Optimal Cycling of a Heterogenous Battery Bank
via Reinforcement Learning

Vivek Deulkar
Dept. of Electrical Engineering
IIT Bombay

Abstract—We consider the problem of optimal charg-
ing/discharging of a bank of heterogenous battery units, driven
by stochastic electricity generation and demand processes. The
batteries in the battery bank may differ with respect to their
capacities, ramp constraints, losses, as well as cycling costs. The
goal is to minimize the degradation costs associated with battery
cycling in the long run; this is posed formally as a Markov deci-
sion process. We propose a linear function approximation based
Q-learning algorithm for learning the optimal solution, using a
specially designed class of kernel functions that approximate the
structure of the value functions associated with the MDP. The
proposed algorithm is validated via an extensive case study.

Index Terms—grid-scale storage, battery management, het-
erogenous battery bank, cycling costs, reinforcement learning,
function approximation

I. INTRODUCTION

Grid-scale battery storage will play a key role in reliable
power grid operation, as we transition to higher and higher
penetrations of renewable generation. While the capital cost of
battery storage is still prohibitive, costs have declined sharply
over the past few years [1]. As a result, several electric utilities
have installed lithium-ion based battery storage systems with
capacities running into hundreds of megawatt-hours in recent
years. Going forward, we should expect that multiple battery
units, of varying chemistries and capacities, would be simul-
taneously connected to the grid, necessitating a sophisticated
battery management system.

In this paper, we focus on the optimal operation of a bank
of heterogenous batteries. The batteries may differ in terms
of storage capacity, ramp constraints, cycling costs, as well as
losses. In practice, such heterogenous battery banks can arise
either due to the ongoing evolution of the state of the art,
and also due to heterogeneity in use cases. Indeed, the battery
chemistry (and scale) best suited to support frequency regu-
lation services, which require high-frequency cycling, might
be different from what is best suited to the durnal cycling
needed to match solar generation with household electricity
consumption.

We pose the optimal battery bank management problem,
from the standpoint of an electric utility, as a Markov decision
process (MDP). The state evolution dynamics of this MDP
capture both the (uncontrollable) supply-side and demand-side

This work was supported by grant DST/CERI/MI/SG/2017/077 under the
Mission Innovation program on Smart Grids by the Department of Science
and Technology, India.

Jayakrishnan Nair
Dept. of Electrical Engineering
IIT Bombay

uncertainties, as well as the (controllable) dynamics of the
state of charge of various battery units. The learning task is
to optimally charge/discharge the battery bank with the goal
of minimizing the overall degradation of the battery bank due
to cycling. Since it is natural to assume that the dynamics
of this MDP are not a priori known precisely, we adopt
a reinforcement learning (RL) based approach. Moreover,
in order to tackle the state-action space explosion inherent
in the MDP, we resort to function approximation aided Q-
learning (see [2]). This involves the novel design of a compact
collection of features (a.k.a. kernel functions) that capture
the shapes of our value functions. Finally, we validate the
proposed approach via extensive case studies.

The contributions of this paper may be summarized as
follows.

o We pose the optimal operation of a heterogenous battery
bank to match a stochastic electricity generation process
with a stochastic electrcity demand process as an MDP.
The objective here is to minimize the cycling degradation
of the battery bank over time.

« In certain idealized cases, we show that a myopic greedy
policy is optimal for the above MDP. However, this
greedy policy is not optimal once losses and ramp con-
straints are taken into account.

o We design a compact novel collection of features to aid
the learning of the Q-function associated with the MDP,
via linear function approximation. The family of features
is chosen so as to approximate the specific structure of
the value functions corresponding to the MDP. We then
learn the feature weights via a stochastic approximation
algorithm.

e The proposed algorithm is validated in a case study,
where it is shown to outperform greedy battery operation
(in the presence of ramp constraints) as well as a naive
proportional allocation policy.

II. MODEL AND PRELIMINARIES

In this section, we describe our model for the management
of a heterogenous battery bank, in the form of a Markov
decision process (MDP). We follow the convention of using
capital letters to denote random quantities, and the correpond-
ing small letters to denote generic realizations of those random
quantities. Throughout, we use N to denote the set of natural

numbers, and Z to denote the set of integers. For n € N, let
[n] :=={0,1,--- ,n}.

