
Delay Minimization in Multihop Wireless

Networks: Static Scheduling Does It

Sharad Birmiwal1, Jayakrishnan Nair2, D. Manjunath3, and Ravi R. Mazumdar1

1Department of Electrical and Computer Engineering, University of Waterloo
2Department of Electrical Engineering, California Institute of Technology

3Department of Electrical Engineering, IIT Bombay

Abstract—In this paper, we address two issues in multihop
wireless networks—poor end-to-end delay performance and high
per-slot computational overhead of the classical max-weight
algorithm. To reduce the end-to-end delay, we first propose a
simple modification to the classical maximum weight scheduling
algorithm that promotes the use of shorter paths by the packets.
The significantly lower delays are shown via simulation. The
modification that we suggest does not reduce the schedulable
region and has the same complexity as the classical algorithm.
Next, we propose a static routing and scheduling scheme that
is obtained by adapting the classical optimal routing problem
of wireline networks to multihop wireless networks. The static
scheme slows the timescale of routing and scheduling computa-
tions from per-slot to the timescale of change in the network
traffic pattern; thus the computation complexity is reduced. We
also show, via simulations, that the delay performance in the
static scheme is comparable to that of the dynamic scheme that
we have proposed.

I. INTRODUCTION

Routing and link scheduling in multihop wireless networks

is now a well studied problem for which a large number

of variations have also been studied. Much of the recent

research has its roots in the work of [1] that introduced a

‘maximum-weight’ (MW) link-scheduling and routing scheme

to maximize the achievable throughput of the network. In this

scheme, each node maintains a per-flow queue, and in each

slot the scheduling algorithm uses the queue occupancies to

assign weights to each link. The allowable schedules (links

to activate) is assumed known and the MW schedule is

chosen in each slot; notice that routing and scheduling are

performed on a per-slot timescale. The requirement to collect

the queue length information at a central place, compute the

MW schedule and disseminate it to all the nodes implies that

the scheme is only ‘ideal’ and a more practical scheme is

needed. Also, a well known drawback of the MW algorithm

is that the end-to-end delays at low and medium loads are

high, and can in some cases be higher than at higher loads

[2]. This paper addresses both the computation and the delay

issues of the MW algorithm.

Our starting point is to consider a rather simple modification

to the standard MW algorithm in which the link-weights are

adjusted to promote the use of shorter paths in the network

(Section II). As we will see, this leads to substantially lower

delays, without any reduction of the stability region. However,

this new algorithm retains the per-slot computational overhead

of the original MW algorithm.

Next, seeking to address simultaneously the computation

and the delay issues of the MW algorithm, we adapt the delay

minimizing optimal routing problem of wireline networks to

wireless networks (Section III). We begin by assuming that the

flow volumes between source-destination pairs in the network

are known. We then define a static optimal routing and

scheduling problem for wireless networks. The solution yields

a static routing and scheduling scheme; the qualifier ‘static’

means that routing and scheduling decisions do not depend on

the instantaneous network state. We thus slow the timescale

of routing and scheduling computations from per-slot to the

timescale of change in the network traffic pattern. The wireless

setting of course introduces several complexities, e.g., the link

capacities also become variables in the optimization and this

makes the objective function non-convex.

Unlike dynamic routing and scheduling algorithms, our

proposed static schemes are non-opportunistic, in that they

do not exploit instantaneous state information to route and

schedule packets. In spite of this, as we will see in Section IV,

they achieve a delay performance comparable to the best

dynamic schemes.

A. Previous Work

Most of the results in the literature, starting with the seminal

work of [1], propose a dynamic routing and link scheduling

algorithm. This in turn is some variant of a maximum weight

(where ‘weight’ is suitably defined) schedule in each slot or

group of slots. The schedule is typically designed to maxi-

mize the throughput of the network. Throughput optimality is

usually derived via Foster’s criteria by a suitable choice of

a Lyapunov function to prove the stability of an underlying

Markov chain.

