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ABSTRACT
Online services today are characterized by a highly conges-
tion sensitive user base, that also experiences strong positive
network effects. A majority of these services are supported
by advertising and are offered for free to the end user. We
study the problem of optimal capacity provisioning for a
profit maximizing firm operating such an online service in
the asymptotic regime of a large market size. We show that
network effects heavily influence the optimal capacity provi-
sioning strategy, as well as the profit of the firm. In particu-
lar, strong positive network effects allow the firm to operate
the service with fewer servers, which translates to increased
profit.

1. INTRODUCTION
The internet today offers a wide range of online services,

and implementing these services typically requires consid-
erable computing infrastructure, consisting of an extremely
large number of servers. Therefore, how much (comput-
ing) capacity to provision is a crucial decision for the firm
operating the service. Over-provisioning enhances the user-
perceived quality of the service, but is also expensive. There-
fore, the service provider must strategically provision the
correct number of servers to maximize its profit. The goal
of this paper is to provide insight into this capacity provi-
sioning decision.

In exploring the capacity provisioning of online systems,
there are three features of the online services themselves that
are of particular importance.

Firstly, a majority of these online services are offered for
free to the end user, the firm (or service provider) deriving
its revenue via advertising. Corporations like Google and
Facebook make billions of dollars in revenue annually by
offering advertising supported online services.

Secondly, many online services offered today allow for
interaction between users. As a result, these services ex-
hibit strong positive network effects, i.e., users obtain an
increased utility from other people using the same service
[8, 4]. Examples of such services abound: social networking
applications, online gaming environments, document edit-
ing services, and many others. Indeed, network effects are a
primary driver of usage growth for such services.
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Thirdly, users of online services today are highly delay
sensitive [6]. Large delays (due to congestion) in accessing a
service can adversely affect the user perceived quality of the
service, potentially leading to stagnation in usage growth for
the service.

The goal of this paper is to understand how the capac-
ity provisioning decision for online services is influenced by
the interplay of the three factors discussed above. More
specifically, in this paper, we consider the problem of opti-
mal capacity provisioning for a firm operating an advertis-
ing supported online service. We model both network effects
and congestion sensitivity of the user base, and analyze the
number of servers the firm must provision to maximize its
profit as the volume of the user base (or the market size)
scales to infinity.

Our analysis reveals that as the market size becomes large,
the profit maximizing strategy for the service provider in-
volves operating the service in heavy traffic, and still hav-
ing almost the full market base using the service. This is
made possible by the statistical economies of scale inherent
in large queueing systems: the firm can run its servers at
a high utilization, and simultaneously provide good quality
of service to users. Moreover, the particular heavy traffic
regime that emerges depends on how strong the positive
network effects are. More pronounced positive network ef-
fects imply a ‘heavier’ traffic regime and greater profit for
the firm. This is because the firm can exploit the additional
utility users derive from aggregation to operate the service
at a higher level of congestion. This means the firm needs
to provision fewer servers to attract the user base to the ser-
vice, which translates to greater profit.

Related literature

In the queueing literature, there is a large body of work
analyzing systems where the arrival rate of jobs as well as the
number of servers scale to infinity. Depending on how the ar-
rival rate and the number of servers scale relative to one an-
other, different heavy traffic regimes are possible. One well
studied scaling regime is the so-called Halfin-Whitt regime
[5], in which the number of servers equals the minimum num-
ber required to stably support the arrival rate, plus a ‘spare’
that is proportional to the square root of the arrival rate.

In a large majority of the literature on heavy traffic many-
server asymptotics, the scaling regime is assumed a priori.
Some of the work in this category focuses on deriving prop-
erties of different scaling regimes; see, for instance, [5, 12, 2]
and the references therein. There is also considerable work
that focuses on optimal routing/scheduling in the assumed
asymptotic regime. Representative papers with this theme



include [1, 13, 15].
Very few papers take the contrasting approach of deriving

the scaling regime that emerges naturally in the considered
setting. Borst et al. [3] consider the problem of optimal
staffing in a call center in an asymptotic regime where the
call arrival rate is exogenously scaled to infinity. On the
other hand, some papers (including this one) take the ap-
proach of scaling only the potential arrival rate to infinity.
The actual arrival rate is a function of the price of the ser-
vice, and/or the level of congestion. Papers in this category
include [14, 9, 10, 11]. However, none of these papers con-
sider network effects.

The key goal of this paper is to explicitly model network
effects, and to understand their impact on the scaling regime
that emerges, as well as the profit of the firm. In this sense,
the work most related to ours is [7], which also models net-
work effects and congestion in online services. However, the
focus of [7] is on understanding the utility of the user base,
not on capacity provisioning.

