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We consider a strategic resource pooling interaction between two service providers, each of which is modelled as a multi-server queue.

The traditional full resource pooling mechanism, while improving the overall system performance measure, may not always benefit

the providers individually. For rational service providers, there will therefore be no incentive to form a stable coalition. We address

this issue by proposing three partial sharing mechanisms: two of these, PPDS and PPR, allow each provider to designate a certain

number of servers to potentially serve jobs of the other provider, while the third mechanism, DQL, maintains an upper bound on the

difference between occupancies of the two queues. We determine the probability of waiting for each of the three mechanisms and

show through several numerical examples that their Pareto frontiers are non-empty. In particular, this shows that the proposed partial

pooling mechanisms are individually beneficial to both providers and incentivize coalition formation in all situations. Finally, we

apply bargaining theory to determine the operating point on the Pareto frontier.
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1 INTRODUCTION

We consider resource sharing by service systems modeled as multi server queueing systems, e.g., server farms, cloud

computing systems, call centers, inventory systems, and emergency services. These services dimension their resources

(e.g., number of servers) to provide a prescribed quality of service (QoS). Two commonly used QoS measures in delay

systems (as opposed to loss systems) are the stationary probability of waiting for service (famously characterized by

the Erlang-C formula for M/M/N queues), and moments of the steady state waiting/sojourn time. For many of these

systems, resources are expensive and different independent systems could possibly share their resources to improve

their customers’ QoS as compared to when they operate without sharing. It may also be that procurement of additional

resources takes time, and sharing could be a useful interim measure. In [11], two models for resource sharing among

different service providers are identified:

(1) Providers pool all their existing resources expecting that the joint system is beneficial over operating alone.

(2) Providers jointly determine the total resource procurement for the QoS requirements of the combined system.

Our interest in this paper is related to the first kind of resource sharing model above. In [11] it is shown that when

side payments are allowed, (i.e., the providers that improve their performance can pay the providers whose performance
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worsens to keep them in the coalition) there exists a non-empty core (stable coalition). Furthermore, cooperative game

theory is used to determine the cost/revenue shares among the coalition of providers. Our interest though is in the

setting of non-transferable utility, where side payments are not allowed. In this case, the providers may not always have

the incentive to completely pool their resources as illustrated in the following example. Two service providers, 𝑃1 and

𝑃2, have, respectively, 𝑁1 = 20 and 𝑁2 = 30 servers and are offered load of, respectively, 𝜆1 = 16 and 𝜆2 = 28 Erlangs

and are modeled as𝑀/𝑀/𝑁 queues. When operating alone, the providers’ QoS, measured as Erlang-C probabilities, are,

respectively, 0.25 and 0.62. When the providers merge to create a coalition system of 50 servers with 44 Erlangs load,

the QoS in the joint system is 0.28. Clearly, the first provider is not incentivized to join this ‘naive’ full pooling coalition.

A natural question then is to seek partial pooling models that may incentivize both providers to join the coalition.

Here, by partial pooling models we mean that each provider contributes a fraction (could be all) of its resources to serve

jobs of the ‘other’ provider, e.g., each provider placing some servers into a common pool that can be used to serve jobs

from either provider. This leads us to the two key questions that we seek to answer in this paper.

(1) How to partially share service resources between the service providers?

(2) Given a partial sharing model, how much to share?

To address the first question, we propose three partial sharing mechanisms, two of which can be implemented using

cancel-on-start (c.o.s.) redundancy. (A discussion on partial pooling via cancel-on-complete (c.o.c.) redundancy can be

found in [15].
1
) We address the second question by analysing the Pareto frontier of efficient and mutually beneficial

sharing configurations under each mechanism, and further invoking the theory of bargaining to capture the ‘agreement’

between the service providers.

1.1 Summary of Contributions and Organisation

Our main contribution is to propose partial pooling mechanisms for delay systems where waiting probability is the

measure of performance and no side payments are possible. In the first mechanisn, which we call Partial Pooling

with Dedicated Servers (PPDS)
1
, each provider contributes a fixed number of its servers to the common pool which

can serve tasks
2
of either provider. Each provider retains a set of dedicated servers for its own tasks. In the second

mechanism, called Partial Pooling with Repacking (PPR), each provider accepts to serve concurrently at most a certain

number of ‘overflow’ tasks of the other provider. This mechanism is similar to PPDS except that we allow every server

to execute tasks of either provider (whereas in PPDS, the servers in each dedicated pool can only execute the tasks

of that particular provider). To see the difference, consider a simple example of 𝑃1 with two servers, one of which is

shared with 𝑃2, who has only one server but shares none. In PPDS, a possible sample path could lead to the following

configuration: dedicated server of 𝑃1 is free, shared server is used by a task of 𝑃1, the dedicated server of 𝑃2 is busy, and

there are waiting tasks of 𝑃2 . That is, there could be tasks of 𝑃2 that are waiting which could have potentially used

the shared server if the free dedicated server of 𝑃1 could be interchanged with the shared server. PPR allows for such

relabelling or repacking; PPDS does not. In the final mechanism that we consider, called Differential Queue Length

(DQL), the providers maintain the difference in their queue-lengths inside a given range by jockeying jobs at arrival

and departure instants.

For all the three mechanisms, we give efficient ways to compute the waiting probabilities. This allows the providers

to analyze the performance impact of a given pooling scheme, and to ‘bargain’ over the parameters of the sharing

1
The present paper is an extended version of [15], in which the Partial Pooling with Dedicated Servers (PPDS) policy was first introduced.

2
We shall use customer, jobs, requests, or tasks interchangeably depending upon the context.
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arrangement. Numerical examples show that the Pareto frontier under these mechanisms has a special property:

Pareto-optimal strategies involve at least one of the providers sharing its resources completely with the other ; a similar

observation was made in the context of loss systems in [17].

The choice of the partial pooling mechanism itself could be based on technological factors. The implementation of

PPDS and PPR assumes cancel-on-start redundancy. If this feature is not available, then DQL can be used, which is

based purely on knowing the queue lengths at the time of arrival and end of service. It does not send replicas like in

redundancy systems and hence does not scan all the other queues to remove the replicas. The choice between PPDS and

PPR could be made based on, for example, privacy or security concerns because of which a provider may want to keep

apart a set of dedicated servers for its own tasks. Note also that PPR assumes that all servers are capable of serving

tasks of either provider, whereas under PPDS, only the servers in the common pool require this ability. Thus, PPDS may

be preferrable, for example, in call centers where cross-training agents to perform multiple functions is expensive.

The resource pooling mechanisms considered here are applicable to service providers that can be modelled as multi-

server single-queue (Erlang-C) queueing systems, e.g., server farms, cloud computing systems, call centers, inventory

systems, and emergency services. As we show, partial sharing can improve the performance for both providers without

requiring procurement of additional infrastructure.

The rest of the paper is organized as follows. In the next section, we describe our system model involving two

providers operating multi-server service systems, and briefly present the three mechanisms. Section 3 considers the PPDS

mechanism. Using its connection with cancel-on-start redundancy systems [6], we obtain the stationary distribution

of the number in the system, and for a special case, we show that the Pareto region is such that at least one of the

providers shares all of its resources. Based on numerical evidence, we conjecture that this is true in general. We then use

bargaining theory to capture the stable sharing agreement. The PPR mechanism is analyzed in Section 4. The queueing

model induced by PPR is shown to be an Order-Independent-Queue [14] which allows us to deduce a product-form

stationary distribution. We show that this product-form has a simple expression with an interpretation in terms of

the Erlang-C probabilities, a result which can be of independent interest. Supported by numerical evidence, and also a

formal proof for a special case, we again conjecture that the Pareto frontier has the same structure as for PPDS. Section 5

is dedicated to the DQL mechanism. The Markov chain of this model is shown to be a quasi-birth-death process whose

stationary distribution can be computed using techniques based on matrix-geometric analysis [8]. Numerical examples

are presented to see the various possible shapes of the Pareto frontier of this mechanism. Section 6 provides a short

numerical comparison of the performance of the three partial sharing schemes that we introduced in this paper. We

conclude in Section 7, with discussions on related literature and future work.

2 SYSTEMMODEL

Consider two service providers 𝑃1 and 𝑃2 with 𝑁1 and 𝑁2 servers, respectively. The servers are homogenous with unit

service rate. Jobs of provider 𝑃𝑖 arrive according to a Poisson process of rate 𝜆𝑖 , and the service requirements (a.k.a.

sizes) of jobs are i.i.d. exponential with unit mean. Thus 𝜆𝑖 is the traffic load of 𝑃𝑖 . For stability, we assume 𝜆𝑖 < 𝑁𝑖 for

𝑖 = 1, 2. We will consider the stationary waiting probability, defined as the steady state probability that an arriving job

has to wait for service as the performance metric. For provider 𝑃𝑖 , the standalone Erlang-C probability 𝐶s

𝑖
is

𝐶s

𝑖 =
𝜆
𝑁𝑖

𝑖

𝜆
𝑁𝑖

𝑖
+

(
1 − 𝜆𝑖

𝑁𝑖

) (
𝑁𝑖−1∑
𝑘=0

𝜆𝑘
𝑖

𝑘!

)
𝑁𝑖 !

.
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This will serve as the benchmark when highlighting the benefits of partial sharing compared to the no sharing case.

We shall use the notation −𝑖 to indicate the other provider when referring to provider 𝑖 . For example,𝐶s

−𝑖 will denote

the standalone probability of the other provider when we are analyzing provider 𝑃𝑖 .

2.1 Sharing mechanisms

We give a brief description of the three mechanisms. The detailed analyses will be presented in the following sections.

PPDS. In the PPDS mechanism, there are three separate pools of servers. Each provider maintains one dedicated pool

for its own jobs, and the third pool is a common one in which servers can serve jobs of either provider. Each pool has

its own single queue with jobs waiting in chronological order of their arrival time. Upon arrival of a job of its type, 𝑃𝑖

sends a replica to the common queue and one to its own dedicated queue. The order of service in each queue is first

come first served (FCFS). A replica is cancelled when its twin enters service. Let 𝑘𝑖 be the number of servers that 𝑃𝑖

contributes to the common pool. This number will also be called the sharing strategy of 𝑃𝑖 . When 𝑘𝑖 = 0, 𝑃𝑖 is not

sharing any servers while 𝑘𝑖 = 𝑁𝑖 means that 𝑃𝑖 is pooling all its servers. In particular, (𝑘1, 𝑘2) = (0, 0) corresponds to
the baseline scenario with no resource sharing pooling.

The implementation of PPDS as described above is equivalent to an alternative implementation wherein each server

maintains its own FSFC queue with c.o.s. replication, with replicas of each arriving 𝑃𝑖 job being sent to each of the

𝑁𝑖 + 𝑘−𝑖 servers that can process it. This alternative implementation is illustrated in Fig. 2.

PPR. The PPR mechanism has the same pooling strategy as PPDS except that there only two server pools—one for each

provider. Each pool has its own single queue with jobs waiting in chronological order. Upon arrival of a job of any

provider, a replica is sent to the queues of both providers. The order of service at both providers is to pick the first

job in its own queue that is eligible for service. A job of 𝑃𝑖 is eligible if there are strictly less than 𝑁𝑖 + 𝑘−𝑖 jobs of 𝑃𝑖
already in service in total across both the pools. As in PPDS, a replica is cancelled as soon as its twin enters service. The

sharing strategy 𝑘𝑖 of 𝑃𝑖 is the maximum number of overflow jobs in service it allows for 𝑃−𝑖 . As before, (𝑘1, 𝑘2) = (0, 0)
corresponds to the baseline scenario with no resource sharing pooling.

The implementation of PPR as described above is equivalent to an alternative implementation wherin each server

maintains its own queue, with c.o.s. replicas of each arriving job being sent to all servers, and each server processing the

earliest arriving eligible job (subject to the constraint on the number of concurrent jobs in service from each provider)

in its queue.

A comparison of the architectures of PPDS and PPR is shown in Fig. 1 for 𝑁1 = 2, 𝑁2 = 4, and (𝑘1, 𝑘2) = (1, 1). While

PPR requires that every server be able to execute jobs of any provider, PPDS maintains dedicated servers that only

serve jobs of one provider.

DQL. The third and final mechanism is based on queue-length and does not involve redundancy. Each provider maintains

a single queue for all its servers. The order of service at each provider is FCFS. An arriving job of 𝑃𝑖 that sees 𝑥𝑖 jobs

in the queue of 𝑃𝑖 , computes the difference in queue-lengths at the two providers (that is, 𝑥𝑖 − 𝑥−𝑖 ) and applies the

following rule:

• if 𝑥𝑖 − 𝑥−𝑖 < 𝑘−𝑖 , then join queue 𝑖;

• if 𝑥𝑖 − 𝑥−𝑖 ⩾ 𝑘−𝑖 , then join queue −𝑖;

Similarly, when a job departs from queue −𝑖 after service completion, one job waiting in queue 𝑖 is chosen and will

either jockey to queue −𝑖 or continue waiting in queue 𝑖 based on the following rule:
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Fig. 1. Comparison of the queueing architectures of PPDS (left) and PPR (right) with 𝑁1 = 2, 𝑁2 = 4, 𝑘1 = 1, 𝑘2 = 1.

