

Recall that we have two performance goals for scheduler
design: (i) throughput optimality, and (ii) good response time
tail behavior. Note that the stability of the queueing system
depends solely on the inter-queue scheduling policy, since the
evolution of the queue lengths is insensitive to the intra-queue
scheduling policy. However, the response time distribution is
highly dependent on the intra-queue scheduling policy.

1) Inter-queue scheduling: Given that the inter-queue
scheduling policy completely determines the stability of the
system, it is crucial to use policies that are throughput optimal.
This motivates us to consider generalized max-weight policies
[6]. In particular, our focus is on two such policies:

Max-weight-α scheduling: The max-weight-α policy [17],
[19] is a generalization of the classical max-weight policy,
and is characterized by two positive parameters αL and αH .
In each slot, the max-weight-α policy serves the queue that
wins the comparison

qL(t)αLηL(t) R qH(t)αHηH(t).

Ties may be broken arbitrarily, but we assume for concreteness
that ties are broken in favor of the light queue. Note that when
αL = αH , the max-weight-α policy is identical to the classical
max-weight policy. The throughput optimality of this policy
follows easily from Theorem 1 in [6].

The parameters αL and αH determine the relative priorities
of the two queues. Since we will be interested in the scenario
where the light queue receives a higher priority than the heavy
queue, we focus on the case αL ≥ αH . Moreover, it is easy
to see that we may set αH = 1 without loss of generality.
Accordingly, we focus on the range of parameters satisfying
αL ≥ αH = 1. Note that a higher value of αL implies a
higher priority for the light queue.



Log-max-weight scheduling: The log-max-weight policy
[19] is defined as follows. In each slot t, it serves the queue
that wins the comparison

qL(t)ηL(t) R log(1 + qH(t))ηH(t). (1)

As before, we assume for concreteness that ties are broken
in favor of the light queue. The throughput optimality of this
policy once again follows easily from Theorem 1 in [6].

The log-max-weight policy awards an even higher degree of
priority to the light queue than the max-weight-α policy. Note
that in order to determine which queue to serve in a slot, the
max-weight-α policy compares qH(t) with qL(t)αL , whereas
the log-max-weight policy compares qH(t) with eqL(t) − 1.

2) Intra-queue scheduling: While intra-queue scheduling
does not impact the stability of the system (as long as the poli-
cies considered are work-conserving), the intra-queue schedul-
ing policy does have a significant impact on the response time
distribution. In this paper, we focus on two candidate policies
for intra-queue scheduling: First-Come-First-Served (FCFS)
and Preemptive-Last-Come-First-Served (PLCFS).

While other policies could also be considered, the choice of
these policies is motivated by a few important factors. First,
FCFS is the most commonly assumed intra-queue policy in
the literature on max-weight scheduling. Second, there have
been suggestions recently that using PLCFS as the intra-queue
scheduling policy can improve the delay-performance of max-
weight policies [20]. Third, in a single server queue, it is
known that the response time tail under FCFS is optimal when
job sizes are light-tailed, while the response time tail under
PLCFS is optimal (up to a constant) when job sizes are heavy-
tailed (see [21]).

D. Heavy-tailed distributions: Definitions and properties
In this section, we give relevant definitions and preliminaries

related to heavy-tailed distributions.
For any non-negative random variable X, we use FX to de-

note its distribution function (d.f.), i.e., FX(x) := P (X ≤ x) ,
and F̄X to denote its tail distribution function, i.e., F̄X(x) :=
P (X > x). The random variable X (or its d.f. FX ) is said to
be heavy-tailed if

lim sup
x→∞

F̄X(x)

e−φx
=∞ ∀ φ > 0.

Conversely, X (or its d.f. FX ) is said to be light-tailed if it is
not heavy-tailed, i.e., if there exists φ > 0 such that

lim
x→∞

F̄X(x)

e−φx
= 0.

Intuitively, a d.f. is heavy-tailed if its tail is asymptotically
heavier than that of any exponential distribution.

An important characterization of heavy-tailed distributions
that we make use of in our analysis is the following. See
[22, Chap. 5] for a proof of this lemma. For any non-negative
random variable X, define ΨX(x) := − log F̄X(x)

x .

Lemma 1. Suppose X is non-negative random variable. Then
X is heavy-tailed if and only if

lim inf
x→∞

ΨX(x) = 0.

