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Statistically Robust, Risk-Averse Best Arm

Identification in Multi-Armed Bandits
Anmol Kagrecha, Jayakrishnan Nair, and Krishna Jagannathan

Abstract

Traditional multi-armed bandit (MAB) formulations usually make certain assumptions about the

underlying arms’ distributions, such as bounds on the support or their tail behaviour. Moreover, such

parametric information is usually ‘baked’ into the algorithms. In this paper, we show that specialized

algorithms that exploit such parametric information are prone to inconsistent learning performance

when the parameter is misspecified. Our key contributions are twofold: (i) We establish fundamental

performance limits of statistically robust MAB algorithms under the fixed-budget pure exploration setting,

and (ii) We propose two classes of algorithms that are asymptotically near-optimal. Additionally, we

consider a risk-aware criterion for best arm identification, where the objective associated with each arm

is a linear combination of the mean and the conditional value at risk (CVaR). Throughout, we make

a very mild ‘bounded moment’ assumption, which lets us work with both light-tailed and heavy-tailed

distributions within a unified framework.

Index Terms

Multi-armed bandits, best arm identification, conditional value-at-risk, concentration inequalities,

robust statistics

I. INTRODUCTION

The multi-armed bandit (MAB) problem is fundamental in online learning, where an optimal option

needs to be identified among a pool of available options. Each option (or arm) generates a random

reward/cost when chosen (or pulled) from an underlying unknown distribution, and the goal is to quickly

identify the optimal arm by exploring all possibilities.
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Classically, MAB formulations consider reward distributions with bounded support, typically [0, 1].

Moreover, the support is assumed to be known beforehand, and this knowledge is baked into the

algorithm. However, in many applications, it is more natural to not assume bounded support for the

reward distributions, either because the distributions are themselves unbounded (even heavy-tailed), or

because a bound on the support is not known a priori. There is some literature on MAB formulations with

(potentially) unbounded rewards; see, for example, [2], [3]. Typically, in these papers, the assumption of a

known bound on the support of the reward distributions is replaced with the assumption that certain bounds

on the moments/tails of the reward distributions are known. Additionally, some algorithms even require

knowledge of a lower bound on the sub-optimality gap between arms; see, for example, [4]. However,

such prior information may not always be available. Even if available, it is likely to be unreliable, given

that moment/tail bounds are typically themselves estimates based on limited data. Unfortunately, the

effect of the unavailability/unreliability of such prior information on the performance of MAB algorithms

has remained largely unexplored in the literature.

As we show in this paper, the performance of MAB algorithms is quite sensitive to the reliability of

moment/tail bounds on arm distributions that have been incorporated into them. Specifically, we prove

that such specialized algorithms can be inconsistent when presented with an MAB instance that violates

the assumed moment bounds. This motivates the design of statistically robust MAB algorithms, i.e.,

algorithms that guarantee consistency on any MAB instance. This requirement ensures that algorithms

are robust to misspecification of distributional parameters, and are not ‘over-specialized’ for a narrow

class of parametrized instances.

Furthermore, the typical metric used to quantify the goodness of an arm in the MAB framework is

its expected return, which is a risk-neutral metric. In some applications, particularly in finance, one is

interested in balancing the expected return of an arm with the risk associated with that arm. This is

particularly relevant when the underlying reward distributions are unbounded, even heavy-tailed, as is

found to be the case with portfolio returns in finance; see [5]. In these settings, there is a non-trivial

probability of a ‘catastrophic’ outcome, which motivates a risk-aware approach to optimal arm selection.

In this paper, we seek to address the two issues described above. Specifically, we consider the problem

of identifying the arm that optimizes a linear combination of the mean and the Conditional Value at

Risk (CVaR) in a fixed budget (pure exploration) MAB framework. The CVaR is a classical metric used

to capture the risk associated with an option/portfolio; see [6]. We make very mild assumptions on the

arm distributions (the existence of a (1 + ε)th moment for some ε > 0), allowing for unbounded support

and even heavy tails. In this setting, our goal is design statistically robust algorithms with provable

performance guarantees.
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Our contributions can be summarized as follows.

1) We establish fundamental bounds on the performance of statistically robust algorithms. In the

classical setting, where tail/moment bounds on the arm distributions are assumed to be known,

it is possible to design specialized algorithms such that the probability of error for any instance

that satisfies these bounds decays as O(exp(−γ′T )), where γ′ > 0 is a constant that depends

on the instance and T is the budget of arm pulls; see [4], [7]. In contrast, we prove that it is

impossible for statistically robust algorithms to guarantee an exponentially decaying probability of

error with respect to the horizon T. This result highlights, on one hand, the ‘price’ one must pay for

statistical robustness. On the other hand, it also demonstrates the fragility of classical specialized

algorithms—parameter misspecification can render them inconsistent.

2) Next, we design two classes of statistically robust algorithms that are asymptotically near-optimal.

Specifically, we show that by suitably scaling a certain function that parameterizes these algorithms,

the probability of error can be made arbitrarily close to exponentially decaying with respect to the

horizon. In particular, the probability of error under our algorithms is the form O(exp(−γT 1−q)),

where γ > 0 is an instance-dependent constant and q ∈ (0, 1) is an algorithm parameter. Another

feature of our algorithms is that they are distribution oblivious, i.e., they require no prior knowledge

about the arm distributions. Our algorithms use sophisticated estimators for the mean and the CVaR,

that are designed to work well with (highly variable) heavy-tailed arm distributions. Indeed, we

show that the use the simplistic estimators based on empirical averages would result in an inferior

power-law decay of the probability of error.

3) We propose two novel estimators for the CVaR of (potentially) heavy-tailed distributions for use

in our algorithms, and prove exponential concentration inequalities for these estimators; these

estimators and the associated concentration inequalities may be of independent interest.

4) While our proposed algorithms are distribution oblivious as stated, we demonstrate that it is

possible to incorporate noisy prior information about arm moment bounds into the algorithms

without affecting their statistical robustness. Doing so improves the short-horizon performance of

our algorithms over those instances that satisfy the assumed bounds, leaving the asymptotic behavior

of the probability of error unchanged for all instances.

The remainder of this paper is organized as follows. A brief survey of the related literature is provided

below. We formally define the formulation and provide some preliminaries in Section II. Fundamental

lower bounds for statistically robust algorithms are established in Section III. The design and analysis

of the proposed robust algorithms are discussed in Section IV. Numerical experiments are presented in
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Section V, and we conclude in Section VI.

Related Literature

There is a considerable body of literature on the multi-armed bandit problem. We refer the reader to

the books [8], [9] for a comprehensive review. Here, we restrict ourselves to papers that consider (i)

unbounded reward distributions, and (ii) risk-aware arm selection.

The papers that consider MAB problems with (potentially) heavy-tailed reward distributions include:

[2], [3], [10], in which regret minimization framework is considered, and [4], in which the pure exploration

framework is considered. All the above papers take the expected return of an arm to be its goodness

metric. The papers [2], [3] assume prior knowledge of moment bounds and/or the suboptimality gaps.

The work [10] assumes that the arms belong to parameterized family of distributions satisfying a second

order Pareto condition. The paper [4] does contain analysis of one distribution oblivious algorithm (see

Theorem 2 in their paper). The oblivious approach considered there is based on empirical estimator for

the mean and therefore, the performance guarantee derived there is much weaker than the lower bound;

we elaborate on this in the Subsection IV-A.

There has been some recent interest in risk-aware multi-armed bandit problems. The setting of op-

timizing a linear combination of mean and variance in the regret minimization framework has been

considered in [11], [12]. Use of the logarithm of the moment generating function of a random variable

as the risk metric in a regret minimization framework is studied in [13] and the learnability of general

functions of mean and variance is studied in [14]. In the pure exploration setting, VaR-optimization has

been considered in [15], [16]. However, the CVaR is a more preferable metric because it is a coherent

risk measure (unlike the VaR); see [6]. Strong concentration results for VaR are available without any

assumptions on the tail of the distribution; see [17], whereas concentration results for CVaR are more

difficult to obtain. Assuming bounded rewards, the problem of CVaR-optimization has been studied in

[18], [19]. The paper [20] looks at path dependent regret and provides a general approach to study many

risk metrics. In a recent paper [7], CVaR optimization with heavy tailed distributions is considered, but

prior knowledge of moment bounds is also assumed. None of the above papers consider the problem of

risk-aware arm selection in a distribution oblivious fashion, as is done here.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce some preliminaries, state our modeling assumptions, and formulate the

problem of risk-aware best arm identification.
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A. Preliminaries

For a random variable X, given a prescribed confidence level α ∈ (0, 1), the Value at Risk (VaR) is

defined as vα(X) = inf(ξ : P(X ≤ ξ) ≥ α). If X denotes the loss associated with a portfolio, vα(X)

can be interpreted as the worst case loss corresponding to the confidence level α. The Conditional Value

at Risk (CVaR) of X at confidence level α ∈ (0, 1) is defined as

cα(X) = vα(X) +
1

1− α
E[X − vα(X)]+,

where [z]+ = max(0, z). Both VaR and CVaR are used extensively in the finance community as measures

of risk, though the CVaR is often preferred as mentioned above. Typically, the confidence level α is chosen

between 0.95 and 0.99. Throughout this paper, we use the CVaR as a measure of the risk associated

with an arm. Let β := 1− α. For the special case where X is continuous with a cumulative distribution

function (CDF) FX that is strictly increasing over its support, vα(X) = F−1
X (α). In this case, the CVaR

can also be written as cα(X) = E [X|X ≥ vα(X)]. Going back to our portfolio loss analogy, cα(X) can,

in this case, be interpreted as the expected loss conditioned on the ‘bad event’ that the loss exceeds the

VaR.

Next, we recall that the KL divergence (or relative entropy) between two distributions is defined as

follows. For two distributions ρ and ρ′, with ρ being absolutely continuous with respect to ρ′,

KL(ρ, ρ′) :=

∫
log

(
dρ(x)

dρ′(x)

)
dρ(x).

Throughout, we assume that the arm distributions satisfy the following condition: A random variable

X is said to satisfy condition C1 if there exists p > 1 such that E [|X|p] < ∞. Note that C1 is

only mildly more restrictive than assuming the well-posedness of the MAB problem, which requires

E [|X|] < ∞. In particular, all light-tailed distributions and most heavy-tailed distributions used and

observed in practice satisfy C1. An important class of heavy-tailed distributions that satisfy C1 is the

class of regularly varying distributions with index greater than 1 (see Proposition 1.3.6, [21]). Formally,

the complementary cumulative distribution function (c.c.d.f.) of a regularly varying random variable X

with index a is of the form FX(x) = x−aL(x), where L(·) is a slowly varying function.1

B. Problem Formulation

Consider a multi-armed bandit problem with K arms, labeled 1, 2, · · · ,K. The loss (or cost) associated

with arm i is distributed as X(i), where it is assumed that all the arms satisfy C1. Therefore, it follows

1A function L : R+ →R+ is said to be slowly varying if limx→∞
L(xy)
L(x)

= 1 for all y > 0.
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that there exists p ∈ (1, 2], B <∞, and V <∞ such that

E [|X(i)|p] < B and E [|X(i)− E [X(i)] |p] < V for all i.

