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Abstract—We consider the problem of cost-optimal utilization
of a crowdsourcing platform for binary, unsupervised classifica-
tion of a collection of items, given a prescribed error threshold.
Workers on the crowdsourcing platform are assumed to be
divided into multiple classes, based on their skill, experience,
and/or past performance. We model each worker class via an
unknown confusion matrix, and a (known) price to be paid
per label prediction. For this setting, we propose algorithms
for acquiring label predictions from workers, and for inferring
the true labels of items. We prove that if the number of
(unlabeled) items available is large enough, our algorithms satisfy
the prescribed error thresholds, incurring a cost that is near-
optimal. Finally, we validate our algorithms, and some heuristics
inspired by them, through an extensive case study.

I. INTRODUCTION

Crowdsourcing is an early component of the growing gig
economy, and has been applied in a wide variety of ap-
plication domains, including image classification [1], image
clustering [2], natural language processing [3], tagging of fake
news and pseudoscientific content [4], graphic design [5], and
software development [6]. Platforms like Mechanical Turk,
Topcoder, and Designhill allow a requester to recruit workers
from across the globe on-demand to complete prescribed tasks,
requiring varying levels of time, skill and expertise. Increas-
ingly often, crowdsourcing is also used to create datasets for
training machine learning algorithms.

We consider the task of classifying a collection of items
via crowdsourcing. This might correspond, for example, to
the labeling of images [7], detecting sarcasm in language [3],
[8], or labeling online content as incorrect/inappropriate [9].
From the standpoint of the requester who seeks to crowdsource
the task(s), there are several issues/considerations that arise in
practice.

Firstly, the classification task is often unsupervised. In other
words, the requester, a.k.a., learning agent, may not have a set
of items for which the true label (i.e., the ground truth) is
known. Indeed, the very goal of the crowdsourcing activity is
often to generate a reliably labeled training dataset that can
then be used to train machine learning models that can perform
the classification task at scale.

Secondly, workers on crowdsourcing platforms may have
different, and a priori unknown accuracy levels. (The hetero-
geneity across workers might stem from diversity in skill,
training, experience, or attention span.) Moreover, since the
accuracy level of a class of workers is a priori unknown to

the requester, ensuring a prescribed end-to-end accuracy in
item labeling (typically by aggregating label predictions from
several workers) is challenging.

Thirdly, the requester would be concerned about the cost
incurred in performing the classification task to the desired
level of accuracy. Indeed, the cost of acquiring label predic-
tions from human subjects would influence the number of pre-
dictions per item that are collected by the requester. Moreover,
many crowdsourcing platforms classify workers into different
classes based on their skill level or past performance; this
allows for differential pricing of label predictions based on
the class the worker belongs to. The presence of multiple
worker classes, with different prices, and different (unknown)
accuracy levels, makes the optimization of cost non-trivial
for the requester. After all, should the requester acquire a
few expensive label predictions per item from more qualified
workers, or should she acquire many cheaper label predictions
per item from less qualified workers?

In this paper, taking the above considerations into account,
we consider the problem of optimally utilizing the crowdsourc-
ing platform from the standpoint of the requester. Specifically,
we consider the minimization of cost in the unsupervised bi-
nary classification of a collection of items, using a multi-class
crowdsourcing platform, given a prescribed error tolerance.
We propose novel algorithms for assigning labeling tasks to
workers and for estimating true labels; these algorithms are
validated via analytical performance guarantees, as well as a
case study.

We model each worker class using a latent confusion matrix
(as in [10]). In other words, each worker class is associated
with a confusion matrix that specifies the probability that a
worker of that class mis-labels an item, as a function of the
item’s true label. Additionally, each worker class is associated
with a price, to be paid per label prediction by a worker
of that class. Our algorithms use the powerful tensor-based
machinery, pioneered by [11], and developed further by [12],
to learn the confusion matrices of each class. These estimates
are further used to identify the worker class that can provide
the desired accuracy in label identification at a minimum cost.

Our main contributions are as follows:
1. We formally pose an optimization problem corresponding
to the minimization of the cost incurred by a learning agent for
binary classification of a collection of items on a multi-class
crowdsourcing platform, subject to a prescribed error tolerance



(see Section II).
The key distinction between our model and prior works in

the literature is that we associate a confusion matrix with a
worker class, rather than each individual worker. While this
approach simplifies the task of learning the confusion matrices,
it also allows us to define an ‘optimal’ worker class, i.e., the
class that provides the desired accuracy at the least cost. This
optimal class is task-dependent, and need not be either the
most qualified or the least qualified worker class; the identity
of the optimal worker class is dictated by the relationship
between the (unknown) labeling accuracy of each class with
its price.
2. We first consider the special case where the labeling
accuracy of each worker class is insensitive to the true item
label. In this case, the confusion matrices become symmetric
(see Section III). Compared to the general setting (asymmet-
ric confusion matrices), simpler confusion matrix estimation
algorithms, with stronger concentration bounds, are available
for this special case.

We propose a near-optimal algorithm for acquiring label
predictions, and for estimating the true item labels in this set-
ting. The algorithm proceeds in two stages—an explore stage
first identifies the optimal worker class with high probability,
and an exploit phase collects label predictions using workers
from the optimal class identified before, and infers the true
labels of the items.
3. Next, we consider the general case where the confusion
matrices are asymmetric (see Appendix A). We propose and
analyse a two-stage algorithm that is structurally similar to
the one for the symmetric setting. Confusion matrices are
estimated using the spectral tensor methods proposed in [12].
4. Motivated by the above algorithms, we propose two
heuristics, which attempt to better exploit the information
gathered during the explore phase (see Section IV). While
these approaches are not amenable to analytical performance
guarantees, they perform very well in practice.
5. Finally, we present a case study that validates the perfor-
mance of the proposed algorithms in practice (see Section V).
Related Literature

There has been extensive work dedicated to the problem
of allocating tasks to different workers and aggregating the
labels provided by them to infer the true label of each
item [13]–[16]. The generative model of representing each
worker by a latent confusion matrix was proposed by [10],
which is quite popular in the crowdsourcing community due
to its simplicity [12], [17]–[19]. A key assumption behind
this generative model is conditional independence of label
predictions across the different workers, given the true item
label. [10] also proposed an inference algorithm based on
Expectation-Maximization (EM), and the initialization of this
EM algorithm is also an area of interest [12], [20], [21]. The
EM algorithm also assumes that all items are equally difficult
to classify. Recently, [22] have allowed for different costs for
each worker and reduced the problem to a budgeted multi-
armed bandit.

The preceding literature treats each crowdsourcing worker
as a distinct individual, and does not group ‘similar’ workers
into classes, as is the approach adopted in this paper. Indeed,
empirical studies on crowd-labelling platforms suggest that
the location, age, cognitive ability, and approval rates of
workers are related to their quality of work; these studies
recommend classifying workers along these attributes for
appropriate task allocation [23]–[26]. However, this aspect has
received relatively little attention in analytical studies. We seek
to fill this gap, by proposing and analysing a model with
multiple worker classes, each class being associated with a
single (unknown) confusion matrix. A recent paper that takes
a different approach towards multiple worker classes is [27],
which considers binary classification where workers and tasks
are of d different types—the prediction accuracy being p if the
worker and task type are matched, and 1/2 otherwise. Thus,
the crux of the algorithm in [27] is the clustering of workers
into types. In contrast, in the present paper, workers classes
are pre-defined, the goal being instead to minimize the cost of
reliable labelling.