It is assumed that the learning agent manages a bank of NV
battery units, labelled 1,2,--- , N. The capacity of Battery ¢
equals B*) € N units. Here, the battery capacities are specified
in terms of a suitably small unit of energy (say, 1 kWh)
relative to the scale of generation and consumption under
consideration; we always measure generation, storage, and
consumption of energy as an integer multiple of this unit.
A discrete time setting is considered, with B{" € [B()]
denoting the energy stored in Battery ¢ at time k. The random
net gemeration at time k, i.e., the energy generation minus
the energy demand at time k, is denoted by Ej € Z.
Note that a positive value of Ej, indicates an instantaneous
surplus in generation, whereas a negative value indicates an
instantaneous deficit. The agent must in turn apportion this
net generation across the battery bank, by charging the bank
in the former scenario, and discharging the bank in the latter
(subject to capacity and ramp constraints).

A. Stochastic model for net generation

The net generation Fj at any time k equals the difference
between the (random) energy generation and the (random)
energy demand in that time slot. Thus, the net generation
encapsulates both supply side uncertainty (due to renewable
generation) as well as demand side uncertainty. We model the
stochastic net generation as a function of a certain Markov pro-
cess { X }. The state of this Markov process captures all those
factors that influence supply and demand, including weather
conditions, seasonal factors, time of day, generation/demand
seen in the recent past, etc. Formally, {X}} is modelled as
an irreducible Discrete-Time Markov Chain (DTMC) over
a finite state space S.. The net generation at time k is in
turn a function of the state of this chain, ie., By = f(Xy),
where f: S, — Z. Note that this model allows us to capture
arbitrary dependencies between generation and demand, as
well as seasonal/diurnal variations.

B. MDP description

We now formally define the MDP for optimal management
of the battery bank. An MDP is a tuple M = (S, 4, P, R, 7).
Here, S denotes the state space, and A = UzcsAs denotes
the action space, with A, being the set of feasible actions in
state s. P captures the transition structure, where P(s’|s,a)
is the probability of transitioning to state s’ when action a is
played in state s. R captures the reward structure, such that
R (s, a) is the reward obtained on taking the action a in state s.
Finally, v € (0, 1) denotes the infinite horizon discount factor.

The state of the MDP at time k is given by Sy = (X4, By),
where B, = (B,(;), 1 < i < N) is the vector of battery
occupancies at time k. Thus, the state space is given by S :=
Se x [T, 1Bi)- |

The action at time k is given by the tuple A, = (Ag), 1<
i < N), where A,(;) € Z is the number of energy units injected

(@)

into Battery 7 at time k; a negative value of A, corresponds

to the action of discharging Battery ¢ by |A,(f)| energy units.

Specifically, the action Aj causes the battery occupancies to
evolve as follows:
B, = [n9B) + 4| a<isN) o
Here, the factor (") (0,1) captures the energy dissipation
loss of Battery i.!
In a generic state s = (x,b), the components of the action
vector a are constrained as follows:

la®] < (1<i<N) 2)
0<a®+b@ <BD (1<i<N) 3)

Here, ¢ € N denotes the maximum number of energy units
that can be injected/extracted from Battery ¢ at any epoch.
In other words, (2) specifies ramp constraints on the battery
bank. The constraint (3) enforces the boundary conditions, i.e.,
the battery cannot charged beyond its capacity, and cannot
be discharged beyond its present occupancy. Additionally, we
im . . N (3) .

pose the following constraint on) ." , a' :

S a® =@,
where m(b) = — sz\; min{b®, ¢}, “)
M) =N min {(BO — @), O}

Here, [y, := min(max(y,m), M) denotes the projection
of y on the interval [m, M]. Basically, the constraint (4) states
that 2%, a) matches the net generation f(z) as far as
possible, subject to ramp/capacity constraints on the battery
bank. Indeed, note that M (b) equals the maximum number of
energy units that can be injected into the bank, and —m(b) is
the maximum number of energy units that can be drained out
of the bank. Thus, (4) ensures that the battery bank charges
to the extent possible when there is a generation surplus, and
discharges as far as possible to meet a generation deficit. To
summarize, the set of feasible actions A in state s = (z,b)
is defined by the constraints (2)—(4).