We pose the problem as (risk-aware) loss minimization, which is of course equivalent to (risk-aware)

reward maximization. Each time an arm i is pulled, an independent sample distributed as X(i) is observed.

Given a fixed budget of T arm pulls in total, our goal is to identify the arm that minimizes obj(i) =

ξ1E [X(i)] + ξ2cα(X(i)), where ξ1 and ξ2 are non-negative (and given) weights. This places us in the

fixed budget, pure exploration framework. The performance of an algorithm (a.k.a., policy) is captured

by its probability of error, i.e., the probability that it fails to identify an optimal arm. Note that (ξ1, ξ2) =

(1, 0) corresponds to the classical mean minimization problem (see [4], [22]), whereas (ξ1, ξ2) = (0, 1)

corresponds to a pure CVaR minimization (see [7], [18]). Optimization of a linear combination of the mean

and CVaR has been considered before in the context of portfolio optimization in the finance community

(see [23]), but not, to the best of our knowledge, in the MAB framework. The performance metric we

consider is the probability of incorrect arm identification (a.k.a., the probability of error).

We denote a bandit instance by the tuple ν = (ν1, · · · , νK), where νi is the distribution corresponding

to X(i) (that satisfies C1). Let the space of such bandit instances be denoted by M. The ordered values

of the objective are denoted as {obj[i]}Ki=1 where obj[1] ≤ obj[2] ≤ · · · ≤ obj[K]. The suboptimality

gap ∆[i] is defined as the difference between obj[i] and obj[1], i.e., ∆[i] = obj[i]−obj[1]. Note that

the suboptimality gaps {∆[i]}Ki=2 are ordered as follows: 0 ≤ ∆[2] ≤ · · · ≤ ∆[K]. The probability of

error for an algorithm π on the instance ν ∈M with a budget T is denoted by pe(ν, π, T ).

Our focus in this paper is on statistically robust algorithms. Formally, we say an algorithm is statistically

robust if it guarantees consistency over the space M. An algorithm π is said to be consistent over the

set M̃ of MAB instances if, for any instance ν ∈ M̃, limT→∞ pe(ν, π, T ) = 0 (see [24]).

In the following section, we explore the fundamental limits on the performance of statistically robust

algorithms.

III. FUNDAMENTAL PERFORMANCE LIMITS FOR ROBUST ALGORITHMS

In this section, we prove a fundamental lower bound on the performance of any statistically robust

algorithm. Specifically, we show that there exists a class of MAB instances inM, such that any statistically

robust algorithm would have a probability of error that decays slower than exponentially with respect

to the horizon T over those instances. In other words, it is impossible to guarantee exponential decay

of the probability of error with respect to T for robust algorithms. This is in sharp contrast to classical

specialized algorithms, which can offer such a guarantee (over the narrow class of instances they are

designed for).
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To highlight this contrast, we begin by considering the classical setting, where the algorithm is

specialized to a restricted subset of M. We first show that it is possible to construct bandit instances

such that any algorithm, even one that knows the distributions of the arms up to a permutation, would

have at least an exponentially decaying probability of error with respect to T. In the special case of mean

minimization, this result was proved in [22]. Here, we extend the analysis to the case when the objective

is a linear combination of mean and CVaR.

Theorem 1: Let νa and νb be Gaussian distributions with the same mean µ but different variances

σ2
a and σ2

b > σ2
a. For any algorithm, the probability of error for at least one of the bandit instances

ν = (νa, νb) or ν̃ = (νb, νa) satisfies:

pe ≥
1

4
exp(−T (KL(νb, νa) + o(1)))

where o(1) term depends on σa, σb, and T and tends to zero as T →∞.

The proof for Theorem 1 can be found in Appendix A.

It is also possible to construct specialized algorithms, which ‘know’ bounds on (p,B, V ) and/or ∆[2],

that achieve an exponential decay of the probability of error with respect to T, over all those instances that

satisfy these bounds. In the special cases of mean minimization and CVaR minimization, such algorithms

are proposed in [4] and [7], respectively. Analogous constructions can also be performed for the more

general objective we consider here, as we show in Section IV.

We now turn to setting of statistically robust algorithms, which is the primary focus of the present

paper. Our main result, stated below, shows that the fundamental performance limit for robust algorithms

differs considerably from that for specialized algorithms—it is impossible to guarantee an exponentially

decaying probability of error in the oblivious setting. For simplicity, this result is stated for the special

case K = 2.

Theorem 2: Let K = 2, and consider an algorithm π that is consistent overM. For any bandit instance

ν = (ν1, ν2) satisfying obj(1) < obj(2), such that ν1 is a regularly varying distribution with index

a > 1,

lim
T→∞

− 1

T
log pe(ν, π, T ) = 0. (1)

Note that the limit in (1) captures the exponential decay rate of pe(ν, π, T ) as T →∞; a value of zero

implies that pe(ν, π, T ) asymptotically decays slower than exponentially. It is also instructive that the

instances for which this ‘subexponential’ decay is established involve heavy-tailed (specifically, regularly

varying) cost distributions. Indeed, the impossibility result in Theorem 2 holds because the class M

of MAB instances of interest includes instances with heavy-tailed arm distributions. If M were to be
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restricted to light-tailed arm distributions, then it can be shown that the same impossibility result does

not hold.

Theorem 1 also highlights the fragility of classical specialized algorithms that have been proposed

for heavy-tailed instances. To see this, for p > 1 and B > 0, let M(p,B) denote the class of MAB

instances where each arm distribution lies in {θ :
∫
|x|pdθ(x) ≤ B}. Note that M(p,B) contains both

heavy-tailed as well as light-tailed MAB instances; see Figure 1. As mentioned before, it is possible to

design algorithms that guarantee an exponentially decaying probability of error overM(p,B).2 Theorem 1

implies that such specialized algorithms are in fact not consistent overM. Indeed, if they were consistent,

then their exponentially decaying probability of error over the regularly varying instances in M(p,B)

would contradict (1). In other words, while specialized algorithms perform very well over the specific

class of instances they are designed for, they necessarily lose consistency over (certain) instances outside

this class. In practice, considering that moment bounds are themselves error prone statistical estimates,

Theorem 1 shows that specialized algorithms that exploit such bounds to provide strong performance

guarantees over the corresponding subset of bandit instances are not robust to the inherent uncertainties

in these estimates.

Fig. 1: Here, L refers to the class of MAB instances with light-tailed cost distributions. SinceM(p,B)\L

contains instances with regularly varying cost distributions, any algorithm that produces an exponentially

decaying error probability over M(p,B) is necessarily not consistent over M.

The remainder of this section is devoted to the proof of Theorem 2. We note here that a similar

impossibility result was proved by [25] for the pure exploration bandit problem in the fixed-confidence

setting. Our proof technique is inspired their methodology and also relies crucially on the lower bounds

in [24].

We begin by stating a property of slowly varying functions L(x) from [21, Proposition 1.3.6].

2This is done in [4] for the mean minimization problem and in [7] for the CVaR minimization problem.
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Lemma 1: If L(·) is a slowly varying function, then,

lim
x→∞

xρL(x) =

0 ρ < 0,

∞ ρ > 0.

The next lemma, which is a consequence of Theorem 12 in [24], provides an information theoretic

lower bound on the rate of decay of the probability of error. While this result is stated in [24] for the

classical mean optimization problem, their arguments do not depend on the specific arm metric used.

Lemma 2: Let ν = (ν1, ν2) be a two-armed bandit model such that ξ1µ(1)+ξ2cα(1) < ξ1µ(2)+ξ2cα(2)

for given ξ1, ξ2 ≥ 0. Any consistent algorithm satisfies

lim sup
t→∞

−1

t
log pe(ν, t) ≤ c∗(ν), (2)

where,

c∗(ν) := inf
(ν′1,ν

′
2)∈M:obj′(1)>obj′(2)

max(KL(ν ′1, ν1),KL(ν ′2, ν2))

Next, we show that for any regularly varying distribution F, one can construct a perturbed distribution

G such that (i) KL(G,F ) is arbitrarily small, and (ii) the objective value obj(G) is arbitrarily large.

Lemma 3: Consider a regularly varying distribution F of index p > 1. Then given any δ ∈ (0, 1) and

γ > obj(F ), there exists a distribution G, also regularly varying with index p, such that

KL(G,F ) ≤ δ,

obj(G) ≥ γ.

Proof: We have using Lemma 1

xρF (x) =

0 ρ < p,

∞ ρ > p.

We construct the distribution G as follows:

G(x) = χ1F (x) for x < b

G(x) = bp−0.5F (x) for x ≥ b

where b is a suitably large constant whose value we will set later. We set χ1 = 1−bp−0.5FX(b)
FX(b) to ensure

that G(·) is continuous at b. As limb→∞ b
p−0.5FX(b) = 0, we have 0 < χ1 < 1 for large enough b, with

limb→∞ χ1 = 1.

The KL divergence between G and F is given by

KL(G,F ) =

∫ ∞
−∞

log
dG(x)

dF (x)
dG(x)
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=

∫ b

−∞
χ1 logχ1dF (x) +

∫ ∞
b

bp−0.5 log bp−0.5dF (x)

≤ bp−0.5(p− 0.5) log(b)FX(b) (∵ χ1 < 1).

As limb→∞ b
p−0.5 log(b)F (b) = 0, we can choose a large enough b such that KL(G,F ) ≤ δ. We further

show that as b tends to infinity, the mean and CVaR of G also tend to infinity. This ensures that for a

suitably large b, obj(G) can be made greater than γ.

For b such that F (b+) = F (b−),

µ(G) = χ1

∫ b

−∞
xdF (x) + bp−0.5

∫ ∞
b

xdF (x)

≥ χ1

∫ b

−∞
xdF (x) + bp−0.5

(
bF (b)

)
.

As limb→∞ b
p+0.5F (b) =∞ and limb→∞ χ1

∫ b
−∞ xdF (x) = µ(F ), we have limb→∞ µ(G) =∞.

Similarly, for large enough b, vα(G) = inf(ξ : χ1F (ξ) ≥ α). Also, limb→∞ vα(G) = vα(F ). For b

large enough such that F (b+) = F (b−),

cα(G) =
1

1− α

∫ b

vα(G)
χ1xdF (x) +

1

1− α

∫ ∞
b

bp−0.5xdF (x)

≥ 1

1− α

∫ b

vα(G)
χ1xdF (x)︸ ︷︷ ︸

T1

+
1

1− α
bp+0.5F (b)︸ ︷︷ ︸
T2

.