Early follow-ups to [1] concentrated on making the schedul-

ing algorithms more practical. Results on delay performance,

typically mean delay, have been available, e.g., [3], [4]. More

detailed analysis are now available, e.g., [4]. Algorithms to

determine the schedules in each slot to reduce the mean delay

have also been proposed in recent literature, e.g., [5].

There are several new results for networks with only one-

hop flows, e.g., [6]. Scheduling to guarantee per flow end-to-

end delay bounds are derived in [6]; however a constant factor

reduction in the schedulable region is introduced. [7] describes

a randomized algorithm to reduce the per-hop delay, also with

a reduction in the schedulable region.

These and other such scheduling algorithms are rather

complicated, and even complex (in terms of the computation

times), and need to be performed frequently, possibly in every

slot. Furthermore, all of them lead to a reduction in the

schedulable region. This can mean a possible negation of

the effect of the delay minimization scheduling algorithm,

especially at loads closer to the reduced capacity of the new

algorithm.

In this paper we hark back to wireline networks, where

multipath routing for average delay minimization is an old

jungle problem with early algorithms dating back to the works

[8]–[11]. Taking inspiration from this seminal line of work,

we will formulate and analyze a static routing and scheduling

algorithm to minimize the mean delay in a multihop wireless

network. We will see that the extension is non-trivial because

unlike in the wireline network, the link capacities are now

variables! We will analyze the problem in some detail.

II. ADAPTING LINK WEIGHTS TO PRIORITIZE SHORTER

PATHS

We now describe a simple variation of the MW dynamic

routing and scheduling algorithm, the weighted back-pressure

algorithm (WBPA) which reduces delay without reduction of

throughput. Consider a wireless network, defined by a set N
of nodes, and a set L of directed links connecting the nodes.

Assume that time is slotted and that in each slot, a set of links,

say s, may be scheduled to transmit. A set F of flows uses the

network, with sf , df and λf being, respectively, the source

node, the destination node, and the arrival rate in packets per

slot of flow f ∈ F . The set of all feasible schedules, S, is

assumed to be given a priori.

Recall that in [1], link weights are defined by wl =
maxf∈F (Qf,bl − Qf,el), where Qf,i is the backlog of the

queue for flow f at node i, and bl and el denote, respec-

tively, the transmitting and receiving node on link l. Let

Q = (Qf,i, f ∈ F , i ∈ N). Define modified link weights

w′
l = maxf∈F βf,l(Qf,bl−Qf,el)

+. The factor βf,l > 0 allows

a link on a shorter path to have a higher weight even with small

backlogs. Consider the packet arrival and service model of [1]

and modify the routing and scheduling algorithm as follows.

Let Qz := {Q :
∑

f∈F

∑

i∈N Q2
f,i < z} where Q is the state

of the Markov chain like in [1]. Now consider the following

routing and scheduling algorithm with the choice of schedule

given by

Π =

{

argmaxs∈S

∑

l∈S w′
l if Q ∈ Qz

argmaxs∈S

∑

l∈S wl otherwise.
(1)

Here, if the system state is in Qz, then routing and scheduling

is performed using {w′
l}, otherwise it is performed using {wl}.

The routing and scheduling in states in Qz affect the transition

probabilities of the Markov chain in a finite set of states. Thus

the stability remains unaffected. This follows from the analysis

of [1] because the drift in the ‘large’ states outside Qz , is

still negative. Qz can be made arbitrarily large but finite. The

choice of βf,l is discussed next.

Let Hf,i be the length of the shortest path (number of hops)

from node i to node df . Let

βf,l := (|N | −Hf,i)
α for l ∈ Oi, (2)

where Oi is the set of all egress links at i, and α > 1. With this

choice of βf,l, links on shorter paths towards the destination

have higher preference, thus preventing packets from being

misdirected frequently at low and moderate loads, as in the

MW algorithm. In other words, our choice of βf,l creates

virtual back-pressures that favor shorter paths even at low and

moderate loads. Contrast this with the algorithm of [2] where

shorter paths are used until the traffic intensity of unity is

attained; WBPA is more opportunistic and avoids congested

spots because of dynamic routing. We evaluate WBPA via

simulations and see in Section IV that it achieves significantly

lower delays compared to the MW algorithm.

