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Abstract—Partial sharing allows providers to possibly pool a
fraction of their resources when full pooling is not beneficial to
them. Recent work in systems without sharing has shown that
redundancy can improve performance considerably. In this paper,
we combine partial sharing and redundancy by developing partial
sharing models for providers operating multi-server systems with
redundancy. Two M/M/N queues with redundant service models
are considered. Copies of an arriving job are placed in the queues
of servers that can serve the job. Partial sharing models for
cancel-on-complete and cancel-on-start redundancy models are
developed. For cancel-on-complete, it is shown that the Pareto
efficient region is the full pooling configuration. For a cancel-
on-start policy, we conjecture that the Pareto frontier is always
non-empty and is such that at least one of the two providers
is sharing all of its resources. For this system, using bargaining
theory the sharing configuration that the providers may use is
determined. Mean response time and probability of waiting are
the performance metrics considered.

Index Terms—Resource pooling, Erlang-C systems, balanced
fairness, redundancy service systems.

I. INTRODUCTION

We consider resource sharing by service systems modeled
as multi server queueing systems, e.g., server farms, cloud
computing systems, call centers, inventory systems, and emer-
gency services. These services dimension their resources (e.g.,
number of servers) to provide a prescribed quality of service
(QoS). Two commonly used QoS measures in delay systems
(as opposed to loss systems) are the probability of waiting for
service (famously characterized by the Erlang-C formula for
M/M/N queues), and waiting and/or sojourn time moments.

For many of the above mentioned systems, resources are
expensive and different independent systems could possibly
share their resources to improve their customers’ QoS. It may
also be that procurement of additional resources takes time,
and sharing could be a useful interim measure. In [10], two
models for resource sharing among different service providers
are identified. (1) Providers pool their existing resources with
the expectation that the joint system is beneficial over operat-
ing alone. (2) Providers jointly determine the total resources
for the QoS requirements of the combined system. For both
systems, cooperative game theory is used to determine the cost
shares among the coalition of providers.

Our interest in this paper is related to the first kind of
system above, but in the setting of non-transferable utility.
In this case, the providers may not always have the incentive
to completely pool their resources, as the following example
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illustrates. Consider two service providers, 1 and 2, modeled
as M/M/N queues. The providers have, respectively, 20 and
30 servers and an offered load of, respectively, 16 and 28
Erlangs. When operating alone, the providers’ QoS, measured
as Erlang-C probabilities, are, respectively, 0.25 and 0.62.
When the providers merge to create a coalition system of 50
servers with 44 Erlangs load, the QoS in the joint system is
0.28. Clearly, the first provider is not incentivized to join the
‘naive’ full pooling coalition. A natural question then is to seek
partial pooling models that may incentivize both providers to
join the coalition. Here by partial pooling models we mean
that each provider contributes a fraction (could be all) of its
resources into a common pool which can then be used to serve
requests from any provider.

The focus of this work is to develop partial sharing models
in delay systems and answer two key questions: How to
share? How much to share? We consider delay systems where
arriving jobs are replicated into queues at the servers that can
serve them. Sending redundant copies of a job to queues at
servers that can service them is of interest due to their use
in several systems like call centers and cloud server farms.
Two redundancy models are popular—cancel-on-complete and
cancel-on-start. Analytical studies of these models without
partial sharing are available, among others, [2], [4], [6].

The rest of the paper is organized as follows: In the
next section, we describe our system model involving two
providers operating multi-server service systems, and present
our redundancy-based partial sharing mechanism. In Section
III, we analyze partial sharing for cancel-on-complete systems.
Exploiting recent results of [4], we show that full sharing is the
only Pareto-optimal configuration. In Section IV, we consider
partial sharing in the cancel-on-start system. We obtain the
stationary distributions of the number in the system, and for
a special case, we show that the Pareto region is such that at
least one of the providers shares all of its resources. Based on
numerical evidence, we conjecture that this is true in general.
We then use bargaining theory to capture the stable sharing
agreement. We conclude in Section V by showing that the
results of cancel-on-complete are directly applicable to the
joint system that uses a single server (capacity equal to sum of
server capacities of the two systems) with two queues served
according to a balanced fair rate allocation. We also discuss
related literature on resource pooling and future work.

II. SYSTEM MODEL

Consider two service providers P1 and P2 with N1 and N2

servers, respectively. The servers are homogenous with unit



service rate. Jobs of provider Pi arrive according to a Poisson
process of rate λi, and the service requirements (a.k.a. sizes)
of jobs are i.i.d. exponential with mean 1/νi <∞. ρi := λi/νi
denotes the traffic load Pi.

Each server has its own queue, and serves jobs using FCFS
discipline. Both providers use redundancy as follows. When a
job arrives, d copies (a.k.a. replicas) of this job are sent to d
different servers. Further, both providers replicate copies to all
servers that can process their jobs. In the standalone 1 system,
this implies that d = Ni for provider i. On the other hand, in
a pooled system, di can be larger than Ni and depends on the
number of servers shared by the other provider −i.2

Two types of redundancy models are commonly studied in
the literature. The redundant copies of a job can either be
removed from the system at the instance when first of its
copies starts service, i.e., cancel-on-start (c.o.s.) replication,
or at the instance when first of its copies finishes its service,
i.e., cancel-on-complete (c.o.c.) replication. We analyze both
c.o.s. as well as c.o.c. policies in the next two sections.

For stability, we assume ρi < Ni for i = 1, 2. This condition
is necessary and sufficient for both c.o.c. and c.o.s. when the
arrival process is Poisson and replica sizes are i.i.d. with an
exponential distribution (see [4] for c.o.c. and [2] for c.o.s.).

We shall consider two different performance metrics for
the service providers: (i) the stationary waiting probability,
defined as the steady state probability that an arriving job has
to wait for service; and (ii) the stationary mean response time.
We make the following important remark at this point.