Note that limb→∞ T1 = cα(F ) and limb→∞ T2 =∞. Hence, limb→∞ cα(G) =∞.

Finally, Theorem 2 is an immediate consequence of Lemmas 2 and 3.

Proof of Theorem 2: As ν1 is regularly varying, ν ′1 can be chosen so that KL(ν ′1, ν1) ≤ δ for any

small δ > 0, and obj(ν ′1) > obj(ν2) > obj(ν1). Considering the alternative instance ν ′ = (ν ′1, ν2), an

application of Lemma 2 implies that c∗(ν) ≤ δ. Since δ can be made arbitrarily small, it follows that

c∗(ν) = 0. This proves Theorem 2.

IV. STATISTICALLY ROBUST ALGORITHMS

In this section, we propose statistically robust, risk-aware algorithms, and prove performance guarantees

for these algorithms. As enforced by the impossibility result proved in Section III, these algorithms

produce an (asymptotically) slower-than-exponential decay in the probability of error with respect to the

budget T. However, we show that by tuning a certain function that parameterizes the estimators used

in these algorithms, the probability of error can be made arbitrarily close to exponentially decaying. In

this sense, the class of algorithms proposed are asymptotically near-optimal. This is, however, not an

entirely ‘free lunch’—tuning the algorithms to be near-optimal asymptotically (as T → ∞) leads to a
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potential degradation of performance for moderate values of T. Interestingly, if noisy prior information

is available, say on moment bounds satisfied by the arm distributions, this can be incorporated into our

algorithms to improve the short-horizon performance, without affecting their statistical robustness.

This section is organised as follows. We begin by describing the basic framework of the algorithms

proposed here. In the following three subsections, different algorithm classes are considered, along with

their corresponding performance guarantees. The different algorithm classes differ only in the estimators

used for the mean and CVaR of each arm. Indeed, when dealing with heavy-tailed MAB instances, naive

estimators based on empirical averages perform poorly (as we demonstrate in Section IV-A), necessitating

the use of more sophisticated estimators that are less sensitive to the (relatively frequent) outliers that

arise in heavy-tailed data (see Sections IV-B and IV-C).

Our algorithms are of successive rejects (SR) type [22]. They are parameterized by positive integers

n1 ≤ n2 ≤ · · · ≤ nK−1 satisfying n1 = Ω(T ) and
∑K−2

i=1 ni + 2nK−1 ≤ T. The algorithm proceeds

in K − 1 phases, with one arm being rejected from further consideration at the end of each phase. In

phase i, the K + 1 − i arms under consideration are pulled ni − ni−1 times, after which the arm with

the worst (estimated) performance is rejected. This is formally expressed in Algorithm 1. Here, µnk(i)

and cnk,α(i) denote generic estimators of the mean and CVaR of arm i, respectively, using nk samples

from the corresponding distribution. The specific estimators used will differ across the three classes of

algorithms we describe later. The classical SR algorithm in [22] used nk ∝ T−K
K+1−k . Another special

case is uniform exploration (UE), where n1 = n2 = · · ·nK−1 = bT/Kc. As the name suggests, under

uniform exploration, all arms are pulled an equal number of times, after which the arm with the best

estimate is selected.

Algorithm 1 Generalized successive rejects algorithm

procedure GSR(T,K, {n1, · · · , nK−1})

A1 ← {1, · · · ,K}

n0 ← 0

for k = 1 to K − 1 do

For each i ∈ Ak, pull arm i for nk − nk−1 rounds

Let Ak+1 = Ak \ arg maxi∈Akξ1µnk(i) + ξ2cnk,α(i)

end for

Output unique element of AK

end procedure

We note here that SR type algorithms require that the budget/horizon T be known a priori. However,
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if T is not known a priori, any-time variants can be constructed as follows: UE, implemented in a round

robin fashion is of course inherently any-time. Generalized SR algorithms can also be made any-time

using the well-known doubling trick (see [26]).

The probability of error of the generalized successive rejects algorithm can be upper bounded in the

following manner. During phase k, at least one of the k worst arms is surviving. Thus, if the optimal

arm i∗ is dismissed at the end of phase k, that means:

ξ1µnk(i
∗) + ξ2cnk,α(i∗) ≥ min

i∈{(K),(K−1),··· ,(K+1−k)}
ξ1µnk [i] + ξ2cnk,α[i]

Using the union bound, we get:

pe ≤
K−1∑
k=1

K∑
i=K+1−k

P
(
ξ1µnk(i

∗) + ξ2cnk,α(i∗) ≥ ξ1µnk [i] + ξ2cnk,α[i]
)

=

K−1∑
k=1

K∑
i=K+1−k

P
(
ξ1(µnk(i

∗)− µ(i∗)− (µnk [i]− µ[i]))

+ ξ2(cnk,α(i∗)− cα(i∗)− (cnk,α[i]− cα[i])) ≥ ∆[i]
)

≤
K−1∑
k=1

K∑
i=K+1−k

(
P
(
ξ1(µnk(i

∗)− µ(i∗)) ≥ ∆[i]/4
)

+ P
(
ξ1(µ[i]− µnk [i]) ≥ ∆[i]/4

)
+ P (ξ2(cnk,α(i∗)− cα(i∗)) ≥ ∆[i]/4) + P (ξ2(cα[i]− cnk,α[i]) ≥ ∆[i]/4)

) (3)

The terms in the summation above can be bounded using suitable concentration inequalities on the

estimators µn(·) and cn,α(·)—these will be derived for the specific estimators we use in the following

subsections.

A. Algorithms utilizing empirical average estimators

In this section, we consider the simplest oblivious estimators—those based on empirical averages.

Unfortunately, these simple techniques do not enjoy good guarantees; the probability of error decays

polynomially (i.e., as a power law) in T. The fundamental reason for this is the poor concentration

properties of these estimators when the underlying distribution is heavy-tailed.

We begin by stating the empirical CVaR estimator. We then state our concentration inequality for this

CVaR estimator, establish its tightness, and point to analogous existing results for the empirical mean

estimator. Finally, we use these inequalities to show that the probability of error of SR-type algorithms

using these estimators decays polynomially. This motivates the use of more sophisticated estimators that

provide stronger performance guarantees; this is the agenda for the following two subsections.
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Suppose that {Xi}ni=1 are n IID samples distributed as the random variable X. Let {X[i]}ni=1 denote

the order statistics of {Xi}ni=1 i.e., X[1] ≥ X[2] · · · ≥ X[n]. Recall that the classical estimator for cα(X)

given the samples {Xi}ni=1 (see [27]) is:

ĉn,α(X) = X[dnβe] +
1

nβ

bnβc∑
i=1

(X[i] −X[dnβe]).

Now, we state the concentration inequality for ĉn,α(X) when X satisfies C1.

Theorem 3: Suppose that {Xi}ni=1 are IID samples distributed as X, where X satisfies condition C1.

Given ∆ > 0,

P (|ĉn,α(X)− cα(X)| ≥ ∆) ≤ C(p,∆, V )

np−1
+ o(

1

np−1
),

where C(p,∆, V ) is a positive constant.

The precise statement of the result, with explicit expressions for C(p,∆, V ) and the o( 1
np−1 ) term above

can be found in Appendix B. Note that the upper bound decays polynomially in n. Contrast this with

exponentially decaying concentration bounds proved in [28] for bounded random variables (see Lemma 4

below). The bound in Theorem 3 in nearly tight in an order sense, as shown in the following theorem.

Similar upper and lower bounds for the concentration of the empirical mean estimator are provided in [2].

Theorem 4: Suppose that {Xi}ni=1 be IID samples distributed as X, where X ∼ Pareto(xm, a), where

xm > 0 and a > 1.3 Then

P(ĉn,α(X) > cα(X) + ∆) ≥ βxam
na−1(cα(X) + ∆)a

+ o

(
1

na−1

)
.

The proof of Theorem 4 can be found in Appendix C. If X ∼ Pareto(xm, a), then E
[
Xθ
]
<∞ for

θ < a and E
[
Xθ
]

=∞ for θ ≥ a. Thus, if a ∈ (1, 2], comparing the upper bound in Theorem 3 to the

lower bound in Theorem 4, p < a and p can be made arbitrarily close to a, suggesting the near-tightness

of the upper bound of Theorem 3.

Theorem 3 and the analogous result for the empirical mean estimator (see Lemma 3 in [2]), when

applied to (3), imply that generalized SR algorithms using empirical average based estimators have a

probability of error that is O( 1
np−1 ). Moreover, Theorem 4 shows that this bound is nearly tight in the

order sense. We demonstrate this via the following example.

Corollary 4.1: Consider a two-arm instance ν = (ν1, ν2). Arm 1 is optimal and has a Pareto(xm, a)

distribution with a > 1. Arm 2 is a constant having a value such that obj(2) = obj(1) + ∆. The

probability of error, pe, of any SR-type algorithm using empirical estimators is bounded below by C
T a−1 +

o
(

1
T a−1

)
, where C > 0 is an instance (and algorithm) dependent constant.

3X ∼ Pareto(xm, a) means P (X > x) =
xam
xa

for x > xm and 1 otherwise.
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The above corollary is a direct consequence of Theorem 4 and the analogous lower bound for the

concentration of the empirical mean from [2]; the proof is omitted.

To summarize, SR algorithms using empirical estimators are statistically robust, but exhibit poor

performance, with a probability of error that decays (in the worst case) polynomially with respect to

the horizon.

B. Algorithms utilizing truncation-based estimators

In this section, we show that SR-type algorithms using truncation-based estimators for the mean and

CVaR have considerably stronger performance guarantees compared to the power law bounds seen in

Section IV-A. Specifically, we show that by scaling a certain truncation parameter as a suitably slowly

growing function of the budget T, the probability of error for these algorithms can be arbitrarily close

to exponentially decaying in T.

In the following, we first propose a truncation based estimator for CVaR, prove a concentration

inequality for same, and finally evaluate the performance of the SR-type algorithms that use these

truncation-based estimators.

CVaR Concentration

We begin by stating a concentration inequality for CVaR of bounded random variables from [28].

Lemma 4 (Theorem 3.1 in [28]): Suppose that {Xi}ni=1 are IID samples distributed as X, where the

support of X, supp(X) ⊆ [a, b]. Then, for any ∆ ≥ 0,

P (|ĉn,α(X)− cα(X)| ≥ ∆) ≤ 6 exp

(
− 1

11
nβ

(
∆

b− a

)2
)
.

We now use Lemma 4 to develop a CVaR concentration inequality for unbounded (potentially heavy-

tailed) distributions. In particular, our concentration inequality applies to the following truncation-based

estimator. For b > 0, define

X
(b)
i = min(max(−b,Xi), b).