III. A STATIC FORMULATION FOR DELAY MINIMIZATION

In this section, we pose the static optimization problem

for minimizing average delay, along the lines of [8]–[10].

Consider an ergodic schedule in which schedule s is used for

fraction φs of time. We will say that φ := (φs, s ∈ S) is the

scheduling in the network. Clearly, φs ≥ 0 and
∑

s∈S φs = 1;
this defines the set Φ of feasible scheduling vectors. The

capacity (in packets/slot) of link l is thus µl :=
∑

s∈S: l∈s φs.
We will assume ergodic routing and let xf,l, f ∈ F and l ∈ L,

denote the rate at which packets of flow f are transmitted

on link l. Let xf := (xf,l, l ∈ L), x := (xf , f ∈ F).
We will say that x is the routing in the network. Clearly,

for each f ∈ F , the vector xf is non-negative and satisfies

the flow conservation constraints. These conditions define

the feasibility set Xf for xf ; let X :=
∏

f∈F Xf . The

rate at which packets arrive to be transmitted on link l is

γl :=
∑

f∈F xf,l.
We assume that the mean packet delay on link l can be

expressed as a function of γl and µl, say, Dl(γl, µl) (this

is a standard assumption in the literature; e.g., see [9], [10],

[12]). The mean packet delay in the network is minimized by

minimizing the average number of packets in the system, i.e.,

by minimizing G :=
∑

l γlDl(γl, µl) (from Little’s Law).

We make the following regularity assumptions on the link

delay function Dl. Define Z := {(γl, µl) ∈ R
2 : µl ≥

ǫ, 0 ≤ γl < µl}, where ǫ > 0 is a small positive constant.

We impose a lower bound ǫ on µl to eliminate a possible

discontinuity at the origin of the function γlDl(γl, µl). Dl

is twice continuously differentiable over Z, and is defined to

be ∞ outside this set. Over its effective domain, Dl(γl, µl)
is strictly increasing and convex with respect to γl, and

strictly decreasing and convex with respect to µl. Finally,

limγl↑µl
Dl(γl, µl) =∞ for all µl ≥ ǫ.

We are interested in optimally choosing routing x and

scheduling φ to minimize the mean packet delay in the

network. Formally, this optimization problem can be stated

as follows.
Minimize G(x, φ)
s.t. (x, φ) ∈ X × Φ

(P1)

We assume that the packet arrival rates λf , f ∈ F , are within

the capacity region of the network; this ensures that the above

optimization problem is feasible. Also, note that we do not

need to explicitly include a stability constraint for each link,

since the objective function is defined to be∞ if this constraint

is violated on any link.

The function Dl(γl, µl) is meant to model the average delay

on link l. A standard approach would be to model Dl using the

Pollaczek-Khinchin formula for the M/G/1 FCFS queue (as in

[9], [10], [12]), with γl and µl denoting the arrival rate and

the service rate respectively. Note that in all these models,

Dl(0, µl) = 1
µl
. The following proposition states that for

such ‘standard’ queueing delay models, the average number of

packets in the queue (including the one being served), given

by γlDl(γl, µl) is not jointly convex with respect to (γl, µl).
This suggests that (P1) is in general a non-convex optimization

problem for standard queueing delay models.

Proposition 1: If Dl satisfies the regularity conditions

listed above, and Dl(0, µl) = 1
µl
, then γlDl(γl, µl) cannot

be convex over the interior of Z.
Proof: Let F (γ, µ) := γDl(γ, µ). Pick µ0 > ǫ.

Since
∂Dl(γ,µ)

∂µ
is assumed to be continuous over Z,

limγ↓0
∂Dl(γ,µ0)

∂µ
= − 1

µ2

0

.