Remark 1: It is important to note that in practice, workers
within each class may indeed have somewhat different levels
of reliability for the specific classification task at hand (in spite
of their predictions being priced identically on the platform).
Our confusion matrix model should be interpreted as having
been averaged over the underlying ‘reliability distribution’
of each class. This is reasonable when i) there is a large
number of workers available in each class, and (ii) it is not
worthwhile to learn the confusion matrix of each worker
separately. In essence, we use the built-in classification of
workers as provided by the platform (as, for example, is the
case with Amazon MTurk), and treat each class as being
composed of a large (and possibly diverse) population of work-
ers who are queried randomly. This class-centric approach is
different from the worker-centric approach that is prevalent
in the crowdsourcing literature—the former is not just more
efficient from a learning standpoint, but may also be more
practical for use in crowdsourcing platforms. Our novelty lies
in using the class-centric approach to optimize the cost of
labeling the dataset, subject to an accuracy constraint. Such a
cost optimization, clearly of practical relevance, has not been
addressed in the prior literature.

II. MODEL AND PRELIMINARIES

In this section, we describe our model for unsupervised
labelling of items using crowdsourced label predictions, and
establish the benchmark that we evaluate our algorithms
against.

We begin by defining some notation. For n ∈ N, [n] :=
{1, 2, · · · , n}. The indicator function I(z) equals 1 if condi-
tion z is true, and 0 otherwise. For x ∈ R, sign(x) := I(x ≥
0) − I(x < 0). Finally, let d(·, ·) denote the KL-divergence
between two Bernoulli distributions (also commonly referred
to as the binary relative entropy), i.e., for p, q ∈ (0, 1),

d(p, q) := p log

(
p

q

)
+ (1− p)

(
1− p

1− q

)
.



A. Problem formulation

We consider a binary classification task, where we are
given N items, where the true label ℓj of item j ∈ [N ]
lies in {0, 1}. We further assume that (ℓj , j ∈ [N ]) is
an i.i.d. Bernoulli random vector with P (ℓj = i) = wi for
i ∈ {0, 1}. In other words, the true labels of the different items
are independent, taking value 0 with probability w0, and 1
with probability w1 = 1 − w0. We refer to w = (w0, w1)
as the prior on the true labels. We note that both the true
labels (ℓj , j ∈ [N ]) as well as the prior w are a priori
unknown to the learning agent. The goal of the learning agent
is in turn to accurately estimate the true label of each item
with high probability. This estimation is performed using label
predictions on a multi-class crowdsourcing platform, which is
described next.

The crowdsourcing platform consists of M ≥ 3 classes
of workers,1 where each worker class may be defined by
certain qualifications (like academic background, age, gender,
nationality, etc.) and/or past performance on the platform.2

A worker of class k, k ∈ [M ], charges a price pk per label
prediction. We model worker reliability/performance using the
latent confusion matrix model proposed by [10]: The labels
assigned by different workers to an item j are conditionally
independent, given the true label ℓj . Moreover, the labelling
accuracy of workers of class k is characterized by a latent
confusion matrix

Ck :=

[
ck(0) 1− ck(1)

1− ck(0) ck(1)

]
,

where ck(i) ∈ (0, 1) is the probability of correctly labelling
an item with true label i ∈ {0, 1}, by any worker of class k.
We further assume that ck(0), ck(1) > 1

2 for all classes k,
i.e., given any item, any worker is more likely to predict the
true label correctly than a random guess. We also use the
notation ck(i, j) to refer to the entry corresponding to true
label (column) i and predicted label (row) j in the confusion
matrix Ck. For example, ck(0, 1) = 1− ck(0).

To summarize, each worker of class k is characterized by
a price pk to be paid for each label requested, and confusion
matrix Ck. Note that the confusion matrices are also a priori
unknown to the learning agent. Also, recall that as noted in
Remark 1, Ck should be interpreted as having been averaged
over the underlying ‘reliability distribution’ of class k, with
any labelling request from a class k worker being routed to a
randomly selected worker from this class.

For the above model, the goal of the learning agent is
to predict the true labels of the N items, such that each
item’s true label is identified correctly with probability at
least 1 − α, where α ∈ (0, 1) is a prescribed error tolerance,
while minimizing the cost of acquiring label predictions on the
crowdsourcing platform. (Our cost benchmark is formalized

1We assume M ≥ 3 because this is required by the spectral machinery for
confusion matrix estimation that we leverage. The case M = 2 can be shown
to be fundamentally ill posed in the unsupervised setting.

2For example, on Amazon MTurk, workers can be classified based on
number of tasks completed and their approval rates.

below.) Finally, it is important to emphasize that we consider
an unsupervised setting, i.e., there is no labeled training dataset
(a collection of items whose true labels are a priori known)
that the agent can use to learn the confusion matrices.

B. Optimal worker class

In order to pose the problem of cost-optimal label prediction
subject to an accuracy guarantee, we now define the cost-
optimal worker class, denoted by k∗. We begin by bounding
from below the cost of estimating the true label of a single
item accurately with probability at least 1 − α, using label
predictions from workers of class k, assuming no prior knowl-
edge of the confusion matrices. An alternative lower bound,
that assumes perfect knowledge of the confusion matrices, is
presented in Section IV.

Lemma 2.1: Consider an item j with (unknown) true label
ℓj , and a worker class k. For α ∈ (0, 1), consider any
algorithm that identifies the true label ℓj with probability at
least 1−α, using only label predictions on item j from worker
class k, with no prior knowledge of Ck. Then the number of
label predictions τk(ℓj) collected by the algorithm satisfies

E [τk(ℓj)] ≥
1

d(ck(ℓj), 0.5)
log

(
1

2.4α

)
.

Lemma 2.1 provides an information theoretic lower bound
on the number of label predictions (or queries) needed from
class k workers in order to identify the true label of item j
with probability at least 1− α. As expected, the lower bound
is dictated by how close ck(ℓj) is to 1/2; the further away
it is from 1/2, i.e., the more accurate class k workers are at
predicting the true label ℓj , the smaller is the lower bound
on the average number of queries. Lemma 2.1 is proved
by mapping the problem of true label identification to a
certain multi-armed bandit (MAB) problem and then invoking
Theorem 6 of [28]; see Appendix C.

Lemma 2.1 implies that the expected number of class k
queries required to meet the prescribed accuracy guarantee
for a typical item is at least

log

(
1

2.4α

)(
w0

d(ck(0), 0.5)
+

w1

d(ck(1), 0.5)

)
. (1)

Accordingly, we define the cost-optimal worker class k∗ as
follows:

k∗ = arg min
k∈[M ]

sup
w

[
pk log

(
1

2.4α

)
(

w0

d(ck(0), 0.5)
+

w1

d(ck(1), 0.5)

)]
= arg min

k∈[M ]

[
pk max

(
1

d(ck(0), 0.5)
,

1

d(ck(1), 0.5)

)]
(2)

Note that the above definition of the optimal worker class is
dependent only on the confusion matrix and the price per label
corresponding to each worker class. Specifically, it does not
depend on the prior w; it considers instead a ‘worst case’



of the lower bound (1) over all priors.3 However, in the
special case where the confusion matrix is symmetric (this
case is addressed in Section III), the information theoretic
lower bound in (1) is insensitive to the prior, making the above
‘worst case’ operation redundant. Note also that the optimal
worker class also does not depend on the error threshold α. For
simplicity, we assume that the minimizer k∗ in (2) is unique,
i.e., there is a unique optimal worker class.4

Finally, we define sub-optimality gaps ∆k for k ∈ [M ] as
follows. Towards this, we first define, for k ∈ [M ],

sk := pk max

(
1

d(ck(0), 0.5)
,

1

d(ck(1), 0.5)

)
.

For k ∈ [M ] \ {k∗}, ∆k := sk − sk∗ , and ∆k∗ = ∆min :=
mink∈[M ]\{k∗} ∆k.

In the following sections, we evaluate our learning algo-
rithms in terms of

1) the probability that the estimated optimal worker class k̂
equals k∗ (note that our algorithms do not know the
confusion matrices a priori), and

2) the expected number of queries requested per item
(benchmarked against the lower bound of Lemma 2.1
applied to the worker class k∗).