From a modeling standpoint, an important subclass of
heavy-tailed distributions is the class of regularly varying

distributions, which is a generalization of the class of Pareto
distributions [23]. Formally, a random variable X (or its d.f.
FX ) is said to be regularly varying with index θ > 0 (denoted
X ∈ RV(θ)) if P (X > x) = x−θL(x), where L(x) is a
slowly varying function, i.e., L(x) satisfies limx→∞

L(xy)
L(x) =

1 ∀ y > 0. Recall that our model assumes that H(t) ∈
RV(θH).

Our focus in this paper is on understanding the (logarithmic)
asymptotic behavior of the response time tail. To study this for
a heavy-tailed X, we use its tail index, defined as

Γ(X) := lim
x→∞

− logP (X > x)

log(x)
,

when the limit exists. The tail index is useful for describing the
asymptotic tail behavior of distributions that exhibit a roughly
‘power-law’ tail, such as regularly varying distributions. In
particular, if X ∈ RV(θ), then Γ(X) = θ [24, Prop. 2.6]. It
is easy to check that if Γ(X) < ∞, then X is heavy-tailed.
Moreover, it can be shown that

(i) if Γ(X) > 0, then E
[
Xβ
]
<∞ for 0 ≤ β < Γ(X),

(ii) if Γ(X) <∞, then E
[
Xβ
]

=∞ for β > Γ(X).
Finally, note that a smaller value of tail index implies a
‘heavier’ tail.

To give a lower bound on the tail of a heavy-tailed random
variable X, we use

Γ̄(X) := lim sup
x→∞

− logP (X > x)

log(x)
.

It is easy to check that if Γ̄(X) <∞, then X is heavy-tailed.
Moreover, if Γ̄(X) <∞, then E

[
Xβ
]

=∞ for β > Γ̄(X).

III. RESULTS

The multi-class queueing model in the previous section
involves two highly asymmetric traffic classes, one heavy-
tailed, and one light-tailed. Our goal now is to understand how
max-weight scheduling and its variants perform under such
an extreme form of asymmetry. We begin by considering the
most well studied subclass of generalized max-weight policies:
max-weight-α policies [17], which includes the classical max-
weight policy as a special case. We then consider the class of
log-max-weight policies.

Recall that both of these classes of inter-queue policies
ensure throughput stability regardless of the intra-queue policy
used. Therefore, our results focus on the response time tail.
Importantly, for this metric, our results highlight that the
choice of intra-queue scheduling is crucial.

A. Max-weight-α scheduling
In this section, we present our results on the tail behavior

of the (stationary) response time distribution in the heavy
queue and light queue under the max-weight-α inter-queue
scheduling policy. We being by focusing on the light-queue.

The performance of the light queue: Our first result is the
following upper bound on the response time tail index for the
light queue under max-weight-α inter-queue scheduling, and
any intra-queue scheduling policy in the light queue.

Theorem 2. Suppose that the arrival rates lie in the subset
Λ′ of the stability region. Then under the max-weight-α
scheduling policy between queues with αL ≥ αH = 1,

Γ̄(VL) = lim sup
x→∞

− logP (VL > x)

log(x)
≤ αLθH − 1



for any intra-queue scheduling policy in the light queue.

Theorem 2 states that under max-weight-α scheduling be-
tween queues, Γ̄(VL) < ∞, which implies that the light
queue sees heavy-tailed response times, irrespective of the
intra-queue scheduling policy. This means that although max-
weight-α scheduling is throughput optimal, it severely throttles
the light queue. Note that this includes the classical max-
weight policy as a special case. Intuitively, this poor perfor-
mance is the result of (frequent) large arrivals into the heavy
queue starving the light queue of service for a long time.

However, it is important to note that the upper bound on the
response time tail index given by Theorem 2 is an increasing
function of αL, approaching∞ as αL →∞. This suggests the
possibility of achieving an arbitrarily large response time tail
index for the light queue (recall that a larger tail index implies
a lighter tail) by setting αL large enough, i.e., by awarding the
light queue sufficiently high priority. Theorems 3 and 4 below
imply that this is indeed the case, so long as the intra-queue
policy in the light queue is chosen appropriately. Intuitively,
a larger value of αL makes the interval of service starvation
of the light queue following the arrival of a large job into the
heavy queue shorter, thus improving the response time tail.

Theorem 3. Suppose that the arrival rates lie in the subset Λ′

of the stability region. Then under max-weight-α scheduling
between queues with αL > αH = 1, and First-Come-First-
Served scheduling within the light queue,

Γ(VL) = lim
x→∞

− logP (VL > x)

log(x)
= αL(θH − 1).