Next, note that the transition structure P of the MDP is
dictated by that of the DTMC {X}}. Specifically, on taking
the action a in state s = (x,b), the first component x of the
state evolves as per the transition probability matrix of the
DTMC {Xj}. The second component b, which captures the
battery occupancies, evolves (deterministically) as per (1).

Finally, we define the reward structure R. The reward
structure captures the cost/penalty associated with battery
cycling.? We apply a penalty whenever the present action
causes each battery level to be below 20% or above 80%
of its capacity.? The incured penalty is further proportional
to the amount by which battery energy level violates these
thresholds (see Figure 1). It has a multiplying prefactor (")
which is specific to the battery under consideration. Formally,

M

A separate charging/discharging loss can also be easily incorporated into
the model, as in [3].

2Indeed, it is well known that complete charge-discharge cycling tends to
diminish battery life (see [4]). Therefore, it is natural to avoid battery operation
near full/empty levels, and rather try to operate it at intermediate levels as far
as possible.

3These specific thresholds are only chosen for illustration. In practice, these
thresholds can be set specific to the chemistry of each battery.

R(s,a)

~0.28070
0 0.2 0.4 0.6 0.8 1

ative bz S erpaneye Al
Relative battery occupancy: “5g5—
Fig. 1.
action

Reward as a function of fractional battery occupancy post current

the reward is given by:

N
R(s,a) = — Z r(i){(o,zg(i) —a® — @)y,
i=1

+ (a4 50 —0.88%9), |,

where (z)+ := max(z,0). Note that the reward structure disin-
centivises operating each battery at close to empty/full charge,
the disincentive being (potentially) heterogenous across batter-
ies. (Batteries that suffer a larger degradation due to cycling
would be associated with a greater penalty factor (*).)

Finally, the goal of the learning agent is to maximize the
infinite horizon discounted reward, i.e.,

E Z’)/kR(Sk7Ak) 5 (5)

k=0

for any starting state Sp.

C. Policies and Information Structure

In general, a policy specifies the action to be taken as
a function of the agent’s observation history. A stationary
deterministic policy m: & — A specifies a feasible action
purely as a function of the current state. It is well known
that there exists an optimal stationary deterministic policy
that maximizes (5) (see [5]). Moreover, this policy can be
computed given the MDP primitives (S, A, P,R,v). In the
present context however, it is often impractical to assume prior
knowledge of the primitives. In particular, the agent may not a
priori know the transition structure P governing the dynamics
of generation/demand evolution precisely. This motivates us
to pursue a reinforcement learning (RL) based approach to
discover a near-optimal policy online.

For certain special cases (i.e., in the absence of ramp
constraints and ignoring losses), it can be proved that a simple
greedy policy is in fact optimal for the MDP, as we show in
Section III. However, in general, the optimal policy is non-
trivial, and we find that the proposed RL based approach
(described in Section IV) outperforms naive/greedy policies
(see Section V).

III. GREEDY BATTERY BANK MANAGEMENT

In this section, we define and explore a greedy policy
for the MDP posed in Section II. This policy chooses, in
any state, an action that maximizes the instantaneous reward.
Importantly, in the context of the battery bank management
problem under consideration, this greedy policy can be applied
without prior knowledge of the transition structure P. In other
words, the greedy policy can be applied without the need for
any ‘learning’ of the MDP dynamics. While the greedy policy
is not optimal is general, we show that it is optimal in an
idealized special case, namely when the batteries are lossless
and are not subject to any ramp constraints. From a practical
standpoint, this means that the greedy policy is expected to
be near-optimal in scenarios where the batteries are capable
of fast charging/discharging, and battery losses are negligible.