Note that the cost benchmark noted above (obtained by
applying Lemma 2.1 to the worker class k∗) is somewhat
weak, since it applies to algorithms that perform label as-
signment without prior knowledge of the confusion matrices.
However, note that identifying k∗ in the first place involves
estimating the confusion matrices. This suggests the possibility
of exploiting these confusion matrix estimates to lower the
labelling cost per item further below the above mentioned
benchmark. We propose heuristic approaches that do this in
Section IV; see also Remark 2.

In Section III, we consider the special case where the
reliability/performance of the worker classes does not depend
on the underlying true label of the item, i.e., ck(0) = ck(1).
The general case (with asymmetric confusion matrices), due
to space constraints, is addressed in Appendix A.

III. SYMMETRIC CONFUSION MATRICES

In this section, we consider a special case of our model
where the accuracy of workers is insensitive to the true item
labels. This corresponds to a confusion matrix where the
diagonal elements are equal, so that each confusion matrix Ck

is parameterized by a single parameter ck = ck(0) = ck(1).
This model, wherein each worker provides accurate labels
with a certain probability, is also commonly referred to as the
one-coin model in the crowdsourcing community; examples
of papers that adopt this model include [17], [22], [29]. For
this model, we use the results for the “one-coin model” in

3Alternative formulations, based on either estimating the prior, or simply
assuming one, are also possible using the same machinery.

4This assumption is made purely to simplify the presentation of our
performance guarantees and their proofs; the extension to the case of multiple
optimal worker classes is trivial.

Algorithm 1 Symmetric-IMCW
1: Input: prices {pk : k ∈ [M ]}; error threshold α; number

of items N ; items {j : j ∈ [N ]}
2: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ▷ Explore Phase
3: for j = 1, . . . , N do
4: for all k ∈ [M ] do
5: Collect 1 predicted label on item j at price pk

6: Run Steps (1)-(2) of Algorithm 2 of [12] to obtain ĉk
∀ k ∈ [M ]

7: Set k̂ = argmink∈[M ]
pk

d(max(ĉk, 0.5),0.5)
8: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ▷ Exploit Phase
9: for all j ∈ [N ] do

10: Assign final label ℓ̂j = DirectionTest(k̂, j, α)

[12] to estimate, and derive concentration inequalities on, the
confusion matrices of all classes.

The proposed algorithm for the case of symmetric confusion
matrices, which we refer to as Sym–IMCW (IMCW stands
for Inference using Multi-Class Workers) is stated formally
as Algorithm 1. This algorithm proceeds in two phases: an
explore phase, followed by an exploit phase. The goal of
the explore phase is to estimate the confusion matrices of
all classes, and to identify, with high probability, the optimal
worker class k∗. Next, in the exploit phase, true labels of all
items are estimated using only predictions from the estimated
optimal worker class. Interestingly, both phases are structurally
similar to (different) MAB algorithms. The explore phase is
akin to a fixed budget MAB algorithm (where arms correspond
to worker classes). On the other hand, the exploit phase, which
defines a stopping time criterion to cease the collection of label
predictions for each item, is akin to a fixed confidence MAB
algorithm. In the following, we provide a detailed description
of each phase.

A. Explore Phase: Estimating Optimal Worker Class

The explore phase, defined over lines 3–7 in Algorithm 1,
proceeds as follows. First, a single label prediction is acquired
for all the given N items, from each worker class (i.e., M
label predictions each for N items). That the true labels are
independent and identically distributed across our items is
then exploited to estimate the confusion matrices using the
spectral techniques developed in [12]. For each worker class k,
the estimated confusion matrix parameter ĉk is then used to
estimate sk as follows:

ŝk :=
pk

d(max(ĉk, 0.5), 0.5)

The optimal arm is then estimated as k̂ = argmink ŝk.
The estimation of the confusion matrices is based on part

of Algorithm 2 of [12], for the “one-coin model” in crowd-
sourcing. For completeness, we summarize the relevant steps
here.

For each pair of worker classes a and b, define the second
order quantity Nab as



Nab =
1

2

(∑N
j=1 I(zaj = zbj)

N
− 1

2

)
,

where zkj is the label assigned by the class k worker
to item j. Note that Nab captures the agreement in label
predictions between the (workers picked from) classes a and b.
Next, for every worker class k, define (ak, bk), and compute
the estimate ĉk, as follows:

(ak, bk) = arg max
(a,b): a̸=b ̸=k

| Nab |

ĉk =
1

2
+ sign(Nka1)

√
Nkak

Nkbk

Nakbk

.

The final step is to check whether 1
M

∑M
k=1 ĉk ≥

1
2 , if not

then we update ĉk ← 1− ĉk ∀ k.5

Next, we describe the exploit phase of Sym–IMCW.

B. Exploit Phase: Fixed Confidence Label Prediction

Having estimated the optimal worker class in the explore
phase, in the exploit phase, we estimate the true item labels.
For this, we use our assumption that ck > 1/2 for all k,
reducing the problem of assigning a final label to each item
to that of deciding the direction of bias of a biased coin.
Accordingly, Algorithm 2, which assigns a final label to
each item (see line 10 of Algorithm 1), has been named
DirectionTest.

The DirectionTest algorithm (see Algorithm 2) works as
follows. For the given item, we acquire label predictions
sequentially, using workers from class k̂. A certain stopping
criterion (see line 4 of Algorithm 2) determines when to stop
collecting predictions, and a certain decision rule (see line 8
of Algorithm 2) determines the final label to be assigned.
The algorithm is based on the following observation: For an
item j, ck̂(ℓj , 1) > 1/2 ⇐⇒ {ℓj = 1}. Thus, to identify the
true label with probability ≥ 1 − α, it suffices to determine,
with probability ≥ 1 − α, which of the following holds:
ck̂(ℓj , 1) > 1/2, or ck̂(ℓj , 1) < 1/2.

We model the above determination as a two-armed MAB
problem. In this MAB problem, the rewards from arm 1
correspond to the successive label predictions sought for
the item consider consideration; this implies arm 1 has a
Bernoulli(ck̂(ℓj , 1)) reward distribution. Arm 2 is a virtual
arm, and has a known deterministic reward of 1/2; thus arm 2
is never actually ‘pulled.’ For this MAB instance, the condition
that arm 1 is optimal (i.e., it has a higher mean reward) is
equivalent to the condition ck̂(ℓj , 1) > 1/2, which in turn is
equivalent to the true label being 1.

The above equivalence allows us to invoke the rich literature
on the fixed confidence best arm identification problem for
MABs. Specifically, we rely on the Chernoff stopping rule
(first applied to MAB problems in [30] and [28]). This

5Note that in the unsupervised setting under consideration, (ĉk, k ∈ [M ])
is just as consistent with the data as (1 − ĉk, k ∈ [M ]). The ambiguity is
resolved using the assumption that ck > 1

2
for all classes k.

Algorithm 2 DirectionTest
1: Input: Worker class k, Item j, Error tolerance α
2: Initialize t = 0, ĉ = 0
3: Set β(t, α) = log

(
2t
α

)
4: while t ≤ 1 OR t d(ĉ, 0.5) ≤ β(t, α) do
5: t← t+ 1
6: Collect a label prediction zt ∈ {0, 1} on item j from

worker class k
7: Update ĉ = 1

t

∑
t zi

8: return I(ĉ > 0.5)

boils down to maintaining the running log likelihood ratio
between the two hypotheses, and to stop when it exceeds the
threshold β(t, α) = log

(
2t
α

)
; here, t denotes the number of

queries made so far. At that point, the optimal arm is estimated
to be 1 (or equivalently, the true label for the item is estimated
to be 1) if ĉ > 1/2. This stopping criterion not only ensures
that the labelling accuracy of each item is at least 1− α, but
also results in an asymptotically optimal query complexity,
matching the information theoretic lower bound in Lemma 2.1
as α ↓ 0. This is formalized in Lemma 3.1 below.