Remark 1. Since each server has its own waiting line, strictly
speaking, the standalone systems are not Erlang-C systems.
However, the c.o.s. system in which copies are replicated to
all the servers is indeed equivalent to an Erlang-C system [2].
It thus makes sense to refer to the waiting probability in the
standalone c.o.s. system as the Erlang-C probability.

In light of the above remark, the performance metrics of
the Erlang-C system will serve as another benchmark when
highlighting the benefits of partial sharing compared to the
no sharing case. For provider Pi, the standalone Erlang-C
probability Cs

i and the stationary mean response time Ds
i are

given by

Cs
i =

ρNii

ρNii +
(
1− ρi

Ni

)(Ni−1∑
k=0

ρki
k!

)
Ni!

, Ds
i =

1

νi
+

Cs
i

νi(Ni − ρi)
.

A. Partial Sharing Policy

We propose a partial resource sharing policy, where each
of the providers contributes some of its servers to a common
pool. The servers in this common pool can serve the jobs from
both of the service providers. Hence the system has three types
of servers depending on the types of jobs they can serve. We
now formally define the partial sharing policy.

1‘Standalone’ refers to the system with no pooling between providers.
2While referring to provider i, we use −i to refer to the other provider.

The partial sharing policy is parametrized by (k1, k2), where
ki ∈ {0, 1, 2, . . . , Ni} is the number of servers contributed by
provider Pi to the common pool. Hence these N1 +N2 servers
are classified in the following three separate pools.
• Dedicated servers of provider P1: N1 − k1 dedicated

servers which can serve only jobs of provider P1.
• Dedicated servers of provider P2: N2 − k2 dedicated

servers which can serve only jobs of provider P2.
• Common pool: k1 + k2 shared servers which can serve

jobs from both providers P1 and P2.
On arrival of a provider i job into the system, copies of this
job are sent to all the Ni + k−i servers that can serve it, i.e.,
to the Ni − ki dedicated servers of provider Pi and k1 + k2

servers in the shared pool.
Notations: For a partial sharing configuration (k1, k2), for

provider Pi, the waiting probability is denoted by Ci(k1, k2)
and the mean response time will be denoted by Di(k1, k2). To
keep the notation simple, we shall use the same notation for
the two performance metrics in both the c.o.c. as well as the
c.o.s. systems. Since these two systems are treated in separate
sections, no confusion should arise.

B. Pareto-frontier

Each provider is assumed to be optimizing its own per-
formance metrics, i.e., for a provider to consider sharing its
servers, it has to benefit from doing so. To determine which
partial sharing policy will be acceptable to the providers, we
use the concept of Pareto-frontier which is widely used in
economics and multi-objective optimization.

Let Bi be either Ci or Di. A policy/configuration (k1, k2)
is said to be Pareto-optimal, if,

1) Bi(k1, k2) < Bi(0, 0) for i = 1, 2, and
2) there does not exist another policy (l1, l2) such that

Bi(l1, l2) ≤ Bi(k1, k2), for i = 1, 2, with strict inequal-
ity for at least one i.

That is, a Pareto-optimal configuration is one that results
in improved performance for each provider, and for which
there does not exist any other policy that is better for both the
providers.3 The Pareto-frontier, P is defined as the set of all
Pareto optimal policies and is the set of policies for which both
providers benefit individually compared to policies outside this
set. Within the set, two policies are not comparable since one
provider gains while the other loses. Existence of a non-empty
P implies that partial sharing can benefit both providers when
compared to not sharing. In the next two sections, we show
that P is indeed non-empty for both c.o.c. and c.o.s. systems.

III. PARTIAL POOLING VIA CANCEL-ON-COMPLETE
REPLICATION

In this section, we explore partial pooling via the resource
sharing mechanism described in Section II with cancel-on-
complete (c.o.c.) replication. Specifically, each incoming job

3The first condition is not part of the standard definition of Pareto opti-
mality. However, in the present context, since Pareto-optimal configurations
are meant to capture possible agreement points between the providers, it is
natural to impose this condition of individual rationality.



of provider i releases a replica of the job to all eligible servers
(the Ni−ki servers in the dedicated pool of Pi, and the k1+k2

servers in the common pool) upon arrival. The sizes of these
replicas are assumed to be i.i.d. and exponentially distributed
with mean 1/νi (we comment on this assumption later). The
job gets completed when the first of its replicas completes
service, at which point the remaining replicas are cancelled.

Our main result is that under c.o.c. replication, complete
pooling (i.e., ki = Ni ∀ i) is the only Pareto-optimal partial
sharing configuration between the providers for the mean
response time metric. In other words, full pooling is not just
optimal for overall system performance, but also individually
optimal from the standpoint of each provider. Thus, complete
pooling is the only reasonable configuration that the providers
would agree upon in a bargaining setting. In contrast, un-
der cancel-on-start replication (discussed in Section IV), the
Pareto-frontier is a continuum of partial sharing configurations,
which may not include the complete pooling configuration.

In the following, we first obtain, by invoking recent results
by Bonald et al. (see [4]), an expression for the steady state
mean response time under our partial pooling model with
c.o.c. replication. This enables us to characterize certain mono-
tonicity properties of the mean response time in the sharing
parameters. Finally, using these monotonicity properties, we
determine the Pareto-frontier of sharing configurations.