Formally, a greedy policy 7greedy is defined as follows. In
state s = (x, b), it chooses an action

Tareedy (§) € argmax R(s,a).
acA,

Note that if there are multiple maximizers of the instantaneous
reward, it is assumed that g ecdy picks one of them.* Note that
implementing 7grecdy requires knowledge of (a) A, which
is dictated by ramp/capacity constraints, and (b) the cycling
costs, defined by (r(i), 1 < ¢ < N)—areasonable expectation
in practice.

The optimality of greedy battery operation in an idealized
special case is shown below.

Theorem 1. For each Battery i, suppose that ¢) > B (i.e.,
the ramp constraints are never binding), and 09 =1 (i.e.,
the batteries are lossless). Then the policy Tgreedy i Optimal
for the infinite horizon discounted reward objective (5).

Proof. The optimality of any greedy policy follows from two
observations. First, in the absence of battery losses, at any
time %, the total energy in the battery bank vazl B,E,Z) is
conserved across all policies. Second, since arbitrary energy
rearrangements are possible between batteries (due to the
absence of ramp constraints), the instantaneous reward attain-
able does not depend on the specific placement of energy
across batteries. It then follows easily that greedy operation
is optimal. O

In general, particularly when the battery bank is heteroge-
nous with respect to ramp constraints and/or losses, we find
that greedy operation can be far from optimal; see Section V.
Intuitively, this is because in such cases, the total energy in
the battery bank is not conserved across different policies.
Moreover, the presence of ramp constraints implies that there
are certain ‘preferrable’ arrangements of the stored energy
across the battery bank that minimize average penalties in-
curred going forward, given the random dynamics of gener-
ation/demand. The non-triviality of the optimal policy in the
presence of practical constraints on the operation of the battery

4Thus, there is really a family of greedy policies. We use Tgreedy here to
denote any one such greedy policy.

operation motivates an RL based approach, which we address
next.

IV. REINFORCEMENT LEARNING BASED APPROACH

In this section, we describe an RL based approach for online
learning of the optimal policy for battery bank management.
Specifically, we employ a ()-learning algorithm with linear
function approximation [2]. Our key contribution lies in the
design of a suitable family kernel functions that captures the
specific structure of the value functions in our formulation. The
proposed approach is validated via an extensive case study in
Section V.

We begin by providing some background on Q-learning.
Let us denote an optimal stationary deterministic policy of
the MDP by 7* (the existence of such an optimal policy is
guaranteed by the theory; see [5]). The state value function
associated with the MDP is defined as

V(s)=E|Y 7"R(Sk,7*(Ar)) | So = s
k=0
The state-action value function, a.k.a., the Q-function associ-
ated with the MDP is defined as

Q(s,a) :=R(s,a)+~ Z P(s'|s,a)V (s).
s'eS
It is well known that the @-function satisfies the Bellman
equation:

L /)
Q(s,a) :=R(s,a) + VSZG‘:SP(S s, a) Lr/ré%i/ Q(s',a)} .
Moreover, learning the -function also reveals the optimal
policies, since 7*(s) € argmax,c 4. Q(s,a).
(Q-learning algorithms seek to learn the ()-function online,
typically via a stochastic approximation based update rule of
the form

Q(Sk, Ar) + Q(Sk, Ay) + Br | R(Sk, Ay,

+v max Q(Sk+1a a/) - Q(Skv Ak):| 5
a’EAsk+1
(6)

where (B € (0,1) is the learning rate (a.k.a., step-size) at
time k. Note that the above update rule does not specify the
policy that determines the action A at time k. It is known
that (6) results in almost sure convergence to the ()-function
provided the chosen policy ensures sufficient exploration of
all the state-action pairs (see [2]), and the step-size sequence

satisfies
D Br=00, D Bi<oo.
k k

In the specific application context under consideration, it
is not practical to implement ()-learning algorithms directly,
given the prohibitive number of state-action pairs. This so-
called state-action space explosion adversely impacts both the
memory footprint of the algorithm (since one must store the

-0.2 -0.2

-0.4 -0.4

4
i

—y

-0.6 -0.6

-0.8 -0.8

"o 0.5 1 o 0.5 1

b9 +al) b 4ad

Yi = —go Yi = 756

Fig. 2. Two Kernel functions as a function of normalised battery level y;.