• if 𝑥𝑖 − 𝑥−𝑖 < 𝑘−𝑖 , then remain in queue 𝑖;

• if 𝑥𝑖 − 𝑥−𝑖 ⩾ 𝑘−𝑖 , then jockey to queue −𝑖;

We remark that the job chosen for jockeying and the position it joins in the other queue is not relevant to the computation

of the waiting probability since only the state at the arrival instant of the job determines whether it waits or not. The

number 𝑘𝑖 is the sharing strategy of 𝑃𝑖 in DQL and can be any non negative integer. It can interpreted as the maximum

number beyond its own queue length that 𝑃𝑖 allows 𝑃−𝑖 ’s queue length to grow before accepting jobs of 𝑃−𝑖 . Intuitively,

a larger value of 𝑘𝑖 indicates less sharing by 𝑃𝑖 . When both (𝑘1, 𝑘2) = (1, 1), the mechanism works as join the shortest

queue and corresponds to full pooling. On the other extreme, 𝑘𝑖 = ∞ means that 𝑃𝑖 is not sharing its resources.

2.2 Pareto-optimality and Pareto-frontier

We now define Pareto-optimal partial sharing configurations, and provide a sufficient condition for the Pareto frontier

(i.e., the collection of Pareto-optimal sharing configurtions) to have a certain special structure. The discussion in the

remainder of this section will consider an abstract sharing mechanism parameterized by (𝑧1, 𝑧2), where 𝑧𝑖 captures the
extent to which provider 𝑃𝑖 shares its service capacity with the other provider; a higher value of 𝑧𝑖 corresponding to a

greater extent of sharing. (We will make the connection between (𝑧1, 𝑧2) and the parameters (𝑘1, 𝑘2) corresponding to

each of the previously defined mechanisms in later sections.) For the configuration (𝑧1, 𝑧2) corresponding to a generic

sharing mechanism, the waiting probability of 𝑃𝑖 will be denoted by 𝐶𝑖 (𝑧1, 𝑧2).
Each provider is assumed to be optimizing its own waiting probability, i.e., for a provider to consider sharing its

servers, it has to benefit from doing so. To determine which partial sharing configuration will be acceptable to the

providers, we use the concept of Pareto-frontier which is widely used in economics and multi-objective optimization.

Definition 2.1 (QoS stable configuration). A partial sharing configuration (𝑧1, 𝑧2) is said to be QoS stable, if,𝐶𝑖 (𝑧1, 𝑧2) <
𝐶s

𝑖
for 𝑖 = 1, 2.

That is, a QoS stable configuration is one at which both providers benefit with respect to the no-sharing configuration.

Definition 2.2 (Pareto-optimal). A configuration (𝑧1, 𝑧2) is said to be Pareto-optimal, if,

(1) it is QoS stable, and

(2) there does not exist another sharing configuration (𝑧1, 𝑧2) such that 𝐶𝑖 (𝑧1, 𝑧2) ≤ 𝐶𝑖 (𝑧1, 𝑧2), for 𝑖 = 1, 2, with

strict inequality for at least one 𝑖 .
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That is, a Pareto-optimal configuration is one that results in improved performance for each provider, and for which

there does not exist any other sharing configuration that is better for both the providers.
3

The Pareto-frontier, P, is defined as the set of all Pareto optimal configurations and is the set of configurations for

which both providers benefit individually compared to configurations outside this set. Within the set, two configurations

are not comparable since one provider gains while the other loses. Existence of a non-empty P implies that partial

sharing can benefit both providers when compared to not sharing.

Finally, we provide a sufficient condition for the Pareto frontier to have a certain special structure, i.e., that at least

one provider shares its resources with the other to the maximum extent. This is formalized as follows.

Theorem 2.3. Consider a partial sharing mechanism parameterized by (𝑧1, 𝑧2), ∈ Z := [𝑧
1
, 𝑧1] × [𝑧

2
, 𝑧2], where

−∞ ≤ 𝑧𝑖 < 𝑧𝑖 < ∞ for 𝑖 = 1, 2. Suppose further that the right partial derivatives 𝜕𝐶𝑖 (𝑧1,𝑧2)
𝜕𝑧 𝑗

exist for all 𝑖, 𝑗 ∈ {1, 2}, and
the following conditions hold:

(1) 𝐶𝑖 (𝑧1, 𝑧2) is strictly increasing in 𝑧𝑖 ,

(2) 𝐶−𝑖 (𝑧1, 𝑧2) is strictly decreasing in 𝑧𝑖 ,

(3) 𝜕𝐶1

𝜕𝑧2

𝜕𝐶2

𝜕𝑧1

>
𝜕𝐶1

𝜕𝑧1

𝜕𝐶2

𝜕𝑧2

for (𝑧1, 𝑧2) ∈ [𝑧
1
, 𝑧1) × [𝑧

2
, 𝑧2).

Then the Pareto frontier is non-empty, and each Pareto-optimal configuration (𝑧1, 𝑧2) satisfies 𝑧𝑖 = 𝑧𝑖 for some 𝑖 ∈ {1, 2}.

The conditions (1) and (2) have a natural interpretation. Specifically, they imply that if provider 𝑃𝑖 increases the extent

to which it shares its resources with provider 𝑃−𝑖 , its own performance degrades, while that of provider 𝑃−𝑖 improves.

Condition (3) relates the marginal performance gains/losses of both providers from an infinitesimal increase in either

partial sharing parameter. One interpretation of this condition is the following: it can be shown that Condition (1)–(2),
in conjunction with the (also natural) condition that the overall waiting probability (𝜆1𝐶1 (𝑧1, 𝑧2)+𝜆2𝐶2 (𝑧1, 𝑧2))/(𝜆1+𝜆2)
is a strictly decreasing function of 𝑧𝑖 , 𝑖 = 1, 2, implies Condition (3). Theorem 2.3 states that these conditions imply

that at least one provider must satisfy 𝑧𝑖 = 𝑧𝑖 , i.e., share its resources to the maximum extent, at a Pareto-optimal

configuration (𝑧1, 𝑧2). Intuitively, this is because Conditions (1)–(3) imply statistical economies of scale from increased

resource sharing between providers. The proof of Theorem 2.3 is provided in Appendix A.

2.3 Bargaining solutions

Bargaining theory provides a framework for choosing one configuration from the set of Pareto-optimal ones [16]. While

an extensive treatment of bargaining solutions is beyond the scope of the present paper, we use one popular solution

concept from the theory, namely, the Kalai-Smorodinsky bargaining solution (KSBS) [10], to capture the agreement

point between the providers.

Definition 2.4. A partial sharing configuration (𝑧∗
1
, 𝑧∗

2
) is a Kalai-Smorodinsky bargaining solution (KSBS), if (𝑧∗

1
, 𝑧∗

2
)

is on the Pareto-frontier and satisfies

𝐶s

1
−𝐶1 (𝑧∗

1
, 𝑧∗

2
)

𝐶s

2
−𝐶2 (𝑧∗

1
, 𝑧∗

2
) =

𝐶s

1
− min

𝑦∈Z
𝐶1 (𝑦1, 𝑦2)

𝐶s

2
− min

𝑦∈Z
𝐶2 (𝑦1, 𝑦2)

.

3
The first condition is not part of the standard definition of Pareto optimality. However, in the present context, since Pareto-optimal configurations

are meant to capture possible agreement points between the providers, it is natural to impose this condition of individual rationality.
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Fig. 2. Illustration of the PPDS mechanism for 𝑁1 = 2, 𝑁2 = 1, 𝑘1 = 1, 𝑘2 = 0. Servers 𝑆1 and 𝑆3 belong to the dedicated pools of
providers 𝑃1 and 𝑃2, respectively. A copy (replica) of a waiting job is indicated by ′. For example, 𝐽1 and 𝐽 ′

1
are copies of the same job.

The KSBS is such that the ratio of relative utilities of the providers is equal to the ratio of their maximal relative

utilities. It can be shown (using arguments similar to those in [17]) that under Conditions (1)–(3) of Theorem 2.3, the

KSBS is uniquely defined. As we see in later sections, when the providers are close to being symmetric in their arrival

rates (or equivalently, their standalone waiting probabilities), the KSBS typically corresponds to full pooling. On the

other hand, when one provider is much more congested than the other, the KSBS typically does not correspond to

complete pooling; instead, the more congested provider is required to share its resources to the maximum extent.

3 PARTIAL POOLINGWITH DEDICATED SERVERS

In the PPDS mechanism, each provider contributes some of its servers to a common pool. The servers in this common

pool can serve jobs from both of the service providers. Hence, the system has three types of servers depending on the

types of jobs they can serve. We now formally define the partial sharing policy.

The partial sharing policy is parametrized by (𝑘1, 𝑘2),where 𝑘𝑖 ∈ {0, 1, 2, . . . , 𝑁𝑖 } is the number of servers contributed

by provider 𝑃𝑖 to the common pool. Hence the 𝑁 = 𝑁1 + 𝑁2 servers are classified in the following three separate pools.

• Dedicated servers of provider 𝑃1: 𝑁1 − 𝑘1 dedicated servers which can serve only jobs of provider 𝑃1.

• Dedicated servers of provider 𝑃2: 𝑁2 − 𝑘2 dedicated servers which can serve only jobs of provider 𝑃2 .

• Common pool: 𝑘1 + 𝑘2 shared servers which can serve jobs from both providers 𝑃1 and 𝑃2.

On arrival of a provider 𝑃𝑖 job into the system, copies (replicas) of this job are sent to all the 𝑁𝑖 +𝑘−𝑖 servers that can
serve it, i.e., to the 𝑁𝑖 − 𝑘𝑖 dedicated servers of provider 𝑃𝑖 and 𝑘1 + 𝑘2 servers in the shared pool. Each server performs

FCFS scheduling, with the replicas being cancelled according to the c.o.s. model. An illustration of this is provided in

Figure 2.

Partial pooling under c.o.s. replication is also equivalent to a hypothetical join-the-least-workload system, where

each server maintains a FCFS queue, and an incoming job gets dispatched on arrival to that eligible server that has the

least unfinished work. An alternative and equivalent view of our dedicated servers model is the following: All jobs

(from both providers) wait in a single FCFS queue, and each server processes the earliest arriving eligible job. This

latter view makes our model an instance of the multi-server, multi-class system analyzed by Visschers et al. in [18], for

which a product-form description of the stationary distribution is available.

The contributions of this section are as follows.

1. We use the framework in [18] to obtain a characterization of the stationary probability of waiting for each provider

under the PPDS scheme. Since our setting has three pools with homogeneous servers inside each pool, we first define a

compact state description based on pools rather than individual servers. This compact (pool-based) state description

is 6 dimensional, compared to the 𝑂 (𝑁 ) dimensional (server-based) state description in [18]. Our pool-based state
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description also allows us to obtain simplified expressions for the stationary probabilities. To the best of our knowledge,

these expressions are not available in the literature and could be of independent interest.

2. Since the expressions for the waiting probabilities remain fairly involved, we are only able to analytically characterize

the Pareto-frontier for the stationary waiting probability metric when 𝑁1 = 𝑁2 = 1. In this case, by suitably extending

the space of sharing configurations to [0, 1]2
via time-sharing across configurations in {0, 1}2

, we show that Pareto-

optimal sharing configurations involve at least one provider always contributing its server to the common pool (i.e.,

𝑘𝑖 = 1 for some 𝑖). Intuitively, under efficient partial sharing configurations, the more congested provider always places

its server in the common pool, whereas as the less congested provider places its server in the common pool for some

(long-run) fraction of time.

3.We conjecture that the above structure of the Pareto-frontier holds for 𝑁1, 𝑁2 ≥ 1. This conjecture is validated via

numerical evaluations.

3.1 State space description of Visschers et al. [18]

We first describe the state space of [18], and then show how it can be simplified when working with pools of homogenous

servers. While the model in [18] applies for an arbitrary number of job types, we restrict our discussion to two types of

jobs (those corresponding to providers 𝑃1 and 𝑃2) and three classes of servers for simplicity. LetM = {1, 2, · · · , 𝑁1 +𝑁2}
denote the set of all servers and {𝑚1, · · · ,𝑚𝑖−1,𝑚𝑖 } be the set of busy servers. Busy servers are labelled in increasing

order of the arrival times of the jobs in service; for example,𝑚1 ∈ M is the label of the server processing the earliest

arriving job in the system.

Jobs are queued in the order of their arrival times; the job queue is fed by a single Poisson stream, with the type of

an arriving job being initially undetermined. The type is determined only when a (free) server checks whether or not

the job is eligible to be served by it. We refer to jobs whose type is (as yet) unassigned as covered jobs. When a server

becomes idle, it starts moving up the queue uncovering jobs until it finds one that it can serve or it has uncovered all the

waiting jobs and found none that matches its type.
4

For 𝑗 ≤ 𝑖 − 1, 𝑛 𝑗 denotes the number of jobs that lie in the queue between the jobs served by Servers𝑚 𝑗 and𝑚 𝑗+1 .