A. Performance characterization under c.o.c. replication

In [4], Bonald et al. establish an equivalence between the
distribution of the steady state system occupancy vector in a
multiclass c.o.c. queueing system, and that in a single server
system with balanced fair scheduling. Specifically, for a given
partial sharing configuration (k1, k2), consider the following
two systems.
S1: S1 is a multiclass queueing system with two classes
(corresponding to the two providers) and N1 + N2 servers.
The servers are identical and have a unit service rate. Jobs of
class i (i.e., corresponding to Provider i) can be served on the
Ni−ki dedicated servers of provider i as well as on the k1+k2

servers in the common pool. An incoming job is replicated on
all eligible servers in c.o.c. mode.
S2: S2 is a two-class single server system. The two job classes
correspond to the two providers, and the system maintains
a separate queue for the active jobs of either class. The
server has a service rate of N1 + N2. Let ni denote the
number of jobs of class i in the system. For a given system
state (n1, n2), each class i is allotted a service rate ri, where
(r1, r2) is the balanced fair rate allocation corresponding to
the polymatroidal rate region R(k1, k2) defined as follows:

R(k1, k2) = {(r1, r2) ∈ R2
+ : r1 ≤ N1 + k2,

r2 ≤ N2 + k1, r1 + r2 ≤ N1 +N2}.

We refer the reader to [5] for a detailed description of
balanced fair scheduling. Proposition 1 in [4] shows that
the steady state average system occupancies in S1 and S2
coincide. From this equivalence, and using known results for
the steady state mean response times under balanced fair

scheduling (see [5]), one obtains the following characterization
of the mean response time for our partial pooling model under
c.o.c. replication.

Lemma 1. For partial sharing configuration (k1, k2) with
c.o.c. replication, the steady state mean response time cor-
responding to jobs of provider i, denoted Di(k1, k2) is given

by Di(k1, k2) = ν−1
i

(
1

N1+N2−ρ1−ρ2 +

((
1− ρi

N1+N2

)
1

Ni+k−i(
1− ρi

Ni+k−i

)2 −

1
N1+N2

1− ρi
N1+k2

)(
1− ρ1

N1+N2

1− ρ1
N1+k2

+
1− ρ2

N1+N2

1− ρ2
N2+k1

− 1

)−1
)
.

The proof of Lemma 1 can be found in [11]. Given
the above performance characterization, we now analyse the
Pareto-frontier of partial sharing configurations.

B. Pareto-optimal sharing configurations

We first state the following monotonicity properties of the
mean response time under c.o.c. replication with respect to
the sharing paramters k1 and k2.

Lemma 2. Under c.o.c. replication,
1) Di(k1, k2) is a strictly decreasing function of k−i,
2) Di(k1, k2) is a strictly increasing function of ki when

k−i < N−i,
3) Di(k1, k2) is insensitive in ki when k−i = N−i.

The proof of Lemma 2 can be found in [11]. The
first statement of the lemma states that Pi benefits from
additional servers contributed by P−i to the common pool.
Statement (2) and (3) deal with the impact of Pi’s contribution
to the common pool on its own performance. Interestingly,
this dependence depends on the extent to P−i’s contribution.
When P−i does not contribute all its servers to the common
pool (i.e., k−i < N−i), Pi’s own performance deteriorates as
it contributes additional servers to the common pool. However,
if P−i has contributes all its servers to the common pool (i.e.,
k−i = N−i), then Pi’s performance is insensitive to its own
contribution to the common pool. This insensitivity plays a
crucial role in determining the Pareto-frontier of partial sharing
configurations.

Theorem 1. Under c.o.c. replication, complete pooling (i.e.,
k1 = N1, k2 = N2) is the only Pareto-optimal configuration.

Proof. It follows from Lemma 2 that

D1(k1, k2)
(a)

≥ D1(k1, N2) = D1(N1, N2),

D2(k1, k2)
(b)

≥ D2(N1, k2) = D2(N1, N2).

Moreover, the inequality (a) (respectively, (b)) is strict when
k1 < N1 (respectively, k2 < N2). Therefore,

(N1, N2) = {arg minD1(k1, k2)} ∩ {arg minD2(k1, k2)}

i.e., only at k1 = N1, k2 = N2 are both D1(k1, k2) and
D2(k1, k2) minimized. Equivalently, all partial sharing config-
urations except the full sharing configuration will have a higher



TABLE I: Comparison of mean response time for the case N1 = N2 = N, the standalone waiting probabilities of S1 and S2

without replication being 5% and 10%, respectively and ν1 = ν2 = 1.

N D1 D2 D1 = D2 = D
Standalone system Standalone system Standalone system Standalone system Full Sharing Naive

with c.o.c. replication without replication with c.o.c. replication without replication with c.o.c. Full Sharing
5 0.3231 1.0161 0.3722 1.0372 0.1730 1.0220
10 0.2121 1.0106 0.2491 1.0249 0.1145 1.0015
15 0.1679 1.0084 0.1988 1.0199 0.0910 1.0012
20 0.1428 1.0071 0.1699 1.0170 0.0776 1.0011

mean response time for at least one of the service providers.
Therefore, the full sharing configuration i.e., k1 = N1 and
k2 = N2 is the only Pareto-optimal configuration.

From a bargaining standpoint, Theorem 1 states that com-
plete pooling is the only mutually agreeable configuration the
providers would settle upon under c.o.c. replication. This is
in stark contrast to the case of c.o.s. replication (addressed in
the following section), where complete pooling may not even
be Pareto-optimal. Interestingly, under c.o.c. replication, full
pooling is also a Nash equilibrium between the providers.

We conclude with a couple of remarks on c.o.c. replication
in the context of partial pooling.

Remark 2. When neither operator contributes to the pool,
i.e., (k1, k2) = (0, 0), the system is not equivalent to two
standalone Erlang-C systems (one for each operator). At
(0, 0), each operator replicates copies to all of its servers.
It is not hard to show that Di(0, 0) < Ds

i , where Ds
i refers to

the mean response time in the standalone Erlang-C system.

