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Abstract—The inherent intermittency of wind and solar gen-
eration presents a significant challenge as we seek to increase
the penetration of renewable generation in the power grid. In-
creasingly, energy storage is being deployed alongside renewable
generation to counter this intermittency. However, a formal char-
acterization of the reliability of renewable generators bundled
with storage is lacking in the literature. The present paper seeks
to fill this gap. We use a Markov modulated fluid queue to model
the loss of load probability (LOLP) associated with a renewable
generator bundled with a battery, serving an uncertain demand
process. Further, we characterize the asymptotic behavior of the
LOLP as the battery size scales to infinity. Our results shed
light on the fundamental limits of reliability achievable, and also
guide the sizing of the storage required in order to meet a given
reliability target. Finally, we present a case study using real-
world wind power data to demonstrate the applicability of our
results in practice.

I. INTRODUCTION

Electric supply is an indispensable part of modern life and
is thus required to meet extremely stringent requirements of
reliability. Classically, loss of load has been caused due to op-
erational reasons, such as a generator undergoing maintenance,
grid conditions, such as the overdrawing of power, or due
to extraneous circumstances, such as natural calamities. With
increasing penetration of renewable generation, the natural
variability of the output of these generators adds a new, supply-
side cause for the loss of load. Fortunately, with the growing
capacity of renewable generation, we are also witnessing a
tremendous fall in storage prices. Thanks to this, an increasing
number of renewable generators are countering their variabil-
ity, not with conventional, fast-ramping generation, but rather
with storage [1], [2]. Thus, we believe that the renewable
generator of the future will not be a standalone renewable
generator, but rather a renewable generator bundled with a
battery.

Keeping in mind reliability as one of the central concerns
of the electricity infrastructure, the introduction of a battery-
renewable generator bundle raises some basic questions. To
begin, how does one account for this bundle in calculations
for system reliability? How does this reliability change with
increasing variability of the renewable source (wind or solar)?
How does this change with increasing capacity of the battery?
If one targets a certain level of reliability, how much battery
storage is required to attain this level? And finally, are there
fundamental limitations on the performance of a bundle, in

the sense that are there levels of performance that are simply
unattainable?

A moment’s thought reveals that answers to these questions
cannot be obtained by only considering one snapshot in
time. To understand this, consider the hypothetical scenario
where there is no battery and only a renewable generator
attached to a constant load. Then the loss of load probability
(LOLP) would be simply the probability that the instantaneous
output of the generator drops below the load, which one
could potentially calculate via meteorological data. However,
introducing storage changes the picture dramatically. Even
while the instantaneous output of the generator may drop
to a low level, there may well be charge left in the battery
to meet the load requirements, and thus, using the bundle,
the load could still be met. But the battery is charged by
the excess output of the renewable generator, whereby the
charge in the battery at any time depends on the history of
generation (and load) realized until that time. It is easy to see
that characterization of the LOLP in this case is a nontrivial
matter.

This paper develops an analytical framework for character-
izing the LOLP of a battery-renewable generator bundle. Our
framework yields crisp answers to the sizing questions raised
above. For a target level of reliability, it provides order-optimal
estimates of the minimum battery size one requires to meet
that reliability level, in terms of the statistical properties of
the renewable source and the load. It also reveals that there
are hard impossibilities: for certain ranges of these statistical
parameters, no amount of battery suffices to bring the LOLP
to zero. These results could be applied in conjunction with a
costing exercise to ascertain the right battery size to be bundled
with a renewable generator. One could also potentially use
our characterization of the steady-state LOLP within a larger
calculation of network-level reliability.

We model the net generation, i.e., the renewable generation
minus the demand, as a continuous time Markov chain evolv-
ing over a finite state space. The battery serves as a buffer of
finite capacity that is charged at the available rate when the net
generation is positive and is discharged at the deficit rate when
the net generation is negative. The battery charging process is
subject to ‘boundary conditions’: it cannot be charged above
its capacity and cannot be discharged below zero. Any positive
net generation produced when the battery is fully charged is
unusable. The LOLP is then the long run fraction of time



the battery is discharged to zero. We find that when the drift,
i.e., the steady-state average net generation, is negative, then
a battery of any finite size results in an LOLP that remains
bounded away from zero. In other words, the LOLP cannot be
made arbitrarily small by choosing a large enough battery size
when the drift is negative. However, when the drift is positive,
the LOLP drops exponentially with battery size, allowing it
to be made arbitrarily close to zero by choosing a suitably
large battery size. The rate of decrease of LOLP with increase
in battery size is dictated by a decay rate, which can be
characterized as the smallest positive generalized eigenvalue of
the rate matrix associated with the net generation. This decay
rate characterization can in turn be used to estimate the battery
size required to achieve a given target LOLP.