Theorem 4. Suppose that the arrival rates lie in the subset Λ′

of the stability region. Then under max-weight-α scheduling
between queues with αL > αH = 1, and Preemptive-Last-
Come-First-Served scheduling within the light queue,

Γ̄(VL) = lim sup
x→∞

− logP (VL > x)

log(x)
≤ θH −

1

αL
.

Theorem 3 states that with FCFS scheduling within the light
queue, the response time tail index increases linearly with αL.
This means that while the response time distribution in the
light queue remains heavy-tailed for all αL, its tail index can
be made arbitrarily large by setting αL to a large enough value,
i.e., by giving the light queue sufficient priority. In contrast,
Theorem 4 states that under PLCFS scheduling in the light
queue, the tail index remains bounded above by θH for all
values of αL. This highlights the importance of choosing the
correct intra-queue scheduling policy in order to exploit the
priority awarded to it by the inter-queue scheduling policy.

The performance of the heavy queue: Next, we turn to the
response time tail in the heavy queue under max-weight-α
inter-queue scheduling. The following theorems summarize
our results for FCFS and PLCFS intra-queue scheduling in
the heavy queue.

Theorem 5. Under max-weight-α scheduling between queues
with αL ≥ αH = 1, and First-Come-First-Served scheduling
within the heavy queue,

Γ(VH) = lim
x→∞

− logP (VH > x)

log(x)
= θH − 1.

Theorem 6. In the wireline scenario, under max-weight-α
scheduling policy between queues with αL > θH

θH−1 and αH =

1, and Preemptive-Last-Come-First-Served scheduling within
the heavy queue,

Γ(VH) = lim
x→∞

− logP (VH > x)

log(x)
= θH . (2)

Theorem 5 implies that with FCFS scheduling within the
heavy queue, the response time tail index is insensitive to αL;
i.e., it is insensitive to the level of relative priority awarded to
the light queue. Moreover, the response time tail index is the
same as it would be in an isolated Geo/GI/1 queue with the
same arrival process as the heavy queue.2

With PLCFS scheduling within the heavy queue, we are
only able to analyze the wireline scenario, when the inter-
queue priority to the light queue being sufficiently high
(specifically, αL > θH

θH−1 ). For this case, Theorem 6 implies as
before that the response time tail index for the heavy queue is
insensitive to αL, and is the same as it would be in an isolated
Geo/GI/1 queue with the same arrival process.2 Furthermore,
this response time tail index is optimal, since the response
time tail index is bounded above by the tail index of the job
size distribution (i.e., θH ). We conjecture that Equation (2)
holds even in our general ‘wireless’ scenario, in which the
two queues have a stochastic connectivity with the server.3

To summarize, under max-weight-α scheduling, the light
queue necessarily experiences heavy-tailed response times.
However, by setting αL large enough, i.e., by awarding suffi-
ciently high priority to the light queue, its response time tail
index can be made arbitrarily large, with the correct choice of
intra-queue scheduling policy. Further, our results suggest that
the response time tail index of the heavy queue is unaffected
in this process, and behaves like the response time tail index in
an isolated Geo/GI/1 queue (with the same arrival process).

Ultimately however, from a fairness standpoint, it is desir-
able that response times in the light queue are light-tailed.
Since the level of priority awarded to the light queue by the
max-weight-α policy is insufficient for this to happen, we now
analyze the log-max-weight inter-queue policy, which awards
an even higher degree of priority to the light queue.

B. Log-max-weight scheduling
In this section, we study the tail behavior of the (stationary)

response time distribution in the light queue and the heavy
queue under the log-max-weight inter-queue scheduling policy.

The performance of the light queue: Our main result in
this section is that under log-max-weight scheduling between
queues, and FCFS scheduling within the light queue, the light
queue experiences light-tailed response times.

Theorem 7. Suppose that the arrival rates lie in the subset
Λ′ of the stability region. Then under log-max-weight schedul-
ing between queues, and First-Come-First-Served scheduling
within the light queue, VL is light-tailed.

The above theorem implies that the log-max-weight policy
indeed provides sufficient priority to the light queue to make
its response time distribution light-tailed. However, for this to
happen, the intra-queue scheduling policy cannot be chosen
arbitrarily. In fact, as the following theorem shows, with

2In a Geo/GI/1 queue with the same arrival process as the heavy queue,
it is well known that the response time tail index equals θH − 1 under FCFS
scheduling, and θH under PLCFS scheduling (for example, see [21]).

