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ABSTRACT
The advent of renewable energy sources has huge implica-
tions for the design and control of power grids. On the en-
gineering side, reliability is currently ensured by strict con-
straints on current, voltage and temperature. However, with
growing supply-side uncertainty induced by renewables, these
will need to be replaced by probabilistic guarantees, allow-
ing constraints on a given line to be violated with a low
probability, e.g., several minutes per year. In the present
note we illustrate, using large deviations techniques, how
replacing (probabilistic) current constraints by temperature
constraints can lead to capacity gains in power grids.

1. INTRODUCTION
Operating a power grid entails matching supply and de-

mand at all times, ensuring that line constraints are not
violated. The system operator achieves this by making pe-
riodic control actions (typically every 5-10 minutes) that
adapt the operating point of the grid in response to chang-
ing conditions [4]. A key assumption driving grid operation
today is that the grid remains roughly static between control
instants. In other words, it is assumed that the operating
point does not change much between control instants. Thus,
the operator simply ensures that line constraints are satis-
fied at each control instant. This assumption is of course
reasonable when there is little short-term uncertainty in de-
mand and supply.

However, with increasing penetration of renewable sources,
supply-side uncertainty is set to grow dramatically going
forward. Renewable energy sources like wind and solar can
exhibit considerable variability in power generation in the
short-term [6, 8]. Thus, in the near future, system opera-
tors will no longer be able to assume that the grid is static
between control instants, and will have to set the operat-
ing point taking into account its variability in the short-
term. This entails setting the operating point of the grid
with stochastic guarantees on constraint satisfaction [5,14].
In other words, the operating point must be set such that
line constraint violation is a sufficiently rare event until the
next control instant.

An important constraint is that the temperature of each
line should be bounded, to avoid sag and loss of tensile
strength [15]. The typical manner in which this constraint
is met is by imposing a certain bound on the line current.
However, since temperature responds gradually to current,
from a rare events perspective, the constraint on current is
much more conservative than the constraint on temperature.
This is because a transient current overload does not neces-
sarily imply an overload in temperature. Thus, imposing a

This research is funded in part by an NWO VIDI grant.
IFIP WG 7.3 Performance 2014, October 7-9, Turin, Italy. Copy-
right is held by author/owner(s).

constraint on the probability of current overload results in a
smaller line capacity, as compared to the same constraint on
the probability of temperature overload. This observation
was noted via simulations in [13].

In this paper, we investigate this capacity gain analyti-
cally. Specifically, we analyse the probabilities of current
and temperature overload from a rare events perspective.
The dependence of temperature of a conductor to the cur-
rent flowing through it is well understood [9]. We focus our
attention on a single transmission line in a power grid. Mod-
eling the current flowing through the line as an Ornstein-
Uhlenbeck process, we analyse the probability of violation
of current and temperature constraints in a finite time hori-
zon.

Our main results are concerned with the probability of
overheating. The decay rate for temperature constraint vi-
olation is the solution of a variational problem that is hard
to solve in general. We develop a lower bound on the de-
cay rate, and an approximation that is accurate when the
thermal time constant of the conductor is small. We then
demonstrate the capacity gain from relaxing the current con-
straint with the temperature constraint.

Much of the literature on power flow in electricity grids
considers deterministic settings, focusing on computational
and/or optimization issues. Power flow papers that analyse
stochastic models include [5, 10, 12, 15]. One remark about
these papers is that they model stochastic behavior at par-
ticular snapshots of time, as opposed to the ‘process-level’
model in this paper. Process-level models have been consid-
ered in simulation studies; see, for example [13, 14]. To the
best of our knowledge, this is the first paper to analyse vari-
ability in power grids from a large deviations perspective.

We hope this type of problem will attract attention in the
Performance community. In computer-communication net-
works, the notion of effective bandwidth has shown to be
of fundamental importance and is based on large deviations
techniques as presented here. Given the increased impor-
tance of uncertain and unreliable renewable energy genera-
tion, it is natural to develop similar concepts for energy net-
works. We envision more structural models involving user
as well as physical behavior, leading to admission control
schemes that ensure reliability of future power grids.

This is beyond the scope of the present paper, which
makes a small step in this direction by showing how a less
conservative approach, combined with large deviations the-
ory, can lead to larger admissible capacity region. This may
already be applied to loosen capacity constraints in planning
problems such as optimal power flow [2].

2. MODEL
We consider a particular transmission line in a power

grid. Let K(t) denote the temperature of the line at time
t, and let I(t) denote the current flowing through the line



at time t. For reliability, we require that K(t) ≤ Kmax.
Define Imax such that if |I(t)| = Imax at all times, then
limt→∞K(t) = Kmax. The traditional approach of enforc-
ing the temperature constraint is to impose, instead, the
following constraint on the current: |I(t)| ≤ Imax. Define

the normalized current Y (t) := I(t)
Imax

, and the normalized

temperature Θ(t) := K(t)−Kenv
Kmax−Kenv . Here, Kenv denotes the

ambient temperature, which is assumed to be constant over
the period of interest. Thus, at time t, the current constraint
is violated if |Y (t)| > 1, and the temperature constraint is
violated if |Θ(t)| > 1.