Finally, 𝑛𝑖 denotes the number of jobs that arrived after the job being served by Server𝑚𝑖 . Note that 𝑛 𝑗 = 0 so long as

𝑖 < 𝑁 . Moreover, since we are considering only two job types and three server classes, the following holds: when 𝑖 = 𝑁,

𝑛𝑖 equals the number of uncovered jobs in the system (at the back of the queue); the 𝑛1 + 𝑛2 + · · ·𝑛𝑖−1 jobs waiting in

the queue between other jobs in service are all uncovered and belonging to the same type.

The state of the system (as proposed in [18]) is given by the position in the queue of each busy server as well as the

number of waiting jobs (uncovered or covered) between them, and is represented as

𝑠 = (𝑛𝑖 ,𝑚𝑖 , · · · , 𝑛2,𝑚2, 𝑛1,𝑚1) .

As an illustration of this state description, for the example in Fig. 2, the state of the system is (2, 𝑆3, 1, 𝑆2, 0, 𝑆1) (see
Fig. 3). Here, there are two covered jobs (in grey) and one uncovered type 1 job in the queue. 𝑆3 is the dedicated server

of 𝑃2 and cannot serve jobs of 𝑃1. Therefore, it has skipped the waiting job of 𝑃1 and moved up the queue (note that

jobs 𝐽2 and 𝐽3 in Fig. 2 are still covered in this illustration).

Using this state description, under a certain assignment rate condition on how servers are selected when an arriving

job finds more than one idle eligible server, [18] establishes a product form stationary distribution.

4
Specifically, each job is of Type 1 with probability

𝜆
1

𝜆
1
+𝜆

2

, and of Type 2 with probaility
𝜆

2

𝜆
1
+𝜆

2

. However, the type is not revealed when the job

arrives; it is only revealed when a (free) server ‘passes’ it.
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Fig. 3. Visschers’s state description for the example in Fig. 2.

3.2 Simplified state description

Visschers et al.’s state description keeps track of the position of the each busy server separately. We propose here a

simpler state description that tracks only the number of busy servers in each pool and the number of covered and

uncovered jobs. Since there are 𝑁 servers and only three pools, a considerable reduction in complexity can be expected

by working on the level of pools. We will show that this compact state space also admits a product form stationary

distribution under essentially the same assignment rate condition (reworked for pools).

Some notation: let O = {1, 2, 𝑐} denote the set of pools; 𝑁 𝑗 be the number of servers in pool 𝑗 ∈ O (i.e., 𝑁1 = 𝑁1 −𝑘1,

𝑁2 = 𝑁2 − 𝑘2, 𝑁𝑐 = 𝑘1 + 𝑘2); 𝑛 𝑗 denote the number of busy servers in pool 𝑗 ∈ O; 𝑥𝑖 , 𝑖 ∈ {1, 2}, be the number of

uncovered waiting jobs of 𝑃𝑖 ; and 𝑥cov be the number of covered waiting jobs. Finally, let Λ := 𝜆1 + 𝜆2 .

We take the state to be (𝑥cov, 𝑛−𝑖 , 𝑥𝑖 , 𝑛𝑖 , 𝑛𝑐 ) where 𝑖 is either 1 or 2 and −𝑖 refers to the other dedicated pool. Here, it

is implicit that if 𝑥𝑖 > 0 then 𝑛𝑖 = 𝑁𝑖 and 𝑛𝑐 = 𝑁𝑐 , and if 𝑥cov > 0, then all the servers are busy. This state description is

much more compact than the one with individual servers in [18] since it only keeps track of the number of busy servers

and not their positions in the queue. Note that there cannot be uncovered jobs of both types waiting simultaneously.

Indeed, uncovering is initiated only when a server in a dedicated pool becomes free and there is no uncovered waiting

job of its type. Further, at the end of the uncovering process, there will only remain uncovered waiting jobs of the

opposite type.

Next, we describe the assignment rate condition, which is concerned with how a job is routed if multiple servers

are idle at the time of its arrival. When this happens, the job is uncovered and dispatched to an idle server that

can process it (if available) as per a state-dependent assignment probability distribution. Specifically, this assignment

probability distribution depends on n = (𝑛1, 𝑛2, 𝑛𝑐 ); it must satisfy a certain condition (specified below) for the stationary

distribution to admit a product form. Since the condition is more easily stated in terms of assignment rates rather than

assignment probabilities, let 𝜆𝑝𝑖 (n) denote the rate at which an incoming job is dispatched (for immediate service)

to a server from pool 𝑖 . Also, let 𝜆(n) be the total arrival rate of the types that can be served by the idle servers in

configuration n. For example, 𝜆(𝑛1, 𝑁2, 𝑁𝑐 ) = 𝜆1, for 𝑛1 < 𝑁1, and 𝜆(𝑛1, 𝑁2, 𝑛𝑐 ) = Λ, for 𝑛1 < 𝑁1 and 𝑛𝑐 < 𝑁𝑐 .

Assignment Rate Condition: There exist unique functions 𝜆𝑝𝑖 for all 𝑖 ∈ O and Π𝜆 such that, for every n,

Π𝜆 (n) = 𝜆𝑝𝑖 (n − 𝑒𝑖 )Π𝜆 (n − 𝑒𝑖 ), ∀𝑖 ∈ O,

𝜆𝑝𝑖 (n) ≤ 𝜆𝑖 , 𝑖 = 1, 2,∑︁
𝑖∈O

𝜆𝑝𝑖 (n) = 𝜆(n) .

Here, 𝑒𝑖 is the unit vector in the direction 𝑖 . The definition implies that the product of the assignment rates is independent

of the sequence in which the pools were activated. In other words, the product is independent of the path taken to

reach n from 0.
In [18] it is shown that it is always possible to design assignment probabilities to free eligible servers such that

the assignment rate condition is satisfied. They also give a recursion to compute the assignment rates for individual
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machines (see the equation below (29) in [18]). Further, it is also shown that the assignment rates so obtained are

unique. The same reasoning also holds when working with pools and aforementioned recursion can be adapted for

computing the assignment rates of pools as below.

𝜆𝑝𝑖 (n) =
𝜆(n)

1 + ∑
𝑗≠𝑖

𝜆𝑝𝑗 (n+𝑒𝑖 )
𝜆𝑝𝑖 (n+𝑒 𝑗 )

.

The recursion starts from (𝑁1, 𝑁2, 𝑁𝑐 ) and works its way down to (0, 0, 0). The uniqueness of these assignment rates

also follows from the arguments of [18].
5

3.3 Performance measures

The assignment rate condition implies a product-form stationary distribution of the pool model assuming that the

system is stable. The stability condition for the pool model again follows from the server-based model [18].

PPDS Stability Condition:

𝜆𝑖 < 𝑁𝑖 + 𝑁𝑐 , 𝑖 = 1, 2;

𝜆1 + 𝜆2 < 𝑁 .

Our initial assumption that both providers are stable under the no pooling strategy implies that the above stability

condition is satisfied.

Before giving the expressions for the stationary distributions, we need a final piece of notation. For a state 𝑠 , we will

write Π𝜆 (𝑠) to mean the Π𝜆 (𝑛1, 𝑛2, 𝑛𝑐 ) with 𝑛𝑖 being the number of busy servers in pool 𝑖 in state 𝑠 and, define the sets

S1 =

{
(𝑛1, 𝑛2, 𝑛𝑐 ) : 𝑛1 < 𝑁1, 𝑛2 < 𝑁2, 𝑛𝑐 = 𝑁𝑐

}
∪

{
(𝑛1, 𝑛2, 𝑛𝑐 ) : 𝑛𝑐 < 𝑁𝑐

}
,

S2 =

{
(𝑛2, 𝑥1, 𝑁1, 𝑁𝑐 ) : 𝑥1 ≥ 0, 𝑛2 < 𝑁2

}
, S3 =

{
(𝑛1, 𝑥2, 𝑁2, 𝑁𝑐 ) : 𝑥2 ≥ 0, 𝑛1 < 𝑁1

}
,

S4 =

{
(𝑥cov, 𝑁1, 𝑁2, 𝑁𝑐 ) : 𝑥cov ≥ 0

}
,

S5 =

{
(𝑥cov, 𝑁2, 𝑥1, 𝑁1, 𝑁𝑐 ) : 𝑥1 ≥ 1, 𝑥cov ≥ 0

}
, S6 =

{
(𝑥cov, 𝑁1, 𝑥2, 𝑁2, 𝑁𝑐 ) : 𝑥2 ≥ 1, 𝑥cov ≥ 0

}
.

In S1, there is a free server for an arrival of both types. In S2 (resp., S3), only 𝑃2 (resp., 𝑃1) arrivals see a free server.

S4 has no free servers and only covered jobs waiting. Finally, in S5 (resp., S6), there are no free servers and at least one

uncovered 𝑃1 job (resp., 𝑃2 job) waiting.

Theorem 3.1 (Stationary distribution). Under the assignment rate condition, the stationary distribution is given by

𝜋 (𝑠) =



𝑁2

𝑁

(
Λ

𝑁

)𝑥cov

(
𝜆1

𝑁1 + 𝑁𝑐

)𝑥1 Π𝜆 (𝑁1, 𝑁2, 𝑁𝑐 )
𝑁1!𝑁2!𝑁𝑐 !

𝜋 (0), 𝑠 ∈ S5;

𝑁1

𝑁

(
Λ

𝑁

)𝑥cov

(
𝜆2

𝑁2 + 𝑁𝑐

)𝑥2 Π𝜆 (𝑁1, 𝑁2, 𝑁𝑐 )
𝑁1!𝑁2!𝑁𝑐 !

𝜋 (0), 𝑠 ∈ S6;(
Λ

𝑁

)𝑥cov

(
𝜆1

𝑁1 + 𝑁𝑐

)𝑥1

(
𝜆2

𝑁2 + 𝑁𝑐

)𝑥2 Π𝜆 (𝑠)
𝑛1!𝑛2!𝑛𝑐 !

𝜋 (0), otherwise,

(1)

5
Note that the assignment probabilities to each pool can be easily deduced from the assignment rates. The resulting uniqueness of the assignment

probabilities (to each pool) holds because our model involves only two job types and three server classes; the assignment probabilities are not necessarily

unique in the more general model of [18].
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with 𝜋 (0) computed using the normalization equation.6

The proof is given in Appendix B. The waiting probabilities follow by noting that 𝑃1 jobs wait in S2, S4, S5 and S6

while 𝑃2 jobs wait in regions S3, S4, S5, and S6.

Corollary 3.2 (Waiting probabilities).

𝐶1 =
∑︁

𝑠∈S2∪S4∪S5∪S6

𝜋 (𝑠),

𝐶2 =
∑︁

𝑠∈S3∪S4∪S5∪S6

𝜋 (𝑠).

3.4 Pareto-frontier for 𝑁1 = 𝑁2 = 1

Verifying the conditions of Theorem 2.3 is not easy in general due to the Π𝜆 function. So, we now specialize to the case

𝑁1 = 𝑁2 = 1, focusing on the stationary waiting probability metric. To analyze the Pareto-frontier, we need to generalize

the space of sharing configurations (𝑘1, 𝑘2) to allow for real valued 𝑘𝑖 ∈ [0, 1] .We do this using randomization as follows.

Provider 𝑃𝑖 contributes its server to the common pool with probability 𝑘𝑖 ; these actions being independent across

providers. Of course, the above probabilities should really be interpreted as time-fractions. So the configuration (𝑘1, 𝑘2)
is achieved by time-sharing between the configurations (0, 0), (0, 1), (1, 0) and (1, 1), with (long run) time-fractions

(1 − 𝑘1) (1 − 𝑘2), (1 − 𝑘1)𝑘2, 𝑘1 (1 − 𝑘2), and 𝑘1𝑘2, respectively. See Lemma D.1 in Appendix A for details.

The following theorem provides a complete characterization of the Pareto-frontier.

Theorem 3.3. For 𝑁1 = 𝑁2 = 1, the Pareto-frontier is non-empty. Moreover, Pareto-optimal configurations for the

stationary waiting probability metric satisfy 𝑘𝑖 = 1 for some 𝑖 . Specifically, the Pareto-frontier P is characterized as follows.

(1) If 𝐶𝑖 (1, 1) < 𝐶𝑖 (0, 0) ∀ 𝑖, then there exist uniquely defined constants 𝑧1 and 𝑧2, such that 𝑧𝑖 ∈ (0, 1) for 𝑖 = 1, 2,

𝐶1 (1, 𝑧2) = 𝐶1 (0, 0), 𝐶2 (𝑧1, 1) = 𝐶2 (0, 0). In this case,

P = {(𝑧, 1) : 𝑧 ∈ (𝑧1, 1]} ∪ {(1, 𝑧) : 𝑥 ∈ (𝑧2, 1]}.

(2) If 𝐶2 (0, 0) ≤ 𝐶1 (1, 1) = 𝐶2 (1, 1) < 𝐶1 (0, 0), then there exist uniquely defined constants 𝑧
2
and 𝑧2 satisfying

0 < 𝑧
2
< 𝑧2 ≤ 1 such that 𝐶1 (1, 𝑧2

) = 𝐶1 (0, 0) and 𝐶2 (1, 𝑧2) = 𝐶2 (0, 0) . In this case,

P = {(1, 𝑧) : 𝑧 ∈ (𝑧
2
, 𝑧2)}.