Lemma 3.1: Given a worker class k ∈ [M ], an item j with
an unknown true label ℓj ∈ {0, 1}, and an error tolerance α ∈
(0, 1), the output ℓ̂j = DirectionTest(k, j, α) of Algorithm 2
satisfies P

(
ℓ̂j ̸= ℓj

)
≤ α and

P

(
lim sup

α↓0

τk
log(1/α)

≤ 1

d(ck(ℓj), 0.5)

)
= 1 (3)

where τk = inf{t ∈ N : t d(ĉ, 0.5) > β(t, α)} is the stopping
time of Algorithm 2.

Proof Sketch: Theorem 10 of [30] guarantees that for any
sampling strategy, the Chernoff stopping rule satisfies an α-
PAC guarantee. For the claim on asymptotic optimality, we
invoke Proposition 13 of [30].

Remark 2: It is important to note that our exploit phase
algorithm, beyond the input k̂, does not use the confusion
matrix estimates generated in the explore phase. This was done
to enable meaningful analytical guarantees. In practice, con-
fidence intervals on the confusion matrix estimates from [12]
tend to be very loose, and baking these intervals into a sound
stopping time algorithm would result in considerable over-
querying in the exploit phase. A heuristic approach would
be to simply ignore the uncertainty in the confusion matrix
estimation, and simply apply a stopping time algorithm that is
optimal in the (hypothetical) setting wherein the confusion ma-
trices are known a priori. Two such approaches are described
in Section IV; they cannot be justified analytically, but perform
very well in practice (see Section V).

C. Performance Guarantee

Theorem 3.1: Under the Sym–IMCW algorithm, for each
item j ∈ [N ], P

(
ℓ̂j ̸= ℓj

)
≤ α. Moreover, for some γ ∈



(0, 1/2), if N ≥ N0(γ), where N0 is a constant that depends
on the instance and the hyperparameter γ,

P
(
k̂ ̸= k∗

)
≤M2 exp

(
−N1−2γ

2

)
.

Finally, denoting the number of label predictions acquired for
item j in the exploit phase by τk̂,

P

(
lim sup

α↓0

τk̂
log(1/α)

≤ 1

d(ck̂(ℓj), 0.5)

)
= 1.

The (somewhat cumbersome) expression for N0(γ) is pro-
vided in Appendix C , which also contains the proof of
Theorem 3.1. The main takeaways from Theorem 3.1 are as
follows:
• Sym–IMCW meets the prescribed accuracy guarantee, i.e.,

the true label of each item is identified with probability at
least 1− α.
• If N is large enough, the optimal worker class is identified

in the explore phase with high probability.
• For the estimated optimal worker class k̂, the query

complexity in the exploit phase is asymptotically (as α ↓ 0)
optimal. This means that Sym–IMCW is, with high proba-
bility, nearly cost-optimal (admittedly, relative to the ‘weak’
benchmark indicated by Lemma 2.1). Since the explore phase
only requires a single label prediction per worker class per
item, its cost is negligible compared to the cost incurred in
the exploit phase, particularly when α is small.

Formally, the cost of the exploration phase is N
∑

k∈[M ] pk.
On the other hand, the cost of the exploitation phase is
approximately Npk∗

d(ck∗ ,0.5) log
(

1
2.4α

)
. When α is small, note

that the latter term dominates.
• Finally, we comment on the role of the ‘free’ parameter

γ ∈ (0, 1/2). Lemma 13 of [12] provides a PAC bound on con-
fusion matrix estimates of the following form: the estimates
are ϵ-accurate with probability ≥ 1− δ, if N is large enough,
where the values of ϵ, δ, and N are jointly constrained in
terms of the problem parameters. We tie these three quantities
feasibly via the parameter γ. Thus, Theorem 3.1 actually
specifies a family of performance guarantees for our algorithm.
When γ is decreased, the upper bound on the probability of
mis-identifying the optimal worker class decreases, while the
threshold N0(γ) beyond which the same (tighter) bound holds
increases.

The case of asymmetric confusion matrices admits an
analogous treatment; due to space constraints, this is presented
in Appendix A. The proposed algorithm for this case, while
structurally similar to Sym-IMCW, uses the spectral methods
developed by [11] and [12] for estimating the confusion
matrices. A formal description of this algorithm (called Asym-
IMCW), along with a rigorous performance guarantee, can be
found in Appendix A.

IV. HEURISTIC APPROACHES

While the algorithms presented in Section III and Ap-
pendix A admit formal performance guarantees, we present in
this section two heuristic approaches that exploit the confusion

Algorithm 3 BiasIdentification
1: Input: Worker class k, Confusion matrix Ck, Item j, Error

tolerance α
2: Initialize t = 0, t1 = 0, Z0 = 0, Z1 = 0
3: Set β(t, α) = log

(
2t
α

)
4: while t ≤ 1 OR Z0 ≤ β(t, α) OR Z1 ≤ β(t, α) do
5: t← t+ 1
6: Collect a label prediction zt ∈ {0, 1} on item j from

worker class k
7: t1 ← t1 + zt

8: Set Z1 = log
(ck(1))

t1(1− ck(1))
t−t1

(1− ck(0))t1(ck(0))t−t1

9: Set Z0 = −Z1

10: return I(Z1 > β(t, α))

matrix estimates from the explore phase during the exploit
phase. As noted in Remark 2, these approaches ignore the
uncertainty in the confusion matrix estimates, and therefore
do not admit a formal performance guarantee. However, they
perform very well in our empirical evaluations. Throughout
this section, we consider general (asymmetric) confusion ma-
trices.

Adaptive stopping time heuristic: We first present an
adaptive stopping time heuristic. It is based on the following
information theoretic bound for the hypothetical setting where
the confusion matrices are known a priori (proof similar to
that of Lemma 2.1).

Lemma 4.1: Consider an item j with (unknown) true label
ℓj , and a worker class k. For α ∈ (0, 1), consider any
algorithm that identifies the true label ℓj with probability at
least 1−α, using only label predictions on item j from worker
class k, with prior knowledge of Ck. Taking ℓ̄j = 1− ℓj , the
number of label predictions τk(ℓj) collected by the algorithm
satisfies

E [τk(ℓj)] ≥
1

d(ck(ℓj), 1− ck(ℓ̄j))
log

(
1

2.4α

)
.

In essence, given a coin whose bias is known to be either
ck(ℓj) or 1−ck(ℓ̄j), Lemma 4.1 provides a lower bound on the
expected number of tosses (queries) needed to identify the un-
derlying bias of the coin correctly with probability ≥ (1−α).
As expected, this lower bound is smaller than the lower bound
in Lemma 2.1, since it assumes that the learner/algorithm has
additional information; note that

d(ck(ℓj), 1− ck(ℓ̄j)) > d(ck(ℓj), 0.5).

6 It is further possible to devise a Chernoff stopping rule that
seeks to asymptotically (as α ↓ 0) match this lower bound; we
refer to this as the BiasIdentification routine; see Algorithm 3.

The heuristic approach, which we refer to as Adaptive
Bias Identification (ABI) proceeds as follows. In the explore

6While both our information theoretic lower bounds (Lemmas 2.1 and 4.1)
are expressed in terms of the confusion matrices, the former assumes the
learning agent does not know the confusion matrix, and must therefore deduce
the true label purely by identifying the ‘bias direction’ in the label predictions.



phase, for each item, collect a single label prediction from
each worker class. Use these label predictions to estimate the
confusion matrices, as in Asym-IMCW (see Appendix A).
Next, based on Lemma 4.1, define the optimal worker class
as k̂ABI =

argmin
k

pk max

(
1

d(ĉk(1), 1− ĉk(0)
,

1

d(ĉk(0), 1− ĉk(1)

)
.

Finally, in the exploit phase, for each item j, assign the final la-
bel to be the output of BiasIdentification(k̂ABI, Ĉk̂ABI

, j, α).
MLE based heuristic: Next, we propose a non-adaptive

heuristic, where we assign the final label to an item via a
maximum likelihood estimation (MLE), pretending that the
estimated confusion matrix from the explore phase is exactly
accurate. The number of label predictions to be collected
is further based on an upper bound on the probability that
the MLE mis-identifies the true label. To state the heuristic
precisely, we need the following result (proof in Appendix E).