II. MODEL AND PRELIMINARIES

Consider a storage battery of capacity bmax which is charged
or discharged by a net generation process associated with rate
r(t) = g(t) − d(t), where g(t) and d(t) denote, respectively,
the generation and demand at time t. The energy content of
the battery, denoted by b(t), evolves as a regulated process
having upper cap bmax and lower cap 0. Thus, b(t) evolves as

d

dt
b(t) =


0 if b(t) = 0 and r(t) < 0,

0 if b(t) = bmax and r(t) > 0,

r(t) otherwise.
(1)

Note that a fully charged battery cannot be charged further
with a rate r(t) > 0. Similarly an empty battery cannot be
discharged further with a rate r(t) < 0. Excluding these two
boundary cases, the rate of change of the battery level is
governed by the net generation rate r(t). We assume that the
rate r(t) is dependent on the state of a background Markov
process, which collectively captures supply (generation) side
variability as well as demand side variability.

Let {X(t)} denote the background Markov process. We
assume that {X(t)}t≥0 is an irreducible, time-reversible,
continuous-time Markov chain (CTMC) over a finite state
space S. For every state i ∈ S, we associate a net generation
rate ri ∈ R \ {0} with which the battery is charged or
discharged. Thus, r(t) := rX(t), i.e., the rate of charg-
ing/discharging of the battery is a function of the state of
the background CTMC {X(t)}t≥0. It is easy to see now
that {(b(t), X(t))} is a Markov process that evolves over the
state space [0, bmax] × S. Note that this model also captures
charge/discharge rate constraints on the battery; these would
simply be reflected in the range of values taken by the net
generation rates ri.

The above mathematical model, wherein the occupancy of
a buffer (or battery) is modulated by a background Markov
process, is referred to in the queueing literature as a Markov
Modulated Fluid Queue (MMFQ); see [3], [4]. In this paper,
we use a finite-buffer MMFQ model to analyse the reliability
of a renewable generator bundled with a battery.

Next, we describe how to characterize the invariant distri-
bution of the Markov process {(b(t), X(t))}, which then leads

to a characterization of the loss of load probability (LOLP).
Note that we are assuming that the process X(t) has no state i
where the net generation rate is zero. This allows us to partition
the state space S as follows: S = S+ ∪ S−, where

S+ = {i ∈ S : ri > 0}, S− = {i ∈ S : ri < 0}.

We assume that both S+ and S− are non-empty.1

Let (b,X) denote the steady state of the Markov process
{(b(t), X(t))}. We capture the invariant distribution of this
process as follows:

Fi(x) = P[b ≤ x,X = i] ∀ i ∈ S, x ∈ [0, bmax].

The invariant distribution is governed by the ODE

d

dx
F (x) = R−1QTF (x), (2)

where F (·) = [F1(·), F2(·), . . . , F|S|(·)]T , Q denotes the
transition rate matrix associated with the CTMC {X(t)}, and
R := diag(r1, r2, . . . , r|S|) (see [3], [4]).2 The invariant dis-
tribution can now be computed using the following boundary
conditions:

Fi(0) = 0 ∀ i ∈ S+; Fi(bmax) = πi ∀ i ∈ S−, (3)

where π = (πi, i ∈ S) denotes the invariant distribution of the
CTMC {X(t)}.

The probability that the battery content is less than or equal
to x in steady state is given by

∑
i∈S Fi(x). This probability

is of particular relevance for x = 0. Indeed, the quantity∑
i∈S Fi(0) =

∑
i∈S− Fi(0) is the long run fraction of time

the battery is empty, and is also the long run fraction of time
that the demand remains unfulfilled. In other words, this is the
loss of load probability (LOLP), i.e.,

LOLP =
∑
i∈S−

Fi(0).