The proof is provided in Appendix D.1. Theorem 3.3 shows that Pareto-optimal configurations always involve at

least one of the providers always contributing its server to the common pool. Moreover, the theorem also spells out the

exact structure of the Pareto-frontier. Case (1) of the theorem corresponds to the case where full pooling is beneficial to

both providers. In this case, the Pareto-frontier includes the full-pooling configuration; see Figure 4a for an example of

this case. Case (2) of the theorem applies to the asymmetric setting where full pooling benefits 𝑃1 but not 𝑃2 . In this

case, all Pareto-optimal configurations involve the most congested provider (i.e., 𝑃1) always contributing its server to

the common pool; see Figure 4b for an example of this case. Note that the third case where full pooling is beneficial to

6
Computing 𝜋 (0) involves summing the stationary probabilities across all regions. This computation can be performed exactly (using finitely many

operations) once the assignment rates are computed (via a finite recursive process). For example,∑︁
𝑠∈S

5

𝜋 (𝑠) = 𝑁2𝜆1

𝑁 (𝑁1 + 𝑁𝑐 )
(
1 − Λ

𝑁

) (
1 − 𝜆

1

𝑁
1
+𝑁𝑐

) Π𝜆 (𝑁1, 𝑁2, 𝑁𝑐 )
𝑁1!𝑁2!𝑁𝑐 !

𝜋 (0) .
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(a)𝐶𝑠
1
= 30%,𝐶𝑠

2
= 10% (b)𝐶𝑠

1
= 50%,𝐶𝑠

2
= 10%

Fig. 4. PPDS Pareto Frontier for 𝑁1 = 𝑁2 = 1.

(a)𝐶𝑠
1
= 10%,𝐶𝑠

2
= 2% (b)𝐶𝑠

1
= 10%,𝐶𝑠

2
= 5% (c)𝐶𝑠

1
= 10%,𝐶𝑠

2
= 10%

Fig. 5. PPDS Pareto Frontier for 𝑁1 = 𝑁2 = 4.

𝑃2 but not 𝑃1 is omitted in the theorem statement, since it can be recovered from Case (2) by interchanging the labels of

the providers.

We conjecture that the above structure of the Pareto-frontier holds beyond the special case of 𝑁1 = 𝑁2 = 1.

Conjecture 3.4. For𝑁1, 𝑁2 ≥ 1, employing an extension of the space of partial sharing configurations to [0, 𝑁1]×[0, 𝑁2]
via randomization as before, any Pareto-optimal configuration for the stationary waiting probability metric satisfies 𝑘𝑖 = 𝑁𝑖

for some 𝑖 .

Numerical experimentation suggests that the above conjecture holds; however, a proof has eluded us thus far. See

Figures (5) and (6) for some illustrations of the Pareto-frontier computed for 𝑁1 = 𝑁2 = 4.

4 PARTIAL POOLINGWITH REPACKING

In the PPR mechanism, the servers are exchangeable and can serve jobs of both providers. Since a replica is sent to the

queues of both providers, the queue content (including the types of the waiting jobs) is identical at both providers (see

Fig. 1b). Thus, there is a simple description of this mechanism with a single-queue and treating the servers as being

indistinguishable. This is illustrated in Fig. 7. All the 𝑁1 +𝑁2 servers are pooled into a common pool, and waiting jobs of

both providers form a single queue in chronological order like in an Erlang-C system. However, PPR has the following

constraint on the number of jobs of provider 𝑃𝑖 that are in service at any time and this makes it different from Erlang-C.

• At most 𝑁𝑖 + 𝑘−𝑖 jobs of provider 𝑃𝑖 can be in service simultaneously.
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(a)𝐶𝑠
1
= 10%,𝐶𝑠

2
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1
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2
= 50%

Fig. 6. Additional cases, PPDS Pareto Frontier for 𝑁1 = 𝑁2 = 4.
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           i          + k            jobs of Pwith at most N            −i               i

+ NN
1 2
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123 4 5
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Fig. 7. Example of PPR with 𝑁1 = 2, 𝑁2 = 4, 𝑘1 = 1, 𝑘2 = 1, where jobs of one type can overtake jobs of the other. Jobs 6 and 7 could
not enter service because 𝑃1 has reached its limit of 𝑁1 + 𝑘2 = 3 jobs in service simultaneously. Hence, Job 8 belonging to 𝑃2 enters
service before them.

We shall call this the per-class constraint as it limits the number of jobs in service for each class. This constraint is in

addition to the global constraint that limits the total number of jobs in service to 𝑁1 + 𝑁2.

A consequence of this constraint is that jobs do not necessarily enter service in chronological order. A job of provider

𝑃𝑖 can overtake and enter service earlier than jobs of 𝑃−𝑖 that arrived earlier as shown in Fig. 7. Jobs have arrived as per

the order number displayed on the job, and no job has departed yet. Job 8 which belongs to provider 𝑃2 has entered

service before Jobs 6 and 7 (of 𝑃1) because provider 𝑃1 reached its limit of 𝑁1 + 𝑘2 = 2 + 1 jobs in service simultaneously

when Job 4 entered service.

The single queue equivalent model for PPR is the same as the Multiserver Station with Concurrent Classes of

Customers (MSCCC) model [5] with two classes of jobs. The MSCCC model allows for arbitrary number of classes of

jobs, with each class having a separate constraint on the number in service. MSCCC was later shown to fall in the set of

Order Independent Queue (OIQ) which have the property of product-form stationary distribution for an appropriate

state descriptor [12].
7

The contributions of this section are as follows.

7
The product-form nature of MSCCC can also be deduced directly from the generalization of concurrency constraints to hierarchical ones [13]. This

generalization is again a special case of OIQ. So, we choose to present the OIQ framework here.
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Fig. 8. State description and service allocation for the example in Fig. 7. There are 𝑛 = 9 jobs in the queue. For ℓ = 6, 7, 9, the service
rate 𝑠ℓ = 0, whereas for the other 𝑠ℓ = 1.

1. Using the product-form property of OIQ, we derive simple expressions for computing the waiting probability of jobs

of 𝑃𝑖 for the two provider model. We believe these expressions are new since [12, 13] only give a recursion to compute

these quantities.

2. As for PPDS, we are only able to analytically characterize the Pareto-frontier for the stationary waiting probability

metric when 𝑁1 = 𝑁2 = 1. By suitably extending the space of sharing configurations to [0, 1]2
via time-sharing across

configurations in {0, 1}2
, we show that Pareto-optimal sharing configurations involve at least one provider always

contributing its server to the common pool (i.e., 𝑘𝑖 = 1 for some 𝑖).

3.We conjecture that the above structure of the Pareto-frontier holds for 𝑁1, 𝑁2 ≥ 1. This conjecture is validated via

numerical evaluations.

4.1 OIQs

We first state some basic facts of the OIQ framework (taken from [12]) that will be needed later. OIQs are multi-server

multi-class single queue models with certain conditions on the service rates that ensures a product-form stationary

distribution. In an OIQ, jobs of class 𝑐 are to arrive according to a Poisson process of rate 𝜆𝑐 and require an exponentially

distributed time of unit mean. Jobs join at the tail of the queue (here by queue we mean both in service as well as

waiting), and when a job finishes service, the ones behind it move up one step.

Let c = (𝑐𝑛, . . . , 𝑐1), where 𝑐ℓ is the class of the job in position ℓ , be the state description when there are 𝑛 customers

in the queue. Assume that a service rate of 𝑠ℓ (c) is allocated to position ℓ . Fig. 8 shows this state description and the

corresponding 𝑠𝑖 for the example in Fig. 7.

A queueing model is OIQ if

(i) 𝑠ℓ (𝑐𝑛, . . . , 𝑐1) = 𝑠ℓ (𝑐ℓ , . . . , 𝑐1) for 1 ⩽ ℓ ⩽ 𝑛, and

(ii) 𝐾 (𝑐𝑛, . . . , 𝑐1) =
𝑛∑
ℓ=1

𝑠ℓ (𝑐𝑛, . . . , 𝑐1) is independent of the permutations of c.

That is, for a queueing model to be OIQ, the service effort directed to position ℓ should depend only on 𝑐ℓ and the jobs

in front of it, and the total service rate 𝐾 (c) in a state must be independent of the order of the jobs in that state.

The stationary probability of state c in an OIQ is of the product-form and is given by

𝜋 (𝑐𝑛, 𝑐𝑛−1, . . . , 𝑐1) = 𝜋 (0)
𝑛∏
𝑖=1

𝜆𝑐𝑖

𝐾 (𝑐𝑖 , · · · , 𝑐1)
, (2)

where 𝜋 (0) is determined from the normalization equation.

The service rate allocated to position ℓ and the total service rate of PPR can be stated in simple terms. Let 𝑀𝑐ℓ =∑ℓ−1

𝑗=0
1{𝑐ℓ=𝑐 𝑗 } be the number of jobs of class 𝑐ℓ until position ℓ − 1. Then, PPR allocates

𝑠ℓ (c) = 1{𝑀𝑐ℓ
<𝑁𝑐ℓ

+𝑘−𝑐ℓ } · 1{min(ℓ−1−𝑀𝑐ℓ
,𝑁−𝑐ℓ +𝑘ℓ )+𝑀𝑐ℓ

<𝑁1+𝑁2} (3)

to position ℓ , for 𝑐ℓ = 1, 2. The first indicator function checks for the per-class constraint of class 𝑐ℓ , and the second one

checks for the global constraint. This allocation depends only on the number of jobs of 𝑐ℓ and −𝑐ℓ in front of position ℓ .
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Fig. 9. Regions of N classified according to which constraints are active.

Summing over ℓ , it follows that the total service rate of PPR in state c is:

𝐾 (c) = min

(
min

(
𝑁1 + 𝑘2,

𝑛∑︁
ℓ=1

1{𝑐ℓ=1}

)
+ min

(
𝑁2 + 𝑘1,

𝑛∑︁
ℓ=1

1{𝑐ℓ=2}

)
, 𝑁1 + 𝑁2

)
. (4)

Since𝐾 depends only on the number of jobs of the two classes, it is independent of the permutations of c. The expression
of 𝐾 can now be substituted in (2) to obtain the stationary distribution of PPR.

4.2 Waiting probabilities

An arriving customer of 𝑃𝑖 will not enter service immediately if either its per-class constraint is violated or the global

one is violated. These constraints depend upon the state only through the number of jobs in service of each provider.

This observation suggests that the waiting probability be obtained by first computing the stationary probability of the

aggregated states (𝑛1, 𝑛2), where 𝑛𝑖 is the number of 𝑃𝑖 jobs in service. This approach was taken in [12] to obtain a

recursion for the waiting probabilities.

For PPR with two classes, we obtain explicit expressions for the aggregated state probabilities. To the best of our

knowledge, these have not appeared earlier in the literature and are of independent interest.

Let

N = {(𝑛1, 𝑛2) : 𝑛1 + 𝑛2 ≤ 𝑁1 + 𝑁2, 𝑛𝑖 ≤ 𝑁𝑖 + 𝑘−𝑖 , 𝑖 = 1, 2} (5)

be the set of aggregated states. These states can be classified into six regions according to whether 𝑃1 or 𝑃2 jobs have to

wait and whether it is the per-class or the global constraint that is active:

N1 = {(𝑛1, 𝑛2) : 𝑛𝑖 < 𝑁𝑖 + 𝑘−𝑖 , 𝑛1 + 𝑛2 < 𝑁1 + 𝑁2} ,

N2 = {(𝑛1, 𝑛2) : 𝑛2 = 𝑁2 + 𝑘1, 𝑛1 < 𝑁1 − 𝑘1} , N3 = {(𝑛1, 𝑛2) : 𝑛1 = 𝑁1 + 𝑘2, 𝑛2 < 𝑁2 − 𝑘2}

N4 = {(𝑛1, 𝑛2) : 𝑛𝑖 < 𝑁𝑖 + 𝑘−𝑖 , 𝑛1 + 𝑛2 = 𝑁1 + 𝑁2} ,

N5 = {(𝑛1, 𝑛2) : 𝑛2 = 𝑁2 + 𝑘1, 𝑛1 = 𝑁1 − 𝑘1} , N6 = {(𝑛1, 𝑛2) : 𝑛1 = 𝑁1 + 𝑘2, 𝑛2 = 𝑁2 − 𝑘2}

Set N1 accepts jobs into service immediately on arrival. In N2, jobs of 𝑃2 will wait due to their per-class constraint,

but those of 𝑃1 will not wait. N3 is defined analogously by interchanging 𝑃1 and 𝑃2. In N5, 𝑃2’s per-class constraint

is active while 𝑃1 will also have to wait because of the global constraint. N6 is defined analogously by interchanging

𝑃1 and 𝑃2. Finally, set N4 is where the global constraint is active but the two per-class constraints are inactive. Fig. 9

shows these six regions.
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Define

𝜋 (𝑛1, 𝑛2) =
∑︁
c
𝜋 (c)1{number in service in state 𝑐=(𝑛1,𝑛2))} (6)

to be the stationary probability of the aggregated state (𝑛1, 𝑛2). Then, the waiting probability of 𝑃1 in terms of 𝜋 is:

𝐶1 (𝑘1, 𝑘2) =
∑︁

(𝑛1,𝑛2) ∈N3∪N4∪N5∪N6

𝜋 (𝑛1, 𝑛2) . (7)

The one for 𝑃2 can be computed similarly.