Lemma 4.2: Assume that the confusion matrices are known.
Then given label predictions from tMα workers of class k on
an item j, the MLE ℓ̂j of ℓj equals 0 if the fraction of workers
predicting 0 exceeds θk, and ℓ̂j = 1 otherwise (ties may be
broken arbitrarily). Here, the decision boundary θk is given by

θk =
log
(

ck(1)
1−ck(0)

)
log
(

ck(0)
1−ck(1)

)
+ log

(
ck(1)

1−ck(0)

) .
The resulting error probability is bounded as follows:

P
(
ℓ̂j ̸= ℓj

)
≤ e−tMα d(θk,ck(0)) (4)

We note here that θk satisfies d(θk, ck(0)) = d(θk, 1− ck(1)),
i.e., θk may be interpreted as a KL-midpoint between ck(0)
and (1− ck(1)). Now, to bound the probability of error from
above by α, it follows that tMα := log(1/α)

d(θk,ck(0))
predictions

suffice. Based on this, the MLE based heuristic acquires tMα
label predictions, but using estimates of the confusion matrices
from the explore phase. The final label is then assigned using
the decision boundary in Lemma 4.2.

V. CASE STUDY

In this section, we perform a case study to validate the
proposed algorithms. To perform empirical studies under our
model, we need the ground truth confusion matrices of the dif-
ferent crowdsourcing worker classes on a binary classification
task, to simulate label predictions. We constructed 5 confusion
matrices from the dataset provided by [31] on the Recognizing
Textual Entailment (RTE) task (originally proposed by [32]);
details can be found in Appendix B. Given these confusion
matrices, we consider the following pricing model.

Model P1: pk = e5×d(min(ck(0),ck(1)),0.5)

Under P1, prices grow exponentially with ‘quality.’ Table I
summarizes the instances we consider; P1-Asym uses the
asymmetric confusion matrices as described. P1-Sym is the
‘symmetrized’ version of this instance, where the (symmetric)

TABLE I
SUMMARY OF INSTANCES UNDER PRICING MODEL P1

Instance ck∗ pk∗ sk∗ ∆min

P1-Asym (0.88, 0.82) 3.07 30.75 1.48%
P1-Sym 0.81 2.95 29.55 1.45%

probability of accurate label prediction is taken as the average
of the diagonal entries from the earlier asymmetric matrices.
Finally, we set α = 0.05.

Due to space constraints, we present only the results corre-
sponding to the instance P1-Asym here; the results correspond-
ing to P1-Sym along with additional comparisons between
Asym-IMCW and Sym-IMCW, can be found in Appendix B.
The observations are illustrated in Figure 1. Here, CBS stands
for a variant of Asym-IMCW, where the Chernoff stopping
rule is replaced by one based on confidence bounds (details
in Appendix F).
• We note that Asym-IMCW does meet the prescribed

labelling accuracy. Moreover, the Chernoff stopping rule used
in Asym-IMCW outperforms the confidence bounds based
stopping criterion from a cost standpoint; the latter approach
tends to acquire far more label predictions than needed (this
also makes its label assignments more accurate, almost 99%
accurate, as compared to the prescribed threshold of 95%).
• Interestingly, both heuristics (ABI and the MLE based

approach) outperform Asym-IMCW, providing a higher la-
belling accuracy at a lower or comparable cost. As noted
before, this is due to their use of the confusion matrix
estimates from the explore phase. This motivates the design
of alternative approaches, that perform the tasks of confusion
matrix estimation and cost-optimal label assignment jointly–a
promising avenue for future work (we remark on this further
in Section VI).

VI. CONCLUDING REMARKS

We model the problem of a requester seeking to perform
unsupervised binary classification on a multi-class crowd-
sourcing platform. The requester seeks to minimize the cost
of performing this task, subject to an accuracy constraint. Our
proposed algorithms combine flavours of fixed budget as well
as fixed confidence MAB algorithms.

The reason we do not use a single-shot MAB style algorithm
that combines exploration and exploitation is that the confi-
dence intervals on the confusion matrices (using the spectral
machinery developed by Anandkumar et al. (2015) and Zhang
et al. (2016)) are very loose. Example: a confidence interval
of width ϵ = 0.1 is available with probability ≥ 0.9 only
when N exceeds 3 × 1033 for the instance we consider
in our case study. A UCB-style algorithm that uses such
confidence intervals would therefore perform very poorly in
practice. It is therefore a challenging avenue for future work,
to combine the exploration and exploitation aspects of our
problem formulation into an algorithm that performs well in
practice, and also admits an analytical performance guarantee.



Fig. 1. Comparing proposed algorithms (P1-Asym)
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Algorithm 4 Asymmetric - IMCW
1: Input: prices {pk : k ∈ [M ]}; error threshold α; number of items N ; items {j : j ∈ [N ]};
2: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ▷ Explore Phase
3: for j = 1, . . . , N do
4: for all k ∈ [M ] do
5: Collect label prediction on item j at price pk

6: Run Algorithm 1 of [12] and obtain ĉk(0) and ĉk(1) ∀ k ∈ [M ]
7: ĉk̂(0)← max{ĉk̂(0),

1
2}; ĉk̂(1)← max{ĉk̂(1),

1
2}

8: Set k̂ = argmink∈[M ] max{ pk

d(ĉk̂(0),0.5)
, pk

d(ĉk̂(1),0.5)
}

9: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ▷ Exploit Phase
10: for all j ∈ [N ] do
11: Assign the final label, ℓ̂j = DirectionTest(k̂, j, α)

APPENDIX A
ASYMMETRIC CONFUSION MATRICES

In this section, we consider the general case, where the probability that each worker correctly labels an item can depend on
the item’s true label. This corresponds to working with asymmetric confusion matrices for each worker class. In this setting,
we use the spectral tensor methods developed by [11], [12] to estimate the confusion matrix corresponding to each worker
class.

Our algorithm for asymmetric confusion matrices, referred to as Asym-IMCW, is presented as Algorithm 4. Asym-IMCW
is structurally similar to Sym-IMCW; it also proceeds in two phases—an explore phase for estimating the confusion matrices
and thus identifying the optimal worker class with high probability, and an exploit phase (identical to that in Sym-IMCW)
for estimating the true item labels with the prescribed accuracy guarantee using label predictions from the estimated optimal
worker class.

Next, we provide a brief description of the explore phase of Asym-IMCW. (The exploit phase of Asym-IMCW is identical
to that of Sym-IMCW.)

A. Explore Phase of Asym-IMCW

The explore phase of Asym-IMCW is based on Algorithm 1 of [12]. Similar to Sym-IMCW, we first obtain a single label
prediction for each of the given N items, from all worker classes. Algorithm 1 of [12] then partitions the worker classes into
three disjoint groups (say a, b,and c) and estimates group aggregated confusion matrices (up to a column permutation) for
all the three groups. This is done by deploying the robust tensor power method developed by [11] thrice, each time with a
different order of (a, b, c). The correct permutation of the columns is determined by the assumption ck(0), ck(1) >

1
2 . Later,

a plug-in estimator for each worker class is used to extract its estimated confusion matrix from that of its group.
For the confusion matrix estimators used in Asym-IMCW, Theorem 3 of [12] establishes PAC guarantees, which states that

the estimates are ϵ-accurate with probability at least 1 − δ, for large enough N, where the permissible tuples of ϵ, δ, and
the threshold on N are constrained in terms of the problem parameters. Note that we do not need ϵ and δ to be algorithm
computable, and use them only to establish our guarantees in Theorem A.1. For the sake of convenience, we parameterize
these in terms of two floating parameters γa, γb ∈ (0, 1) satisfying γa + 2γb ≤ 1, as shown in the proof of Theorem A.1

B. Performance Guarantee

We now state our formal performance guarantee for Asym-IMCW.
Theorem A.1: Under the Asym-IMCW algorithm, for each item j ∈ [N ], P

(
ℓ̂j ̸= ℓj

)
< α. Moreover, for γa, γb ∈ (0, 1),

that satisfy γa + 2γb ≤ 1, if N ≥ N0(γa, γb), where N0(γa, γb) is an instance dependent constant, then

P
(
k̂ ̸= k∗

)
≤ (48 +M) exp (1−Nγa)

Finally, denoting the number of label predictions acquired for item j in the exploit phase by τk̂,

P

(
lim sup

α↓0

τk̂
log(1/α)

≤ 1

d(ck̂(ℓj), 0.5)

)
= 1.