Remark 3. The stationary waiting probability is not a par-
ticularly meaningful metric under c.o.c. replication. Indeed,
c.o.c. replication is often used in applications where the
beginning of service is hard to detect. Moreover, the power of
the c.o.c. redundancy system depends to quite some extent on
the assumptions of independent copies and exponential service
time distributions. When copies are being served in parallel on
several servers, these two assumptions imply that the service
rate of the job is equal to the sum of the rates of the servers.
It is as though the servers had pooled their service rates to
serve the job. This can considerably increase the service rate
for a job and hence decrease the mean response time. It could
thus happen that under complete pooling, a job enters into
service later than in the standalone Erlang-C system (or in a
partially pooled system), but finishes service earlier. This could
result in the stationary probability of wait being higher in the
completely pooled system, even though the mean response time
is the lowest possible.

C. Numerical study

We now present the results from some numerical experi-
ments to illustrate the benefits of resource pooling via c.o.c.
replication. In Table I, we present the results for the case
N1 = N2 = N, with the arrival rates set so that the standalone
(Erlang-C) probability of wait for P1 and P2 are 0.05 and 0.1,
respectively. We take ν1 = ν2 = 1. Note that with complete

pooling, which is the only Pareto-optimal sharing configu-
ration, D1(N1, N2) = D2(N1, N2). We compare the mean
response time under this Pareto-optimal configuration with the
the mean response time in the standalone (Erlang-C) systems,
the case k1 = k2 = 0 (standalone c.o.c. replicated systems),
as well as naive full pooling without replication (an Erlang-C
system with N1 +N2 servers, and arrival rate λ1 + λ2). Note
that complete resource pooling with c.o.c. replication results
in a considerable reduction of mean response time for both
providers, sometimes even by an order of magnitude.

IV. PARTIAL POOLING VIA CANCEL-ON-START
REPLICATION

In this section, we explore partial resource pooling via
cancel-on-start (c.o.s.) replication. In this model, incoming
jobs of provider i get replicated at all the Ni + k−i eligible
servers as before. However, as soon as the first replica begins
service, the others get cancelled. Thus, under c.o.s. replication,
only one replica actually begins service, making it more
attractive in applications where parallel processing of replicas
is either infeasible (as in call centers) or undesirable (e.g.,
because the replicas have comparable size, making parallel
processing of replicas inefficient). Throughout this section, we
assume that ν1 = ν2 = ν.

Partial pooling under c.o.s. replication is equivalent to a hy-
pothetical join-the-least-workload system, where each server
maintains a FCFS queue, and an incoming job gets dispatched
on arrival to that eligible server that has the least unfinished
work. An alternative and equivalent view of our c.o.s.-based
model is the following: All jobs (from both providers) wait in
a single FCFS queue, and each server processes the earliest
arriving eligible job. This latter view makes our model an
instance of the multi-server, multi-class system analysed by
Visschers et al. in [14], for which a product-form description
of the stationary distribution is available. An example of this
equivalence with three servers is shown in Fig. 1.

The contributions of this section are as follows.
1. We use the framework in [14] to obtain a characterization of
the stationary probability of waiting as well as the stationary
mean response time for each provider, under the c.o.s.-based
partial sharing model.
2. Since the expressions for the above performance metrics are
fairly involved, we are only able to analytically characterize
the Pareto-frontier for the stationary waiting probability metric
when N1 = N2 = 1. In this case, by suitably extending
the space of sharing configurations to [0, 1]2 via time-sharing
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Fig. 1: Equivalence of c.o.s. redundancy and a single FCFS
queue. The copy of a job is indicated by ′. So, J1 and J ′1 are
copies of the same job.

across configurations in {0, 1}2, we show that Pareto-optimal
sharing configurations involve at least one provider always
contributing its server to the common pool (i.e., ki = 1 for
some i). Intuitively, under efficient partial sharing configura-
tions, the more congested provider always places its server
in the common pool, whereas as the less congested provider
places its server in the common pool for some (long-run)
fraction of time.
3. We conjecture that the above structure of the Pareto-
frontier holds for N1, N2 ≥ 1. This conjecture is validated
via numerical evaluations.
4. Finally, we invoke the Kalai-Smorodinsky solution from
bargaining theory to capture the partial sharing configuration
that the providers would agree upon. Via numerical exper-
iments, we demonstrate the potential benefits from partial
resource pooling between service providers.

We begin with the following remark on the special cases of
no pooling and complete pooling.

Remark 4. The case k1 = k2 = 0 corresponds to provider i
performing c.o.s. replication among its own Ni servers, which
is in turn equivalent to an M/M/Ni (Erlang-C) system. Thus,

Ci(0, 0) = Cs(ρi, Ni) (i = 1, 2).

Complete pooling corresponds to an aggregated Erlang-C,
which implies that

C1(N1, N2) = C2(N1, N2) = Cs(ρ1 + ρ2, N1 +N2).

Next, we formulate our partial pooling model with c.o.s.
replication in the framework of [14].

A. Performance characterization using the framework of [14]

Let M = {1, 2, · · · , N1 +N2} denote the set of all servers
and {m1, · · · ,mi−1,mi} be the set of busy servers. The busy
servers are labelled in increasing order of the arrival times of
the jobs they serve; for example, m1 ∈M is the label of the
server processing the earliest arriving job in the system. Let
nj denote the number of jobs that cannot be served by servers
in the set M \ {m1, · · · ,mj−1,mj}. Under the formulation
of [14], the state s of the system is represented as

s = (ni,mi, · · · , n2,m2, n1,m1).

As an illustration of this state description, for the example
in Fig. 1, the state of the system is (3, S3, 0, S2, 0, S1). This
state description is actually an aggregated one because out of

the three waiting jobs two can only be served in S1 and S3.
For a complete state description, the type of the job indicating
the servers in which it could be served should also have been
included. However, due to the assumption of Poisson arrivals,
all the arrival streams can be aggregated into a single stream,
and each arrival can be reassigned its type at the moment when
a server becomes free. We refer the reader to [14] for details
of this state space description.