Theorem 4.1. The aggregate probabilities have the following form:

(i) for (𝑛1, 𝑛2) ∈ N1,

𝜋 (𝑛1, 𝑛2) = 𝜋 (0)
𝜆
𝑛1

1
𝜆
𝑛2

2

𝑛1!𝑛2!

, (8)

(ii) for (𝑛1, 𝑛2) ∈ N2,

𝜋 (𝑛1, 𝑛2) = 𝜋 (0)
𝜆
𝑛1

1
𝜆
𝑛2

2

𝑛1!𝑛2!

1

1 − 𝜆2

𝑛2

, (9)

(iii) for (𝑛1, 𝑛2) ∈ N3,

𝜋 (𝑛1, 𝑛2) = 𝜋 (0)
𝜆
𝑛1

1
𝜆
𝑛2

2

𝑛1!𝑛2!

1

1 − 𝜆1

𝑛1

, (10)

(iv) for (𝑛1, 𝑛2) ∈ N4,

𝜋 (𝑛1, 𝑛2) = 𝜋 (0)
𝜆
𝑛1

1
𝜆
𝑛2

2

𝑛1!𝑛2!

1

1 − Λ
𝑁

, (11)

(v) for (𝑛1, 𝑛2) ∈ N5,

𝜋 (𝑛1, 𝑛2) = 𝜋 (0)
𝜆
𝑛1

1
𝜆
𝑛2

2

𝑛1!𝑛2!

1

1 − 𝜆2

𝑛2

𝑁 − 𝜆2

𝑁 − Λ
. (12)

(vi) for (𝑛1, 𝑛2) ∈ N6,

𝜋 (𝑛1, 𝑛2) = 𝜋 (0)
𝜆
𝑛1

1
𝜆
𝑛2

2

𝑛1!𝑛2!

1

1 − 𝜆1

𝑛1

𝑁 − 𝜆1

𝑁 − Λ
, (13)

where 𝜋 (0) can be computed using the normalization equation∑︁
(𝑛1,𝑛2) ∈N

𝜋 (𝑛1, 𝑛2) = 1. (14)

The proof of this theorem appears in Appendix C.

Remark 1. In addition to expressions for the aggregate probabilities, Thm. 4.1 also provides a simpler way to compute the

normalization factor 𝜋 (0). While a direct computation using (2) would require summing over an infinite number of terms,

(14) only sums over the points in N which are finite in number.

4.3 Pareto frontier and numerical results

Theorem 4.1 can be applied to deduce some monotonicity properties of the waiting probabilities as well as to characterize

the Pareto frontier of PPR.

Theorem 4.2. For 𝑁1 = 𝑁2 = 1, treating 𝑘𝑖 as being real valued and lying in [0, 1] via time-sharing (as in Section 3.4),

the Pareto frontier is non-empty, and all Pareto-optimal configurations ( ˆ𝑘1, ˆ𝑘2) satisfy ˆ𝑘𝑖 = 1 for some 𝑖 ∈ {1, 2}.
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(a)𝐶𝑠
1
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2
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2
= 10%

Fig. 10. OIQ Pareto Frontier for 𝑁1 = 𝑁2 = 4.

(a)𝐶𝑠
1
= 10%,𝐶𝑠

2
= 30% (b)𝐶𝑠

1
= 10%,𝐶𝑠

2
= 50%

Fig. 11. Additional cases, OIQ Pareto Frontier for 𝑁1 = 𝑁2 = 4.

The proof is provided in Appendix D.2.

Conjecture 4.3. For multi-server systems, any Pareto-optimal configuration for the stationary waiting probability

metric satisfies 𝑘𝑖 = 𝑁𝑖 for the more congested provider 𝑃𝑖 .

Numerical experimentation suggests that the Conjecture 4.3 holds. See Figures (10) and (11) for some illustrations of

the Pareto-frontier P computed for 𝑁1 = 𝑁2 = 4.

5 DIFFERENTIAL QUEUE LENGTH SCHEME

Our third and final mechanism is based on queue-lengths and is different in spirit to the previous two which are based

on sharing servers. In the DQL mechanism, a provider accepts a job of the other as soon as the difference in the queue

length exceeds a certain threshold. The threshold could be attained either due to an arrival or a service completion.

Formally, let 𝑥𝑖 be the queue-length (including the ones in service) at 𝑃𝑖 . An arriving job at 𝑃𝑖 joins the queue of 𝑃𝑖

and one randomly chosen job amongst the other ones at 𝑃𝑖 is sent to 𝑃−𝑖

(i) with probability 1, if 𝑥𝑖 − 𝑥−𝑖 ⩾ 𝑘−𝑖 ;

(ii) with probability 0, otherwise.

The job that jockeys is chosen with higher priority amongst the ones that are waiting. The new arrival is excluded

so as to simplify the computation of the waiting probabilities. An arriving customer now waits whenever it sees all

the servers of its provider as busy. This aligns the criterion for waiting with that in an Erlang-C system which is the

baseline for computing the Pareto optimal points.

When a job departs from 𝑃−𝑖 after service completion, one randomly chosen job from 𝑃𝑖 will jockey to 𝑃−𝑖
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(i) with probability 1, if 𝑥𝑖 − 𝑥−𝑖 ⩾ 𝑘−𝑖 ;

(ii) with probability 0, otherwise.

The threshold 𝑘𝑖 will be called the sharing strategy of 𝑃𝑖 . Observe that when both the thresholds are equal to 1, we

get the Join the Shortest Queue mechanism with the additional feature that queue-lengths are equalized at departure

epochs as well. On the other extreme, by setting its 𝑘 equal to infinity, a provider can choose not to share with the

other provider. Thus, a lower value of 𝑘 indicates more sharing while a larger value indicates less. This last property is

in contrast to the previous two mechanisms for which the opposite is true.

Remark 2. The above mechanism is meaningful only when 𝑁1 = 𝑁2. Otherwise, situations may occur where a job in

service is jockeyed from 𝑃𝑖 to 𝑃−𝑖 but has to wait there because all the servers of 𝑃−𝑖 are busy. For example, assume 𝑁1 = 5,

𝑁2 = 1, 𝑥1 = 4, 𝑥2 = 2 and 𝑘2 = 2. In this state, an arrival at 𝑃1 will divert a job from 𝑃1 to 𝑃2 in order to maintain the

difference in queue-lengths even though there is a free server at 𝑃1 and no free server at 𝑃2. With 𝑁1 = 𝑁2, such situations

cannot occur. (An alternative would be to apply the DQL mechanism only on the waiting customers, 𝑥𝑖 − 𝑁𝑖 .)

Remark 3. The computation of the mean waiting times of jobs of 𝑃𝑖 is not easy since jobs can jockey an arbitrary number

of times. However, as explained above, jockeying does not affect the calculation of the waiting probabilities which is the

objective of the providers.

Let (𝑋1 (𝑡), 𝑋2 (𝑡)) be the queue-length vector at time 𝑡 . It can be easily seen that (𝑋1 (𝑡), 𝑋2 (𝑡)) is a Quasi-Birth-Death
process with transition rates:

(𝑋1 (𝑡), 𝑋2 (𝑡)) →


(𝑋1 (𝑡), 𝑋2 (𝑡)) + 𝑒𝑖 with rate 𝜆𝑖 ·

(
1{𝑋𝑖−𝑋−𝑖<𝑘−𝑖 }

)
+ 𝜆−𝑖 ·

(
1{𝑋−𝑖−𝑋𝑖 ≥𝑘𝑖 }

)
(𝑋1 (𝑡), 𝑋2 (𝑡)) − 𝑒𝑖 with rate min(𝑋𝑖 , 𝑁𝑖 ) ·

(
1{𝑋𝑖−𝑋−𝑖<𝑘−𝑖 }

)
+min(𝑋−𝑖 , 𝑁−𝑖 ) ·

(
1{𝑋−𝑖−𝑋𝑖 ≥𝑘𝑖 }

)
With reference to the transitions defined above, the upward transitions of 𝑃𝑖 to (𝑋1 (𝑡), 𝑋2 (𝑡)) +𝑒𝑖 can be due to either

its own arrivals (first term) or from the arrivals in 𝑃−𝑖 (second term). Its downward transitions to (𝑋1 (𝑡), 𝑋2 (𝑡)) − 𝑒𝑖
can be due to a departure in its own queue that does not trigger jockeying from 𝑃−𝑖 (first term) or due to a departure at

𝑃−𝑖 that triggers jockeying (second term). An example Markov chain of the system is shown in Fig. 12a.

The stationary probabilities of a QBD process can be obtained using the matrix geometric method [8]. To apply this

method, we must arrange the generator matrix, 𝑄 , in the form

Q =

©­­­­­­­­«

0 1 2 3 ...

0 𝐿0 𝐹0

1 𝐵0 𝐿 𝐹

2 𝐵 𝐿 𝐹

3 𝐵 𝐿 𝐹

.

.

.
.
.
.

. . .

ª®®®®®®®®¬
(15)

where the entries of𝑄 are block matrices of appropriate dimension. Here, the number of phases in level 0, or equivalently

the dimensions of 𝐿0, 𝐹0, and 𝐵0, can be different from that in subsequent levels. Further, in levels other than 0, the

transition rates should be independent of the level (except the backward transitions in level 1).

For DQL, we show that the state space given by (see Fig. 12b){
(𝑥1, 𝑥2) ∈ Z2

+ : max(𝑥1 − 𝑘2, 0) ≤ 𝑥2 ≤ 𝑥1 + 𝑘1

}
(16)
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(a) Example Markov chain with 𝑁1 = 𝑁2 = 2, 𝑘1 =

2, 𝑘2 = 1.
(b) State space under the DQL mechanism.

can indeed be partitioned in a way that leads to a 𝑄 matrix of the form of (15). First, arrange the states (𝑥1, 𝑥2) in
lexicographic order. Such an ordering is possible since, for each 𝑥1, 𝑥2 can only take a finite number of values. Next,

we identify the states in which the transition rates are independent of the level. Define level 𝑖 , 𝑖 ≥ 1 to be the set

of states with grey area in Fig. 12b). This ensures both providers are serving customers the maximum possible rate

thereby making the downward transition rates independent of the level. Both the upward and downward transitions

now depend only upon the difference 𝑥1 − 𝑥2. Further, it also ensures that the number of phases in every level other

than 0 is the same and is equal to

𝑏 = 𝑘1 + 𝑘2 + 1. (17)

With this definition of levels, lexicographic ordering and substituting Λ = 𝜆1 + 𝜆2 and 𝑁 = 𝑁1 + 𝑁2, the matrices 𝐵, 𝐿

and 𝐹 become

𝐵 =

©­­­­­­­­«

𝑎+1 𝑎+2 𝑎+3 ... 𝑎+𝑏

𝑎+𝑏+1 𝑁

𝑎+𝑏+2 𝑁1

.

.

.
. . .

𝑎+2𝑏−1 𝑁1

𝑎+2𝑏

ª®®®®®®®®¬
𝐹 =

©­­­­­­­­«

𝑎+𝑏+1 ... 𝑎+2𝑏−2 𝑎+2𝑏−1 𝑎+2𝑏

𝑎+1

𝑎+2 𝜆1

.

.

.
. . .

𝑎+𝑏−1 𝜆1

𝑎+𝑏 Λ

ª®®®®®®®®¬
.

𝐿 =

©­­­­­­­­«

𝑎+1 𝑎+2 𝑎+3 ... 𝑎+𝑏−2 𝑎+𝑏−1 𝑎+𝑏

𝑎+1 −Λ − 𝑁 Λ

𝑎+2 𝑁2 −Λ − 𝑁 𝜆2

.

.

.
. . .

. . .
. . .

𝑎+𝑏−1 𝑁2 −Λ − 𝑁 𝜆2

𝑎+𝑏 𝑁 −Λ − 𝑁

ª®®®®®®®®¬
.
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The other states (the ones in light grey in Fig. 12b) are grouped inside level 0. For completeness, we give the cardinality

of level 0 which is

𝑎 =
∑︁

(𝑥1,𝑥2)
1{𝑥1<𝑁2+𝑘2 } · 1{max(0,𝑥1−𝑘2) ≤𝑥2≤𝑥1+𝑘1 } (18)

= (𝑘2 + 𝑁2)𝑘1 +
𝑘2 (𝑘2 + 1)

2

+ 𝑁2 (𝑘2 + 1) . (19)

The matrices 𝐿0, 𝐹0, and 𝐵0 can be determined from the transition rates.