Note that X(b)
i is simply the projection of Xi onto the interval [−b, b]. Let {X(b)

[i] }
n
i=1 denote the order

statistics of truncated samples {X(b)
i }ni=1. Our estimator ĉ(b)

n,α(X) for cα(X) is simply the empirical CVaR

estimator for X(b) := min(max(−b,X), b), i.e.,

ĉ(b)
n,α(X) = ĉn,α(X(b)) = X

(b)
[dnβe] +

1

nβ

bnβc∑
i=1

(X
(b)
[i] −X

(b)
[dnβe]). (4)

A truncation-based estimator for the mean is well-known (see [2], [29]); it is given by

µ̂†n(X) :=

∑n
i=1Xj1 {|Xj | ≤ b}

n
. (5)
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Note that the nature of truncation performed for our CVaR estimator is different from that in the truncation-

based mean estimator, where samples with an absolute value greater than b are set to zero. In contrast,

our estimator projects these samples to the interval [−b, b]. This difference plays an important role in

establishing the concentration properties of the estimator.

We are now ready to state the concentration inequality for ĉ(b)
n,α(X), which shows that the estimator

works well when the truncation parameter b is large enough.

Theorem 5: Suppose that {Xi}ni=1 are IID samples distributed as X, where X satisfies condition C1.

Given ∆ > 0,

P
(
|cα(X)− ĉ(b)

n,α(X)| ≥ ∆
)
≤ 6exp

(
− nβ ∆2

176b2

)
(6)

for b > max

(
|vα(X)|,

[
2B

∆β

] 1

p−1

)
. (7)

Proof: We begin by bounding the bias in CVaR resulting from our truncation. It is important to note

that so long as b > |vα(X)|, vα(X) = vα(X(b)). Thus, for b > |vα(X)|,

|cα(X)− cα(X(b))| = cα(X)− cα(X(b))

=
1

β

(
E[X1{X ≥ vα(X)}]− E[X(b)

1{X ≥ vα(X)}]
)

=
1

β
E[X1{|X| > b}1{X ≥ vα(X)}]

(a)
=

1

β
E[X1{X > b}]

(b)

≤ B

βbp−1
. (8)

Here, (a) is a consequence of b > |vα(X)|. The bound (b) follows from

E[X1{X > b}] ≤ E
[
Xp

Xp−1
1{X > b}

]
≤ 1

bp−1
E [|X|p] ≤ B

bp−1
.

It follows from (8) that for b satisfying (7), the bias of our CVaR estimator is bounded as: |cα(X) −

cα(X(b))| ≤ ∆
2 . Thus, for b satisfying (7), we have

P
(
|cα(X)− ĉ(b)

n,α(X)| ≥ ∆
)
≤ P

(
|cα(X)− cα(X(b))|+ |cα(X(b))− ĉn,α(X(b))| ≥ ∆

)
(a)

≤ P
(
|cα(X(b))− ĉn,α(X(b))| ≥ ∆

2

)
(b)

≤ 6exp
(
− nβ (∆/b)2

176

)
.

Here, (a) follows from the bound on |cα(X)− cα(X(b))| obtained earlier. For (b), we invoke Lemma 4.

In contrast with the concentration inequality for the empirical CVaR estimator (see Theorem 3), the

truncation-based estimator admits an exponential concentration inequality. In other words, the probability
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of a ∆-deviation between the estimator and the true CVaR decays exponentially in the number of

examples, so long as the truncation parameter is set to be large enough.

The key feature of truncation-based estimators like the one proposed here for the CVaR is that they

enable a parameterized bias-variance trade-off. While the truncation of the data itself adds a bias to

the estimator, the boundedness of the (truncated) data limits the variability of the estimator. Indeed, the

condition that b >
[

2B
∆β

] 1

p−1 in the statement of Theorem 5 ensures that the estimator bias induced by

the truncation is at most ∆/2.

However, in order to apply the proposed truncation-based estimator in MAB algorithms, one must

ensure that for each arm, the truncation parameter satisfies the lower bound (7). This is particularly

problematic in the context of statistically robust algorithms, which cannot customize the truncation

parameter to work for a narrow class of MAB instances. Our remedy is to set the truncation parameter as

an increasing function of the number of data samples n, which ensures that (7) holds for large enough n.

Moreover, it is clear from (6) that for the estimation error to (be guaranteed to) decay with n, b2 can

grow at most linearly in n. Indeed, for our bandit algorithms, we set b = nq, where q ∈ (0, 1/2).

Finally, we note that it is tempting to set b in a data-driven manner, i.e., to estimate the VaR, moment

bounds and so on from the data, and set b large enough so that (7) holds with high probability. The issue

however is that b then becomes a (data-dependent) random variable, and proving concentration results

with such data-dependent truncation is challenging.

Performance Evaluation

We now evaluate the performance of SR-type algorithms using truncation-based estimators for mean

and CVaR. To simplify the presentation, we present the results corresponding to the classical SR algorithm

of [22]; here, nk = T−K
(K+1−k)log(K)

, where log(K) := 1/2 +
∑K

i=2 1/i. Analogous results can be shown

for all SR-type algorithms. We will denote the truncation parameter for the CVaR estimator as bc and the

truncation parameter for the mean estimator as bm. Specifically, in phase k of the algorithm, the mean

estimator, given by (5), uses the truncation parameter bm(nk) = nqmk , qm ∈ (0, 1), whereas the CVaR

estimator, given by (4), uses truncation parameter bc(nk) = nqck , qc ∈ (0, 0.5).

Theorem 6: Let the arms satisfy the condition C1. The probability of incorrect arm identification for

the successive rejects algorithm using truncation based estimators is bounded as follows.

pe ≤
K∑
i=2

(K + 1− i)2exp
(
− 1

16ξ1

(T −K
log(K)

)1−qm ∆[i]

i1−qm

)

+

K∑
i=2

(K + 1− i)6exp
(
− β

2464ξ2
2

(T −K
log(K)

)1−2qc ∆[i]2

i1−2qc

)
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for T > K +Klog(K)n∗, where

n∗ = max

((12ξ1B

∆[2]

) 1

qm min(p−1,1)

,
( 8ξ2B

β∆[2]

) 1

qc(p−1)

,
( B

min(α, β)

) 1

qcp

)
.

The proof of Theorem 6 can be found in Appendix E. Here, we highlight the main takeaways from

this result.

First, note that the probability of error (incorrect arm identification) decays to zero as T → ∞, for

any instance in M, meaning the proposed algorithm is statistically robust. Moreover, as expected, the

decay is slower than exponential in T ; taking qm = q, qc = q/2 for q ∈ (0, 1), the probability of

error is O(exp(−γT 1−q)) for an instance dependent positive constant γ. Note that this bound on the

probability of error is considerably stronger than the power law bounds corresponding to algorithms that

use empirical estimators.

Second, our upper bounds only hold when T is larger than a certain instance-dependent threshold. This

is because the concentration inequalities on our truncated estimators are only valid when the truncation

interval is wide enough (to sufficiently limit the estimator bias). As a consequence, our performance

guarantees only kick in once the horizon length is large enough to ensure that this condition is met.

Third, there is a natural tension between the asymptotic behavior of the upper bound for the probability

of error and the threshold on T beyond which it is applicable, with respect to the choice of truncation

parameters qm and qc. In particular, the upper bound on pe decays fastest with respect to T when

qm, qc ≈ 0. However, choosing qm, qc to be small would make the threshold on the horizon to be large,

since the bias of our estimators would decay slower with respect to T. Intuitively, smaller values of

qm, qc limit the variance of our estimators (which is reflected in the bound for pe) at the expense of a

greater bias (which is reflected in the threshold on T ), whereas larger values of qm, qc limit the bias at

the expense of increased variance.

Finally, we note that while the truncation-based SR algorithm as stated is distribution oblivious (i.e.,

it assumes no prior information about the arm distributions), noisy prior information about the arm

distributions can be used to tailor the scaling of the truncation parameters. For example, suppose that

it is believed that the MAB instance belongs to M(p,B) and that the suboptimality gaps are bounded

below by ∆ (i.e., ∆[2] ≥ ∆). A natural choice for the truncation parameters would then be

bm =

(
12Bξ1

∆

) 1

p−1

+ T q,

bc = max

((
B

β

) 1

p

,

[
8Bξ2

∆β

] 1

p−1

)
+ T q/2,

for small q ∈ (0, 1); this would make n∗ close to zero for instances in M(p,B) having sub-optimality

gaps exceeding ∆, while ensuring that the probability of error remains O(exp(−γT 1−q)) for any instance
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inM. Essentially, our prescription on the use of noisy prior information about the arm distributions is to

set the truncation parameters as the ‘specialized’ value suggested by the prior information, plus a slowly

growing function of the horizon to ensure robustness to the unreliability to the prior information.

C. Algorithms utilizing median-of-bins estimators

In this section, inspired by the median-of-means estimator (see [2], [30]), we propose a similar estimator

for CVaR and we call it the median-of-cvars estimator. The idea of this estimator is to divide the samples

into disjoint bins, compute the empirical CVaR estimator for each bin, and to finally use the median

of these estimates. In the following, we first derive a concentration inequality for the median-of-cvars

estimator. We then use this result, in conjunction with known concentration properties of the median-

of-means estimator, to characterize the performance of SR algorithms that utilise such median-of-bins

estimators.

CVaR Concentration

We are now ready the state the first result of this section, which is a concentration inequality for the

median-of-cvars estimator.

Theorem 7: Suppose that {Xi}ni=1 are IID samples distributed as X, where X satisfies condition C1.

Divide the sampled into k bins, each containing N = bn/kc samples, such that bin i contains the samples

{Xj}iNj=(i−1)N+1}. Let ĉN,α,i denote the empirical CVaR estimator for the samples in bin i. Let ĉM denote

the median of empirical CVaR estimators {ĉN,α,i}ki=1. Then given ∆ > 0,

P (|ĉM − cα(X)| ≥ ∆) ≤ exp(− n

8N
) (9)

if N ≥ N∗, where N∗ is a constant that depends on the distribution of X and ∆.

A precise characterization of the constant N∗, along with the proof of Theorem 7, are provided in

Appendix D. Note that like in the case of the truncation-based estimator, the median-of-cvars estimator

admits an exponential concentration inequality (so long as the number of samples per bin exceeds the

threshold N∗).

The (distribution dependent) lower bound N∗ on the number of samples per bin ensures a minimal

degree of reliability of the empirical CVaR estimator for each bin. Since we are interested in applying

the median-of-cvars estimator in statistically robust algorithms, ensuring that this condition is satisfied

for all arms is problematic. As before, our remedy is to set the number of samples per bin as a (slowly)

growing function of the horizon T, which ensures that the condition for the CVaR concentration to

become meaningful holds so long as the horizon T exceeds an instance-specific threshold.
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The median-of-means estimator µ̂M is computed in a similar fashion, i.e., by taking the median of em-

pirical mean estimators for bins {{Xj}iNj=(i−1)N+1}
k
i=1. A concentration inequality similar to Theorem 7

can be proved for µ̂M (see [2] or Appendix F).