As is well known, the transient relationship between cur-
rent and temperature is given by the the following ordinary
differential equation [9].

τ
dΘ(t)

dt
+ Θ(t) = Y 2(t)

Here, τ denotes the thermal time constant of the transmis-
sion line. Thus, the temperature of the line responds to the
current as

Θ(t) = Θ(0)e−t/τ +
1

τ

∫ t

0

e−(t−s)/τY 2(s)ds.

We denote the above mapping from the (normalized) current
Y (·) to the (normalized) temperature Θ(·) via Θ = ξ(Y ).
Note that the parameter τ determines the time lag in the
response of temperature to current. As τ becomes small,
the dependence of the present temperature on past values of
current becomes weaker. In the limit as τ ↓ 0, temperature
responds instantaneously to current, i.e., Θ(t) = Y 2(t).

We model current Y as an Ornstein-Uhlenbeck process.
That is, Y evolves according to the stochastic differential
equation

dY (t) = γ(µ− Y (t))dt+ dW (t),

where W (t) denotes the standard Brownian motion, and
γ > 0. We also assume that Y (0) = µ < 1. Thus, the process
Y is stationary in the mean, and has a tendency to revert
to its mean value µ. We may interpret µ as the value of
the current as set by the system operator at control instant
0, with the current subsequently fluctuating randomly due
to the variability of renewable sources attached to the grid.
Also, we assume that Θ(0) = µ2; this being the (normal-
ized) steady state temperature corresponding to a constant
current µ.

More structural physical models of current exist using
wind speed models, and power flow equations, among others,
see [13, 14]. Our modeling choice is parsimonious, enabling
us to focus on the connection between current and temper-
ature. In the journal version of this paper we also consider
other models.

We are interested in estimating the probability that the
current and temperature violate their constraints over a fi-
nite time interval [0, T ]. Thus, we are interested in estimat-
ing the current and temperature violation probabilities

P

(
max
t∈[0,T ]

|Y (t)| > 1

)
, P

(
max
t∈[0,T ]

|Θ(t)| > 1

)
.

Our approach is to use the theory of large deviations to
estimate these probabilities. In the standard manner (see,
for example, [3][Chapter 5]), for ε > 0, we define the scaled
current process Yε as the solution of

dYε(t) = γ(µ− Yε(t))dt+
√
εdW (t),

with Yε(0) = µ. Note that as ε decreases, we are scaling
down the ‘noise’ in the process Yε around its mean value µ.
The scaled temperature process Θε(t) is defined via Θε =

ξ(Yε). For a continuous function f over [0, T ], let ‖f‖ :=
maxt∈[0,T ] |f(t)|. Thus, we estimate the probabilities

P (‖Yε‖ > 1) , P (‖Θε‖ > 1)

as ε ↓ 0.

3. CURRENT PROCESS
{Yε} satisfies a sample path large deviations principle (SPLDP)

with good rate function

I1(f) =

{
1
2

∫ T
0

(f ′(s) + γf(s)− γµ)2ds if f ∈ Hµ
∞ if f /∈ Hµ

(see [3, Theorem 5.6.3]). Here,

Hx := {f ∈ Cx[0, T ] : f(t) = x+

∫ t

0

φ(s)ds, φ ∈ L2[0, T ]}.

It then follows, using continuity properties of I1, that

lim
ε↓0
−ε logP (‖Yε‖ > 1) = Iy := inf

f∈Hµ:‖f‖=1
I1(f), (1)

yielding the approximation

P (‖Yε‖ > 1) ≈ e−Iy/ε.

The following lemma gives an expression for the decay rate
Iy = Iy(µ). The optimal path y∗ is the most likely path
followed by the current in the event of an overload.

Lemma 1. Iy(µ) = γ(1−µ)2

1−e−2γT . The optimal path for the

variational problem (1) is

y∗(t) = µ+
1− µ

eγT − e−γT (eγt − e−γt).

Proof. It is easy to show that in solving (1), it suffices
to infimize over paths f ∈ Hµ satisfying f(T ) = 1. The
statement then follows from Proposition 2.2 in [7].

4. TEMPERATURE PROCESS
{Θε} satisfies a SPLDP with good rate function I2(·) :

I2(f) =
1

2

∫ T

0

(
τf ′′ + f ′

2
√
τf ′ + f

+ γ
√
τf ′ + f − γµ

)2

ds

for f ∈ ξ(Hµ), f(0) = µ2, and I2(f) = ∞ otherwise. This
follows from the contraction principle [3]. It then follows,
using continuity properties of I2, that

lim
ε↓0
−ε logP (‖Θε‖ > 1) = Iθ := inf

f :‖f‖=1
I2(f). (2)

This yields the approximation

P (‖Θε‖ > 1) ≈ e−Iθ/ε.