The LOLP, which can only be expressed in closed form for
very simple cases (see below), can be computed numerically
by solving the ODE (2) using the boundary conditions (3).
However, this computation does not provide insights into the
structural dependence of the LOLP on the supplyside and
demandside uncertainty (captured by the CTMC {X(t)}) and
the capacity bmax of the battery. In Section III, we analyse the
large buffer asymptotics of the LOLP, which sheds light on
the limits of reliability achievable in a given setting, as well
as the storage capacity required to achieve a certain (small)
LOLP target.

Finally, we define a quantity that plays a key role in the
large buffer asymptotics, namely the drift associated with the
supplyside and demandside uncertainty. The drift ∆ is defined
as the steady state average net generation, i.e.,

∆ :=
∑
i∈S

πiri.

1Indeed, if either S+ or S− is empty, then the battery would forever remain
completely charged or completely discharged.

2Since ri 6= 0 for all i ∈ S, R−1 exists.



Note that ∆ < 0 (respectively, ∆ > 0) implies that the time-
average generation is less than (respectively, greater than) the
time-average demand.

We conclude this section by considering the special case
where the background CTMC {X(t)} has only two states. This
simple scenario, which admits a closed form characterization
of the LOLP, motivates the general large buffer asymptotics
derived in Section III.

Two state example

Consider the special case S = {1, 2}, where the generation
alternates between two values 0 and g > 0 while the demand
takes a constant value d ∈ (0, g). Specifically, we set r1 = −d,
r2 = g − d. In this case,

Q =

[
−a a
b −b

]
R =

[
−d 0
0 g − d

]
,

where a, b > 0 are the state transition rates for the generation
process.

In this case, the drift is given by ∆ = ag−ad−bd
a+b , and the

LOLP can be shown to be

LOLP =
−∆
d

1− ag−ad
bd exp{ (a+b)∆

(g−d)d bmax}
.

It is easy to see that LOLP is a strictly decreasing function
of bmax. However, the limiting behavior of the LOLP as
bmax →∞ depends critically on whether the drift is positive
or negative. When ∆ < 0, then

ad+ bd− ag
(a+ b)d

LOLP
bmax↑∞−−−−−→ −∆

d
> 0.

This means that the LOLP remains bounded away from zero
for any finite bmax. In other words, when the drift is negative,
an LOLP less than −∆

d is simply unattainable no matter how
large the battery capacity. This is consistent with Theorem 1
in Section III, which establishes a positive lower bound on the
LOLP for any battery size bmax when the drift is negative.

On the other hand, when ∆ > 0,

LOLP ∼ Ae−λbmax ,

where A = b
a

(a+b)
(g−d)∆ and λ =

(
a
d −

b
g−d

)
> 0.3 This implies

that when the drift is positive, the LOLP decays exponentially
with the battery size, implying that an arbitrarily small LOLP
target is achievable with a large enough battery. Moreover, we
note that the decay rate λ is in fact the positive eigenvalue
of R−1QT . This is consistent with Theorem 2 in Section III,
which establishes an exponentially decaying (in the battery
size) upper bound on the LOLP when the drift is positive.

3We use f(t) ∼ g(t) to mean that limt→∞
f(t)
g(t)

= 1.

III. LARGE BATTERY APPROXIMATIONS

In this section, we analyse the behavior of the LOLP as the
battery size bmax scales to infinity. Our results shed light on
the feasibility of meeting reliability targets, and also guide the
sizing of the battery required to meet a given reliability target.

As suggested by the two-state example in Section II, the
asymptotic behavior of the LOLP as bmax → ∞ depends
on whether the drift is positive or negative. Accordingly, we
consider these cases separately. Due to space constraints, we
omit the proofs of our results here; these can be found in the
extended version of this paper [5].

A. Negative drift: Asymptotic LOLP lower bound

We now consider the case ∆ < 0, i.e., the time-average
generation is less than the time-average demand. One would
therefore expect that LOLP cannot be made arbitrarily small
in this case. This is proved formally in Theorem 1, which also
provides a lower bound on the LOLP that is achievable with
any finite battery size.

Let rmin := min{ri, i = 1, . . . , |S|}. Note that rmin < 0,
since we assume that S− is non-empty; |rmin| is simply the
maximum rate of discharge of the battery.