The stationary probability can now be computed using matrix geometric arguments [8]. Let 𝜋𝑖 be the stationary

probability vector for level 𝑖 . First, compute 𝑅 as the solution of the matrix quadratic equation

𝐹 + 𝑅 · 𝐿 + 𝑅2 · 𝐵 = 0. (20)

Then, solve [
𝜋0 𝜋1

] [
𝐿0 𝐹0

𝐵0 𝐿 + 𝑅 · 𝐵

]
=

[
0 0

]
(21)

with the normalization condition [𝜋0 𝜋1] [1 1]𝑇 = 1 to obtain 𝜋0 and 𝜋1. For levels 𝑖 > 1, 𝜋𝑖 can be computed using the

relation 𝜋𝑖 = 𝜋1𝑅
𝑖−1

.

We now have all the ingredients for computing the waiting probability of 𝑃𝑖 for a given partial sharing configuration

(𝑘1, 𝑘2) Note that an arrival of 𝑃𝑖 waits whenever it sees all the servers of 𝑃𝑖 as busy. Applying PASTA, we get

1 −𝐶𝑖 (𝑘1, 𝑘2) =
∑︁
𝑥1,𝑥2

1(𝑥𝑖<𝑁𝑖 )

{
1(𝑥𝑖−𝑥−𝑖<𝑘−𝑖 )𝜋𝑥1,𝑥2

+ 1(𝑥𝑖−𝑥−𝑖=𝑘−𝑖 )1(𝑥−𝑖<𝑁−𝑖 )𝜋𝑥1,𝑥2

}
+

∑︁
𝑥1,𝑥2

1(𝑥𝑖=𝑁𝑖 )

{
1(𝑥𝑖−𝑥−𝑖=𝑘−𝑖 )1(𝑥−𝑖<𝑁−𝑖 )𝜋𝑥1,𝑥2

} (22)

where, with slight abuse of notation, 𝜋 (𝑥1, 𝑥2) is the stationary probability of the state (𝑥1, 𝑥2) and can be inferred from

the 𝜋𝑖s.

𝐶𝑖 (𝑘1, 𝑘2) = 1(𝑘1−⌊𝑘1 ⌋=0)1(𝑘2−⌊𝑘2 ⌋=0)𝐶𝑖 (⌊𝑘1⌋ , ⌊𝑘2⌋)+

1(𝑘1−⌊𝑘1 ⌋=0)1(𝑘2−⌊𝑘2 ⌋>0)
{
(𝑘2 − ⌊𝑘2⌋)(𝐶𝑖 (⌊𝑘1⌋ , ⌈𝑘2⌉)) + (⌈𝑘2⌉ − 𝑘2) (𝐶𝑖 (⌊𝑘1⌋ , ⌊𝑘2⌋))

}
+

1(𝑘1−⌊𝑘1 ⌋>0)1(𝑘2−⌊𝑘2 ⌋=0)
{
(𝑘1 − ⌊𝑘1⌋)(𝐶𝑖 (⌈𝑘1⌉ , ⌊𝑘2⌋) + (⌈𝑘1⌉ − 𝑘1) (𝐶𝑖 (⌊𝑘1⌋ , ⌊𝑘2⌋))

}
+

1(𝑘1−⌊𝑘1 ⌋>0)1(𝑘2−⌊𝑘2 ⌋>0)
{
(𝑘1 − ⌊𝑘1⌋)(𝑘2 − ⌊𝑘2⌋)(𝐶𝑖 (⌈𝑘1⌉ , ⌈𝑘2⌉)) + (𝑘1 − ⌊𝑘1⌋)(⌈𝑘2⌉ − 𝑘2) (𝐶𝑖 (⌈𝑘1⌉ , ⌊𝑘2⌋))+

(⌈𝑘1⌉ − 𝑘1) (𝑘2 − ⌊𝑘2⌋)(𝐶𝑖 (⌊𝑘1⌋ , ⌈𝑘2⌉)) + (⌈𝑘1⌉ − 𝑘1) (⌈𝑘2⌉ − 𝑘2) (𝐶𝑖 (⌊𝑘1⌋ , ⌊𝑘2⌋))
}

(23)

Using time-sharing, equation (23) across configurations (𝑘1, 𝑘2) ∈ Z+2
, we suitably extend the space of sharing

configurations to real space (𝑘1, 𝑘2) ∈ [1,∞)2
.

5.1 Pareto frontier and numerical results

Conjecture 5.1. For multiple server systems with 𝑁1 = 𝑁2, any Pareto-optimal configuration for the stationary waiting

probability metric satisfies 𝑘𝑖 = 1 for the more congested provider 𝑃𝑖 .
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(a)𝐶𝑠
1
= 10%,𝐶𝑠

2
= 2% (b)𝐶𝑠

1
= 10%,𝐶𝑠

2
= 5% (c)𝐶𝑠

1
= 10%,𝐶𝑠

2
= 10%

Fig. 13. DQL Pareto Frontier for 𝑁1 = 𝑁2 = 4.

(a)𝐶𝑠
1
= 10%,𝐶𝑠

2
= 30% (b)𝐶𝑠

1
= 10%,𝐶𝑠

2
= 50%

Fig. 14. Additional cases, DQL Pareto Frontier for 𝑁1 = 𝑁2 = 4.

(a) 𝑁1 = 1, 𝑁2 = 4,𝐶𝑠
1
= 90%,𝐶𝑠

2
= 20% (b) 𝑁1 = 1, 𝑁2 = 8,𝐶𝑠

1
= 90%,𝐶𝑠

2
= 6%

Fig. 15. DQL Pareto Frontier, Conjecture 5.1 does not satisfy for 𝑁1 ≠ 𝑁2

Numerical experiments suggests that the above conjecture holds. See Figs. 13 and 14 for some illustrations of the

Pareto-frontier P for 𝑁1 = 𝑁2 = 4. The grey area illustrates the configurations that are QoS stable, i.e, 𝐶𝑖 (𝑘1, 𝑘2) < 𝐶𝑠𝑖 .
The Pareto-frontier of these stable configurations is illustrated by the black line. Also, Fig. 15 illustrates that Conjecture 5.1

is not true for 𝑁1 ≠ 𝑁2.

6 PERFORMANCE COMPARISON OF THE 3 MODELS

We now compare the three sharing models on different criteria. First we compare the waiting probability vectors

(𝐶1,𝐶2) for the sharing configurations in the QoS stable set as well as on the Pareto frontier. Recall that the QoS stable

set contains all configurations that are better for both providers. We call the waiting probability vectors computed over
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(a) QoS stable achievable region (b) Pareto achievable region

Fig. 16. 𝐶𝑠
1
= 5%,𝐶𝑠

2
= 10%, 𝑁1 = 𝑁2 = 4.

(a) QoS stable achievable region (b) Pareto achievable region

Fig. 17. 𝐶𝑠
1
= 2%,𝐶𝑠

2
= 20%, 𝑁1 = 𝑁2 = 4.

the elements of the QoS stable set to be the achievable region of waiting probabilities. Left panes in Figs. 16, 17, and 18

show the achievable region for different parameters sets while the right pane shows the Pareto frontier.

We observe that the the achievable region is a convex combination of the standalone probability vector and the

points in the achievable region of the Pareto frontier. We also observe that in terms of the achievable region of the

Pareto frontier, PPDS weakly dominates both PPR and DQL. That is, for a given value of𝐶1, 𝑃2 is not worse off in PPDS

compared to PPR and DQL. A similar order cannot be established between PPR and DQL as can be seen by comparing

Figs. 16 and 18.

For the second comparison, we compute the Kalai-Smorodinsky bargaining solution (KSBS) for the three models for

different values of the standalone probabilities. These solutions are presented in Table 1. Again, we observe that PPDS

obtains a better solution for both providers. Also, the provider with the higher standalone probability always pools all

its resources at the KSBS solution.
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(a) QoS stable achievable region (b) Pareto achievable region

Fig. 18. 𝐶𝑠
1
= 10%,𝐶𝑠

2
= 50%, 𝑁1 = 𝑁2 = 2.

Table 1. Comparison of the KSBS solution for the case 𝑁1 = 𝑁2 = 4. The waiting probabilities are in %.

Standalone Full Sharing PPDS PPR DQL

(𝐶𝑠
1
,𝐶𝑠

2
) 𝐶1 = 𝐶2 = 𝐶 (𝑘∗

1
, 𝑘∗

2
) (𝐶1,𝐶2) (𝑘∗

1
, 𝑘∗

2
) (𝐶1,𝐶2) (𝑘∗

1
, 𝑘∗

2
) (𝐶1,𝐶2)

(10, 2) 0.63 (4, 2.2) (1.75, 0.46) (4, 1.61) (1.9, 0.51) (1, 2) (1.66, 0.46)

(10, 5) 1.23 (4, 2.9) (1.84, 1.1) (4, 1.87) (1.87, 1.14) (1, 1.4) (1.86, 1.1)

(10, 10) 2.21 (4, 4) (2.21, 2.21) (4, 4) (2.21, 2.21) (1, 1) (2.21, 2.21)

(10, 30) 6.6 (1.99,4) (5.1,12.2) (1.27, 4) (5.4, 12.7) (2.1, 1) (5.4, 12.3)

(10, 50) 11.85 (1.14,4) (7.2, 30.2) (0.73, 4) (7.6, 32.7) (3.6, 1) (7.9, 34.4)

7 DISCUSSIONS

7.1 Related work

Complete resource pooling between independent service systems has been studied from a cooperative game theory

standpoint; see, for example, [1, 7, 11]. The goal of this literature is to analyze stable mechanisms for sharing the

surplus (and costs) of the grand coalition among the various agents. Single server as well as multi-server settings

have been considered, for queueing as well as loss systems; see [11] for a comprehensive survey of this literature. A

complementary view of resource sharing comes from an optimization standpoint. Here the organization is interested

in optimally provisioning (potentially heterogenous) resources and/or sharing its service resources between various

activities; see, for example, [3, 9, 19].

In contrast to the abovementioned works, our approach here is to analyze resource sharing between strategic

service providers having non-transferrable utility. In other words, no side-payments are allowed between the service

providers. Instead, providers would (partially or completely) pool their resources with one another only if their service

quality improves in the process. Our goal is thus to devise mechanisms that guarantee mutually beneficial sharing

configurations. The only prior work we are aware of that takes this view is [17], which considers loss systems with the

Erlang-B loss probability as the QoS measure. This paper may be viewed as a complement to [17] in that we consider

delay systems where jobs can be queued and the QoS measure is the Erlang-C probability. As it turns out, the sharing

mechanisms are very different between these two settings.
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7.2 Future work

An immediate avenue for future work is of course to prove Conjectures 3.4, 4.3 and 5.1 and completely analyse the

Pareto-frontier under the proposed sharing mechanisms; this is currently being pursued. It would also be interesting to

generalize our models to 𝑛 > 2 service providers, and to devise suitable partial sharing mechanisms that guarantee the

existence of mutually beneficial sharing configurations. More broadly, the present bargaining-centric view of resource

pooling (with non-transferable utilities between agents) can be explored in other contexts; for example, sharing of

cache memory between content distribution systems, sharing of energy storage in smart power grids, and spectrum

sharing between cellular service providers or between secondary users in cognitive radio networks.
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A PROOF OF THEOREM 2.3

A sufficient condition for the Pareto frontier to be on the boundary with at least one 𝑘𝑖 = 𝑁𝑖 is that for any (𝑧1, 𝑧2)
where 𝑧𝑖 ∈ [0, 𝑁𝑖 ), there exists a 𝜃 > 0 such that ∇𝐶𝑖 (𝑧1, 𝑧2) · (1, 𝜃 ) < 0 for 𝑖 = 1, 2. This implies that at any interior

point there exists a direction in which both providers can reduce their cost. Further, 𝜃 > 0 implies that the direction of

improvement is towards 𝑘𝑖 = 𝑁𝑖 for at least one 𝑖 since this direction takes us to the box (𝑧1, 𝑁1] × (𝑧2, 𝑁2]. We now

show that the three conditions in Thm. 2.3 are sufficient for the existence of such a 𝜃 . Condition (3) implies that there
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exists a 𝜃 such that

𝜕𝐶1

𝜕𝑧1

𝜕𝐶2

𝜕𝑧2

< 𝜃 <
𝜕𝐶1

𝜕𝑧2

𝜕𝐶2

𝜕𝑧1

.

Conditions (1) and (2) ensure that 𝜃 > 0. From the above inequalities and Conditions (1) and (2), it also follows that <

𝜃 > −
𝜕𝐶1

𝜕𝑧1

𝜕𝐶1

𝜕𝑧2

, 𝜃 < −
𝜕𝐶2

𝜕𝑧1

𝜕𝐶2

𝜕𝑧2

(24)

It can be easily seen that that the two inequalities in (24) are equivalent to ∇𝐶𝑖 (𝑧1, 𝑧2) · (1, 𝜃 ) < 0, for 𝑖 = 1, 2. □

B PROOF OF THEOREM 3.1

Following [18], we will check that the product form verifies the partial balance equations (PBE) in each state. In

particular, the rate of leaving a state due to arrivals should be equal to the rate of entering this state due to departures.