Performance Evaluation

For our statistically robust algorithms, we scale the number of samples per bin as follows. In phase k

of successive rejects, we set the number of samples per bin for the CVaR estimator as Nc = nqck , where

qc ∈ (0, 1), and the number of samples per bin for the mean estimator as Nm = nqmk , for qm ∈ (0, 1).

We now state the upper bound on the probability of error for this algorithm.

Theorem 8: Let the arms satisfy the condition C1. The probability of incorrect arm identification for

the successive rejects algorithm using median-of-bins estimators is bounded as follows

pe ≤
K−1∑
k=1

k

[
exp

(
−1

8

(
T −K

log(K)(K + 1− k)

)1−qm
)

+ exp

(
−1

8

(
T −K

log(K)(K + 1− k)

)1−qc
)]

for T > T ∗, where T ∗ is a instance-dependent threshold.

The explicit expression for T ∗ and the proof of the theorem can be found in Appendix F. In the

following, we highlight the key takeaways from Theorem 8.

First, SR algorithms based on median-of-bins estimators are statistically robust, like their truncation-

based counterparts. Indeed, setting qc = qm = q, the probability of error is O(exp(−γT 1−q)) for any

instance inM, where γ is a positive instance-dependent constant. In other words, the probablity of error

decays sub-exponentially, but much faster than the power law decay arising from the use of empirical

averages.

Second, our performance guarantee only hold when T is large enough. As with the truncation-based

approach, this is because favourable concentration properties of the median-of-bins estimators only apply

when the horizon is large enough.

Third, there is again a tension between the bound on the probability of error and the threshold on

T beyond which the bounds are applicable, with respect to the choice of qm and qc. To get the best

asymptotic upper bound, qm and qc should be close to zero, but this would make T ∗ large, affecting the

the short-horizon performance.

Finally, we note that the SR algorithm using median-of-bins estimators as stated is also distribution

oblivious. However, as with the truncation-based approach, noisy prior information about the instance

can be used to tailor the scaling of the bin sizes for mean and CVaR estimation to improve the short-
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(a) Mean Minimization (b) CVaR Minimization

Fig. 2: Exponentially Distributed Arms

horizon performance. For example, if it is believed that the MAB instance belongs to M(p,B, V ) and

the suboptimality gaps are bounded below by ∆, the mean and CVaR bin sizes may be chosen as follows:

Nm =
576ξ1V

∆
+ T q,

Nc = N∗ + T q,

where q ∈ (0, 1) is small and N∗ is a constant that depends on (p,B, V,∆, ξ2) (see Appendix D

for details). This choice would make T ∗ close to zero for instances that lie in the sub-class under

consideration, without affecting the overall statistical robustness of the algorithm. As before, this choice

boils down to the ‘specialized’ choice of bin size dictated by the moment bounds, plus a slowly growing

function of the horizon for robustness.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the three statistically robust algorithm classes presented

in the previous section. We also provide an example to demonstrate the fragility of ‘specialized’ based

on noisy prior information. We restrict ourselves to the classical successive rejects (SR) sizing of phases,

and two specific objectives: (i) mean minimization, i.e., (ξ1, ξ2) = (0, 1), and (ii) CVaR minimization,

i.e., (ξ1, ξ2) = (1, 0). In each of the experiments below, the probability of error is computed by averaging

over 50000 runs at each value of T . For CVaR minimization, the confidence level α is set to 0.95.

Light-tailed arms: Consider the case when all the arms are light-tailed. In particular, for mean mini-

mization we consider the following MAB problem instance: there are 10 arms, exponentially distributed,

the optimal having mean loss 0.97, and the remaining having mean loss 1. For CVaR minimization,

consider the following MAB problem instance: there are 10 arms, exponentially distributed, the optimal
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(a) Mean Minimization (b) CVaR Minimization

Fig. 3: Lomax Distributed Arms

having a CVaR 2.85, and the remaining having a CVaR 3.00. Parameters qm and qc for the truncation

estimators (see Section IV-B) are set to 0.3. Parameters qm and qc for the median-of-bins estimators (see

Section IV-C) are also set to 0.3.

As can be seen in Figure 2a and Figure 2b, the truncation based algorithms and the algorithms using

empirical averages perform comparably well, whereas median-of-bins algorithms produce an inferior

performance. Because the arm distributions have limited variability in this example, the truncation-

based estimators introduce very little bias, and are nearly indistinguishable from the estimators based on

empirical averages. On the other hand, the median-of-bins estimators suffer from the poorer concentration

of the empirical averages per bin, which is not sufficiently compensated by computing the median across

bins.4

Heavy-tailed arms: Next, consider the case when all the arms are heavy-tailed. For mean minimization

we consider the following MAB problem instance: there are 10 arms, distributed according to the lomax

distribution (scale parameter = 1.8), the optimal arm having mean loss 0.9, and the remaining arms having

mean loss 1. For CVaR minimization, consider the following MAB problem instance: there are 10 arms,

distributed according to lomax distribution (scale parameter = 2.0), the optimal having a CVaR 2.55,

and the remaining having a CVaR 3.00. Note that like the previous case, parameters qm and qc for the

truncation estimators are set to 0.3 and parameters qm and qc for the median-of-bins estimators are also

set to 0.3 (see Sections IV-B, IV-C).

As can be seen in Figure 3a and Figure 3b, the algorithms using empirical estimators have a markedly

4Indeed, this effect can be formalized in the special case of the exponential distribution.
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Fig. 4: Robustness against noisy parameters

inferior performance compared to the truncation based and median-of-bins based algorithms. This is to

be expected, since the latter approaches are more robust to the outliers inherent in heavy-tailed data.

Fragility of specialized algorithms: Finally, we present an example where specialized algorithms using

noisy information perform poorly, but our robust algorithms perform very well. We consider the problem

of CVaR minimization on the following instance involving both heavy-tailed as well as light-tailed

arms: there are 10 arms, five distributed according to a lomax distribution (scale parameter=2.0; and the

CVaR=2.55), and five distributed exponentially, the optimal arm having a CVaR 2.55, and the remaining

four arms having a CVaR 3.00. As before, we set the confidence value to be 0.95. What makes this

instance (with a light-tailed optimal arm) challenging is that the bias of truncation-based estimators can

result in a significant under-estimation of the CVaR for heavy-tailed arms, causing our algorithms to

mistake one of the heavy-tailed arms as optimal.

On this instance, we compare the performance of the following algorithms. Our first candidate is a

specialized algorithm that has access to valid bounds pertaining to the instance. In particular, it knows

p = 1.9, B = 0.057, and ∆ = 0.45. It uses truncated empirical CVaR as an estimator with truncation

parameter being equal to (4B/β∆)
1/p−1. Our second candidate is another specialized algorithm, but having

the following noisy information, p̂ = 2, B̂ = 0.05, and ∆̂ = 0.6. Note that the parameters have been very

slightly perturbed. This algorithm also uses the truncated empirical CVaR as an estimator with truncation

parameter being equal to (4B̂/β∆̂)
1/p̂−1. Our final candidate is a robust algorithm which also has access

to the noisy parameters as stated above but it sets the truncation parameter as (4B̂/β∆̂)
1/p̂−1 + T 0.3. As

can be seen in Figure 4, algorithm with noisy estimates performs very poorly but our robust algorithm

performs nearly as good as the non-oblivious algorithm.
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VI. CONCLUDING REMARKS

In this paper, we considered the problem of risk-aware best arm selection in a pure exploration MAB

framework. Our results highlight the fragility of existing MAB algorithms that require reliable moment/tail

bounds to provide strong performance guarantees. We established fundamental performance limits of

statistically robust MAB algorithms under fixed budget. We then design algorithms that are statistically

robust to parameter misspecification. Specifically, we proposed distribution oblivious algorithms, i.e.,

those that do not need any information on the underlying arms’ distributions. The proposed algorithms

leverage ideas from robust statistics and enjoy near-optimal performance guarantees.

The paper motivates future work along several directions. It is interesting to explore statistically robust

algorithms in the regret minimization framework. Moreover, it is not clear which linear combination

of mean and CVaR should be considered for the MAB problem. Hence, it will be interesting to study

risk-constrained MAB problems in distribution oblivious settings.

APPENDIX A

PROOF OF THEOREM 1

The proof heavily relies on ideas developed in [22] which deals with the case where the objective is

simply the mean or ξ2 = 0. Our proof is for the case where ξ2 > 0.

Firstly, note that the CVaR of a random variable X distributed as N (µ, σ2) is given by

cα(X) = µ+
σ

1− α
φ(Φ−1(α))

where φ(·) is the standard normal density and Φ(·) is the CDF of the standard normal distribution.

Also note that the KL divergence between two Gaussian distributions νb, νa, with the same mean µ but

different variances σ2
b and σ2

a, respectively, is given by

KL(νb, νa) =
1

2

(
σ2
b

σ2
a

− 1

)
− log

(
σb
σa

)
.

First, introduce some quantities of interest here. Let ρ and ρ′ be two distributions with ρ absolutely

continuous with respect to ρ′. The losses Xi,t, i ∈ {1, 2}, t ∈ [T ] are drawn at the start. We state an

estimator for KL divergence:

K̂Li,t(ρ, ρ′) =

t∑
s=1

log

(
dρ

dρ′
(Xi,s)

)
The product distributions for bandit instances ν and ν ′ are given by N and N ′. Without loss of

generality, let the product distribution N = νa ⊗ νb be ordered in the sense that σa < σb. As we’re

looking at minimization of ξ1µ(·)+ξ2cα(·), arm 1 is optimal. Further, consider another product distribution

N ′ = νb ⊗ νb.
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Now, consider the following event:

CT = {∀t ∈ {1, · · · , T}, K̂L1,t(νb, νa) ≤ tKL(νb, νa) + oT and K̂L2,t(νb, νa) ≤ tKL(νb, νa) + oT }

where oT =
(
σ2
b

σ2
a
− 1
)√

7T log 4. We will show that the probability of CT under N ′, PN ′(CT ) is greater

than 0.5. Notice that Cc
T is a subset of the following set:

{∃t0 ∈ {1, · · · , T} : K̂L1,t0(νb, νa) > t0KL(νb, νa) + oT } ∪

{∃t′0 ∈ {1, · · · , T} : K̂L2,t′0(νb, νa) > t′0KL(νb, νa) + oT }

We will begin by showing PN ′(Cc
T ) ≤ 0.5. Note that K̂Li,t(νb, νa)− tKL(νb, νa) is a martingale for both

arm indices i ∈ {1, 2}. Note that exp(λ·) is a convex function. Hence, exp(λ(K̂Li,t(νb, νa)−tKL(νb, νa)))

is a submartingale. We have:

PN ′( sup
1≤t≤T

(K̂L1,t(νb, νa)− tKL(νb, νa)) > oT )

(a)

≤ exp

(
−λoT −

Tλ

2

(
σ2
b

σ2
a

− 1

))
× EN ′

[
exp

(
λ

2

(
σ2
b

σ2
a

− 1

) T∑
t=1

(X1,t − µ)2

σ2
b

)]
(b)

≤ exp

(
−λoT +

Tλ2

2

(
σ2
b

σ2
a

− 1

)2
)

when 0 < λ

(
σ2
b

σ2
a

− 1

)
< 0.5

≤ exp

(
−

o2
Tσ

4
a

7T (σ2
b − σ2

a)
2

) (
Put λ =

oTσ
4
a

T (σ2
b − σ2

a)
2

(
1−

√
5

7

))

=
1

4

(a) follows from Doob’s maximal inequality for submartingales and plugging in value of KL divergences.