Theorem 1. If ∆ < 0, then LOLP > −∆
−rmin

for any value of
bmax. Moreover,

lim
bmax→∞

LOLP ≥ −∆

−rmin
,

with equality if |S−| = 1.

Theorem 1 is a consequence of the law of large numbers
for Markov chains. It states that when the steady state average
demand exceeds the steady state average generation, then an
LOLP less than or equal to −∆

−rmin
is unattainable no matter

how large a battery we deploy. Moreover, this bound is loose
in general; it is tight when the background CTMC has only a
single state of discharge.

Connection with the two state example: In the two-state
example considered in Section II, note that rmin = −d and
|S−| = 1. In this example, when ∆ < 0, recall that indeed,
LOLP > −∆

d , with limbmax→∞ LOLP = −∆
d .

B. Positive drift: Asymptotic LOLP upper bound

We now consider the case ∆ > 0, i.e., the time-average
generation exceeds the time-average demand. In this case, one
might expect that it is possible, with a large enough battery, to
store the excess generation when the instantaneous generation
exceeds demand, and to use this stored energy to almost
always fulfil the deficit when the instantaneous generation
drops below the demand. Theorem 2 shows that this is indeed
the case, and that the LOLP decays exponentially with the
battery size (when the drift is positive).

Theorem 2. If ∆ > 0, then

lim sup
bmax→∞

log LOLP

bmax
≤ −λc, (4)

where λc is the smallest positive eigenvalue of R−1QT .



Theorem 2 provides an upper bound on the LOLP that is
exponentially decaying in the battery size when the drift is
positive. Specifically, (4) implies that for any λ ∈ (0, λc),

LOLP ≤ e−λbmax

for large enough values of bmax.
4 This ensures that any

arbitrarily small LOLP target be achieved with a suitably large
battery. Moreover, the above bound can be utilized to obtain
a conservative estimate of the battery size required in order to
meet a given (small) LOLP target; we address battery sizing
in detail as part of our case study (see Section IV).

In fact, we conjecture that the bound in the statement of
Theorem 2 is tight, i.e., we conjecture that

lim
bmax→∞

log LOLP

bmax
= −λc. (5)

This is also consistent with the results of our simulation
experiments (see Section IV).

Connection with the two state example: Recall that in the
two state example considered in Section II, we saw that when
∆ > 0, LOLP ∼ Ae−λcbmax , where λc is the only positive
eigenvalue of R−1QT . Note that the decay rate in this case
matches the bound in Theorem 2 exactly.

IV. CASE STUDY

In this section, we demonstrate the applicability of the
results presented in Section III in practice. We fit a Markov
model to a real-world trace of wind power generation, allowing
us to validate the predictions from our analytical results against
empirical observations. Further, we address the question of
battery sizing in order to meet a given reliability target.

A. Data collection

We collected time series data corresponding to three years
of wind power generation (December 2014 to December 2017)
within the jurisdiction of the Bonneville Power Administration
(BPA) (see [6]). The data samples are five minutes apart, and
ranges from 0 to 4500 MW.

As expected, the data is highly non-stationary in nature,
exhibiting diurnal as well as seasonal variations. Since our
Markov modeling is best suited to stationary data, we extracted
the samples corresponding to the months of February and
March from 9pm to 3am for fitting a Markov model; this
restricted dataset is henceforth referred to as the ‘stationary
wind data’. For comparison, we also fit a Markov model to
the entire (highly non-stationary) time series.

B. Data processing and Markov modeling

We now describe how we fit a Markov model to the above
wind data.5 We first quantize the data into N = 20 bins, the

4The existence of at least one positive eigenvalue of R−1QT is guaranteed
when ∆ > 0; this is proved in [4].

5This has been attempted before by several authors, including [7]–[10].
However, these prior works evalaute the ‘fit’ quality of their Markov models
using the mean and auto-correlation function. In contrast, we match the
reliability implied by the Markov model against the empirical reliability, which
is a more direct indicator of the usefulness of the model.

bin edges being (in MW): [0, 60, 120, 180, 240,300, 450,
600, 900, 1200, 1500, 1800, 2100, 2400, 2700, 3000, 3300,
3600, 3900, 4200, 4500]. This non-uniform binning is done
to ensure a roughly even distribution of samples across bins.
The N bins constitute the state space for our Markov model.