Using this state description, under a certain assignment rate
condition on how servers are selected when an arriving job
finds more than one idle eligible server, [14] establishes a
product form stationary distribution.

To state the assignment rate condition, we need to develop
the following notation. For {m1, · · · ,mj−2,mj−1} ⊂
M, and mj /∈ {m1, · · · ,mj−2,mj−1}, let
λmj (m1, · · · ,mj−2,mj−1) denote the transition rate
from the state (nj−1,mj−1, · · · , n1,m1) to the state
(0,mj , nj−1,mj−1, · · · , n1,m1). That is, λmj is the rate at
which an incoming job is sent to server mj when servers
{m1, · · · ,mj−2,mj−1} are busy and the others are idle. The
assignment rate condition is the following:
Assignment Rate Condition: For 1 ≤ i ≤ N1 + N2 and for
every vector (m1, · · · ,mi) composed of elements from M,

i∏
j=1

λmj (m1, · · · ,mj−1) =

i∏
j=1

λmj (m̃1, · · · , m̃j−1)

for every permutation m̃1, · · · , m̃i of m1, · · · ,mi.
That it is always possible to design assignment probabilities

to free eligible servers such that the above condition is satisfied
is proved in [14]. Let us define λ({m1, · · · ,mi−1,mi}) as
the aggregate arrival rate corresponding to jobs which cannot
be served by any server in the set M \ {m1, · · · ,mi}. The
assignment rate condition implies the following product-form
stationary distribution.

Theorem 2 (Theorem 2 in [14]). Assuming the assignment
rate condition, the steady state probability for any state s =
(ni,mi, · · · , n2,m2, n1,m1) is given by:

π(s) = αnii · · ·α
n1
1

Πλ({m1, · · · ,mi−1,mi})
i!

π(0)

where,

Πλ({m1,m2, · · · ,mi}) =

i∏
j=1

λmj ({m1, · · · ,mj−2,mj−1})

αi =
1

i
λ({m1, · · · ,mi−1,mi})

Using this stationary distribution, one can compute the
waiting probability as well as the mean response time for
each partial sharing configuration (k1, k2); see Appendix A.
We note that while there is some simplification achieved by
specializing Theorem 2 to our two-class setting with three
types of servers (i.e., two dedicated pools and one common
pool), the expressions for the performance metrics, while
amenable to numerical computation, are too cumbersome for
an analytical treatment of the Pareto-frontier.



B. Pareto-frontier of partial sharing configurations under
c.o.s. for N1 = N2 = 1

We now specialize to the case N1 = N2 = 1, focusing
on the stationary waiting probability metric. To analyse the
Pareto-frontier with c.o.s. replication, we need to generalize
the space of sharing configurations (k1, k2) to allow for real
valued ki ∈ [0, 1]. We do this using randomization as follows.
Provider i contributes its server to the common pool with prob-
ability ki; these actions being independent across providers.
Of course, the above probabilities should really be interpreted
as time-fractions. So the configuration (k1, k2) is achieved by
time-sharing between the configurations (0, 0), (0, 1), (1, 0)
and (1, 1), with (long run) time-fractions (1 − k1)(1 − k2),
(1− k1)k2, k1(1− k2), and k1k2, respectively.

The following theorem provides a complete characterization
of the Pareto-frontier.

Theorem 3. For N1 = N2 = 1, under c.o.s. replication,
the Pareto-frontier is non-empty. Moreover, Pareto-optimal
configurations for the stationary waiting probability metric
satisfy ki = 1 for some i. Specifically, the Pareto-frontier P
is characterized as follows.

1) If Ci(1, 1) < Ci(0, 0) ∀ i, then there exist uniquely
defined constants x̂1 and x̂2, such that x̂i ∈ (0, 1) for
i = 1, 2, C1(1, x̂2) = C1(0, 0), C2(x̂1, 1) = C2(0, 0).
In this case,

P = {(x, 1) : x ∈ (x̂1, 1]} ∪ {(1, x) : x ∈ (x̂2, 1]}.

2) If C2(0, 0) ≤ C1(1, 1) = C2(1, 1) < C1(0, 0), then
there exist uniquely defined constants x2 and x̄2 satis-
fying 0 < x2 < x̄2 ≤ 1 such that C1(1, x2) = C1(0, 0)
and C2(1, x̄2) = C2(0, 0). In this case,

P = {(1, x) : x ∈ (x2, x̄2)}.

Theorem 3 shows that Pareto-optimal configurations always
involve at least one of the providers always contributing its
server to the common pool. Moreover, the theorem also spells
out the exact structure of the Pareto-frontier. Case (1) of
the theorem corresponds to the case where full pooling is
beneficial to both providers. In this case, the Pareto-frontier
includes the full-pooling configuration; see Figure 2a for an
example of this case. Case (2) of the theorem applies to the
asymmetric setting where full pooling benefits P1 but not P2.
In this case, all Pareto-optimal configurations involve the most
congested provider (i.e., P1) always contributing its server to
the common pool; see Figure 2b for an example of this case.
Note that the third case where full pooling is beneficial to P2

but not P1 is omitted in the theorem statement, since it can
be recovered from Case (2) by interchanging the labels of the
providers. The proof of Theorem 3 is provided in Appendix B.

We conjecture that the above structure of the Pareto-frontier
holds beyond the special case of N1 = N2 = 1.

Conjecture 1. For N1, N2 ≥ 1, employing an extension of
the space of partial sharing configurations to [0, N1]× [0, N2]
via randomization as before, any Pareto-optimal configuration
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for the stationary waiting probability metric satisfies ki = Ni
for some i.

Numerical experimentation suggests that the above con-
jecture holds; however, a proof has eluded us thus far. See
Figure 3 for some illustrations of the Pareto-frontier computed
for N1 = N2 = 2.