entire (Q-table), and time required to learn a near-optimal
policy (since each state-action pair needs to be visited suf-
ficiently many times). We thus resort to function approxima-
tion, wherein the @Q-function is approximated to be a linear
combination of carefully designed family of features or kernel
functions:

d
Q(s,a,w) = ¢(s,a)" - w =" ¢i(-)Jw; (7)
=1

Here, ¢(s,a) € R? is a vector consisting of d distinct features
corresponding to state-action pair (s,a) and w € R? is the
weight vector to be learned. Naturally, this is appealing when
d< |{(s,a)|s € S,a € As}l.

In the remainder of this section, we describe our design of
the family of features, and then state formally the proposed
RL algorithm.

A. Design of Kernel functions

The d distinct features chosen for each state-action pair
(s,a), where s = (x,b), are captured in the feature vector
¢(-) as follows

¢(8aa) = (R(Saa)7 Ulﬂ{m:1}7 7}2]1{:5:2}7
Vs L a=sy) -

Here each vector v; € R?N corresponds to the j'" state of the
background DTMC {X}} governing the net generation, and
is defined as v; =

(1’*(1*@/1)47*%,*(1*1/2)4,*yél,m ,(1yN)4,y?v2
®)

where y; denotes the normalised occupancy of Battery ¢, given
by y; = b(lg{i‘}(l). Thus, in our design, d = (2N + 1)|S| + 1.
The first feature is simply the instantaneous reward corre-
sponding to the state action pair (s, a). The remaining features
are interpreted as follows. For each background state z, and for
each Battery 7, we introduce two features: an increasing con-
cave function of the normalized battery occupancy resulting
from the action a, and another descreasing concave function
of the same normalized battery occupancy; see Figure 2. The
former captures the impending (discounted) penalty arising
from Battery ¢ becoming empty in the future; the increasing

shape of this function seeks to capture the increased likelihood
of a penalty in the near future when the present battery
occupancy is lower (see the left panel of Figure 2). Similarly,
the latter feature captures the discounted ‘penalty to go’ arising
due to Battery ¢ becoming full in the future; the descreasing
nature of this function capturing the increased likelihood of
this event when the present battery occupancy is closer to
full (see the right panel of Figure 2). We introduce these two
features for each background state = separately to account
for the fact that the probability of future penalties is also
dictated by 2.> In addition, for each background state z, we
add a constant feature taking the value 1 (see equation (8)).
As we show in Section V, this family of features captures
the behavior of the @)-function sufficiently well to enable the
learning of a near-optimal policy.

B. Learning weights via stochastic semi-gradient descent

The weight vector w in (7) is learned online by stochastic
semi-gradient descent method using a suffiently exploratory
policy 7 over state-action pair (s, a). The term ‘semi’ refers
to the fact that the error being minimized through gradient
descent is between the estimated values Q(S’k,Ak,wk) and

(R(Sk, Ag) + YmaXeeAds, Q(SkJrl,a/,'lUk;)) . The update
of weights is performed in conjunction with an e-greedy policy
to ensure a balance between exploration and exploitation.

Formally, the weights are updated using stochastic semi-
gradient descent as follows:

w4 w+ By [R(Sk, Ap)+ max Q(S;Hl, a,w)

Sk+1

— Q(Sk, Ak,)] ¢(Sk, Ar), 9)

where Q(s,a,w) = ¢(s,a)Tw. Here, {f;} is the step-size
sequence. The policy 7 that selects the action Aj at each
time k is taken to be the e-greedy policy, parameterized by the
sequence {ej}. Formally, at time k, with probability €, the
action Ay, is picked uniformly at randomly from the set Ag, ,
and with probabability 1 — e, Ay = arg maX,e g Q(Sk,a).

V. CASE STUDY

In this section, we present simulation results on a toy
model to validate the proposed function approximation based
RL algorithm. We benchmark the performance of this policy
against a certain naive policy (which charges and discharges
the battery bank in a proportional manner) as well as a greedy
policy. Our results demonstrate that the proposed approach
outperforms the greedy and naive policies, suggesting that the
proposed collection of features does a good job of capturing
the structure of the value function.