A necessary condition for F to be convex over Z is that

the determinant of its Hessian (denoted by det(∇2F)) be non-

negative. det(∇2F) is easily computed to be the following.

det(∇2F (γ, µ)) = γ
∂2D

∂µ2

(

2
∂D

∂γ
+ γ

∂2D

∂γ2

)

−

(

∂D

∂µ
+ γ

∂2D

∂µ∂γ

)2

.

Since D is assumed to be twice continuously differentiable

over Z, all the derivatives on the right hand side of the above

equation must be bounded over the compact set {(γ, µ0) : 0 ≤
γ ≤ µ0/2}. Therefore,

lim
γ↓0

det(∇2F (γ, µ0)) = −
1

µ4
0

< 0.

This implies that for small enough γ > 0, det(∇2F (γ, µ0)) <
0. Therefore, F cannot be convex over Z.

If we fix the scheduling vector φ, then it is easy to see that

(P1) is convex and reduces to the optimal routing problem

of [9], [10]. Similarly, if we fix the routing x, then (P1)

reduces to a convex optimization, and is therefore easy to

solve. Proposition 1 above suggests that with both routing

and scheduling as variables, (P1) is in general a non-convex

optimization. We now provide algorithms to compute a local

minimum of (P1).

First, we characterize the set of local minimizers of (P1).

Define J := {(x, φ) ∈ X × Φ | G(x, φ) < ∞}. Since we

have assumed that the optimization (P1) is feasible, the set J

is non-empty. Define

J∗ :=

{

(x̄, φ̄) ∈ J

∣

∣

∣

∣

x̄ ∈ argminx∈X G(x, φ̄)
φ̄ ∈ argminφ∈Φ G(x̄, φ)

}

.

Lemma 1: J∗ is the set of local minimizers of G over X×
Φ.

Proof: The proof follows easily from the fact that X
and Φ are convex, and that a minimization with respect to

either variable x or φ keeping the other fixed is a convex

minimization.

Since X and Φ are convex sets, (x̄, φ̄) is a local minimizer

of G over X × Φ iff.

∇xG(x̄, φ̄) · (x− x̄) +∇φG(x̄, φ̄) · (φ− φ̄) ≥ 0

∀ (x, φ) ∈ X × Φ

⇐⇒
∇xG(x̄, φ̄) · (x− x̄) ≥ 0 ∀ x ∈ X,
∇φG(x̄, φ̄) · (φ− φ̄) ≥ 0 ∀ φ ∈ Φ

⇐⇒
x̄ ∈ argminx∈X G(x, φ̄),
φ̄ ∈ argminφ∈Φ G(x̄, φ).

The preceding lemma states that the set of local minimizers

of (P1) are precisely the tuples (x, φ) satisfying the property

that with routing vector fixed at x, the scheduling vector φ is

optimal, and vice-versa. Clearly, if G is convex, then J∗ is the

set of global minimizers of G over X × Φ.
We now provide two approaches to compute a local mini-

mizer of (P1). The first is a block descent algorithm, which

cyclically performs (convex) optimizations with respect to

the routing and the scheduling. Next, we describe a class

of algorithms that chooses between a routing update and a

scheduling update in each iteration.

Block descent algorithm

We now describe an algorithm (see Algorithm 1) for com-

puting a local minimum of (P1) based on the block descent

algorithm (see Proposition 2.7.1 of [13]). Let (x0, φ0) ∈ J
denote a starting feasible point for (P1). Such a point is easy to

compute since J is defined by linear constraints. The algorithm

is parametrized by a positive constant c.

Algorithm 1 Block descent

for i ≥ 0 do

φi+1 ← argminφ∈Φ G(xi, φ) + 1
c
‖ φ− φi ‖2

xi+1 ← argminx∈X G(x, φi+1) + 1
c
‖ x− xi ‖2

end for

Note that the optimizations involved in each iteration of

Algorithm 1 are convex, and hence can be performed by

standard techniques. The following lemma guarantees the

convergence of this block descent algorithm.