The exact expression for N0(γa, γb) is provided in Appendix D, which also contains the proof of Theorem A.1.



Fig. 2. Comparing proposed algorithms on P1-Sym

APPENDIX B
CASE STUDY

For a representative case study, we wanted to consider a realistic scenario with different worker classes each represented by
a unique confusion matrix. We used the dataset provided by [31] on the Recognizing Textual Entailment (RTE) task (originally
proposed by [32]), which had over 8000 labels assigned by 164 unique workers on 108 different items. Post calculating the
confusion matrix for each worker, we found that we can choose the following 5 confusion matrices to represent distinct worker
classes. Each confusion matrix below is well differentiated from the others to represent a unique class of workers with similar
backgrounds and accuracy.

C1 =

[
0.94 0.1
0.06 0.90

]
C2 =

[
0.77 0.13
0.23 0.87

]

C3 =

[
0.92 0.24
0.08 0.76

]
C4 =

[
0.88 0.18
0.12 0.88

]

C5 =

[
0.64 0.34
0.36 0.66

]
These confusion matrices are unknown to our algorithms and are used only to mimic the response from real world workers

on any item j. In all our experiments, we have set α = 0.05, and work with the same 5 worker classes for accurate comparison.
The pricing model P1 ensures that a label from these worker classes is appropriately priced with decreasing marginal utility

across worker classes.

• Sym-IMCW performs in a similar fashion as Asym-IMCW qualitatively as seen in Figure 2. The prescribed labelling
accuracy of atleast 95% is met. Sym-IMCW outperforms the CBS heuristic on the cost front, while the other heuristics,
ABI and MLE based approaches, provide better accuracy at lower or comparable costs.

• We compare our algorithms Sym-IMCW and Asym-IMCW by running them on the same instance P1-Sym. The most
interesting comparison of Asym-IMCW and Sym-IMCW is in their ability to accurately identify the optimal worker class,
k∗. Figure 3 shows the accuracy in identifying worker classes for Asym-IMCW on both instances and Sym-IMCW on
P1-Sym. Sym-IMCW clearly outperforms Asym-IMCW here with the latter catching up as number of items increases.
This can be attributed to the more complex machinery in [12] for the estimation of asymmetric confusion matrices, as
compared to the symmetric one-coin model.

• The labelling and cost performance of Asym-IMCW on the P1-Sym instance is represented in Figure 4. Asym-IMCW
performs very similar to Sym-IMCW on both the labelling and cost standpoint even for smaller number of items. This
is likely due to the small ∆min in the instance considered here (see Table I), so that Asym-IMCW incurs a comparable
cost in spite of choosing a (slightly) sub-optimal worker class.



Fig. 3. Comparing Asym-IMCW and Sym-IMCW on identification of k∗

Fig. 4. Performance of Asym-IMCW on P1-Sym

APPENDIX C
PROOFS FOR SYMMETRIC CASE

A. Proof of Lemma 2.1

We structure this problem as a Two-armed bandit with the reward of the first arm µ1 being either Bernoulli(ck(1)) or
Bernoulli(1 − ck(0)) depending on ℓj . We denote it as Bernoulli(ck(ℓj , 1)). The second arm is taken as deterministic with
µ2 = 1

2 . We thus apply the MAB machinery to decide whether µ1 > 1
2 or µ1 < 1

2 and consequently the estimate the true label.
Theorem 6 of [28] guarantees that for an identifiable class M of two-armed bandits and ν = (ν1, ν2) ∈ M be such that
µ1 ≥ µ2, any algorithm that is α−PAC on M satisfies

E [τ ] ≥ 1

c∗(ν)
log

(
1

2.4α

)
,

where
c∗(ν) := inf

(ν
′
1,ν

′
2)∈M:µ

′
1≤µ

′
2

max{d(µ1, µ
′

1), d(µ2, µ
′

2)}

In our case, since the second arm is deterministic, the class of bandits, M is quite restricted and µ2 = 1
2 is constant. Hence,

the only choice for µ
′

1 in c∗(ν) is µ
′

1 = 1
2 which changes the optimal arm. Hence, for our case, c∗(ν) = d(µ1,

1
2 ) =

d(ck(ℓj , 1), 0.5) = d(ckℓj , 0.5) since d(x, 0.5) = d(1− x, 0.5)



B. Proof of Lemma 3.1

Our complete proof for Lemma 3.1 is described as follows. We structure this problem as a Two-armed bandit with the reward
of the first arm µ1 being either Bernoulli(ck(1)) or Bernoulli(1 − ck(0)) depending on ℓj . We denote it as Bernoulli(c),
with c = ck(ℓj) taking the required value. The second arm is taken as deterministic with µ2 = 1

2 . We thus apply the MAB
machinery to decide whether µ1 > 1

2 or µ1 < 1
2 and consequently the estimate ℓ̂j .

Theorem 10 of [30] guarantees that for any sampling strategy, the Chernoff stopping rule with threshold

β(t, α) = log

(
2t

α

)
, ensures that the better of the two arms is selected at the end with probability ≥ 1− α.
For the second part, we use Proposition 13 of [30]. For our set of arms, w∗

1 = 1 and w∗
2 = 0. Consequently we only sample

the first arm , ensuring N1(t) = t which satisfies all the conditions of Proposition 13 that guarantees for all α ∈ (0, 1),

PCk

(
lim sup
α→0

τk(ℓj)

log(1/α)
≤ 1

d(ck(ℓj), 0.5)

)
= 1

In other words, the stopping time algorithm achieves the information theoretical lower bound almost surely as α goes down
to 0

C. Proof of Theorem 3.1

The performance guarantee in Theorem 3.1 is stated in terms of following instance-dependent constants:

K1 =

(
18

κ̄κ3
3

)1/γ

K2 =

 18

κ3
3

(
ck∗ − log 2−Wk∗

log(1/(log 2−Wk∗ ))

)
1/γ

K3 = max
k∈[M ]\k∗

 18

κ3
3

(
log 2−Wk

2 log(6/(log 2−Wk))
− ck

)
1/γ

Here, γ is a scalar in (0, 1/2), κ̄ = 1
M

∑M
k=1(ck − 0.5), κ3 is the third largest element in {ck − 0.5}Mk=1, and

W−1
k =

1

d(ck, 0.5)
− ∆k

2pk
for k ∈ [M ] \ {k∗},

W−1
k∗ =

1

d(ck∗ , 0.5)
+

∆min

2pk∗
.

Finally, with N0(γ) = max(K1,K2,K3) and N ≥ N0(γ) as in the statement of Theorem 3.1, our complete proof is described
below.