C. Bargaining solutions

The Pareto-frontier defines the set of partial pooling config-
urations from which one provider cannot improve its perfor-
mance without degrading that of the other. That is, one cannot
find a configuration that will be better for both providers
simultaneously. Bargaining theory provides a framework for
choosing one configuration from the set of Pareto-optimal ones
[12]. While an extensive treatment of bargaining solutions
is beyond the scope of the present paper, we now use one
popular solution concept from the theory, namely, the Kalai-
Smorodinsky bargaining solution (KSBS) [9], to capture the
agreement point between the providers.

Definition 1. A partial sharing configuration (x∗1, x
∗
2) is a

Kalai-Smorodinsky bargaining solution (KSBS), if (x∗1, x
∗
2) is

on the Pareto-frontier and satisfies

B1(0, 0)−B1(x∗1, x
∗
2)

B2(0, 0)−B2(x∗1, x
∗
2)

=

B1(0, 0)− min
y∈[0,1]2

B1(y1, y2)

B2(0, 0)− min
y∈[0,1]2

B2(y1, y2)
.

The KSBS is such that the ratio of relative utilities of the
providers is equal to the ratio of their maximal relative utilities.



It can be shown (using arguments similar to those in [13]) that
for N1 = N2 = 1 and for the stationary waiting probability
metric, the KSBS is uniquely defined. Table II illustrates the
KSBS computed for various system parameters when N1 =
N2 = 1. We see that when the providers are close to symmetric
in their arrival rates (or equivalently, their standalone waiting
probabilities), the KSBS corresponds to full pooling. On the
other hand, when one provider is much more congested than
the other, the KSBS does not correspond to complete pooling;
only the more congested provider is required to always place
its server into the common pool. Note that the KSBS affords a
considerable improvement in performance for both providers.

TABLE II: Comparison of waiting probabilities (in %) for the
case N1 = N2 = 1, respectively and ν1 = ν2 = 1.

Standalone Full Sharing KSBS
Cs

1 Cs
2 C1 = C2 = C k∗1 k∗2 C1(k∗1 , k

∗
2) C2(k∗1 , k

∗
2)

10 10 1.82 1 1 1.82 1.82
10 30 6.65 0.69 1 5.54 14.54
10 50 13.85 0.37 1 8.26 37.30

V. DISCUSSIONS

In this section, we cover the special (and easier) single-
server setting, where the service capacities of both providers
can be merged into a single server. We also review the related
literature, and outline potential directions for future work.

A. Single server setting

First, we consider the special case where the service
capacity of both providers can be combined into a single
server. Moreover, the service capacity of this merged server
is arbitrarily (and dynamically) divisible between the two
providers. For this case, we define a balanced fairness (BF)
based partial pooling mechanism between the providers, which
includes both no pooling and complete pooling as special
cases. For this mechanism, we show that complete pooling
is the only Pareto-optimal configuration. Of course, given
the equivalence between c.o.c. replication and single-server
balanced-fair scheduling, and our conclusions from Section III,
this is not surprising.

Consider two service providers P1 and P2 with servers
operating at the rate (a.k.a. speed) µ1 and µ2 respectively.
Recall that in this section, we consider the ‘single server’
setting, where it is possible to pool the capacity of the two
servers into a single server with rate µ1 + µ2. Jobs of Pi
arrive according to a Poisson process of rate λi, and the service
requirements (a.k.a. sizes) of jobs are i.i.d. and exponentially
distributed with mean 1/νi < ∞. Let ρi := λi/νi denote the
traffic load corresponding to Pi. For stability, we assume that
ρi < µi for i = 1, 2.

Jobs corresponding to each provider wait in separate queues,
and are served in a FCFS fashion. The service rate for each
queue is determined by a BF-based partial pooling mechanism,
parametrized by (k1, k2). Here, ki ∈ [0, µi] is a measure of
the extent to which Pi is willing to share its service capacity
with P−i. Specifically, let ni denote the number of unfinished

jobs of Si in the system. Given the system state (n1, n2), the
BF-based partial pooling mechanism awards a service rate ri
to Provider i, such that (r1, r2) is the balanced fair allocation
over the rate region R(k1, k2) defined as follows:

R(k1, k2) = {(r1, r2) ∈R2
+ : r1 ≤ µ1 + k2, r2 ≤ µ2 + k1,

r1 + r2 ≤ µ1 + µ2}.

Theorem 4. In the single server setting, under the BF-based
partial pooling mechanism, the full sharing configuration (i.e.,
k1 = µ1, k2 = µ2) is the only Pareto-optimal configuration,
for the stationary waiting probability metric as well as the
stationary mean response time metric.

Theorem 4 implies that the resource pooling problem is easy
in the single server setting—complete pooling with balanced
fair resource allocation is the solution.

B. Related work

Complete resource pooling between independent service
systems has been studied from a cooperative game theory
standpoint; see, for example, [1], [7], [10]. The goal of
this literature is to analyze stable mechanisms for sharing
the surplus (and costs) of the grand coalition among the
various agents. Single server as well as multi-server settings
have been considered, for queueing as well as loss systems;
see [10] for a comprehensive survey of this literature. A
complementary view of resource sharing comes from an
optimization standpoint. Here the organization is interested
in optimally provisioning (potentially heterogenous) resources
and/or sharing its service resources between various activities;
see, for example, [3], [8], [15].

In contrast, our approach in this work is to analyze re-
source sharing between strategic service providers having
non-transferable utility. In other words, no side-payments
are allowed between the service providers. Instead, providers
would (partially or completely) pool their resources with one
another only if their service quality improves in the process.
Our goal is thus to devise mechanisms that guarantee mutually
beneficial sharing configurations. The only prior work we
are aware of that takes this view is [13], which considers
loss systems. In contrast, the present paper considers service
systems where jobs can be queued. As it turns out, the
appropriate sharing mechanisms are very different between
these two settings.