Given this state space, we obtain the empirical transition
probability matrix T as follows:

T [i, j] =
# transitions occurring from bin i to bin j
total # transitions occurring out of bin i

T is the maximum likelihood estimator of the transition prob-
ability matrix corresponding to a discrete-time Markov chain
(DTMC) model for the wind power sampled at τ = 5 min
intervals. To obtain a continuous-time Markov chain (CTMC)
description, we note that the transition rate matrix Q of the
CTMC is related to T as follows: T = eQτ . Using the
first-order Taylor series approximation for small τ , we get
eQτ ≈ I+Qτ , where I is the identity matrix.6 Accordingly, we
set Q = (T−I)/τ . This Q matrix defines a CTMC description
of the wind power data.

To define the net generation corresponding to each state,
we assume a constant demand d over time. Thus, the net
generation rate ri corresponding to bin i equals gi−d, where gi
denotes the bin-center corresponding to bin i. Note that we can
control the drift ∆ by varying d.

C. Evaluating the goodness of fit

We now evaluate the quality of our Markov models by com-
paring the LOLP implied by these models with the empirical
LOLP implied by the data. This also allows us to demonstrate
the applicability of the conclusions of Theorems 1 and 2 in
practice. In Figures 1 and 2, we plot the LOLP as a function of
the battery size bmax setting d = 1800 MW (∆ < 0) and d =
1200 MW (∆ > 0), respectively. We do this for the ‘stationary
wind data’ as well as the entire time series. Specifically, we
plot the following quantities:
• Simulated (cont. time) LOLP: This is the LOLP com-

puted by simulating the CTMC model for wind power
generation obtained from the data.

• Simulated (discrete time) LOLP: This is the LOLP com-
puted by simulating the DTMC model for wind power
generation obtained from the data, taking the generation
to be constant over 5 minute intervals.

• Empirical LOLP: This is the LOLP computed by simulat-
ing the battery evolution using the wind power generation
trace, again assuming the generation to be constant over
5 minute intervals.

Note that in all the plots, the simlulated LOLP from our
CTMC model closely matches the simulated LOLP from the
DTMC model. This essentially validates our first order Taylor
approximation for fitting the transition rate matrix Q from
the empirical transition probability matrix T. Moreover, we
note that the simulated LOLP from the Markov models more

6This Taylor approximation is valid to long as τ is smaller than the typical
transition times of the CTMC.
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Fig. 1: LOLP vs battery size for d = 1800 MW (∆ < 0)

closely matches the empirical LOLP for the stationary wind
data than for the entire time series. This suggests that the
Markov models are a better fit on the stationary data than on
the complete, highly non-stationary time series. In practice,
this means we should fit different Markov models to capture
wind variability in different parts of the day in each season.

Focusing specifically on Figure 1, which corresponds to the
negative drift scenario, we make the following observations.

• The empirical as well as simulated LOLP converges, as
bmax becomes large, to a value which is lower bounded
by the bound specified in Theorem 1.

• The empirical LOLP is less than the LOLP implied by
the Markov models. In other words, our models tend to
overestimate the LOLP.

• The LOLP corresponding to a given battery size7 is
greater for the entire time series as compared to the
stationary data, suggesting that the former dataset is more
‘variable’ than the latter.

Focusing next on Figure 2, which corresponds to the positive
drift scenario, we note that the LOLP decays to zero as bmax

becomes large, consistent with Theorem 2. Moreover, we see
that the Markov models tend to overestimate the LOLP (as
before). To illustrate the exponential decay of LOLP with
battery size clearly, we plot the simulated LOLP from the
CTMC model on a log-linear scale in Figure 3. Note that the
plot looks asymptotically linear (establishing the exponential
decay), with a slope that closely matches the decay rate bound
from Theorem 2. This is consistent with our conjecture on the
tightness of the bound of Theorem 2.

7We plot battery size in SI units (Joules). However, the engineering practice
is to measure battery capacity in kiloWatt-hour (kWh), where 1 kWh = 3.6×
106 J.
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Fig. 2: LOLP vs battery size for d = 1200 MW (∆ > 0)

D. Battery sizing

The above results support our conjecture (see (5)) that when
∆ > 0, the LOLP decays exponentially with battery size with
a decay rate equal to λc. This suggests when bmax is large,
the LOLP may be approximated as

LOLP ≈ ce−λcbmax . (6)

This further implies that the battery size required to maintain
the LOLP at δ is given by

bmax ≈
log(c)

λc
+

log(1/δ)

λc
.