Lemma 2: The sequence {(xi, φi)} generated by Algo-

rithm 1 converges to an element of J∗.
Proof: Invoking Proposition 2.7.1 of [13], the sequence

{(xi, φi)} converges to a local minimum of (P1) if, for any

feasible point (x0, φ0) of (P1), the optimizations

min
x∈X

G(x, φ0) +
1

c
‖ x− x0 ‖2, and

min
φ∈Φ

G(x0, φ) +
1

c
‖ φ− φ0 ‖2

yield unique minimizers. This uniqueness follows easily from

the fact that the objective function in both minimizations is

strictly convex.

A class of iterative algorithms

Next, we introduce a class of iterative algorithms (see

Algorithm 2) that guarantee convergence to J∗. One such

algorithm is specified by two functions: a ‘routing update’

function, ART : J → X, which provides descent by updating

the routing vector, and a ‘scheduling update’ function ASC :
J → Φ, which provides descent by updating the scheduling

vector. Algorithm 2 describes the algorithm derived from ART

and ASC . As before, we assume that a starting feasible point

(x0, φ0) ∈ J is available.

Algorithm 2 Algorithm for solving (P1)

for i ≥ 0 do

if G(ART (x
i, φi), φi) ≤ G(xi, ASC(x

i, φi)) then
xi+1 ← ART (xi, φi) ; φi+1 ← φi

else

xi+1 ← xi ; φi+1 ← ASC(x
i, φi)

end if

end for

In each iteration, the algorithm performs either the routing

update or the scheduling update, whichever produces the

greater descent in the objective function value. The following

theorem states that so long as the routing update ART and

the scheduling update ASC are continuous, and satisfy certain

simple descent criteria, the sequence {(xi, φi)} generated by

the algorithm converges to the set J∗. Most importantly,

the descent properties required of the routing and scheduling

updates are decoupled, implying these update rules can be

designed independently.

Theorem 1: For any (x̂, φ̂) ∈ J satisfying G(x̂, φ̂) ≤
G(x0, φ0), assume that the routing update ART satisfies the

following descent property.

(a) If x̂ ∈ argminx∈X G(x, φ̂), then G(ART (x̂, φ̂), φ̂) =

G(x̂, φ̂);
(b) if x̂ /∈ argminx∈X G(x, φ̂), then there exists δ > 0 such

that for all (x̃, φ̃) ∈ X×Φ satisfying ‖ (x̃, φ̃)−(x̂, φ̂) ‖<
δ, G(ART (x̃, φ̃), φ̃) < G(x̂, φ̂).

Similarly, for any (x̂, φ̂) ∈ J, satisfying G(x̂, φ̂) ≤ G(x0, φ0),
assume that the scheduling update ASC satisfies the following

descent property.

(a’) If φ̂ ∈ argminφ∈Φ G(x̂, φ), then G(x̂, ASC(x̂, φ̂)) =

G(x̂, φ̂);
(b’) if φ̂ /∈ argminφ∈Φ G(x̂, φ), then there exists δ > 0 such

that for all (x̃, φ̃) ∈ X×Φ satisfying ‖ (x̃, φ̃)−(x̂, φ̂) ‖<
δ, G(x̃, ASC(x̃, φ̃)) < G(x̂, φ̂).

Then every limit point of the sequence {(xi, φi)} generated

by Algorithm 2 lies in J∗.

Proof: The descent assumptions on ART and ASC imply

that {G(xi, φi)} is a non-increasing sequence (bounded below

by the value of G at the solution of (P1)). Therefore, there

exists G∗ ∈ R such that

lim
i→∞

G(xi, φi) = G∗, G(xi, φi) ≥ G∗ ∀ i. (3)

Now, since the sequence {(xi, φi)} is contained in the

compact space X×Φ, it must have a converging subsequence

(xi(n), φi(n))
n↑∞
→ (x∗, φ∗). Note that since G is continuous,

G(x∗, φ∗) = G∗. We need to prove that (x∗, φ∗) ∈ J∗
r .