To simplify the notation, in regions 4,5, and 6, we will omit the number of servers in the argument of 𝜋 . For example,

we will write 𝜋 (𝑥𝑐 , 𝑥2) instead of 𝜋 (𝑥𝑐 , 𝑁𝑐 , 𝑥2 .𝑁2, 𝑁1). and 𝜋 (𝑥𝑐 ) for a state in S4.

(1) For 𝑠 ∈ S6, the PBE is

Λ𝜋 (𝑥𝑐 , 𝑥2) = 𝑁1

𝑥2−1∑︁
𝑙=0

𝜋 (𝑥𝑐 + 𝑙 + 1, 𝑥2 − 𝑙)
(
𝜆2

Λ

)𝑙 (
𝜆1

Λ

)
+ 𝑁1𝜋 (𝑥𝑐 + 𝑥2 + 1)

(
𝜆2

Λ

)𝑥2

(
𝜆1

Λ

)
+ (𝑁2 + 𝑁𝑐 )𝜋 (𝑥𝑐 , 𝑥2 + 1) .

The first two terms on the RHS are generated by departures from the dedicated pool of 𝑃1, They summation

accounts for the covered customers which were assigned to class 2 during the uncovering process. Note that

the 𝑙 < 𝑥2 and 𝑙 = 𝑥2 states have to be separated since the former is in S6 while the latter is in S4 and they

have different factors in the product-form. The third and the fourth terms take a customer directly into service

(without the uncovering process) since the departure was either from the common pool or from the pool of 𝑃2.

Now, substitute (1) in the above and divide both sides by 𝜋 (𝑥𝑐 , 𝑥2). The RHS becomes

RHS = 𝜆1

𝑁1

𝑁

𝑥2−1∑︁
𝑙=1

(
𝑁2 + 𝑁𝑐
𝑁

)𝑙
+ 𝜆1

𝑁

𝑁

(
𝑁2 + 𝑁𝑐
𝑁

)𝑥2

+ 𝜆2

=

𝑥2−1∑︁
𝑙=0

(
𝑁2 + 𝑁𝑐
𝑁

)𝑙
+ 𝜆1

𝑁1 + 𝑁2 + 𝑁𝑐
𝑁

(
𝑁2 + 𝑁𝑐
𝑁

)𝑥2

+ 𝜆2

= 𝜆1

𝑁1

𝑁

𝑥2∑︁
𝑙=0

(
𝑁2 + 𝑁𝑐
𝑁

)𝑙
+ 𝜆1

(
𝑁2 + 𝑁𝑐
𝑁

)𝑥2+1

+ 𝜆2

= 𝜆1

©­«
(
1 − 𝑁2 + 𝑁𝑐

𝑁

)
𝑥2∑︁
𝑙=0

(
𝑁2 + 𝑁𝑐
𝑁

)𝑙
+

(
𝑁2 + 𝑁𝑐
𝑁

)𝑥2+1ª®¬ + 𝜆2 = Λ,

where to go from the first to the second line we used 𝑁 = 𝑁1 + 𝑁2 + 𝑁𝑐 in the numerator of the second term,

and the last line follows from since the geometric sum is just 1.

(2) The case 𝑠 ∈ S5 is symmetric to the case 𝑠 ∈ S6.

(3) 𝑠 ∈ S4. This state can be entered after a departure from regions S4, S5, and S6. The PBE is

Λ𝜋 (𝑥𝑐 ) = 𝑁1𝜋 (𝑥𝑐 + 1) 𝜆1

Λ
+ 𝑁2𝜋 (𝑥𝑐 + 1) 𝜆2

Λ
+ 𝑁𝑐𝜋 (𝑥𝑐 + 1) + (𝑁1 + 𝑁𝑐 )𝜋 (𝑥𝑐 , 𝑥1 = 1) + (𝑁2 + 𝑁𝑐 )𝜋 (𝑥𝑐 , 𝑥2 = 1)
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After the substitutions and division by 𝜋 (𝑠), we get

RHS = 𝜆1

𝑁1

𝑁
+ 𝜆2

𝑁2

𝑁
+ Λ

𝑁𝑐

𝑁
+ 𝜆1

𝑁2

𝑁
+ 𝜆2

𝑁1

𝑁
= Λ.

(4) For 𝑠 ∈ S3, the PBE needs to checked for two separate cases.

(a) 𝑛1 = 𝑁1 − 1 for which the PBE is

Λ𝜋 (𝑁1 − 1, 𝑥2, 𝑁2, 𝑁𝑐 ) = 𝑁1

𝑥2−1∑︁
𝑙=0

𝜋 (𝑙, 𝑥2 − 𝑙)
(
𝜆2

Λ

)𝑙
+ 𝑁1𝜋 (𝑥𝑐 = 𝑥2)

(
𝜆2

Λ

)𝑥2

+ (𝑁2 + 𝑁𝑐 )𝜋 (𝑁1 − 1, 𝑥2 + 1, 𝑁2, 𝑁𝑐 ) .

Here, the first two terms account for a departure from the 𝑃1 pool that does not find a waiting customer of its

type to enter service. After the substitutions and division, we get

RHS =
𝑁1

𝑁
𝜆𝑝1

(𝑁1 − 1, 𝑁2, 𝑁𝑐 )
𝑥2−1∑︁
𝑙=0

(
𝑁2 + 𝑁𝑐
𝑁

)𝑙
+ 𝜆𝑝1

(𝑁1 − 1, 𝑁2, 𝑁𝑐 )
(
𝑁2 + 𝑁𝑐
𝑁

)𝑥2

+ 𝜆2 = Λ,

where we have used the fact that the activation rate of pool 1 when it is only one with free servers is 𝜆1.

The geometric sum is 1 just as it was in the case S6. Note that the above steps also work for 𝑥𝑐 = 0 with the

convention that the empty sum is 0.

(b) 𝑛1 < 𝑁1 − 1 for which the PBE is

Λ𝜋 (𝑛1, 𝑥2, 𝑁2, 𝑁𝑐 ) = (𝑛1 + 1)𝜋 (𝑛1 + 1, 𝑥2, 𝑁2, 𝑁𝑐 ) + (𝑁2 + 𝑁𝑐 )𝜋 (𝑛1, 𝑥2 + 1, 𝑁2, 𝑁𝑐 ),

which after the substitutions and division gives

RHS = 𝜆𝑝1
(𝑛1, 𝑁2, 𝑁𝑐 ) + 𝜆2 = Λ.

(5) The case 𝑠 ∈ S2 is symmetric to the case 𝑠 ∈ S3.

(6) 𝑠 ∈ S1. Again there are two cases:

(a) 𝑛𝑐 = 𝑁𝑐 . This state cannot be entered due to a departure from the common pool since it would mean that there

were queued customers in a state with 𝑛1 < 𝑁1 and 𝑛2 < 𝑁2. This is not possible because there is at least one

free server in each of the two dedicated pools. Thus, PBE only has departures from the two dedicated pools:

Λ𝜋 (𝑛1, 𝑛2, 𝑁𝑐 ) = (𝑛1 + 1)𝜋 (𝑛1 + 1, 𝑛2, 𝑁𝑐 ) + (𝑛2 + 1)𝜋 (𝑛1, 𝑛2 + 1, 𝑁𝑐 )

In the above, for the state (𝑁1 − 1, 𝑛2, 𝑁𝑐 ), on the RHS the term 𝜋 (𝑁1, 𝑛2, 𝑁𝑐 ) is actually 𝜋 (𝑛2, 0, 𝑁1, 𝑁𝑐 ). A
similar caveat applies to the state 𝑁1 − 1, 𝑛2, 𝑁𝑐 ). After the usual substitutions and division, we get

RHS = 𝜆𝑝1
(𝑛1, 𝑛2, 𝑁𝑐 ) + 𝜆𝑝2

(𝑛1, 𝑛2, 𝑁𝑐 ) = Λ

(b) 𝑛𝑐 < 𝑁𝑐 . Analogous reasoning to the previous case implies that a state with 𝑛𝑖 = 𝑁𝑖 cannot be entered after a

departure from pool 𝑖 . We get the PBE

Λ𝜋 (𝑛1, 𝑛2, 𝑛𝑐 ) = 1𝑛1<𝑁1

(𝑛1 + 1)𝜋 (𝑛1 + 1, 𝑛2, 𝑁𝑐 ) + 1𝑛2<𝑁2

(𝑛2 + 1)𝜋 (𝑛1, 𝑛2 + 1, 𝑛𝑐 )

+ 𝜋 (𝑛1, 𝑛2, 𝑛𝑐 + 1)

which can be seen to satisfied. Again, we have simplified some notation on the RHS where, for example,

𝜋 (0, 𝑁1, 𝑁2, 𝑁𝑐 ) is replaced by 𝜋 (𝑁1, 𝑁2, 𝑁𝑐 ). A similar simplification is done for some other states as well.

This does not affect the final conclusion since all these terms have a factor of 1 in the product-form. □
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C PROOF OF THEOREM 4.1

We shall give the proof for (𝑛1, 𝑛2) ∈ N2. The other cases are similar.

A direct application of (2) gives the aggregate stationary probability of (𝑛1, 𝑛2) ∈ N2 to be

𝜋 (𝑛1, 𝑛2) = 𝜋 (0)

𝛾2 (𝑛1,𝑛2)︷                                                          ︸︸                                                          ︷
𝑛1∑︁
𝑟=0

𝜆
𝑛1

1
𝜆
𝑛2

2

(𝑛1 + 𝑛2)!
(𝑟 + 𝑛2 − 1)!
(𝑛2 − 1)!𝑟 !

𝑛1−𝑟∏
𝑗=0

©­« 1

1 − 𝜆2

(𝑟+𝑛2+𝑗)

ª®¬ (25)

We show that this expression can be simplified to that in Thm. 4.1. First, rewrite the terms inside the summation of 𝛾2 as

𝛾2 (𝑛1, 𝑛2) =
𝜆
𝑛1

1
𝜆
𝑛2

2

(𝑛1 + 𝑛2)!
(𝑟 + 𝑛2 − 1)!
𝑟 !(𝑛2 − 1)!

𝑛1−𝑟∏
𝑗=0

(
𝑟 + 𝑛2 + 𝑗

𝑟 + 𝑛2 + 𝑗 − 𝜆2

)
=

𝜆
𝑛1

1
𝜆
𝑛2

2

(𝑛1 + 𝑛2)!
(𝑟 + 𝑛2 − 1)!
𝑟 !(𝑛2 − 1)!

(
(𝑛1 + 𝑛2)!

(𝑟 + 𝑛2 − 1)!
Γ(𝑟 + 𝑛2 − 𝜆2)

Γ(𝑛1 + 𝑛2 − 𝜆2 + 1)

)
=

𝜆
𝑛1

1
𝜆
𝑛2

2

𝑟 !(𝑛2 − 1)!
Γ(𝑟 + 𝑛2 − 𝜆2)

Γ(𝑛1 + 𝑛2 − 𝜆2 + 1)
Now, start with 𝛾2 (𝑛1, 𝑛2 + 1) and express it in terms of 𝛾2 (𝑛1, 𝑛2).

𝛾2 (𝑛1, 𝑛2 + 1) =
𝑛1∑︁
𝑟=0

𝜆
𝑛1

1
𝜆
𝑛2+1

2

𝑟 !𝑛2!

Γ(𝑟 + 𝑛2 + 1 − 𝜆2)
Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1) (26)

(use the fact Γ(𝑥 + 1) = 𝑥Γ(𝑥))

=

𝑛1∑︁
𝑟=0

𝜆
𝑛1

1
𝜆
𝑛2+1

2

𝑟 !𝑛2!

(𝑟 + 𝑛2 − 𝜆2)
Γ(𝑟 + 𝑛2 − 𝜆2)

Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1) (27)

=

𝑛1∑︁
𝑟=0

𝜆
𝑛1

1
𝜆
𝑛2+1

2

(𝑟 − 1)!𝑛2!

Γ(𝑟 + 𝑛2 − 𝜆2)
Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1) (28)

+
𝑛1∑︁
𝑟=0

𝜆
𝑛1

1
𝜆
𝑛2+1

2

𝑟 !𝑛2!

(𝑛2 − 𝜆2)
Γ(𝑟 + 𝑛2 − 𝜆2)

Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1)

(denote the second sum by 𝜃 and adjust the index in the first sum)

𝑛1−1∑︁
𝑟=0

𝜆
𝑛1

1
𝜆
𝑛2+1

2

𝑟 !𝑛2!

Γ(𝑟 + 1 + 𝑛2 − 𝜆2)
Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1) + 𝜃 (29)

= 𝛾2 (𝑛1, 𝑛2 + 1) −
𝜆
𝑛1

1
𝜆
𝑛2+1

2

𝑛1!𝑛2!

Γ(𝑛1 + 1 + 𝑛2 − 𝜆2)
Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1) + 𝜃, (30)

which leads to

𝜃 =
𝜆
𝑛1

1
𝜆
𝑛2+1

2

𝑛1!𝑛2!