3For a discussion on what makes the extension to the wireless case
difficult, see [22, Chap. 5].



PLCFS scheduling within the light queue, its response time
distribution remains heavy-tailed.

Theorem 8. Suppose that the arrival rates lie in the subset
Λ′ of the stability region. Then under log-max-weight schedul-
ing between queues, and Preemptive-Last-Come-First-Served
scheduling within the light queue, VL is heavy-tailed.

This extreme contrast between the two policies highlights
once again the importance of correctly choosing the intra-
queue scheduling policy to exploit the priority awarded to the
light queue by the inter-queue scheduling policy. Theorems 7
and 8 demonstrate a remarkable phenomenon: with the same
service process for the light queue, one intra-queue scheduling
discipline results in heavy-tailed response times, whereas
another leads to light-tailed response times. In the context of
the Geo/G/1 queue, the impact of the intra-queue policy is
nowhere near this extreme, which highlights how crucial the
choice is for the multi-queue setting.

The proof of Theorem 7 relies crucially on the following.

Theorem 9. Under log-max-weight scheduling between
queues, qL is light-tailed.

This statement was originally conjectured in [19], but
proved only for the wireline scenario. In Section IV, we give
a novel proof of Theorem 9 based on Lyapunov arguments.

The performance of the heavy queue: Under log-max-
weight inter-queue scheduling, we are only able to analyze the
response time tail for the heavy queue in the wireline scenario.
For this case, we prove that with both FCFS and PLCFS
intra-queue scheduling, the response time distribution has the
same tail index as in an isolated Geo/GI/1 queue with the
same arrival process. These results show that in the wireline
scenario, the response time tail index is unaffected by the
priority given to the light queue by the log-max-weight policy.
We conjecture that the same is true in our general ‘wireless’
model.3 The following theorems summarize our results.

Theorem 10. In the wireline scenario, under log-max-
weight scheduling between queues, and First-Come-First-
Served scheduling within the heavy queue,

lim
x→∞

− logP (VH > x)

log(x)
= θH − 1.

Theorem 11. In the wireline scenario, under log-max-weight
scheduling between queues, and Preemptive-Last-Come-First-
Served scheduling within the heavy queue,

lim
x→∞

− logP (VH > x)

log(x)
= θH .

To summarize, our results show that it is possible to achieve
light-tailed response times in the light queue using log-max-
weight inter-queue scheduling. In other words, it is possible
to design inter-queue and intra-queue scheduling policies for
our system such that we maintain throughput optimality, and
achieve light-tailed delays for the light queue. Importantly,
our results suggest that this can be done without affecting the
response time tail index for the heavy queue.

IV. SELECTED PROOFS

This section is devoted to proofs of the results presented in
Section III. Due to space constraints, we are forced to omit
several proofs. In particular, we omit the proofs of all results

on the response time tail in the heavy queue, and present only
representative proofs of the results on the response time tail
in the light queue. We refer the reader to [22, Chap. 5] for all
excluded proofs.

We first introduce some notation that is used heavily
in our proofs. For functions ϕ(x) and ξ(x), the notation
ϕ(x) ∼ ξ(x) means limx→∞

ϕ(x)
ξ(x) = 1. For t1, t2 ∈ N,

AL(t1, t2) :=
∑t2
t=t1

L(t), and AH(t1, t2) :=
∑t2
t=t1

H(t).
Note that AL(t1, t2) and AH(t1, t2) denote, respectively, the
number of packets entering the light queue and the heavy
queue in slots t1 through t2. For y ∈ N, A(y)

L (t1, t2) :=∑t2
t=t1

L(t)1{L(t)≤y}. Note that A(y)
L (t1, t2) is the number of

packets entering the light queue from jobs of size ≤ y in
slots t1 through t2. Let λ(y)

L := E
[
L(1)1{L(1)≤y}

]
. It follows

from the monotone convergence theorem that limy→∞ λ
(y)
L =

λL. Finally, define S̄L(t1, t2) :=
∑t2
t=t1

1{ηL(t)=1,ηH(t)=0}.
S̄L(t1, t2) is the number of exclusive slots available to the
light queue in slots t1 through t2. Note that in the wireline
scenario, S̄L(t1, t2) = 0.

This section is organized as follows. First, we present
the proof of Theorem 2, which gives an upper bound on
the response time tail index in the light queue under max-
weight-α inter-queue scheduling. Next, we prove Theorem 7,
which states that under log-max-weight inter-queue scheduling
and FCFS scheduling within the light queue, VL is light-
tailed. Finally, we give the proof of Theorem 8, which states
that under log-max-weight inter-queue scheduling and PLCFS
scheduling within the light queue, VL is heavy-tailed.