2. MODEL
In this section, we describe our model for the interaction

between a profit maximizing firm (service provider) and a
congestion sensitive user base. In our model, the firm im-
plements the service by operating a cluster of servers, which
serve user requests. We assume that there is a known mar-
ket size, which determines the maximum possible usage of
the service. The actual usage depends on the utility the ser-
vice provides to the user base, as well as the congestion (or
delay) experienced by the user base in accessing the service.
The firm derives a revenue proportional to the usage of the
service, which is characteristic of services that are supported
by advertising, and incurs a cost proportional to the num-
ber of servers provisioned. The firm decides the number of
servers to provision so as to maximize its own profit.

Formally, let k denote the number of servers provisioned
by the firm. Λ denotes the maximum possible arrival rate
of requests for the service, and thus characterizes the mar-
ket size. User requests arrive according to a Poisson pro-

cess with rate λ̂Λ(k) ≤ Λ. These requests are served in a
First-Come-First-Served manner by a system with k paral-
lel servers and a single queue. The processing times of re-
quests are independent and exponentially distributed with
mean 1/µ. Without loss of generality, we take µ = 1. Note

that λ̂Λ(k) captures the extent of ‘usage’ of the service by
the user base.

We consider the following functional form for λ̂Λ(k) :

λ̂Λ(k) := max

{
arg max
λ∈[0,Λ]

[
U(λ)− λξ(λ, k)

]}
. (1)

Here, U(·) is the net utility derived by the user base as a
function of the ‘usage.’ Clearly, network effects will deter-
mine the form of U(·). Specifically, more pronounced net-
work effects will imply a larger value of U(·). ξ(λ, k) is an
indicator of the steady state congestion experienced by a
typical request for service, with ξ(λ, k) =∞ for λ ≥ k, since
the queueing system is unstable in this case. In this paper,
for simplicity, we take ξ(λ, k) = E [W (λ, k)] , where W (λ, k)
is the stationary waiting time experienced by a request. Our
analysis technique, however, easily extends to a more gen-
eral class of congestion indicators. If we interpret λξ(λ, k)
as the aggregate disutility experienced by the user base on
account of congestion, (1) means the ‘usage’ of the service
is set so as to maximize the social payoff.

Note that (1) corresponds to a cooperative, social opti-
mization by the user base. Although the present paper fo-
cuses on this cooperative model of user behavior, it is also
possible to analyze the following non-cooperative model. In-

terpret V (λ) := U(λ)
λ

to be the utility seen by a single (in-
finitesimal) user. Then an aggregate usage rate given by

λ̂Λ(k) = max {λ ∈ [0,Λ] | V (λ) = ξ(λ, k)} (2)

corresponds to a Wardrop equilibrium between the users
with respect to their individual payoffs. We briefly compare
our results for the cooperative model to those corresponding
to the above non-cooperative model in Section 3.

We now turn to the behavioral model for the firm. By

provisioning k servers, the firm derives revenue b1λ̂Λ(k), and
incurs cost b2k per unit time. Without loss of generality, we
set b2 = 1. The profit maximizing firm naturally provisions
capacity so as to maximize its profit. Specifically, the num-
ber of servers provisioned is given by

k∗Λ := max

{
arg max

k

[
b1λ̂Λ(k)− k

]}
,

and the corresponding request arrival rate is given by

λ∗Λ := λ̂Λ(k∗Λ).

Since λ̂Λ(k) < k, a necessary condition for the firm to make
positive profit is b1 > 1. Since the case b1 ≤ 1 is uninterest-
ing (the firm will simply not operate in this case), we will
assume hereafter that b1 > 1.

The tuple (λ∗Λ, k
∗
Λ) characterizes the equilibrium between

the firm and the user base. We seek to understand how this
tuple behaves as the market size Λ scales to∞. In particular,
we would like to discern the role played by network effects
and economies of scale in the regime of large market size.

3. RESULTS
In this section, we state and interpret our results. These

results, summarized in Theorem 1 below, make the following
technical assumptions about the functional form of U(·).

Assumption 1. U : R+ → R+ is continuously differen-
tiable over [0,∞) with U(0) = 0, limλ→∞ U(λ) = ∞. U ′(·)
satisfies the following properties.

(a) There exists λ̄ ≥ 0 such that U ′(·) is non-decreasing
over [λ̄,∞).

(b) limλ→∞
U′(λ)
λ

exists.

(c) limλ→∞
U′(λ+ν)
U′(λ)

= 1 ∀ ν > 0.