Proof: Running steps (1)-(2) of Algorithm 2 of [12] with N items, returns the estimates {ĉk}Mk=1. Using Lemma C.1 with

N ≥
(

18
κ̄κ3

3

)1/γ
, we obtain

max
k∈[M ]

{∥ĉk − ck∥} ≤
18

κ3
3N

γ

w.p ≥ 1 −M2 exp
(
−N1−2γ

2

)
. Let Gk := {|ĉk − ck| < ϵ} and let G =

⋂
Gk. Observe that under the event Gk, for any

ϵ, δ > 0, it is true that
1

d(ck + ϵ, 0.5)
≤ 1

d(ĉk, 0.5)
≤ 1

d(ck − ϵ, 0.5)

Setting ϵ = 18
κ3
3N

γ and δ = M2 exp
(
−N1−2γ

2

)
, we can prove the theorem as follows

P
(
k̂ ̸= k∗

)
= P

(
pk∗

d(ĉk∗ , 0.5)
> min

k∈[M ]\{k∗}

pk
d(ĉk, 0.5)

)



= P

 ⋃
k∈[M ]\k∗

pk∗

d(ĉk∗ , 0.5)
>

pk
d(ĉk, 0.5)


≤ P (G)P

 ⋃
k∈[M ]\k∗

pk∗

d(ĉk∗ , 0.5)
>

pk
d(ĉk, 0.5)

| G

+ P
(
GC
)

< P

 ⋃
k∈[M ]\k∗

pk∗

d(ck∗ − ϵ, 0.5)
>

pk
d(ck + ϵ, 0.5)

+ δ

= P

 ⋃
k∈[M ]\k∗

pk∗

d(ck∗ − ϵ, 0.5)
− pk∗

d(ck∗ , 0.5)
>

pk
d(ck + ϵ, 0.5)

− pk
d(ck, 0.5)

+ ∆k

+ δ

≤ P

(
pk∗

d(ck∗ − ϵ, 0.5)
− pk∗

d(ck∗ , 0.5)
> ∆min/2

)
+ P

 ⋃
k∈[M ]\k∗

pk
d(ck, 0.5)

− pk
d(ck + ϵ, 0.5)

> ∆k/2

+ δ (5)

The additional requirement on N gives us

1) For k = k∗

N ≥

κ3
3

(
ck − log 2−Wk

log(1/(log 2−Wk))

)
18

−1/γ

=⇒ ck − ϵ ≥ log 2−Wk

log(1/(log 2−Wk))

≥ H−1(log 2−Wk)

=⇒ H(ck − ϵ) ≤ log 2−Wk (Lemma C.3)
=⇒ d(ck − ϵ, 0.5) ≥Wk

=⇒ pk
d(ck − ϵ, 0.5)

− pk
d(ck, 0.5)

≤ ∆min/2 (6)

2) ∀k ∈ [M ] \ k∗,

N ≥

κ3
3

(
log 2−Wk

2 log(6/(log 2−Wk))
− ck

)
18

−1/γ

=⇒ ck + ϵ ≤ log 2−Wk

2 log(6/(log 2−Wk))

≤ H−1(log 2−Wk)

=⇒ H(ck + ϵ) ≥ log 2−Wk

=⇒ d(ck + ϵ, 0.5) ≤Wk (Lemma C.3)

=⇒ pk
d(ck, 0.5)

− pk
d(ck + ϵ, 0.5)

≤ ∆k/2 (7)

Equation (6) and (7) ensure that the first term in Equation (5) is a zero probability event with the given lower bound on N .
And thus we can complete Equation (5) as P

(
k̂ ̸= k∗

)
< δ to complete the proof for the theorem

The proof of the Exploit Stage is provided in Lemma 3.1

Lemma C.1: Given M available prices {pk : k ∈ [M ] } with unknown 2 × 2 symmetric confusion matrices Ck for
k ∈ [M ], L different items drawn from a 2-class distribution and ρ such that κ3 ≥ ρ, where κ3 is the third largest element in
{| ck − 0.5 |}Mk=1, then for any scalar 0 < γ < 0.5 , if the number of items, L, satisfies,

L ≥
(

18

κ̄ρ3

)1/γ



,where κ̄ = 1
M

∑M
k=1(ck − 0.5) , then the estimates of the confusion matrices returned by Steps(1)-(2) of Algorithm 2 of

[12] are bounded as

max
k∈[M ]

{∥ĉk − ck∥} ≤
18

ρ3Lγ

with probability ≥ 1−M2 exp(−L1−2γ

2 )

Proof: The Lemma 13 of [12] says that for any scalar, 0 < t <
κ̄κ3

3

18 ,

max
k∈[M ]

{∥ĉk − ck∥} ≤
18t

κ3
3

w.p ≥ 1−M2 exp
(
−Lt2

2

)
Now set t = 1

Lγ , we get

max
k∈[M ]

{∥ĉk − ck∥} ≤
18L−γ

κ3
3

≤ 18

ρ3Lγ

w.p > 1−M2 exp
(
−L1−2γ

2

)
Lemma C.2: For any x > 0.5,

d(0.5, x) ≥ y ⇐⇒ x ≥ 1 +
√
1− e−2y

2

Proof: Observe that,

d(0.5, x) =
− log(4x(1− x)

2
> y

, thus we can say

4x(1− x) ≤ e−2y

4x2 − 4x+ e−2y ≥ 0

x ≥ 1 +
√
1− e−2y

2

Lemma C.3: The binary entropy function , H(x) = −x log(x)− (1− x) log(1− x) satisfies the following
x

2 log( 6x )
≤ H−1(x) ≤ x

log( 1x )

APPENDIX D
PROOFS FOR ASYMMETRIC CASE

The guarantee in Theorem A.1 is stated in terms of the following instance-dependent quantities:

wmin = min{w0, w1}, κ = min
k∈[M ]

min
i∈{0,1}

(2ck(i)− 1),

W = diag(w0, w1), σL = min
a̸=b∈[M ]

∥CaWCT
b ∥,

K1 =

(
(72× 31× 230)225

w2
minσ

13
L

)1/(1−γa−2γb)

,

K2 =
(wminσL

72κ

)1/γb

,

K3 =

(
ck∗(mk∗)− log 2−Wk∗

log(1/(log 2−Wk∗))

)−1/γb

,

K4 = max
k∈[M ]\k∗

(
log 2−Wk

2 log(6/(log 2−Wk))
− ck(mk)

)−1/γb

K5 = max
k∈[M ]\k∗

∣∣∣∣ck(0)− ck(1)

2

∣∣∣∣−1/γb

.



Here γa and γb are scalars in (0, 1) that satisfy γa + 2γb ≤ 1, and

mk := arg min
i∈{0,1}

{ck(i)}

W−1
k =

1

d(ck(mk), 0.5)
− ∆k

2pk
∀k ∈ [M ] \ k∗

W−1
k∗ =

1

d(ck∗(mk∗), 0.5)
+

∆min

2pk∗

Finally, with N0(γa, γb) = max(K1,K2,K3,K4,K5) and N ≥ N0(γa, γb) as in the statement of Theorem A.1, our complete
proof is described below.

Proof: Using Lemma D.1 with N items which satisfy its requirements, we obtain

max
k∈[M ]

∥Ĉk − Ck∥∞ ≤ ϵ = N−γb

w.p ≥ 1− (48+M) exp (1−Nγa) Let Gk := {∥Ĉk−Ck∥∞ ≤ ϵ} and let G =
⋂

Gk. Under the event Gk that the estimates
are bounded for 2-class asymmetric confusion matrices. Additionally define, cmk = min{ck(0), ck(1)}∀k such that

pk
d(cmk , 0.5)

= max

{
pk

d(ck(0), 0.5)
,

pk
d(ck(1), 0.5)

}
Note that introducing the constraint that ϵ ≤

∣∣∣ ck(0)−ck(1)
2

∣∣∣∀k ∈ [M ] \ k∗ ensures that

pk
d(ĉmk , 0.5)

= max{ pk
d(ĉ1k, 0.5)

,
pk

d(ĉ2k, 0.5)
}

in other words the estimates ĉk will be ordered identical to their true values. Now we can work in a similar manner as Theorem
3.1 with

∆k =
pk

d(cmk , 0.5)
− pk∗

d(cmk∗ , 0.5)
∀k ∈ [M ] \ k∗

Setting ϵ as above and δ = (48 +M) exp (1−Nγa), we can prove part (1) of the theorem as follows