Since the pre-factor c in (6) is unknown here, a natural
approximation would be to estimate the battery size required
as

bmax ≈
log(1/δ)

λc
. (7)

Clearly, we would expect the above estimate to be accurate
upto an additive offset. Moreover, we would expect that the
error of our estimate would be small in relative terms for
small δ.

To validate (7), consider the CTMC model for the stationary
wind data, with d = 1200 MW. For this model, we compare
the minimum storage size required to bring the simulated
LOLP below δ with the estimate (7); see the left panel of
Figure 4. Notice the constant offset between the two curves,
as predicted. However, we note the (unknown) offset results
in a roughly 40% error in battery size requirement when
δ = 10−3. For lower values of δ, the relative error would
of course be smaller. This means that for moderate values
of reliability target δ, the estimate (7) can be used to make
ballpark estimates of the storage size required.

However, (6) can also be used for relative storage sizing
as follows: Note that (6) suggests that shrinking the LOLP
be a factor of ε would require an increase in battery size
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of log(1/ε)
λc

. To validate this approximation, we consider the
following baseline scenario. Setting d = 1200 MW with the
stationary wind data, and bmax = 0.25×1012 J, the simulated
LOLP equals L = 0.018. In the right panel of Figure 4, we
plot the additional battery size required to make the LOLP
L/ε versus ε, using the above approximation, as well as by
simulating the CTMC model. Note that the approximation is
remarkably accurate, even for moderate values of LOLP.

This shows that (6) is an accurate description of the LOLP
as bmax becomes large, and can be used in practice to guide
battery sizing decisions.

V. CONCLUDING REMARKS

In this paper, we developed an analytical framework for
characterizing the reliability of a renewable generator bundled
with a battery. We analysed how the reliability, captured by the
LOLP, scales as the battery size scales to infinity. Our results
highlight the achievable limits of reliability, and provide useful
guidelines for sizing storage in practice.

This work motivates future research along several directions.
A first step would be to refine our large-buffer asymptotics in
the positive drift case, proving formally the conjecture (5).
Indeed, characterizing the exact asymptotics of the LOLP,
rather than logarithmic asymptotics, would result in even more
accurate storage sizing prescriptions. At a higher level, we
believe our formulations are a natural first step to analyse the
economies of scale that would result from sharing of stor-
age, between renewable generators or electricity prosumers.
Finally, we note that our work motivates more sound stochastic
modeling of renewable generation, to improve the real-world
applicability of analytical reliability characterizations (as in
the present paper).
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APPENDIX

A. Proof of Theorem 1
The proof of Theorem 1 is based on energy conservation

of the battery content together with the law of large numbers
applied to the background Markov process. We use a following
preliminary result in the proof.

Lemma 1. Let b(t) and b∞(t) be finite capacity and infinite
capacity battery content respectively at any instant t. Then,
b(t) ≤ b∞(t) ∀ t ≥ 0 on each sample path.

The proof of this lemma is fairly simple which is based on
the sample path argument and hence, we omit the proof.

Consider a time interval [0, t]. Let Ocum(t) be the total
amount of energy due to battery overflow in the interval
[0, t] as the process X(t) evolves. The overflow is because
of the finite battery capacity. Similarly, let `cum(t) be the
total amount of energy equivalent to lost load in the same
interval. Load lost condition occurs when the battery is empty
and any unserved load (or demand) which is present causes the
discharging rate (rX(t) < 0). Let dcum(t) be the total drained
out battery content in the interval [0, t] while gcum(t) be total
injection into the battery in the same interval. We define

`avg := lim
t→∞

`cum(t)

t
Oavg := lim

t→∞

Ocum(t)

t
.

As defined in Section III-A, rmin represents the maximum bat-
tery discharging rate. Analogously, let rmax be the maximum
charging rate of battery i.e. rmax := max{ri|i = 1, . . . , |S|}.
With these notations we have the following result.

Lemma 2. If the average drift is negative i.e. ∆ < 0 then
`avg = −∆+Oavg ≥ −∆. Moreover, limbmax→∞ `avg = −∆.