Let us assume (for the sake of obtaining a contradiction)

that (x∗, φ∗) /∈ J∗
r . Then from the definition of J∗, at-least

one of the following conditions must hold.

(i) x∗ /∈ argminx∈X G(x, φ∗)
(ii) φ∗ /∈ argminφ∈Φ G(x∗, φ)

Let us say (i) holds. Then from the descent assumption

on ART , there exists ǫ > 0 such that for all (x̃, φ̃) ∈
X × Φ satisfying ‖ (x̃, φ̃) − (x∗, φ∗) ‖< ǫ, we must

have G(ART (x̃, φ̃), φ̃) < G(x̂, φ̂). Since (xi(n), φi(n))
n↑∞
→

(x∗, φ∗), there exists n0 ∈ N such that ‖ (xi(n0), φi(n0)) −
(x∗, φ∗) ‖< ǫ, which implies that

G(ART (xi(n0), φi(n0)), φi(n0)) < G(x∗, φ∗) = G∗. (4)

Algorithm 2 picks (xi(n0)+1, φi(n0)+1) such that

G(xi(n0)+1, φi(n0)+1) ≤ G(ART (xi(n0), φi(n0)), φi(n0)). (5)

Combining (4) and (5), we conclude that

G(xi(n0)+1, φi(n0)+1) < G∗, which is a contradiction.

This means Condition (i) above cannot hold. Using an

identical argument, it can be shown that Condition (ii) also

cannot hold. Therefore, (x∗, φ∗) ∈ J∗
r .

Since (P1) reduces to a convex optimization when either the

routing vector or the scheduling vector is held fixed, the update

rules ART and ASC may be designed by standard techniques

in convex optimization. For example, these update rules can

be designed using projected gradient methods [13].

IV. EVALUATION

In this section we evaluate the mean delay performance,

via simulations, of the weighted back-pressure algorithm (a

dynamic routing and scheduling algorithm that generalizes

the max-weight algorithm), and the static formulation in (P1).

The performance of the two algorithms are compared with

those of the max-weight algorithm and the model of [2]. The

simulations are on a 4 × 4 grid topology considered under two

scenarios. The first, with only two flows (see Fig. 1), highlights

the role of α and z. The second scenario has a flow between

every pair of source and destination nodes, i.e., there are 240
interacting flows.

A. Weighted Back-pressure Algorithm

The weighted back-pressure algorithm assigns a higher

priority to shorter paths to the sink and thus reduces the mean

end-to-end delay. The priority is increased by introducing

multiplicative weights, βf,l, as in (2) to links that are on shorter

paths of a flow. The increased link weights make activation

of shorter paths more likely. A closer inspection reveals that

the priority of flows on links to nodes with smaller distance

to sink , let us call them short flows (as compared to shorter

paths of a single flow previously), increases. As α increases,

the (maximal) schedule activated in a slot is now usually

determined by the backlogs on shorter flows and shorter paths.

In Fig. 2, we plot the mean delay of the short flow (Flow 2)

for different values of α. The intuition that we provide above

is verified in this plot. We also observe that the mean delay

of the longer flow, Flow 1 (Fig. 3), shows no particular trend

with changing α as the schedules are dominantly determined

by the backlogs of Flow 2.

The effect of varying z is examined next. For a given z,

the algorithm switches to max-weight algorithm when the

queue backlogs are sufficiently high. Thus, for arrival rates

beyond a certain magnitude, the mean delay resembles that of

the max-weight algorithm. As z increases, this transitioning

arrival rate increases as greater queue backlogs are required

before switching to the max-weight algorithm. Such intuition

is verified by our simulations (see Fig. 4).