The variational problem (2) for the decay rate Iθ = Iθ(τ, µ)
is difficult to solve in general. We are able to solve (2)
numerically by using Euler’s criterion [11, Theorem C.13].
We fix µ = 0.5, γ = 0.5, T = 1. The decay rates equal 0.1977,
0.4336, and 0.7901 for τ ↓ 0, τ = 0.5, and τ = 1 respectively.
The corresponding optimal paths for the temperature and
current are depicted in Fig. 1. Note that as τ is increased,
the decay rate for temperature overflow increases, i.e., the
overflow becomes increasingly rare. Moreover, it takes a
stronger current to produce the temperature overflow.

As τ ↓ 0, it can be shown that Iθ(τ, µ) → Iy(µ). This
is intuitive, since in the limit τ ↓ 0, Θε(t) = Yε(t)

2, mak-
ing temperature and current overload equally likely. The
following proposition gives a lower bound on Iθ(τ, µ).
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Figure 1: Optimal paths for temperature (a) and
current (b) corresponding to the variational problem
(2) for different values of τ.

Proposition 2.

Iθ(τ, µ) ≥ γ

1− e−2γT

√1− µ2e−T/τ

1− e−T/τ
− µ

2

This proposition is proved using the fact that ‖Θε‖ > 1

implies ‖Yε‖ >
√

1− µ2e−T/τ/
√

1− e−T/τ . We omit the
proof. Note that the above lower bound is tight as τ ↓ 0.
Moreover, the lower bound is strictly increasing in τ, ap-
proaching ∞ as τ →∞. This shows that temperature over-
load becomes considerably less likely than current overload
for large τ, suggesting a substantial capacity gain.

Finally, it is possible to obtain a first order approximation
of Iθ(τ, µ) around τ = 0, which can be utilized to give a first
idea about the potential gain in capacity when the thermal
constant τ is small:

Proposition 3.

Iθ(τ, µ) =
γ(1− µ)2

1− e−2γT
(1 + 2γτ) + o(τ), τ → 0

Proof. The proof is based on an infinite-dimensional ver-
sion of Danskin’s theorem [1, Proposition 4.12]. For fixed f
we write I2(f) = Gf (τ, µ) and analyze this as a function
of τ . Set gτ =

√
τf ′ + f − µ, which allows us to write

Gf (τ, µ) =
1

2

∫ T

0

(g′τ (s) + γgτ (s))2ds. (3)

Let G
(τ)
f (τ, µ) be the derivative of G w.r.t. τ . Set h = g0 =√

f − µ. A lengthy but straightforward computation gives

G
(τ)
f (0, µ) =

∫ T

0

(h′(s) + γh(s))(h′′(s) + γh′(s))ds.

Recall that y∗ is the optimal current path for τ = 0. Thus,
f∗0 = (y∗)2 is the optimal path to overflow of the tempera-
ture process if τ = 0. Setting K = (1−µ)/(eγT −e−γT ) and
f = f∗0 we get h(s) = K(eγs + e−γs). Differentiating yields

h′(s) = γh(s)− 2γKe−γs, h′′(s) = γ2h(s).

Some additional straightforward computations yield

G
(τ)
f∗0

(0, µ) = 4γ3

∫ T

0

(h′(s)−Ke−γs)ds =
2γ2(1− µ)2

1− e−2γT
.

Proposition 4.12 of [1] yields

d

dτ
Iθ(τ, µ)|τ=0 = G

(τ)
f∗0

(0, µ).

Combine the last two displays, and invoke Lemma 1.

5. CAPACITY PROVISIONING
The maximum current µ̄, which could serve as input to

an optimal power flow problem should be set such that
the reliability constraint P (‖Θε‖ > 1) ≤ p is valid. Given
the large deviations estimates developed before, we approx-
imate P (‖Θε‖ > 1) ≈ e−Iθ(τ,µ)/ε, so that µ̄ = µ̄(τ) solves
Iθ(τ, µ) = ε log(1/p).

Set µ0 to be the conservative current capacity constraint,
based on the traditional approach of enforcing P (‖Yε‖ > 1) ≤
p. This implies, via the same approximations as above, that
µ0 satisfies Iy(µ) = ε log(1/p). Thus, our capacity gain of
interest equals µ̄(τ)− µ0.

How much capacity could be gained with the more refined
approach, using the more complicated temperature process
directly? Note that µ̄(τ)−µ0 → 0 when τ ↓ 0. Proposition 3
enables us to quantify the capacity gain when τ is small.
Equating Iθ(τ, µ̄) = Iθ(0, µ0) = Iy(µ0) and solving leads to
(1 − µ0)2 = (1 − µ̄)2(1 + 2γτ) + o(τ), which for small τ is
asymptotically equivalent to

µ̄(τ)− µ0 = γτ(1− µ0) + o(τ).

Similarly, Proposition 2 can be used to prove a lower
bound on the capacity gain, which is strictly increasing in
τ. We omit the details.
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