Proof: Applying energy conservation, we get

gcum(t)−Ocum(t) = dcum(t)− `cum(t) + b(t)

⇒ `cum
t

= − (gcum(t)− dcum(t))

t
+
Ocum(t)

t
+
b(t)

t

⇒ `cum
t

= −1

t

∫ t

0

rX(s)ds+
Ocum(t)

t
+
b(t)

t

⇒ lim
t→∞

`cum
t

= − lim
t→∞

1

t

∫ t

0

rX(s)ds+ lim
t→∞

Ocum(t)

t

+ lim
t→∞

b(t)

t
.

Since the battery capacity is finite, lim
t→∞

b(t)
t = 0 and

law of large numbers for Markov chains implies that
limt→∞

1
t

∫ t
0
rX(s)ds = ∆. Therefore we get

`avg = lim
t→∞

`cum
t

= −∆ +Oavg.

Also Ocum(t) ≤ rmax× {total time spent in rmax state with
full battery content in the interval [0, t]}. Dividing by t and
taking limit t→∞, we get,

Oavg ≤ rmaxP[b = bmax] (8)
≤ rmaxP[b∞ ≥ bmax] (9)

where b is the stationary battery content corresponding to finite
capacity battery content b(t) whereas b∞ is the stationary
battery content corresponding to the infinite capacity battery
content b∞(t). Both types of batteries are governed by the
same underlying Markov process X(t). Note that we have
used Lemma 1 in (8) to get (9).

When the drift is negative, as bmax →∞, P[b∞ ≥ bmax] ∼
k exp{−λcbmax} where −λc is the largest negative eigenvalue
(having minimum magnitude) of R−1QT and k is some
constant (see [4]). This implies Oavg

bmax↑∞−−−−−→ 0. In other
words,

lim
bmax→∞

`avg = −∆ + lim
bmax→∞

Oavg = −∆.

With this result we now prove Theorem 1.
Proof: Total energy equivalent to lost load in the interval

[0, t] is upper bounded as `cum(t) ≤ −rmin×{total time spent
in rmin state with empty battery in the interval [0, t]}. Dividing
by t and taking limit t→∞, we get,

`avg = lim
t→∞

`cum(t)

t
≤ −rminLOLP.

From Lemma 2, `avg ≥ −∆. Therefore,

LOLP ≥ −∆

−rmin
.

When the background CTMC has only a single state of
discharge i.e., |S−| = 1, then `avg = −rminLOLP. From
Lemma 2, limbmax→∞ `avg = −∆ which gives us

lim
bmax→∞

LOLP =
−∆

−rmin

(when background process has single state of discharge).

B. Proof of Theorem 2

Proof: If we consider the reversed process Xr(t) of X(t)
in which rXr(t) = −rX(t), then a process X(t) with ∆ >
0 will have reversed process Xr(t) with ∆r < 0. Reversed
process Xr(t) will have Qr = Q and Rr = −R.

Also time spent at empty battery condition, b(t) = 0, with
process X(t) when the drift is positive is equivalent to time
spent at full battery condition, br(t) = bmax, with reversed
process Xr(t) when the drift is negative.

Therefore we have,

LOLP = lim
t→∞

1

t

∫ t

0

1{b(s)=0}ds

= lim
t→∞

1

t

∫ t

0

1{br(s)=bmax}ds

≤ lim
t→∞

1

t

∫ t

0

1{br∞(s)≥bmax}ds

= P(br∞ ≥ bmax)

where br∞ is the stationary battery content with infinite capac-
ity.

To find P(br∞ ≥ bmax), we use the same argument which is
used in the proof of Lemma 2 i.e. when the drift is negative, as



brmax →∞, P[br∞ ≥ bmax] ∼ k exp{−λrc brmax} where −λrc is
the largest negative eigenvalue (having minimum magnitude)
of Rr−1QrT and k is some constant (see [4]). Since Rr = −R
and Qr = Q, λc is the smallest positive eigenvalue of R−1QT .
This gives us

lim
bmax→∞

log(P(br∞ ≥ bmax))

bmax
= −λc.

Therefore when the drift is positive, we get

lim
bmax→∞

log LOLP

bmax
≤ −λc.