To provide a fair comparison between the three policies, we
separate the learning and the evaluation phases of our proposed
policy. Specifically, we learn the ()-table via function approxi-
mation using the proposed algorithm over T' = 10° time steps.

5A more economical approach would be to cluster the background states,
and assign a feature to each cluster; this will be explored in the future.

After this, we compare the ‘optimal’ policy suggested by the
learned ()-function, i.e.,

7TRL(fun approx) <5> € arg ma'XQ(Sa a,w), (10)

aEA,
against the benchmark policies over another run of 7' time
steps.

While the greedy policy has been described in Section III,
the naive (proportional) policy is described as follows. In
essence, it attempts to apportion the net generation across the
battery bank in a manner that is proportional to the size of each
battery, i.e., a®) oc B®. Of course, a perfectly proportional
allocation may not be feasble, due to interger-round off errors,
as well as ramp constraints. If this happens, the naive policy
performs a local search around the proportional allocation until
a feasible action is found; the details of this search are omitted
due to space constraints.

Toy Model Setup

The state space of the background DTMC process X is
taken to be S, = {—4,—1,1,5}, with the net generation
associated with state x € S, being simply x. The transition
probability matrix corresponding to the background Markov
process { Xy} is taken to be

0 05 03 02
p_ |05 0 01 04
~ 103 02 0 05

03 03 04 O

Two battery units are considered with penalty multipliers
r) = —0.1, r = —1; this captures the heterogeneity in
cycling costs. Various battery size configurations (l’j’(l)7 8(2))
are considered for the simulation; see Tables I-II. For simplic-
ity, we ignore losses in these preliminary evaluations.

Simulation results

First, we consider the case where ramp constraints are never
binding (by choosing (¢, 1 < i < N) large enough).
In this case, it is known that greedy operation is optimal,
allowing us to evaluate whether or not the proposed function
approximation based approach is also able to learn the optimal
policy. Our results, comparing the rewards obtained by the
three policies under consideration, are summarized in Table I.
Interestingly, we see in that all settings considered, the pro-
posed RL based approach achieves exactly the same reward as
the (optimal) greedy policy, whereas the naive policy performs
worse. This suggests that for the MDP instances considered
here, the proposed function approximation algorithm learns an
optimal policy, validating our design of the kernel functions.

Next, we consider settings where ramp constraints can be
binding. Specifically, we set ¢(!) = ¢(2) = 2. The results
for case, corresponding to various battery size combinations,
are summarized in Table II. Note that the proposed RL based
approach outperforms both the (no longer optimal) greedy
policy, as well as the naive policy.

Validating the proposed approach on ‘production scale’
MDP instances, derived from real-world generation/demand

traces, will be the addressed in a forthcoming journal version
of this paper.

(B(D) B>) Trgreedy Tnaive T'RL(function approx.)
2,3 -68081 -68081 -68081
3,5 -48532 -51187 -48532
6,10 -63853 -73619 -63853
10,10 -57859 -74729 -57859
15,10 -52768 -74842 -52768
15,15 -72490 | -110960 -72490
20,20 -91273 | -144160 -91273
TABLE I

REWARD OBTAINED ACROSS DIFFERENT POLICIES WHEN NO
CONSTRAINTS ARE IMPOSED: Se = {—4, —1,1,5}, T = 10%; CYCLING
CoSTS PREFACTORS r(D) = —0.1,7(2) = —1

(3(1)7 3(2))

T oreedy Tnaive T'RL(function approx.)
2,3 -61212 -61212 -61212
3,5 -45010 -46861 -44831
6,10 -60759 -64053 -61774
10,10 -66177 -67867 -56920
15,10 -66146 -67849 -54579
15,15 -80171 -96938 -68135
20,20 -88881 -115150 -75473
25,25 -99762 -147800 -87300
30,30 -119320 | -184450 -105630
40,40 -125130 | -230460 -113120
50,50 -137580 | -286050 -125350
TABLE II

REWARD OBTAINED ACROSS DIFFERENT POLICIES WHEN CONSTRAINTS
ARE IMPOSED: ¢() = ¢(2) =2, S, = {—4,—1,1,5}, T = 10%; CYCLING
CoSTS PREFACTORS r(1) = —0.1,7(2) = —1

VI. RELATED LITERATURE AND CONCLUDING REMARKS

In this section, we briefly survey some of the related
literature, and then conclude.