A. Proof of Theorem 2
Our proof of Theorem 2 is based on formalizing the intuition

that if a job of size Θ(xαL) arrives into the heavy queue
early in the busy period, then with high probability, the light
queue is denied service for a period of Ω(x) slots, except in
its exclusive slots.

The proof relies on the following representation for the
response time tail. Consider a tagged busy period of the
system. Let NL denote the number of jobs entering the light
queue in this busy period, and VL,i, for i = 1, 2, · · · , NL,
denote the response time of the i′th arriving job. The tail of
VL has the following well-known representation [25, Chap. 6].

P (VL > x) =
E
[
N

(x)
L

]
E [NL]

, (3)

where N (x)
L :=

∑NL

i=1 1{VL,i>x} is the number of jobs in the
light queue that experience a response time exceeding x in
the busy period. The proof proceeds by defining a ‘bad’ event
I(x) such that the bound

P (VL > x) ≥
P (I(x))E

[
N

(x)
L | I(x)

]
E [NL]

(4)

leads us to the statement of the theorem.
Without loss of generality, assume that the busy period

under consideration starts in time slot 1. Recall that over the
subset Λ′ of the stability region, p̄L < λL, and limy→∞ λ

(y)
L =

λL. Pick y large enough so that p̄L < λ
(y)
L . Let δ :=

(λ
(y)
L − p̄L)/4.



We are now ready to define the event I(x). Fix ε > 0.

I(x) :=
{
H(1) >

⌈xy
δ

⌉
+ (λL + ε)αL

⌈xy
δ

⌉αL
}⋂

{
AL

(
1,
⌈xy
δ

⌉)
< (λL + ε)

⌈xy
δ

⌉}⋂
{
S̄L

(
1,
⌈xy
δ

⌉)
< (p̄L + δ)

⌈xy
δ

⌉}⋂
{
A

(y)
L

(
1,
⌈xy
δ

⌉)
> (λ

(y)
L − δ)

⌈xy
δ

⌉}
=: I1(x) ∩ I2(x) ∩ I3(x) ∩ I4(x).

Informally, the event I1(x) corresponds to the busy period
starting with a ‘large’ job of size O(xαL) entering the heavy
queue. The events I2(x), I3(x), and I4(x) state that the
number of packet arrivals into the light queue and number
of exclusive slots for the light queue over the interval from
slot 1 to slot

⌈
xy
δ

⌉
do not deviate much from their ‘law

of large numbers’ estimates. Indeed, the weak law of large
numbers implies that the events I2(x), I3(x), and I4(x) have
a probability approaching 1 as x→∞.

Next, we show that the event I(x) implies that at least x jobs
entering the light queue in the busy period under consideration
experience a response time exceeding x time slots. To see this,
note that the event I1(x)∩ I2(x) implies that the heavy queue
has priority over the light queue in slots 1 through

⌈
xy
δ

⌉
.

Indeed, I1(x) implies that the length of the heavy queue
remains greater than (λL + ε)αL

⌈
xy
δ

⌉αL over this interval,
and I2(x) implies that the length of the light queue never
exceeds (λL + ε)

⌈
xy
δ

⌉
over the same interval. As a result,

under event I(x), the light queue receives service only in its
exclusive slots until time

⌈
xy
δ

⌉
. Note that I3(x) gives an upper

bound on the number of exclusive slots received by the light
queue until time

⌈
xy
δ

⌉
. Finally, I4(x) gives a lower bound

on the number packets arriving into the light queue until time⌈
xy
δ

⌉
from jobs of size ≤ y. Therefore, under event I(x), the

number of packets remaining in the light queue after time slot⌈
xy
δ

⌉
, corresponding to jobs of size ≤ y exceeds

(λ
(y)
L − δ)

⌈xy
δ

⌉
− (p̄L + δ)

⌈xy
δ

⌉
= 2δ

⌈xy
δ

⌉
≥ 2xy.

Now, since the corresponding jobs have a size of at most y,
we conclude that under I(x), the light queue contains at least
2x jobs at the end of

⌈
xy
δ

⌉
slots. Since each of these jobs

requires at least one slot of service to complete, we conclude
that under I(x), at least x−1 jobs experience a response time
exceeding x in the busy period under consideration.