B. The Static System

The delay performance when x and φ are chosen as a

solution to (P1) is evaluated in this section. Clearly, several

routing and scheduling schemes can achieve x and φ and

the actual delay performance will depend on the chosen

scheme. Let us first consider the static routing and scheduling

schemes that are possible. A simple static routing algorithm

suggests itself. At node i, a packet of flow f is routed on

link l with probability pf,l independent of all other packets,

where pf,l :=
xf,l∑

l′∈Oi
xf,l′

. A simple scheduler, we call

the independent scheduler, also suggests itself. In each slot,

schedule s ∈ S is chosen with probability φs independent

of all other slots. In this scheme, the interval of time between

the activation of a schedule has a high variance. Reducing this

variance can reduce the mean delays on the links. This leads

us to the max-delta scheduler which is a generalization of the

round-robin scheduler. Let Π(t) be the schedule activated in

slot t and define φ̂s(t) := 1
t

∑t−1
u=0 1(Π(u) = s). φ̂s(t) is

the fraction of time schedule s has been activated up to time

t. The schedule activated during time slot t is determined

by Π(t) = argmaxs∈S{φs − φ̂s(t)} where ties are broken

according to some pre-determined rule. Observe that this gives

us a deterministic sequence of schedules which can be pre-

computed.

Fig. 5 shows the well known poor delay performance of

the MW algorithm. We see that independent scheduling

with static routing performs significantly better than the MW

algorithm at low loads because the static routing prohibits

1 2 3 4

1211

76

109

5

13 14 15 16

8

Flow 1

Flow 2

Fig. 1. The 4× 4 grid topology with 2 flows

 1

 2

 3

 4

 5

 6

 7

 8

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
e
a
n
 d

e
la

y
 (

ti
m

e
s
lo

ts
)

Arrival rate per flow (pkts/timeslot)

Weighted back-pressure algorithm, α=1, z=25e8
Weighted back-pressure algorithm, α=2, z=25e8
Weighted back-pressure algorithm, α=3, z=25e8
Weighted back-pressure algorithm, α=6, z=25e8

Weighted back-pressure algorithm, α=10, z=25e8

Fig. 2. The effect of varying α on the mean delay of the short flow in the
topology of Fig. 1.

random walk like behavior. However, since the schedules are

chosen randomly in each slot, the interval between consecutive

link activations can have a high variance. This and the fact

that the schedule in each slot is independent of the queue

occupancies causes the delay to continue to be high for low

loads; the scheme of [2] offers a better performance here.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
e
a
n
 d

e
la

y
 (

ti
m

e
s
lo

ts
)

Arrival rate per flow (pkts/timeslot)

Weighted back-pressure algorithm, α=1, z=25e8
Weighted back-pressure algorithm, α=2, z=25e8
Weighted back-pressure algorithm, α=3, z=25e8
Weighted back-pressure algorithm, α=6, z=25e8

Weighted back-pressure algorithm, α=10, z=25e8

Fig. 3. The effect of varying α on the mean delay of the long flow in the
topology of Fig. 1.

 0

 5

 10

 15

 20

 25

 30

 35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
e
a
n
 d

e
la

y
 (

ti
m

e
s
lo

ts
)

Arrival rate per flow (pkts/timeslot)

Max-weight algorithm
Weighted back-pressure algorithm, α=10, z=10
Weighted back-pressure algorithm, α=10, z=15

Weighted back-pressure algorithm, α=10, z=25e8

Fig. 4. Effect of varying z on the mean delay of the network in Fig. 1.

 0

 5

 10

 15

 20

 25

 30

 35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
e
a
n
 d

e
la

y
 (

ti
m

e
s
lo

ts
)

Arrival rate per flow (pkts/timeslot)

Max-weight algorithm
Ying et al model

Static routing, independent scheduling
Static routing, max-delta scheduling

Weighted back-pressure algorithm, α=10, z=25e8

Fig. 5. Mean end-to-end delay averaged over both flows when x and φ are
chosen from (P1) and implemented using the static routing and scheduling
schemes. Performance of schemes of [1] and [2] are also provided.