(b) follows from the value of the moment generating function of a Chi-squared random variable. Similarly,

we can show, PN ′(sup1≤t≤n(K̂L2,t(ν2, ν1)− tKL(ν2, ν1)) > oT ) ≤ 1/4. Hence, PN ′(Cc
T ) ≤ 1/2.

Denote ’out’ as the output of the algorithm. On applying the total probability rule, we have:

PN ′(CT ) = PN ′(CT , out 6= 1) + PN ′(CT , out 6= 2).

Hence, we either have

PN ′(CT , out 6= 1) ≥ 0.25 or PN ′(CT , out 6= 2) ≥ 0.25.

If PN ′(CT , out 6= 1) ≥ 0.25, then the probability of error on ν is:

pe(ν) = PN (out 6= 1)

= EN ′
[
1 {out 6= 1} exp

(
−K̂L1,T1(n)(νb, νa)

)]
≥ EN ′

[
1 {out 6= 1 and CT } exp

(
−K̂L1,T1(n)(νb, νa)

)]
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≥ EN ′ [1 {out 6= 1 and CT } exp (−oT − T1(n)KL(νb, νa))]

≥ 1

4
exp(−oT − TKL(νb, νa))

If PN ′(CT , out 6= 2) ≥ 0.25, then we have a well defined permutation ν̃ = (ν2, ν1) of ν for which the

lower bound holds.

pe(ν̃) = PÑ (out 6= 2)

= EN ′
[
1 {out 6= 2} exp

(
−K̂L2,T2(n)(νb, νa)

)]
≥ EN ′

[
1 {out 6= 2 and CT } exp

(
−K̂L2,T2(n)(νb, νa)

)]
≥ EN ′ [1 {out 6= 2 and CT } exp (−oT − T2(n)KL(νb, νa))]

≥ 1

4
exp(−oT − TKL(νb, νa))

APPENDIX B

PROOF OF THEOREM 3

Theorem 9: Suppose that {Xi}ni=1 are IID samples distributed as X, where X satisfies condition C1.

For p ∈ (1, 2], given ∆ > 0,

P(ĉn,α(X) ≤ cα(X)−∆) ≤ 180V̂

(nβ)p−1∆p
+ exp

(
− nβ

8
min

(
1,

∆2β2/p

B2/p

))
(10a)

P(ĉn,α(X) ≥ cα(X) + ∆) ≤ 360V̂

(nβ)p−1∆p
+

72V̂ β

(nβ)p−1B
+ exp

(
− nβ1+2/p∆2

8B2/p + 2∆(Bβ)1/p

)
+ exp

(
− nβ

8

)
(10b)

where V̂ =
2p−1V

β
+ 2p

B

β
. (10c)

We will first state three lemmas that will be used repeatedly for proving Theorem 9. We first state a

concentration inequality for empirical average (see Lemma 2, [3]) .

Lemma 5: Let X be a random variable satisfying C1. Let µ̂n be the empirical mean, then for any

∆ > 0 we have:

P(|µ̂n − µ| > ∆) ≤


CpV

np−1∆p for 1 < p ≤ 2

CpV
np/2∆p for p > 2

where Cp = (3
√

2)ppp/2.

Next, consider the inequalities bounding the empirical CVaR estimator (see Lemma 3.1, [28]).
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Lemma 6: Let X[i] be the decreasing order statistics of Xi; then f(k) = 1
k

∑k
i=1X[i], 1 ≤ k ≤ n, is

decreasing and the following two inequalities hold:

1

nβ

bnβc∑
i=1

X[i] ≤ ĉn,α(X) ≤ 1

nβ

dnβe∑
i=1

X[i] (11a)

f(dnβe) ≤ ĉn,α(X) ≤ f(bnβc) (11b)

We also state the Chernoff Bound for Bernoulli experiments.

Lemma 7: Let Y1, ..., Yn be independent Bernoulli experiments, P(Yi = 1) = pi. Set S =
∑n

i=1 Yi,

µ = E[Y ]. Then for every 0 < δ < 1,

P (S ≤ (1− δ)µ) ≤ exp(−µδ
2

2
),

for every δ > 0,

P (S ≥ (1 + δ)µ) ≤ exp(− µδ2

2 + δ
).

Now, we upper bound the CVaR and mean in terms of parameters B, p, and β.

cα(X) =
1

β
E [X1 {X ≥ vα(X)}]

=
1

β

∫ ∞
vα(X)

xdFX(x)

≤
∫ ∞
vα(X)

|x|dFX(x)

β

≤
(∫ ∞

vα(X)
|x|pdFX(x)

β

) 1

p

(Using Jensen’s Inequality)

≤
(∫ ∞
−∞
|x|pdFX(x)

β

) 1

p

≤
(B
β

) 1

p

(Using bound on pth moment)

Similarly, we can show

E [|X|] ≤
(B
β

) 1

p

.

Hence,

cα(X) ≤
(B
β

) 1

p (12)

E [|X|] ≤
(B
β

) 1

p (13)

Now, consider the random variable X̃ which is distributed according to P(X ∈ · |X ∈ [vα(X),∞)).

Note that E
[
X̃
]

= cα(X) and dFX̃(x) = dFX(x)
β . Let us find a bound on E

[
|X̃ − cα(X)|p

]
.

E
[
|X̃ − cα(X)|p

]
=

∫ ∞
vα(X)

|x− cα(X)|pdFX(x)

β
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≤
∫ ∞
vα(X)

2p−1(|x− µ|p + |cα(X)− µ|p)dFX(x)

β

(Using Jensen’s Inequality)

≤ 2p−1V

β
+ 2p−1(cα(X)− µ)p

≤ 2p−1V

β
+ 2p

B

β
= V̂ (Using 12, 13, and 10c)

Hence,

E
[
|X̃ − cα(X)|p

]
≤ V̂ (14)

A. Proof of 10a

Let X[i] be the decreasing order statistics of Xi. We’ll condition the probability above on a random

variable Kn,β which is defined as Kn,β = max{i : X[i] ∈ [vα(X),∞)}. Note that vα(X) is a constant

such that the probability of a X being greater than vα(X) is β. Also observe that P(Kn,β = k) = P(k

from {Xi}ni=1 have values in [vα(X),∞)). Using the above two statements one can easily see that Kn,β

follows a binomial distribution with parameters n and β. For ease of notation, we let p′ := min(p/2, p−1).

Consider k IID random variables {X̃i}ki=1 which are distributed according to P(X ∈ · |X ∈ [vα(X),∞)).

By conditioning on Kn,β = k, one can observe using symmetry that 1
k

∑k
i=1X[i] and 1

k

∑k
i=1 X̃i have

the same distribution. We’ll next bound the probability P(ĉn,α(X) ≤ cα(X)−∆|Kn,β = k) for different

values of k. Now,

P(ĉn,α(X) ≤ cα(X)−∆)

=

n∑
k=0

P(Kn,β = k)P(A)

≤
bnβc∑
k=0

P(Kn,β = k)P(A)︸ ︷︷ ︸
I2

+

n∑
k=dnβe

P(Kn,β = k)P(A)

︸ ︷︷ ︸
I1

where P(A) = P(ĉn,α(X) ≤ cα(X)−∆|Kn,β = k).

Bounding I1

Note that k ≥ dnβe. We’ll begin by bounding P (A).

P(ĉn,α(X) ≤ cα(X)−∆|Kn,β = k)

≤ P
(

1

dnβe

dnβe∑
i=1

X[i] ≤ cα(X)−∆|Kn,β = k

)
(using 11b)
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≤ P
(

1

k

k∑
i=1

X[i] ≤ cα(X)−∆|Kn,β = k

)
(∵ f(·) is decreasing)

= P
(

1

k

k∑
i=1

X̃i ≤ cα(X)−∆

)

≤ CpV̂

kp′∆p
(Using Lemma 5 & (14) and p′ = min(p− 1, p/2))

Hence, we have the following:

I1 =

n∑
k=dnβe

(
n

k

)
βk(1− β)n−kP(A)

≤
n∑

k=dnβe

(
n

k

)
βk(1− β)n−k

CpV̂

kp′∆p

≤ CpV̂

(nβ)p′∆p

Bounding I2

Note that k ≤ bnβc. We’ll again start by bounding P(A). For simplicity of notation, we’ll denote the(
B
β

) 1

p as b. Hence, we have cα(X) ≤ b as shown in 12.

P(ĉn,α(X) ≤ cα(X)−∆|Kn,β = k)

≤ P
( 1

nβ

bnβc∑
i=1

X[i] ≤ cα(X)−∆
∣∣∣Kn,β = k

)
(Using 11a)

≤ P
(1

k

k∑
i=1

X[i] ≤
nβ

k
(cα(X)−∆)

∣∣∣Kn,β = k
)

(∵ k ≤ bnβc)

≤ P
(

1

k

k∑
i=1

X[i] ≤ cα(X) +
(nβ
k
− 1
)
b− nβ∆

k

∣∣∣Kn,β = k

)
(∵ cα(X) ≤ b)

Case 1 ∆ ∈ [b,∞)

Let ∆1(k) = nβ∆
k +

(
1− nβ

k

)
b = b

(
1 +

(
∆
b − 1

)
nβ
k

)
. Note that ∆1(k) > 0 for all k as ∆ ≥ b. Also

note that ∆1(k) decreases as k increases. As k ≤ nβ, ∆1(k) ≥ ∆.

P
(1

k

k∑
i=1

X[i] ≤ cα(X)−∆1(k)|Kn,β = k
)
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= P
(1

k

k∑
i=1

X̃i ≤ cα(X)−∆1(k)
)

≤ CpV̂

kp′∆p
1(k)

≤ CpV̂

kp′∆p

Now, let us bound I2.