Returning now to the bound (4), we have defined the event
I(x) such that E

[
N

(x)
L | I(x)

]
≥ x − 1. To bound the

probability of I(x), note that

P (I(x)) = P (I1(x)) P (I2(x) ∩ I3(x) ∩ I4(x)) ,

since the arrival process into the heavy queue is independent
of the arrival process into the light queue and the queue con-
nectivity processes. Invoking the weak law of large numbers,
we conclude that for ν ∈ (0, 1), P (I2(x) ∩ I3(x) ∩ I4(x)) >
(1− ν) for large enough x. Therefore, for large enough x,

P (VL > x) ≥ 1− ν
E [NL]

(x− 1) P (I1(x)) .

The above statement implies that

lim sup
x→∞

− logP (VL > x)

log(x)
≤ lim
x→∞

− logP (I1(x))

log(x)
− 1

= αLθH − 1,

where the last step above uses the fact that H(1) ∈ RV(θH),
which implies that

lim
x→∞

−
logP

(
H(1) >

⌈
xy
δ

⌉
+ (λL + ε)αL

⌈
xy
δ

⌉αL
)

log(x)
= αLθH .

This completes the proof.

B. Proof of Theorem 7
When proving Theorem 7, we restrict ourselves to the

‘wireless’ case, i.e., pL, pH ∈ (0, 1), in this paper. The proof
for the wireline case is more involved, and can be found in
[22, Chap. 5]. Our proof relies crucially on Theorem 9, which
we prove first.

The proof of Theorem 9 utilizes a property (Lemma 12
below) of the class of long-tailed distributions, which is an
important subclass of heavy-tailed distributions. Formally, a
non-negative random variable X (or its d.f. FX ) is said to be
long-tailed (denoted X ∈ L) if limx→∞

P (X>x+y)
P (X>x) = 1 for all

y > 0. The class of regularly varying distributions is a strict
subset of the class of long-tailed distributions, which in turn
is a strict subset of the class of heavy-tailed distributions [23].
We use the following sufficient condition for a distribution to
be long-tailed (see [22, Chap. 5] for the proof).

Lemma 12. Suppose X is a non-negative random variable.
If ΨX(x) is non-increasing with

lim
x→∞

ΨX(x) = 0,

then X ∈ L.
Additionally, the proof of Theorem 9 relies on the following

lemma.

Lemma 13. Suppose that FX is the distribution function
corresponding to a non-negative random variable. If FX ∈ L,
and F̄X(x) := 1 − FX(x) is strictly decreasing over x ≥ 0,
then

E
[

1

F̄X(qL)

]
<∞ and E

[
1

F̄X(log(1 + qH))

]
<∞.

The above lemma is a direct consequence of Theorem 1
in [6]. Note that if FX ∈ L, then 1/F̄ (x) grows sub-
exponentially. Therefore, Lemma 13 states that certain sub-
exponential moments of qL are finite. However, in order to
prove that qL is light-tailed, we need to show that certain
exponential moments of qL are finite, i.e., E

[
eβqL

]
< ∞ for

some β > 0. We do this as follows.
Proof of Theorem 9: For the purpose of obtaining a

contradiction, let us assume that qL is heavy-tailed. Invoking
Lemma 1, we conclude that lim infx→∞ΨqL(x) = 0. Fix
δ ∈ (0, 1). It is easy to see that there exists a strictly increasing
integer sequence {xk}k≥1, with x1 = 0, and xk

k↑∞→ ∞ such
that

(i) ΨqL(xk) is non-decreasing in k, with
limk→∞ΨqL(xk) = 0,

(ii) F̄qL(xk+1) ≤ (1− δ)F̄qL(xk) for k ≥ 1.



We now define a distribution FY that agrees with FqL along
the sequence {xk} such that FY satisfies the conditions of
Lemma 13, implying that E

[
1/F̄Y (qL)

]
<∞. We then show

via a direct computation that E
[
1/F̄Y (qL)

]
=∞. This gives

us a contradiction, proving that qL is light-tailed.
We define the distribution FY as follows. F̄Y (xk) =

F̄qL(xk) for all k ≥ 1. For x ∈ (xk, xk+1),

log(F̄Y (x)) = log(F̄Y (xk))

+
x− xk

xk+1 − xk
(
log(F̄Y (xk+1))− log(F̄Y (xk))

)
. (5)

Note that for x ∈ (xk, xk+1), log(F̄Y (x)) is defined by lin-
early interpolating between log(F̄Y (xk)) and log(F̄Y (xk+1)).
Equation (5) implies, via simple algebraic manipulations that
for x ∈ (xk, xk+1),