Condition (a) above states that U(λ) is convex for large
λ. This allows us to capture positive network effects. (b)
and (c) are regularity assumptions. Note that Assumption
1 implies that

α := lim
λ→∞

U ′(λ) ∈ (0,∞) ∪ {∞}.

We now state our theorem.

Theorem 1. Suppose Assumption 1 holds. Then for large
enough Λ, λ∗Λ ∈ [Λ − 2,Λ]. As Λ ↑ ∞, the optimal capacity
provisioning is the following.



(i) If α ∈ (0,∞), then

k∗Λ = Λ +
√
β(α)Λ + o(

√
Λ),

where β(α) ∈ (0,∞) is a strictly decreasing function
of α.

(ii) If α =∞, and limλ→∞
U′(λ)
λ

= 0, then

k∗Λ = Λ +

√
Λ

U ′(Λ)
+ o

(√
Λ

U ′(Λ)

)
.

(iii) If α =∞, and limλ→∞
U′(λ)
λ
∈ (0,∞) ∪ {∞}, then

k∗Λ = Λ +O(1).

We now highlight the key insights from Theorem 1. Firstly,
it is easy see that that all α,

lim
Λ→∞

λ∗Λ
k∗Λ

= 1.

This means that it is asymptotically optimal for the profit
maximizing firm to operate in heavy traffic, even though
the user base is congestion sensitive. This is because as the
market size becomes large, the statistical economies of scale
associated with large multi-server systems allow the firm to
operate the service at high utilization, and still provide a
good quality of service [14, 3, 9]. Moreover, the profit maxi-
mizing strategy for the firm is to provision enough capacity
so as to attract (almost) the full potential market base.

Next, we observe that the heavy-traffic regime that emerges
in our model, as well as the profit made by the firm, depend
critically on the ‘growth rate’ of the social utility U(·). In-
tuitively, if the social utility is greater, the firm can attract
the full potential market base by provisioning fewer servers,
thereby making a higher profit. In other words, positive net-
work effects make the user base more tolerant to congestion,
allowing the firm to operate the service with fewer servers.

Case (i) of Theorem 1 corresponds to an asymptotically
linear growth of U(·). In this case, the optimal operating
regime for the firm is the well known Halfin-Whitt regime;
the firm provisions the minimum capacity to serve the full
market size Λ, plus a ‘spare capacity’ approximately propor-
tional to

√
Λ servers. Under Case (i), the profit of the firm

is given by

(b1 − 1)Λ−
√
β(α)Λ− o(

√
Λ).

Case (ii) of Theorem 1 corresponds roughly to an asymp-
totically super-linear, but sub-quadratic growth of U(·). In
this case, the optimal operating regime for the firm is a
‘heavier’ traffic regime than the Halfin-Whitt regime: the

firm provisions a ‘spare capacity’ of approximately
√

Λ
U′(Λ)

servers. Under Case (ii), the profit of the firm is greater
than in Case (i):

(b1 − 1)Λ−

√
Λ

U ′(Λ)
− o

(√
Λ

U ′(Λ)

)
.

Finally, Case (iii) of Theorem 1 corresponds to a roughly
quadratic/super-quadratic growth of U(·). In this case, the
firm operates the system in a very heavy-traffic regime; it
only needs to provision a bounded number of ‘spare servers.’
Under Case (iii), the firm makes the most profit:

(b1 − 1)Λ−O(1).

To summarize, the three cases of Theorem 1 formalize the
central message of this paper: positive network effects can
be highly profitable to the service provider.

We conclude this paper with a brief comparison of the
above results with the corresponding results for non-cooperative
model for user behavior given by (2). Similar to the cooper-
ative case, the profit maximizing capacity provisioning de-
cision for the non-cooperative model has the following char-
acteristics. Firstly, it is optimal to provision just enough
capacity to attract (almost) the full user base. Secondly,
more pronounced network effects give rise to heavier traffic
regimes, and increased profit for the service provider. How-
ever, compared to the cooperative model, the non-cooperative
user model of (2) leads to a higher aggregate usage, and
therefore a higher level of congestion. Indeed, this is what we
should expect due to the ‘tragedy of the commons’ effect. As
a result, the non-cooperative model gives rise to even heav-
ier traffic regimes (and higher profit for the service provider)
compared to the cooperative model. For example, if V (·) is
a constant (i.e., there are no network effects), the optimal
provisioning decision for the service provider is to have only
a bounded number of spare servers. In contrast, the cor-
responding provisioning decision for the cooperative model
(covered by Case (i) of Theorem 1) is to have Θ(

√
Λ)+o(

√
Λ)

spare servers.
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