There are a few approaches in the literature for operating
multiple heterogeneous battery units. The work in [6] proposes
a feedback control mechanism to maintain uniform state-of-
charge (SOC) across multiple batteries without considering
the cycling cost. The work [7] proposes another feedback
mechanism to control power flow in storage systems. A circuit
based switching mechanism to operate serially connected bat-
tery units is studied in [8]. A coordinated control of multiple
battery systems for frequency regulation is given in [9], which
also proposes a state-of-charge (SOC) recovery mechanism.
These are non-RL approaches which deal with battery bank
operation with specific operational objectives in mind. The
supply-side uncertainty due to renewables, which is central
to the management of grid-scale storage solutions, is not
considered in these works.

On the RL front, the work in [10] proposes an energy
management system using deep reinforcement learning to
operate the battery pack in an electric vechicle.

In contrast, the focus of the present paper is on the manage-
ment of a heterogenous bank of batteries connected to the grid,
with the objective of minimizing the cycling-induced degra-
dation of the bank. The key novelty of the approach proposed
in this paper is the use of linear function approximation to

address the state-action space explosion that occurs due to (i)
the incorporation of the battery levels into the state, and (ii)
the combinatorial number of actions that are feasible for each
state. We design a novel and compact collection of feature
vectors that let us approximate the structure of the Q)-function,
enabling the learning of a near-optimal policy online.

Future work will focus on validating the proposed approach
on a practical utility-scale example, with cycling costs and
losses modeled using manufacturer-provided specifications. In
such a case, one would expect the net generation process
to be made up of components that fluctuate over multiple
timescales, resulting in a highly non-trivial optimal operation
of the battery bank.

REFERENCES

[1] W. J. Cole and A. Frazier, “Cost projections for utility-
scale battery storage,” National Renewable Energy Lab-
oratory (NREL), Tech. Rep., 2019.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction. MIT press, 2018.

[3] F. Kazhamiaka, S. Keshav, C. Rosenberg, and K.-H.
Pettinger, “Simple spec-based modeling of lithium-ion
batteries,” IEEE Transactions on Energy Conversion,
vol. 33, no. 4, pp. 1757-1765, 2018.

[4] J. Garche, A. Jossen, and H. Doring, “The influence of
different operating conditions, especially over-discharge,
on the lifetime and performance of lead/acid batteries for
photovoltaic systems,” Journal of Power Sources, vol. 67,
no. 1-2, pp. 201-212, 1997.

[5] M. L. Puterman, Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

[6] C. Wang, G. Yin, F. Lin, M. P. Polis, C. Zhang, J. Jiang
et al., “Balanced control strategies for interconnected
heterogeneous battery systems,” IEEE Transactions on
Sustainable Energy, vol. 7, no. 1, pp. 189-199, 2015.

[71 M. Bauer, M. Miihlbauer, O. Bohlen, M. A. Danzer,
and J. Lygeros, “Power flow in heterogeneous battery
systems,” Journal of Energy Storage, vol. 25, 2019.

[8] H. Shibata, S. Taniguchi, K. Adachi, K. Yamasaki,
G. Ariyoshi, K. Kawata, K. Nishijima, and K. Harada,
“Management of serially-connected battery system using
multiple switches,” in IEEE PEDS 2001, vol. 2, 2001.

[9] D. Zhu and Y.-J. A. Zhang, “Optimal coordinated control

of multiple battery energy storage systems for primary

frequency regulation,” IEEE Transactions on Power Sys-

tems, vol. 34, no. 1, pp. 555-565, 2018.

H. Chaoui, H. Gualous, L. Boulon, and S. Kelouwani,

“Deep reinforcement learning energy management sys-

tem for multiple battery based electric vehicles,” in IEEE

Vehicle Power and Propulsion Conference (VPPC), 2018.