ΨY (x) =
log(F̄Y (xk))− log(F̄Y (xk+1))

xk+1 − xk

+
1

x

xkxk+1 (ΨY (xk)−ΨY (xk+1))

xk+1 − xk
=: ν1 +

ν2

x
,

where ν1 > 0, ν2 ≥ 0. This implies that ΨY (x) is non-
decreasing over x ≥ 0, with limx→∞ΨY (x) = 0. From
Lemma 12, we conclude that then FY ∈ L. Moreover, since
F̄Y (x) is strictly decreasing over x ≥ 0 by definition, Lemma
13 implies that E

[
1/F̄Y (qL)

]
<∞.

We now show through a direct computation that
E
[
1/F̄Y (qL)

]
=∞. Pick k0 ∈ N.

E
[

1

F̄Y (qL)

]
≥

xk0+1∑
x=1

1

F̄Y (x)
P (qL = x)

=

k0∑
k=1

xk+1∑
x=xk+1

1

F̄Y (x)
P (qL = x)

≥
k0∑
k=1

xk+1∑
x=xk+1

1

F̄Y (xk)
P (qL = x)

=

k0∑
k=1

F̄qL(xk)− F̄qL(xk+1)

F̄Y (xk)
.

Now, since F̄Y and F̄qL agree along the sequence {xk},

E
[

1

F̄Y (qL)

]
≥

k0∑
k=1

F̄Y (xk)− F̄Y (xk+1)

F̄Y (xk)
≥

k0∑
k=1

δ = k0δ,

(6)
where the last step above uses the fact that F̄Y (xk+1) ≤ (1−
δ)F̄Y (xk) for k ≥ 1. Since E

[
1/F̄Y (qL)

]
≥ k0δ for any

k0 ∈ N, it follows that E
[
1/F̄Y (qL)

]
= ∞. This gives us a

contradiction, which proves that qL is light-tailed.
We are now ready to give the proof of Theorem 7 in the

‘wireless’ case.
Proof of Theorem 7 for the case pL, pH ∈ (0, 1):

Consider a tagged job entering the light queue in slot 0 in
steady state. The tagged job has size L(0) > 0 and sees a
queue length qL(0) in the light queue. Theorem 9 implies that
qL(0) is light-tailed.

Let us denote the response time of the tagged job by VL.
We need to prove that VL is light-tailed. Note that

qL(1) = qL(0)− 1{light queue for service in slot 0} + L(0).

Since qL(0) and L(0) are both light-tailed, it follows that
qL(1) is light-tailed. Now, since the light queue uses FCFS
scheduling, VL is simply equal to the time it takes for the light
queue to receive service qL(1) times. Define T := min{x ∈
N | S̄L(1, x) ≥ qL(1)}. Note that T is the time it takes after
slot 0 for the light queue to see qL(1) exclusive slots. Clearly,
VL ≤ T. Fix small ε > 0. We have

P (VL > x) ≤ P (T > x)

= P
(
S̄L(1, x) < qL(1)

)
= P

(
S̄L(1, x) < qL(1); qL(1) > (p̄L − ε)x

)
+ P

(
S̄L(1, x) < qL(1); qL(1) ≤ (p̄L − ε)x

)
≤ P (qL(1) > (p̄L − ε)x)

+ P
(
S̄L(1, x) < (p̄L − ε)x

)
=: I + II.

To prove that VL is light-tailed, it suffices to show that Terms I
and II above are both bounded above by exponentially decay-
ing functions of the form νe−φx, for µ, φ > 0. That this is
true of Term I follows from the fact that qL(1) is light-tailed.
That Term II is similarly bounded follows from a Chernoff
bound. This completes the proof.

C. Proof of Theorem 8

As in the proof of Theorem 2, our proof of Theorem 8
is based on defining a ‘bad’ event I(x) in a tagged busy
period, such that the bound (4) leads us to the statement of the
theorem. Informally, the event I(x) involves a large enough
job arriving into the heavy queue to start the busy period,
resulting in Ω(log(x)) jobs in the light queue experiencing a
response time of Ω(x) slots in the busy period.

Without loss of generality, assume that the busy period
under consideration starts in time slot 1. Recall that over the
subset Λ′ of the stability region, p̄L < λL, and limy→∞ λ

(y)
L =

λL. Pick y large enough so that p̄L < λ
(y)
L . Pick δ > 0 such

that δ ≤ (λ
(y)
L − p̄L)/4.