I2 =

bnβc∑
k=0

(
n

k

)
βk(1− β)n−kP(A)

≤
bnβ/2c∑
k=0

(
n

k

)
βk(1− β)n−k

+

bnβc∑
k=dnβ/2e

(
n

k

)
βk(1− β)n−k

CpV̂

kp′∆p

≤ P(Kn,β ≤ bnβ/2c) +
2p
′
CpV̂

(nβ)p′∆p

≤ 2p
′
CpV̂

(nβ)p′∆p
+ e−nβ/8 (Using Chernoff on Kn,β)

Case 2 ∆ ∈ (0, b)

Here, ∆1(k) = nβ∆
k −

(
nβ
k − 1

)
b = b

(
1−

(
1− ∆

b

)
nβ
k

)
. Note that ∆1(k) > 0 iff k > nβ(1− ∆

b ).

Case 2.1 If ∆ is very small such that bnβc ≤ nβ
(

1− ∆
b

)
, then ∆1(k) ≤ 0. Let’s bound I2 for this

case:

I2 ≤
bnβc∑
k=0

P(Kn,β = k)

= P(Kn,β ≤ bnβc)

≤ P(Kn,β ≤ nβ(1−∆/b))

≤ exp
(
− nβ∆2

2b2

)
(Chernoff on Kn,β)

Case 2.2 nβ(1−∆/b) < bnβc

Choose k∗γ = nβ(1− γ∆/b) for some γ ∈ [0, 1]. Then, nβ(1−∆/b) ≤ k∗γ ≤ nβ.

Assume k∗γ < bnβc. The proof can can be easily adapted when k∗γ ≥ bnβc. As we will see, the bound

on I2 is looser when k∗γ < bnβc.

For k > k∗γ , ∆1(k) > 0. As k increases, ∆1(k) also increases.
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Now, we’ll bound P
(

1
k

∑k
i=1X[i] ≤ cα(X)−∆1(k)|Kn,β = k

)
:

P
(1

k

k∑
i=1

X[i] ≤ cα(X)−∆1(k)|Kn,β = k
)

=P
(1

k

k∑
i=1

X̃i ≤ cα(X)−∆1(k)
)

≤


CpV̂

kp′∆1(k)p
; k∗γ < k ≤ bnβc

1; k ≤ k∗γ

≤


CpV̂ (1−γ∆/b)p

kp′∆p(1−γ)p
; k∗γ < k ≤ bnβc

1; k ≤ k∗γ

We will bound I2 as follows:

I2 =

bnβc∑
k=0

(
n

k

)
βk(1− β)n−kP(A)

≤
bk∗γc∑
k=0

(
n

k

)
βk(1− β)n−k︸ ︷︷ ︸
I2,a

+

bnβc∑
k=dk∗γe

(
n

k

)
βk(1− β)n−k

CpV̂ (1− γ∆/b)p

kp′∆p(1− γ)p︸ ︷︷ ︸
I2,b

Let’s bound I2,a. This is very similar to Case 2.1.

I2,a =

bk∗γc∑
k=0

(
n

k

)
βk(1− β)n−k

≤ P
(
Kn,β ≤ (1− γ∆/b)nβ

)
≤ exp

(
− nβ (γ∆)2

2b2

)
If dk∗γe > bnβc, I2,b = 0.

When dk∗γe ≤ bnβc, let’s bound I2,b.

I2,b ≤
CpV̂ (1− γ∆/b)p

(nβ(1− γ∆/b))p′∆p(1− γ)p

≤ CpV̂

(nβ)p′∆p(1− γ)p
(∵ ∆ ≤ b & p > p′)
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Taking γ = 0.5, we have:

I2 ≤
2pCpV̂

(nβ)p′∆p
+ e−nβ∆2/8b2

Clearly, the bound above on I2 is looser than that in Case 2.1. Comparing the bound above with that in

Case 1, we have:

I2 ≤
2pCpV̂

(nβ)p′∆p
+ exp

(
− nβ

8
min

(
1,

∆2

b2

))
(∵ p > p′)

Combining bounds on I1 and I2, we finally have,

I ≤ (2p + 1)CpV̂

(nβ)p′∆p
+ exp

(
− nβ

8
min

(
1,

∆2

b2

))
When p ∈ (1, 2], the expression above can be simplified to get Equation (10a).

B. Proof of 10b

Let’s prove the second part of this theorem now which is the inequality 10b. We’ll again condition on

random variable Kn,β . Remember that Kn,β follows a binomial distribution with parameters n and β.

The random variables {X̃i}ki=1 are distributed according to P(X ∈ · |X ∈ [vα(X),∞)). By condition-

ing of Kn,β = k distributions of 1
k

∑k
i=1X[i] and 1

k

∑k
i=1 X̃i are same by symmetry.

P(ĉn,α(X) ≥ cα(X) + ∆)

=

n∑
k=0

P(Kn,β = k)P(A)

≤
bnβc∑
k=0

P(Kn,β = k)P(A)︸ ︷︷ ︸
I1

+

n∑
k=dnβe

P(Kn,β = k)P(A)

︸ ︷︷ ︸
I2

where P(A) = P(ĉn,α(X) ≥ cα(X) + ∆|Kn,β = k). Notice that I1 and I2 got interchanged from B-A

Bounding I1

Note that k ≤ bnβc. Let’s bound P(A) for this case:

P(ĉn,α(X) ≥ cα(X) + ∆|Kn,β = k)

≤P
( 1

bnβc

bnβc∑
i=0

X[i] ≥ cα(X) + ∆|Kn,β = k
)

(using 11b)

≤P
(1

k

k∑
i=1

X[i] ≥ cα(X) + ∆|Kn,β = k
)
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(∵ f(·) is decreasing)

=P
(1

k

k∑
i=1

X̃i ≥ cα(X) + ∆
)

≤ CpV̂

kp′∆p

Let’s bound I1 now:

I1 =

bnβc∑
k=0

(
n

k

)
βk(1− β)n−kP(A)

≤
bnβ/2c∑
k=0

(
n

k

)
βk(1− β)n−k

+

bnβc∑
k=dnβ/2e

(
n

k

)
βk(1− β)n−k

CpV̂

kp′∆p

≤ 2p
′
CpV̂

(nβ)p′∆p
+ e−nβ/8 (Using Chernoff on Kn,β)

Bounding I2:

Note that k ≥ dnβe. Let’s begin by bounding P(A):

P(ĉn,α(X) ≥ cα(X) + ∆|Kn,β = k)

≤P
( 1

nβ

dnβe∑
i=1

X[i] ≥ cα(X) + ∆|Kn,β = k
)

(using 11a)

≤P
( 1

nβ

k∑
i=1

X[i] ≥ cα(X) + ∆|Kn,β = k
)

(∵ k ≥ dnβe)

=P
(1

k

k∑
i=1

X[i] ≥
nβ

k
(cα(X) + ∆)|Kn,β = k

)

≤P
(1

k

k∑
i=1

X[i] ≥ cα(X) +
nβ∆

k

−
(

1− nβ

k

)
b
∣∣∣Kn,β = k

)
Let ∆1(k) = nβ∆

k −
(

1− nβ
k

)
b = b

(
(1 + ∆

b )nβk − 1
)

. Notice that ∆1(k) ≥ 0 if k ≤ (1 + ∆
b )nβ.

Unlike B-A, we can consider the entire range ∆ ∈ [0,∞).

Case 1.1 If ∆ is very small such that (1+ ∆
b )nβ ≤ dnβe, then ∆1(k) ≤ 0. ∆

b could be any non-negative

real and Chernoff bound ahead is adapted for this fact.

Let’s bound I2 in this case:

I2 ≤
n∑

k=dnβe

P(Kn,β = k)
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= P(Kn,β ≥ dnβe)

≤ P
(
Kn,β ≥ (1 + ∆/b)nβ

)
≤ exp

(
− nβ (∆/b)2

2 + ∆/b

)
(Chernoff on Kn,β)

Case 1.2 (1 + ∆
b )nβ > dnβe

We choose k∗γ = (1 + γ∆
b )nβ for some γ ∈ [0, 1]. Note that (1 + ∆

b )nβ ≥ k∗γ ≥ nβ. Assume that

k∗γ > dnβe. The proof when k∗γ ≤ dnβe easily follows. We’ll also see that the bound on I2 is looser

when k∗γ > dnβe.

Note that ∆1(k) decreases as k increases. Now,

P
(1

k

k∑
i=1

X[i] ≥ cα(X) + ∆1(k)
∣∣∣Kn,β = k

)

=P
(1

k

k∑
i=1

X̃i ≥ cα(X) + ∆1(k)
)

≤


CpV̂

kp′∆1(k)p
dnβe ≤ k < k∗γ

1; k ≥ k∗γ

≤


CpV̂ (1+γ∆/b)p

kp′∆p(1−γ)p
dnβe ≤ k < k∗γ

1; k ≥ k∗γ
Now, we’ll bound I2:

I2 ≤
n∑

k=dnβe

P(Kn,β = k)× P
(1

k

k∑
i=1

X̃i ≥ cα(X) + ∆1(k)|Kn,β = k
)

≤
n∑

k=dk∗γe

(
n

k

)
βk(1− β)n−k

︸ ︷︷ ︸
I2,a

+

bk∗γc∑
k=dnβe

(
n

k

)
βk(1− β)n−k

CpV̂ (1 + γ∆/b)p

kp′∆p(1− γ)p︸ ︷︷ ︸
I2,b

Let’s bound I2,a first. Here γ∆
b could be any non-negative real and Chernoff bound ahead is adapted

for this fact.

I2,a ≤ P(Kn,β ≥ k∗γ)

≤ P
(
Kn,β ≥ (1 + γ∆/b)nβ

)
≤ exp

(
− nβ γ

2(∆/b)2

2 + γ∆/b

)
(Chernoff on Kn,β)

If bk∗γc < dnβe, then I2,b = 0. When bk∗γc ≥ dnβe, let’s bound I2,b:

I2,b ≤
CpV̂

(nβ)p′(1− γ)p

( 1

∆
+
γ

b

)p
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≤ 2p−1CpV̂

(nβ)p′∆p(1− γ)p
+

2p−1CpV̂ γ
p

(nβ)p′(1− γ)pbp

(Using Jensen’s Inequality)

Putting γ = 0.5, we have:

I2 ≤
22p−1CpV̂

(nβ)p′∆p
+

2p−1CpV̂

(nβ)p′bp
+ exp

(
− nβ (∆/b)2

8 + 2(∆/b)

)
Clearly, the bound above is looser than that for Case 1.1.

Finally, combining the bounds on I1 and I2, we get

I ≤ (2p + 1)2p−1CpV̂

(nβ)p′∆p
+

2p−1CpV̂

(nβ)p′bp
+ exp

(
− nβ (∆/b)2

8 + 2(∆/b)

)
+ exp

(
− nβ

8

)
When p ∈ (1, 2], the expression above can be simplified to get Equation (10b).