C. Naive partial sharing

In this paper, we analyzed partial sharing for systems with
full redundancy, i.e., copies are sent to all the servers. An al-
ternative system that would have been a natural generalization
of the partial sharing with blocking analyzed in [13] would be
to have three separate queues—one each for the two dedicated
servers and one for the shared servers—and send an incoming
job with priority to the dedicated servers. Repacking could
have been used to dynamically exchange servers between the
pools in order to ensure that the stability region is the same as
in this paper. Compared to the redundancy system, the naive



system presents an inconvenience in that it is not easy to show
whether or not it admits a product-form. For the computation
of the waiting probability, this is a major disadvantage. One
could in theory use sample-path techniques employed in [13]
to characterize the Pareto-frontier, but these become much
more involved for the system in this paper and we are not
sure that they are even true. This is part of our ongoing work.

D. Future work

An immediate avenue for future work is of course to prove
Conjecture 1 and completely analyse the Pareto-frontier under
c.o.s. replication; this is currently being pursued. It would
also be interesting to generalize our models to n > 2 service
providers, and to devise suitable partial sharing mechanisms
that guarantee the existence of mutually beneficial sharing
configurations.

More broadly, the present bargaining-centric view of re-
source pooling (with non-transferable utilities between agents)
can be explored in other contexts; for example, sharing of
cache memory between content distribution systems, sharing
of energy storage in smart power grids, and spectrum sharing
between cellular service providers or between secondary users
in cognitive radio networks.
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APPENDIX A
PERFORMANCE CHARACTERIZATION WITH c.o.s.

A. Assignment Rates

We provide a detailed approach for computing the steady-
state distribution and hence the expressions for Ci(k1, k2) and
Di(k1, k2). We introduce the following notations:

M1 ={1, · · ·N1 − k1}, dedicated servers of P1,

M2 ={N1 + k2 + 1, · · ·N1 +N2}, dedicated servers of P2,

M3 ={N1 − k1 + 1, · · ·N1 + k2}, shared servers.

For a given subset of servers m = {m1, · · · ,mj ,mk},
define xi(m) = number of servers from the set Mi in m
and x(m) = (x1(m), x2(m), x3(m)). Also define x̄(m) =
(x̄1(m), x̄2(m), x̄3(m)) where x̄i(m) = |Mi|−xi(m) and ei
be the unit vector in the direction i.

All servers in Mi are identical, hence λmj{m} is same
for all mj ∈ Mi for i = 1, 2, 3. Using the assignment rate
condition it can also be shown that λmj{m} = λmj{m′} if
x(m) = x(m′). Hence, we can define ri(x(m)) = λmj{m}
for mj ∈ Mi and m ∈ M. Since the vector x takes values
from a finite set X (∈ Z3), calculating ri(x) for all values in
X gives all the assignment rate probabilities λmj{m}.

Recall that λ(m) is the aggregate arrival rate corresponding
to jobs which cannot be served by any server in the setM\m.
Define λ̄(m) = λ1 + λ2 −M \m, the aggregate arrival rate
corresponding to jobs which can be served by the servers in
M \ m, note that λ̄(m) = λ̄(m′) if x(m) = x(m′). Hence
r(x(m)) = λ̄(m). Using this and the assignment rate condition
stated in Section IV, we obtain the following set of equations
between ri(x), which can be solved to get ri(x) for all x ∈ X
and i = 1, 2, 3.

x̄1r1(x) + x̄2r2(x) + x̄3r3(x) = r(x).

For x ∈ X such that x1 < N1 − k1 and x3 < k1 + k2,

r1(x)r3(x+ e1) = r1(x+ e3)r3(x).

For x ∈ X such that x2 < N2 − k2 and x3 < k1 + k2,

r2(x)r3(x+ e2) = r2(x+ e3)r3(x).

ri((N1− k1, N2− k2, k1 + k2)− ei) =


λ1 if i = 1,

λ2 if i = 2,

λ1 + λ2 if i = 3.

ri(x) = 0 if xi = |Mi|.

Recall that, Πλ({m1, · · · ,mi}) =

i∏
j=1

λmj ({m1, · · · , ,mj−1}).

Again due to the assignment rate condition, Πλ(m) = Πλ(m′)
if x(m) = x(m′), hence we define Π(x(m)) = Πλ(m).



B. The Waiting Probability

For a state s = (ni,mi, · · · , n2,m2, n1,m1), m(s) is the
set of busy servers., i.e, m(s) = {m1,m2 · · · ,mi}. then the
waiting probability Ci(k1, k2) is follows:

C1(k1, k2) =
∑

s:x1(m(s))+x3(m(s))=N1+k2.

π(s).

Let us define π{A} as the probability that an arriving job of
the provider A has to wait (A ∈ {{φ}, {1}, {2}, {1, 2}}).
Equivalently, π{A} is the sum of stationary probabilities of
those states in which all servers which can serve jobs from
providers A are busy. Then the waiting probabilities for
Provider Pi can be expressed as,

Ci(k1, k2) = π{i} + π{1,2},

where, π{1} =
∑
s:x1(m(s))+x3(m(s))=N1+k2,x2(m(s)<N2−k2 π(s).

After obtaining the assignment probabilities and then using
the expression for π(s) from Theorem 2, we get π{1} =
N2−k2−1∑
x2=0

Π(N1−k1,y,k1+k2)π(0)
(N1+k2+x2)!

(
N2−k2
y

)(∑x2

w=0

(
x2

w

)
w!(N1 +

k2)(N1 + k2 + x2 − w − 1)!

(
Πw
v=0

(N1+k2+x2−w+v)
(N1+k2+x2−w+v−λ1)

))
.