Our ‘bad’ event I(x) := G(x) ∩ H(x), where we define
and interpret the events G(x) and H(x) below. We start with
the definition of G(x). This event is parameterized by β ∈ N,
whose value we fix later.

G(x) :=
{
H(1) > β blog(x)c+ xβ(λL+2δ) + x+ βδ log(x)

}
⋂
{AL (1, β blog(x)c) < (λL + δ)β blog(x)c}⋂{
S̄L (1, β blog(x)c) < (p̄L + δ)β blog(x)c

}⋂{
A

(y)
L (1, β blog(x)c) > (λ

(y)
L − δ)β blog(x)c

}
=: G1(x) ∩G2(x) ∩G3(x) ∩G4(x).

Roughly, G(x) states that a job of size Θ(xmax{β(λL+2δ),1})
arrives into the heavy queue at the start of the busy period, and
the number of arrivals in the light queue, as well as the number
of exclusive slots seen by it in slots 1 through β blog(x)c do
not deviate much from their ‘law of large numbers’ estimates.
The following lemma states a key implication of G(x).



Lemma 14. G(x) implies that at the end of β blog(x)c slots,
the light queue contains at least 2βδ blog(x)c packets from
jobs of size ≤ y.

We omit the proof of Lemma 14 since it uses arguments very
similar to those in Theorem 2. Now, invoking the weak law
of large numbers, we know that P (G2(x) ∩G3(x) ∩G4(x))
approaches 1 as x→∞. Therefore, fixing ν ∈ (0, 1),

P (G(x)) ≥ (1− ν)P (G1(x)) for large enough x. (7)

Next, we define the event H(x). Let

n(x) :=

⌈
x

bβδ blog(x)cc

⌉
, m(x) := bβδ blog(x)cc .

The event H(x) concerns arrivals into the light queue, and
exclusive slots available to it over n(x)m(x) slots following
slot β blog(x)c . Specifically, the event H(x) states that the
number of arrivals in the light queue, as well as the number
of exclusive slots available to it, do not deviate much from
the corresponding ‘law of large numbers’ estimates over n(x)
periods, each period being m(x) slots long. For notational con-
venience, define t[k] := β blog(x)c+ (k − 1)m(x). Formally,

H(x) :=
⋂

k=1,2,··· ,n(x)

Hk(x),

where

Hk(x) :=
{
S̄L (t[k] + 1, t[k + 1]) < (p̄L + δ)m(x)

}⋂
{AL (t[k] + 1, t[k + 1]) > (λL − δ)m(x)}

=: Hk,1(x) ∩Hk,2(x).

The following lemma states the key implication of our ‘bad’
event I(x) = G(x) ∩H(x).

Lemma 15. The event I(x) = G(x)∩H(x) implies that over
n(x)m(x) slots following slot β blog(x)c , the occupancy of
the light queue never dips more than m(x) below its level
after slot β blog(x)c .

Due to space limitations, we omit the proof of this lemma
(see [22, Chap. 5] for the proof). Now, we know from
Lemma 14 that under event I(x), at the end of slot β blog(x)c ,
there are at least 2βδ blog(x)c packets in the light queue from
jobs of size ≤ y. Since the light queue uses PLCFS, we con-
clude from Lemma 15 that at least βδ blog(x)c packets, from
jobs of size ≤ y, stay in queue for more than n(x)m(x) slots.
Since n(x)m(x) ≥ x, this in turn implies that under event
I(x), at least 2βδblog(x)c

y jobs in the light queue experience a
response time exceeding x, i.e.,

E
[
N

(x)
L | I(x)

]
≥ 2βδ blog(x)c

y
. (8)

Note that the Chernoff bound implies that there exists τ > 0
such that P (Hk,1(x)) ≥ 1 − e−τm(x) and P (Hk,2(x)) ≥
1−e−τm(x). Therefore, P (Hk(x)) ≥ 1−2e−τm(x), implying
that

P (H(x)) ≥
(

1− 2e−τm(x)
)n(x)

.

Let us fix β > 1/τδ. For this choice of β, it is easy to show
that P (H(x))

x↑∞→ 1, implying that

P (H(x)) ≥ (1− ν) for large enough x. (9)

Finally, returning to our bound (4), it is easy to show that
(7), (8), and (9) imply that lim supx→∞−

logP (VL>x)
log(x) < ∞,

which in turn implies that VL is heavy-tailed. This completes
the proof.
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