Note that in the scheme of [2], the shortest path routes

are saturated at approximately 0.45 packets/slot for the first

scenario and the network does not stabilize for higher loads.

The max-delta scheduler with static routing performs better

than the independent scheduler. We attribute this to the reduced

variance of the inter-activation time of the links.

Figure 5 also shows the results for the WBPA discussed in

Section II. This algorithm performs significantly better than

the MW algorithm and the algorithm of [2]. Remarkably,

the performance of the WBPA is comparable to that of the

static-routing max-delta scheduling scheme. Similar trends are

observed in the scenario with 240 flows (see Fig. 6) though the

WBPA performs poorer than max-delta scheduling possibly

because of high priority to short flows.

V. CONCLUSION

This paper focuses on reducing mean delay in multihop

wireless networks. Our formulation relies on solving a non-

linear optimization problem for static scheduling and static

routing variables. We prove an interesting property: no realistic

delay function is convex for wireless networks, i.e., when

 0

 50

 100

 150

 200

 250

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.011

M
e
a
n
 d

e
la

y
 (

ti
m

e
s
lo

ts
)

Arrival rate per flow (pkts/timeslot)

Max-weight algorithm
Ying et al model

Static routing, independent scheduling
Static routing, max-delta scheduling

Weighted back-pressure algorithm, α=10, z=25e8

Fig. 6. Mean end-to-end delay averaged over 240 flows when x and φ are
chosen from (P1) and implemented using the static routing and scheduling
schemes. Performance of schemes of [1] and [2] are also provided.

both capacity and routing parameters are variables. We present

two self-evident implementations and show that implementing

static schemes can achieve significantly better mean delays,

a benefit aside from the reduced complexity. We benchmark

our results against the popular max-weight algorithm scheme

in [1], the model of [2], and by a weighted back-pressure

algorithm, we propose, that is of independent interest.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[2] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On combining shortest-
path and back-pressure routing over multihop wireless networks,”
IEEE/ACM Transactions on Networking, vol. 19, no. 3, pp. 841–854,
June 2011.

[3] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross layer control in wireless networks,” Foundations and Trends in

Networking, vol. 1, no. 1, pp. 1–144, 2006.
[4] M. J. Neely, “Delay analysis for maximal scheduling with flow control

in wireless networks with bursty traffic,” IEEE/ACM Transactions on

Networking, vol. 17, no. 4, pp. 1146–1159, August 2009.
[5] L. Huang and M. J. Neely, “Delay efficient scheduling via redundant

constraints in multihop networks,” Performance Evaluation, 2011.
[6] S. Jagabathula and D. Shah, “Optimal delay scheduling in networks with

arbitrary constraints,” in Proceedings of ACM SIGMETRIC/Performance,
2008.

[7] M. Lotfinezhad, B. Liang, and E. S. Sousa, “On stability region
and delay performance of linear memory randomized scheduling for
randomized scheduling for time varying networks,” IEEE Transactions

on Networking, vol. 17, no. 6, pp. 1860–1873, December 2009.
[8] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation network

design,” Networks, vol. 3, pp. 97–133, 1973.
[9] R. Gallager, “A minimum delay routing algorithm using distributed

computation,” IEEE Transactions on Communications, vol. 25, no. 1,
pp. 733–785, January 1977.

[10] D. Bertsekas, E. Gafni, and R. Gallager, “Second derivative algorithms
for minimum delay distributed routing in networks,” IEEE Transactions

on Communications, vol. 32, no. 8, pp. 911–919, August 1984.
[11] J. Tsitsiklis and D. Bertsekas, “Distributed asynchronous optimal routing

in data networks,” IEEE Transactions on Automatic Control, vol. 31,
no. 4, pp. 325–332, April 1986.

[12] Y. Xi and E. M. Yeh, “Node-based optimal power control, routing,
and congestion control in wireless networks,” IEEE Transactions on

Information Theory, vol. 54, no. 9, pp. 4081–4106, September 2008.
[13] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.