Similarly, we can write the expression for π{2} using symme-
try, also π{1,2} =

∑
s:x1(m(s))+x2(m(s))+x3(m(s))=N1+N2

π(s),

π{1,2} = Π(N1−k1,N2−k2,k1+k2)π(0)
(N1+N2−1)!(N1+N2−λ1−λ2)

(∑N2−k2
w=0

(
N2−k2
w

)
w!

(N1 + k2)(N1 +N2 − w − 1)!

(
Πw−1
v=0

(N1+N2−w+v)
(N1+N2−w+v−λ1)

))
.

Similarly the expression for mean response time can be
computed, which is omitted due to lack of space. As one can
see these expressions though easy to compute numerically are
not very amenable to analysis.

APPENDIX B
PROOF OF THEOREM 3

The proof of Theorem 3 is structured as follows: first we
show that Ci(k1, k2) satisfies a set of 3 conditions in Lemma 3.
Then we show that if those conditions are satisfied then Pareto
region lies on the boundary, i.e. at least one of the ki = Ni.
After showing that the Pareto-frontier lies on the boundary, the
explicit structure of the Pareto-frontier described in Theorem 3
is direct consequence of the monotonicity properties as shown
in [13]. The proof is omitted due to lack of space.

Lemma 3. For c.o.s. replication and N1 = 1 and N2 = 1

1) Ci(k1, k2) is a strictly decreasing function of k−i,
2) Ci(k1, k2) is a strictly increasing function of ki,
3) ∂C1

∂k2
∂C2

∂k1
> ∂C1

∂k1
∂C2

∂k2
.

Proof. As defined in Section IV, for any k1 ∈ [0, 1] and k2 ∈
[0, 1], the waiting probability is given by:

Ci(k1, k2) = (1− k1)(1− k2)Ci(0, 0) + (k1)(1− k2)Ci(1, 0)

+(1− k1)k2Ci(0, 1) + k1k2Ci(1, 1),

where Ci(0, 0), Ci(1, 0), Ci(0, 1) and Ci(0, 1) can be explic-
itly computed using the results in Appendix A. For the sake
of tidiness, we use the notation Ci instead of Ci(k1, k2) for
the rest of the proof. For i = 1,

∂C1

∂k1
=(1− k2)

[
C1(1, 0)− C1(0, 0)

]
+ k2[C1(1, 1)− C1(0, 1)

]
=

(1− k2)

Ω1
(2− λ1 + λ2 − λ1λ2 − λ2

1)λ2
2

+
k2

Ω2
(2− λ1 − λ2)λ2(λ1 + λ2)2 > 0.

∂C1

∂k2
=(1− k1)

[
C1(0, 1)− C1(0, 0)

]
+ k1[C1(1, 1)− C1(1, 0)

]
=

(1− k1)

Ω2
λ1(1− λ2)[λ1(λ2 − 4) + λ2(λ2 − 2)]

+
k1

Ω1
(λ1λ2 + λ2

2 + 2λ1 − 4)(λ1 + λ2)2 < 0,

where
Ω1 = (λ1 +λ2 +λ2

2)(1−λ1) +λ1(1−λ1λ2) + 3λ2 +λ2
2 > 0,

Ω2 = (λ1 +λ2 +λ2
1)(1−λ2) +λ2(1−λ1λ2) + 3λ1 +λ2

1 > 0.
Similarly due to symmetry, it can be shown that ∂C2

∂k1
< 0 and

∂C2

∂k2
> 0. Hence, Ci(k1, k2) is a strictly decreasing function

of k−i, and Ci(k1, k2) is a strictly increasing function of ki.

∂C1

∂k2

∂C2

∂k1
− ∂C1

∂k1

∂C2

∂k2
= αk1 + βk2 + γ,

where,

α =
[
C1(1, 0)− C1(0, 0)

][
C2(0, 1)− C2(1, 1)

]
−[

C1(1, 1)− C1(0, 1)
][
C2(0, 0)− C2(1, 0)

]
=

2(1− λ1)(2− λ1 − λ2)(2 + λ1 − λ2 + λ2
1 + λ1λ2)

(2 + λ1 + λ2)Ω1Ω2
> 0,

β =
[
C1(1, 0)− C1(1, 1)

][
C2(0, 1)− C2(0, 0)

]
−[

C1(0, 0)− C1(0, 1)
][
C2(1, 1)− C2(1, 0)

]
=

2(1− λ2)(2− λ1 − λ2)(2 + λ2 − λ1 + λ2
2 + λ1λ2)

(2 + λ1 + λ2)Ω1Ω2
> 0,

γ =
[
C1(0, 0)− C1(0, 1)

][
C2(0, 0)− C2(1, 0)

]
−[

C1(1, 0)− C1(0, 0)
][
C2(0, 1)− C2(0, 0)

]
=

4λ1λ2(1− λ1)(1− λ2)(2− λ1 − λ2)

Ω1Ω2
> 0.

Hence we have, ∂C1

∂k2
∂C2

∂k1
− ∂C1

∂k1
∂C2

∂k2
> 0.

Now given that the Lemma 3 holds, we show that the Pareto
Frontier lies on the boundary as follows: we show that for
any (k1, k2) where ki ∈ [0, Ni), there exists a θ such that
∇Ci(k1, k2) · (1, θ) < 0 for i = 1, 2. C1(k1, k2) · (1, θ) > 0
and C2(k1, k2) · (1, θ) > 0 are equivalent, respectively, to

θ > −
∂C1

∂k1
∂C1

∂k2

, θ < −
∂C2

∂k1
∂C2

∂k2

.

Therefore if Statement 3 of Lemma 3 holds, there exists a
direction θ along which both providers will have lower values
of Ci(k1, k2) and hence any such configuration cannot be
Pareto-optimal.