P
(
k̂ ̸= k∗

)
= P

(
pk∗

d(ĉmk∗ , 0.5)
> min

k∈[M ]\{k∗}

pk
d(ĉmk , 0.5)

)

< P

 ⋃
k∈[M ]\k∗

pk∗

d(cmk∗ − ϵ, 0.5)
>

pk
d(cmk + ϵ, 0.5)

+ δ

= P

 ⋃
k∈[M ]\k∗

pk∗

d(cmk∗ − ϵ, 0.5)
− pk∗

d(cmk∗ , 0.5)
>

pk
d(cmk + ϵ, 0.5)

− pk
d(cmk , 0.5)

+ ∆k

+ δ

≤ P

(
pk∗

d(cmk∗ − ϵ, 0.5)
− pk∗

d(cmk∗ , 0.5)
> ∆min/2

)
+ P

 ⋃
k∈[M ]\k∗

pk
d(cmk , 0.5)

− pk
d(cmk + ϵ, 0.5)

> ∆k/2

+ δ (8)

The additional requirement on N gives us
1) For k = k∗

N ≥
(
cmk −

log 2−Wk

log(1/(log 2−Wk))

)−1/γb

=⇒ cmk − ϵ ≥ log 2−Wk

log(1/(log 2−Wk))

≥ H−1(log 2−Wk)

=⇒ H(cmk − ϵ) ≤ log 2−Wk (Lemma C.3)
=⇒ d(cmk − ϵ, 0.5) ≥Wk

=⇒ pk
d(cmk − ϵ, 0.5)

− pk
d(cmk , 0.5)

≤ ∆min/2 (9)



2) ∀k ∈ [M ] \ k∗,

N ≥
(

log 2−Wk

2 log(6/(log 2−Wk))
− cmk

)−1/γb

=⇒ cmk + ϵ ≤ log 2−Wk

2 log(6/(log 2−Wk))

≤ H−1(log 2−Wk)

=⇒ H(cmk + ϵ) ≥ log 2−Wk

=⇒ d(cmk + ϵ, 0.5) ≤Wk (Lemma C.3)

=⇒ pk
d(cmk , 0.5)

− pk
d(cmk + ϵ, 0.5)

≤ ∆k/2 (10)

3) ∀k ∈ [M ] \ k∗,

N ≥
∣∣∣∣ck(0)− ck(1)

2

∣∣∣∣−1/γb

=⇒ ϵ ≤
∣∣∣∣ck(0)− ck(1)

2

∣∣∣∣ (11)

Equations (9), (10) and (11) ensure that the first term in Equation (8) is a zero probability event with the given lower bound
on N . Thus we can complete the proof of the Explore stage after Equation 8 as P

(
k̂ ̸= k∗

)
≤ δ.

The proof of the Exploit Stage is provided in Lemma 3.1
Lemma D.1: Given scalars γa, γb > 0 such that γa +2γb ≤ 1, and M available prices {pi : i ∈ [M ] } with unknown k× k

confusion matrices Ci for i ∈ [M ] and L different items drawn from a k-class distribution with priors W = (w1, · · · , wk) and
1 observed label on each item from each of the available prices, then if the number of items satisfy, L

L ≥
(
(72× 31× 230)2k5

w2
minσ

13
L

)1/(1−γa−2γb)

, andL ≥
(wminσL

36kκ

)1/γb

, then the confusion matrices returned by Algorithm 1 of [12] are bounded as

∥Ĉi − Ci∥∞ ≤ L−γb for all i ∈ [M ]

with probability ≥ 1− δ where delta = (36 + 6k +M) exp (1− Lγa) and
1) σL = mini̸=j∈[M ] ∥CiWCT

j ∥
2) κ = mini∈[M ] minl∈[K] minc∈[M ]\l Cill − Cilc

Proof: Setting ϵ = L−γb and δ = (48 +M) exp (1− Lγa) in Theorem 3 of [12] and considering that we have 2 classes of
items, we get the required lower bound on L as

L ≥ (72× 31× 230)225

ϵ2w2
minσ

13
L

(1 + log((36 + 6k +M)/δ))

=
(72× 31× 230)225

L−2γbw2
minσ

13
L

(1 + Lγa − 1)

=
(72× 31× 230)225

w2
minσ

13
L

(Lγa+2γb)

L ≥
(
(72× 31× 230)225

w2
minσ

13
L

)1/(1−γa−2γb)

The requirement on ϵ in Theorem 3 of [12] is satisfied because

L ≥
(wminσL

72κ

)1/γb

ϵ = L−γb ≤ 72κ

wminσL



APPENDIX E
THE MLE HEURISTIC

The MLE based heuristic is based on Lemma 4.2. Our proof for Lemma 4.2 is below
Proof: Let Z denote the vector of tMα observed labels from as many workers. For simplicity of notation, take the number of

labels as n = tMα and let n0 and n1 denote the number of labels that are 0 and 1 respectively. Now we consider the likelihood
of Z under ℓj , and say that the MLE ℓ̂j = 1 , when

P (Z | ℓj = 0) > P (Z | ℓj = 1)

or, (ck(0))n0(1− ck(0))
n1 > (1− ck(1))

n0(ck(1))
n1

or,
(

ck(0)

1− ck(0)

)n0

(1− ck(0))
n >

(
1− ck(1)

ck(1)

)n0

(ck(1))
n

or,
n0

n
>

log
(

ck(1)
1−ck(0)

)
log
(

ck(0)
1−ck(1)

)
+ log

(
ck(1)

1−ck(0)

) =: θk (12)

In other words, if the fraction of workers predicting 0 exceeds θk, we assign ℓ̂j = 0 as stated in the lemma. In order to
bound the error probability observe that by Chernoff bound for binomial random variables, we have

P
(
ℓ̂j = 1 | ℓj = 0

)
≤ P (n0 ≤ nθk | ℓj = 0) ≤ e−nd(θk,ck(0))

as here n0 ∼ Binomial(n, ck(0)) under ℓj = 0. Similarly under ℓj = 1, n0 ∼ Binomial(n, 1− ck(1))

P
(
ℓ̂j = 0 | ℓj = 1

)
≤ P (n0 ≥ nθk | ℓj = 1) ≤ e−nd(θk,1−ck(1))

Finally we show that d(θk, ck(0)) = d(θk, 1− ck(1)) and complete our proof of the error bound in Eq (4) (reproduced below).

P
(
ℓ̂j ̸= ℓj

)
≤ e−tMα d(θk,ck(0))

Observe that,

d(θk, ck(0))− d(θk, 1− ck(1))

= θk log

(
1− ck(1)

ck(0)

)
+ (1− θk) log

(
ck(1)

1− ck(0)

)

=
log
(

ck(1)
1−ck(0)

)
log
(

1−ck(1)
ck(0)

)
+ log

(
ck(0)

1−ck(1)

)
log
(

ck(1)
1−ck(0)

)
log
(

ck(0)
1−ck(1)

)
+ log

(
ck(1)

1−ck(0)

) (Substituting θk from Eq (12))

= 0

This completes the proof.

APPENDIX F
THE CBS HEURISTIC

In this section, we formally state the Confidence Bound based Stopping criterion (CBS).
CBS is also a stopping time algorithm that uses confidence bounds instead of the Chernoff stopping rule in Algorithm 2.

This is motivated by the fact that for any item j,[
ĉ−

√
log(1/α)

2t
, ĉ+

√
log(1/α)

2t

]
,

where ĉ denotes the average prediction (as also defined in Algorithm 2), is a confidence interval on ck̂(ℓj , 1), that contains
this quantity with probability ≥ 1−α (this follows from the Hoeffding inequality). After t label predictions are collected from
the worker class k̂, the CBS algorithm stops if:

|ĉ− 0.5| >
√

log(1/α)

2t
(13)

When (13) holds, the final label ℓ̂j is assigned identical to line 8 of DirectionTest. For this stopping rule, it is easy to see that
P
(
ℓ̂j ̸= ℓj

)
≤ α.
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