APPENDIX C

PROOF OF THEOREM 4

Let {Xi}ni=1 be IID samples of a random variable X . X is distributed according to a pareto distribution

with parameters xm and a, i.e., the CCDF of X is given by P (X > x) = xam
xa for x > xm and 1 otherwise.

Let the scale parameter a > 1. Note that the moments smaller than the ath moment exist. Let p = a− ε

where ε is a number greater than but arbitrarily close to zero. One can check that pth moment exists.

We’re interested to lower bound P(|ĉn,α(X) − cα(X)| > ε). Note that P(|ĉn,α(X) − cα(X)| > ε) ≥

P(ĉn,α(X) > cα(X) + ε). We’ll focus on lower bounding the second probability.

Let X[i] be the decreasing order statistics of Xi. We’ll condition the probability above on a random

variable Kn,β which is defined as Kn,β = max{i : X[i] ∈ [vα(X),∞)}. As argued before, Kn,β follows

a binomial distribution with parameters n and β.

Consider k IID random variables {X̃i}ki=1 which are distributed according to P(X ∈ · |X ∈ [vα(X),∞)).

By conditioning on Kn,β = k, one can observe using symmetry that 1
k

∑k
i=1X[i] and 1

k

∑k
i=1 X̃i have

the same distribution.

Now, we’ll lower bound P(ĉn,α(X) > cα(X) + ε|Kn,β = k) when k ≥ dnβe

P(ĉn,α(X) > cα(X) + ε|Kn,β = k)

≥P

 1

dnβe

dnβe∑
i=1

X[i] > cα(X) + ε|Kn,β = k


(using Equation (11b))

≥P

(
1

k

k∑
i=1

X[i] > cα(X) + ε|Kn,β = k

)
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(∵ k ≥ dnβe and using Lemma 6)

=P

(
1

k

k∑
i=1

X̃i > cα(X) + ε

)

≥P
(
∃i ∈ [k] such that X̃i > k(cα(X) + ε)

)
=1−

(
1− xam

ka(cα(X) + ε)a

)k
≥1− exp

(
− xam
ka−1(cα(X) + ε)a

)
Hence, we have

P(ĉn,α(X) > cα(X) + ε)

≥ P(Kn,β ≥ dnβe)
(

1− exp

(
− xam
na−1(cα(X) + ε)a

))
(1)

≥ β

(
1− exp

(
− xam
na−1(cα(X) + ε)a

))
=

βxam
na−1(cα(X) + ε)a

+ o

(
1

na−1

)
Here, 1 follows because P(Kn,β ≥ dnβe) ≥ β. See Equation 3 in [31].

APPENDIX D

PROOF OF THEOREM 7

The value of N∗ is given by

N∗ = max

(( 4320V̂

βp−1∆p
+

576V̂ β

βp−1B

) 1

p−1

,
log(24)

β
max

(
8,

8B2/p

∆2β2/p
+

2B1/p

∆β1/p

))
, (15)

where V̂ is a constant that depends of (p,B, V ) (see Equation 10c).

For each bin i define a random variable Yi = 1 {|ĉα,N (i)− cα(X)| > ∆}. Yi takes the value 1 with

probability p̂. From equation 10a and equation 10b, we have:

p̂ ≤ 540V̂

(Nβ)p−1∆p
+

72V̂ β

(Nβ)p−1B
+ exp

(
− Nβ

8

)
+ exp

(
− Nβ

8
min

(
1,

∆2

b2

))
+ exp

(
− Nβ∆2

8b2 + 2∆b

)
.

where b =
(
B
b

) 1

p .

A sufficient condition to ensure that p̂ is less than 0.25 is the following:

540V̂

(Nβ)p−1∆p
+

72V̂ β

(Nβ)p−1B
≤ 1

8

⇐N ≥
( 4320V̂

βp−1∆p
+

576V̂ β

βp−1B

) 1

p−1 (16)
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and

exp
(
− Nβ

8

)
+ exp

(
− Nβ∆2

8b2 + 2∆b

)
+ exp

(
− Nβ

8
min

(
1,

∆2

b2

))
≤ 1

8

⇐N ≥ log(24)

β
max

(
8,

8b2

∆2
+

2b

∆

)
. (17)

Using Equations 16 and 17, we get Equation 15.

Now, for N ≥ N∗

P (|ĉM − cα(X)| > ∆)

≤ P

(
k∑
i=1

Yi ≥ k/2

)

≤ exp(−2k(0.5− p̂)2) (Using Hoeffding’s Inequality)

≤ exp(−k/8)

≤ exp(− n

8N
)

APPENDIX E

PROOF OF THEOREM 6

In Successive Rejects algorithm, all arms are played at least T−K
Klog(K)

times. Hence, the least value that

the truncation parameter for mean takes is
(

T−K
Klog(K)

)qm
and the least value that truncation parameter for

CVaR takes is
(

T−K
Klog(K)

)qc
. T should take a value such that the truncation parameters are large enough

to for the guarantees to kick in. Using Theorem 5 and Lemma 9 which we prove next, we can easily get

Theorem 6.

Lemma 8: Suppose that {Xi}ni=1 are IID samples distributed as X, where X satisfies condition C1.

Given p ∈ (1, 2] and ∆ > 0,

P
(
|µ(X)− µ̂†(X)| ≥ ∆

)
≤ 2 exp

(
− n1−q∆

4

)
(18)

for n >
(

3B

∆

)1/q(p−1)

. (19)

First, consider the following lemma proved in [4] (see Lemma 1).

Lemma 9: Assume that {Xi}ni=1 be n IID samples drawn from the distribution of X which satisfies

condition C1. Let {bi}ni=1 be the truncation parameters for samples {Xi}ni=1. Then, with probability at

least 1− δ,

|µ(k)− µ̂†n(k)| ≤


∑n
i=1B/b

p−1
i

n + 2bnlog(2/δ)
n + B

2bp−1
n

p ∈ (1, 2]∑n
i=1B/b

p−1
i

n + 2bnlog(2/δ)
n + B2/p

2bn
p ∈ (2,∞)
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All the truncation parameters {bi}ni=1 are set to nq for our algorithm. We derive bounds for both the

cases when p ∈ (1, 2] and p ∈ (2,∞].

Case 1 p ∈ (1, 2]

Using Lemma 9, if p ∈ (1, 2]

|µ(k)− µ̂†n(k)| ≤
∑n

i=1B/b
p−1
i

n
+

2bn log(2/δ)

n
+

B

2bp−1
n

≤ 3B

2nq(p−1)
+

2

n1−q log(2/δ).

We want to find n∗ such that for all n > n∗:

3B

2nq(p−1)︸ ︷︷ ︸
T1

+
2

n1−q log(2/δ)︸ ︷︷ ︸
T2

< ∆.

Sufficient condition to ensure the above inequality is to make the T1 < ∆/2 and T2 ≤ ∆/2. T1 ≤ ∆/2

if

n >
(3B

∆

) 1

q(p−1)

.

Equating T2 = ∆/2, we get

δ = 2exp
(
− n1−q∆

4

)
.

Case 2 p ∈ (2,∞)

Using Lemma 9, if p ∈ (2,∞):

|µ(k)− µ̂†n(k)| ≤
∑n

i=1B/b
p−1
i

n
+

2bn log(2/δ)

n
+
B2/p

2bn

≤ B

nq(p−1)
+

B

2nq
+

2 log(2/δ)

n1−q

≤ 3B

2nq
+

2 log(2/δ)

n1−q

We want to find n∗ such that for all n > n∗:

3B

2nq︸︷︷︸
T1

+
2 log(2/δ)

n1−q︸ ︷︷ ︸
T2

< ∆

Sufficient condition to ensure the above inequality is to make the T1 < ∆/2 and T2 ≤ ∆/2. T1 < ∆/2

if:

n >
(3B

∆

) 1

q

Equating T2 = ∆/2, we get:

δ = 2exp
(
− n1−q∆

4

)
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APPENDIX F

PROOF OF THEOREM 8

A sufficient condition for Theorem 6 to hold is the following

T −K
Klog(K)

≥ max

((
576ξ1V

∆[2]

)1/qm

,

(
8 log(24)

β

)1/qc

,
(4320ξp24pV̂

βp−1∆[2]p
+

576V̂ β

βp−1B

) 1

qc(p−1)

,

(
8 log(24)

β

(
128ξ2

2B
2/p

∆[2]2β2/p
+

8ξ2B
1/p

∆[2]β1/p

))1/qc )
.

The proof is based on Equation 15 and Lemma 10 which we prove next.

Lemma 10: Suppose that {Xi}ni=1 are IID samples distributed as X, where X satisfies condition C1.

Let N = bn/kc and {µN (l)}kl=1 be the empirical CVaR estimators for bins {{Xj}lNj=(l−1)N+1}
k
l=1. Let

µ̂M be the median of empirical CVaR estimators {µN (l)}kl=1, then for p ∈ (1, 2], given ∆ > 0,

P (|µ̂M − µ(X)| ≥ ∆) ≤ exp(− n

8N
) (20)

for

N ≥
(

144V

∆p

)1/(p−1)

. (21)

Proof: For each bin l define a random variable Yl = 1 {|ĉα,N (i)− cα(X)| > ∆}. Yl takes the value

1 with probability p̂. Using Using Lemma 5, we have p̂ ≤ CpV
Nmin(p−1,p/2)∆p . If we ensure that p̂ ≤ 0.25,

then

P(|µ̂M − µ(X)| > ∆)

≤ P(

k∑
i=1

Yi ≥ k/2)

≤ exp(−2k(0.5− p̂)2) (Using Hoeffding’s Inequality)

≤ exp(−k/8)

≤ exp(− n

8N
)

If N ≥
(

4CpV
∆p

)1/min(p−1,p/2)
, then p̂ ≤ 0.25. Upper bounding Cp when p ∈ (1, 2] gives the statement

of the theorem.

APPENDIX G

BOUDING MAGNITUDE OF VAR

Here is an upper bound on the magnitude of vα(X) in terms of (p,B, V ).

Lemma 11:

|vα(X)| ≤
( B

min(α, β)

) 1

p
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Proof: If vα(X) > 0, by definition:

1− α =

∫ ∞
vα(X)

dFX(x)

=

∫ ∞
vα(X)

|x|p/|x|pdFX(x)

≤B/|vα(X)|p

Hence, |vα(X)| ≤ (Bβ )
1

p .

If vα(X) < 0, by definition:

α =

∫ vα(X)

−∞
dFX(x)

=

∫ vα(X)

−∞
|x|p/|x|pdFX(x)

≤B/|vα(X)|p

Hence, |vα(X)| ≤ (Bα )
1

p .
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