Γ(𝑛1 + 1 + 𝑛2 − 𝜆2)
Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1) . (31)

Starting from the original definition of 𝜃 , we will express it in terms of 𝛾2 (𝑛1, 𝑛2).

𝜃 =

𝑛1∑︁
𝑟=0

𝜆
𝑛1

1
𝜆
𝑛2+1

2

𝑟 !𝑛2!

(𝑛2 − 𝜆2)
Γ(𝑟 + 𝑛2 − 𝜆2)

Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1) (32)
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=

(
𝑛1∑︁
𝑟=0

𝜆
𝑛1

1
𝜆
𝑛2

2

𝑟 !(𝑛2 − 1)!
Γ(𝑟 + 𝑛2 − 𝜆2)

Γ(𝑛1 + 𝑛2 − 𝜆2 + 1)

)
𝜆2

𝑛2

(𝑛2 − 𝜆2)
Γ(𝑛1 + 𝑛2 − 𝜆2 + 1)

Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1) (33)

= 𝛾2 (𝑛1, 𝑛2)
𝜆2

𝑛2

(𝑛2 − 𝜆2)
Γ(𝑛1 + 𝑛2 − 𝜆2 + 1)

Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1) (34)

= 𝛾2 (𝑛1, 𝑛2)𝜆2

(
1 − 𝜆2

𝑛2

)
Γ(𝑛1 + 𝑛2 − 𝜆2 + 1)

Γ(𝑛1 + 𝑛2 + 1 − 𝜆2 + 1) (35)

Equating (31) and (35), the equality in claim for (𝑛1, 𝑛2) ∈ N2 follows. □

D CHARACTERIZATION OF THE PARETO FRONTIER FOR PPDS AND PPR

In both PPDS and PPR the fractional sharing configurations are obtained by time-sharing between the four neighbouring

integer points. For 𝑁1 = 𝑁2 = 1 and 0 ≤ 𝑧𝑖 ≤ 1,

𝐶𝑖 (𝑧1, 𝑧2) = (1 − 𝑧1) (1 − 𝑧2)𝐶𝑖 (0, 0) + (𝑧1) (1 − 𝑧2)𝐶𝑖 (1, 0) + (1 − 𝑧1)𝑧2𝐶𝑖 (0, 1) + 𝑧1𝑧2𝐶𝑖 (1, 1) .

For the proofs of Thms 3.3 and 4.2, we will need the following simple lemma for computing the partial derivatives of

the 𝐶𝑖s for a sharing strategy (𝑧1, 𝑧2) in terms of those of the boundary points (0, 0), (0, 1), (1, 0), and (1, 1).

Lemma D.1. For any 𝑧1 ∈ (0, 1) and 𝑧2 ∈ (0, 1),
𝜕𝐶𝑖

𝜕𝑧1

=(1 − 𝑧2)
[
𝐶𝑖 (1, 0) −𝐶𝑖 (0, 0)

]
+ 𝑧2 [𝐶𝑖 (1, 1) −𝐶𝑖 (0, 1)

]
,

𝜕𝐶𝑖

𝜕𝑧2

=(1 − 𝑧1)
[
𝐶𝑖 (0, 1) −𝐶𝑖 (0, 0)

]
+ 𝑧1 [𝐶𝑖 (1, 1) −𝐶𝑖 (1, 0)

]
,

and
𝜕𝐶1

𝜕𝑧2

𝜕𝐶2

𝜕𝑧1

− 𝜕𝐶1

𝜕𝑧1

𝜕𝐶2

𝜕𝑧2

= 𝛼𝑧1 + 𝛽𝑧2 + 𝛾,

where

𝛼 =
[
𝐶1 (1, 0) −𝐶1 (0, 0)

] [
𝐶2 (0, 1) −𝐶2 (1, 1)

]
−

[
𝐶1 (1, 1) −𝐶1 (0, 1)

] [
𝐶2 (0, 0) −𝐶2 (1, 0)

]
,

𝛽 =
[
𝐶1 (1, 0) −𝐶1 (1, 1)

] [
𝐶2 (0, 1) −𝐶2 (0, 0)

]
−

[
𝐶1 (0, 0) −𝐶1 (0, 1)

] [
𝐶2 (1, 1) −𝐶2 (1, 0)

]
,

𝛾 =
[
𝐶1 (0, 0) −𝐶1 (0, 1)

] [
𝐶2 (0, 0) −𝐶2 (1, 0)

]
−

[
𝐶1 (1, 0) −𝐶1 (0, 0)

] [
𝐶2 (0, 1) −𝐶2 (0, 0)

]
.

D.1 Proof of Theorem 3.3

For PPDS, 𝐶𝑖 (0, 0),𝐶𝑖 (1, 0),𝐶𝑖 (0, 1) and 𝐶𝑖 (0, 1) can be explicitly computed:

𝐶1 (0, 0) =𝜆1,

𝐶1 (1, 0) =
(2 − 𝜆1 + 𝜆2 − 𝜆1𝜆2) (𝜆1 + 𝜆2)2

Ω1

,

𝐶1 (0, 1) =
𝜆1 (2 − 𝜆2) (𝜆1 + 𝜆2)2

Ω2

,

𝐶1 (1, 1) =
(𝜆1 + 𝜆2)2

2 + 𝜆1 + 𝜆2

,

𝐶2 (0, 0) =𝜆2,

𝐶2 (1, 0) =
𝜆2 (2 − 𝜆1) (𝜆1 + 𝜆2)2

Ω1

,

𝐶2 (0, 1) =
(2 + 𝜆1 − 𝜆2 − 𝜆1𝜆2) (𝜆1 + 𝜆2)2

Ω2

,

𝐶2 (1, 1) =
(𝜆1 + 𝜆2)2

2 + 𝜆1 + 𝜆2

.

where

Ω1 = (𝜆1 + 𝜆2 + 𝜆2

2
) (1 − 𝜆1) + 𝜆1 (1 − 𝜆1𝜆2) + 3𝜆2 + 𝜆2

2
> 0,
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Ω2 = (𝜆1 + 𝜆2 + 𝜆2

1
) (1 − 𝜆2) + 𝜆2 (1 − 𝜆1𝜆2) + 3𝜆1 + 𝜆2

1
> 0.

For 𝑖 = 1, applying Lemma D.1,

𝜕𝐶1

𝜕𝑧1

=
(1 − 𝑧2)

Ω1

(2 − 𝜆1 + 𝜆2 − 𝜆1𝜆2 − 𝜆2

1
)𝜆2

2
+ 𝑧2

Ω2

(2 − 𝜆1 − 𝜆2)𝜆2 (𝜆1 + 𝜆2)2 > 0.

𝜕𝐶1

𝜕𝑧2

=
(1 − 𝑧1)

Ω2

𝜆1 (1 − 𝜆2) [𝜆1 (𝜆2 − 4) + 𝜆2 (𝜆2 − 2)] + 𝑧1

Ω1

(𝜆1𝜆2 + 𝜆2

2
+ 2𝜆1 − 4) (𝜆1 + 𝜆2)2 < 0,

Similarly due to symmetry, it can be shown that
𝜕𝐶2

𝜕𝑧1

< 0 and
𝜕𝐶2

𝜕𝑧2

> 0. Hence, 𝐶𝑖 (𝑧1, 𝑧2) is a strictly decreasing

function of 𝑧−𝑖 , and 𝐶𝑖 (𝑧1, 𝑧2) is a strictly increasing function of 𝑧𝑖 .

Finally,

𝜕𝐶1

𝜕𝑧2

𝜕𝐶2

𝜕𝑧1

− 𝜕𝐶1

𝜕𝑧1

𝜕𝐶2

𝜕𝑧2

= 𝛼𝑧1 + 𝛽𝑧2 + 𝛾,

where,

𝛼 =
2(1 − 𝜆1) (2 − 𝜆1 − 𝜆2) (2 + 𝜆1 − 𝜆2 + 𝜆2

1
+ 𝜆1𝜆2)

(2 + 𝜆1 + 𝜆2)Ω1Ω2

> 0,

𝛽 =
2(1 − 𝜆2) (2 − 𝜆1 − 𝜆2) (2 + 𝜆2 − 𝜆1 + 𝜆2

2
+ 𝜆1𝜆2)

(2 + 𝜆1 + 𝜆2)Ω1Ω2

> 0,

𝛾 =
4𝜆1𝜆2 (1 − 𝜆1) (1 − 𝜆2) (2 − 𝜆1 − 𝜆2)

Ω1Ω2

> 0.

Hence we have,
𝜕𝐶1

𝜕𝑧2

𝜕𝐶2

𝜕𝑧1

− 𝜕𝐶1

𝜕𝑧1

𝜕𝐶2

𝜕𝑧2

> 0. □

D.2 Proof of Theorem 4.2

The waiting probabilities on the boundary points for PPR are:

𝐶1 (0, 0) =𝜆1,

𝐶1 (1, 1) =
(𝜆1 + 𝜆2)2

2 + 𝜆1 + 𝜆2

,

𝐶1 (0, 1) =𝜆1

(
𝜆2 (2 − 𝜆1 − 𝜆2) + 𝜆1

2 + 𝜆1 (1 − 𝜆2) − 𝜆2

)
,

𝐶1 (1, 0) =𝜆1 +
𝜆2

2
(1 − 𝜆1)

2 + 𝜆2 (1 − 𝜆1) − 𝜆1

𝐶2 (0, 0) =𝜆2

𝐶2 (1, 1) =
(𝜆1 + 𝜆2)2

2 + 𝜆1 + 𝜆2

𝐶2 (0, 1) =𝜆2 +
𝜆2

1
(1 − 𝜆2)

2 + 𝜆1 (1 − 𝜆2) − 𝜆2

𝐶2 (1, 0) =𝜆2

(
𝜆2 (1 − 𝜆1) + 𝜆1 (2 − 𝜆1)

2 + 𝜆2 (1 − 𝜆1) − 𝜆1

)
Applying Lemma D.1,

𝜕𝐶1

𝜕𝑧1

=
(1 − 𝑧2)
Ω𝐴

(𝜆2

2
(1 − 𝜆1)) +

𝑧2

Ω𝐵
𝜆2

2
(2 − 𝜆1 − 𝜆2) > 0.

𝜕𝐶1

𝜕𝑧2

=
(1 − 𝑧1)
Ω𝐶

𝜆1 (𝜆2 − 1) (2 − 𝜆2) +
𝑧1

Ω𝐷
𝜆1 (2𝜆1 + 𝜆2 (𝜆1 + 𝜆2) − 4) < 0,

where

Ω𝐴 = 2 + 𝜆2 (1 − 𝜆1) − 𝜆1 > 0,

Ω𝐵 = (2 + 𝜆1 + 𝜆2) (2 + 𝜆1 (1 − 𝜆2) − 𝜆2) > 0,

Ω𝐶 = 2 + 𝜆1 (1 − 𝜆2) − 𝜆2 > 0,

Ω𝐷 = (2 + 𝜆1 + 𝜆2) (2 + 𝜆2 (1 − 𝜆1) − 𝜆1) > 0.
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Further,

𝜕𝐶2

𝜕𝑧1

=
(1 − 𝑧2)
Ω𝐴

𝜆2 (𝜆1 − 1) (2 − 𝜆1) +
𝑧2

Ω𝐵
𝜆2 (2𝜆2 + 𝜆1 (𝜆1 + 𝜆2) − 4) < 0,

𝜕𝐶2

𝜕𝑧2

=
(1 − 𝑧1)
Ω𝐶

(𝜆2

1
(1 − 𝜆2)) +

𝑧1

Ω𝐷
𝜆2

1
(2 − 𝜆1 − 𝜆2) > 0,

Hence, 𝐶𝑖 (𝑧1, 𝑧2) is a strictly decreasing function of 𝑧−𝑖 , and 𝐶𝑖 (𝑧1, 𝑧2) is a strictly increasing function of 𝑧𝑖 . Finally,

𝜕𝐶1

𝜕𝑧2

𝜕𝐶2

𝜕𝑧1

− 𝜕𝐶1

𝜕𝑧1

𝜕𝐶2

𝜕𝑧2

= 𝛼𝑧1 + 𝛽𝑧2 + 𝛾,

where,

𝛼 =
2𝜆3

2
𝜆1 (1 − 𝜆1) (2 − 𝜆1 − 𝜆2)

Ω𝑋
> 0,

𝛽 =
2𝜆3

1
𝜆2 (1 − 𝜆2) (2 − 𝜆1 − 𝜆2)

Ω𝑋
> 0,

𝛾 =
2𝜆1𝜆2 (1 − 𝜆1) (1 − 𝜆2) (2 − 𝜆1 − 𝜆2)

Ω𝑌
> 0.

where

Ω𝑌 = (2 + 𝜆1 (1 − 𝜆2) − 𝜆2) (2 + 𝜆2 (1 − 𝜆1) − 𝜆1) > 0,

Ω𝑋 = Ω𝑌 (2 + 𝜆1 + 𝜆2) > 0.

Hence we have,
𝜕𝐶1

𝜕𝑧2

𝜕𝐶2

𝜕𝑧1

− 𝜕𝐶1

𝜕𝑧1

𝜕𝐶2

𝜕𝑧2

> 0. □
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