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Abstract—Spectrum holding per cellular telephony service
provider in India is significantly lower than the world average.
The spectrum is also severely fragmented across bands and the
fragments also have different license conditions. Regulators in
India have recently recognized that such spectrum fragmentation
is a source of inefficiency for the service providers and have
allowed sharing of spectrum among the providers. The genesis
of this paper is this regulatory order and it has a three-fold
objective.

We first study an example spectrum allocation. By assuming
GSM-like voice telephony service, we analyse the spectrum
holding in one service area in some detail. Using simple cal-
culations, we see that complete pooling of resources by the
providers may not be stable—one provider may have a lower
blocking probability if it does not form a coalition.This leads
us to our second objective of developing analytically tractable
partial sharing models where the providers do not pool all their
resources. For a probabilistic spectrum sharing model, we analyse
a simple system and obtain the partial sharing that will make the
coalition stable and Pareto efficient. This model is then extended
to a larger system and numerical results from the analytical
model are used to obtain additional insights. We then consider a
deterministic sharing model for which we also present a similar
analysis for this system. We also show that the deterministic
sharing system can be analysed via a suitably defined circuit
multiplexed network that allows us to use Kelly’s Erlang fixed
point approximation which in turn provides economic insights.
The final objective is to develop a game theoretic model for partial
sharing. We provide a Nash bargaining framework for partial
sharing. We also discuss some revenue sharing mechanisms when
the providers’ benefits from partial sharing are asymmetric.

I. INTRODUCTION

The growth of the cellular telephony network in India has
been widely hailed. Among the several hurdles on this growth
path has been the spectrum allocation process; spectrum for
mobile cellular telephony has been released in a trickle over
several phases during the last 20 years with different terms
of usage in each phase of the release. Further, the number
of service providers in each area has also increased steadily
with no consolidation expected to happen in the short and
medium term. This has resulted in spectrum holdings of
service providers that have a significantly lower average than
in most other markets around the world—10MHz per provider
and an average Herfindahl-Hirschman Index (HHI) of 0.13
[1].1 A direct, and deleterious, consequence of this low HHI is
the loss of multiplexing efficiencies—lower loads for a given
quality of service. As an example, this would mean that in
a traditional telephony model, still the dominant traffic on
wireless networks and also the dominant source of revenue in
India, the Erlangs/MHz at 2% blocking would be significantly

1HHI measures market concentration. It is calculated as
∑N

i=1 x
2
i where

xi is the share of provider i and N is the number of providers.

lower than if more spectrum was available per provider. If we
now also take into consideration the high population densities
in India, the unique propagation characteristics of EM waves in
areas dense with brick, cement, and concrete construction, the
quality of the power supply and the like, we can commiserate
with service providers’ woes on at least one aspect that governs
the quality the cellular telephony service.

That fragmented spectrum is an important source of in-
efficiency has been recognised by the regulatory authorities
and they have recently allowed for spectrum sharing among
the service providers. Spectrum sharing policies have been
formulated and guidelines issued by the Telecom Regulatory
Authority of India in 2014 [2], [3]. The report explicitly states
that the “... objective of spectrum sharing is to provide an
opportunity to the TSPs to pool their spectrum holdings and
thereby improve spectral efficiency. Sharing can also provide
additional network capacities in places where there is network
congestion due to a spectrum crunch.” It goes on to add that it
is “essential to ensure that both the licensees pool (combine)
their spectrum resources and also use it simultaneously.” While
sharing of passive infrastructures like towers and antennas had
been permitted and is widely used, allowing of sharing spec-
trum is being discussed only recently. A limitation imposed
in [2] is that only two operators can form a ‘coalition’ to
share their spectrum. However, an upside provision is that the
operators need not seek the government’s permission to form
a coalition.

As is to be expected, there is significant debate about the
effectiveness of these guidelines and also whether service
providers would indeed share the spectrum under these guide-
lines. Our interest in this paper though is elsewhere. Taking
the view that a service provider is defined by the size of its
customer-base and its spectral resource, we ask: How will the
providers share their resources to improve their QoS, and how
will they share the resulting increased revenue, especially if
they are asymmetric?

An immediate observation is that since the service providers
have their own customer base and also their own spectral
resource, full unrestricted pooling of resources, even among
two providers, can lead to a loss of QoS for customers of one
of the providers. It is reasonable to assume that this would be
against the long term interests of the service provider. Thus a
partial sharing option should be considered. Then the natural
questions for the cooperating providers are how to share and
how much to share. In this paper we explore partial spectrum
sharing by two service providers by answering these questions
through the following model. We assume that the spectrum is
divided into several channels and that the number of channels
is proportional to the spectrum available with the provider.



We assume that the it provides circuit multiplexed service
via these channels so that we can model the provider as an
M/M/m/m loss queueing system. This is a natural model for
telephony systems in general and for voice telephony in GSM
networks in particular. In this model, spectrum sharing reduces
to sharing of the channels which in turn reduces to the rules to
accommodate an overflow call from one service provider. We
consider two sharing models—probabilistic and deterministic.
In probabilistic sharing, an overflow call is accepted by the
other provider with a fixed probability if a channel is available.
In deterministic sharing each provider gives a fixed number of
channels into a common pool and arriving calls are rejected
if no channel is available either in the reserved pool of the
provider or in the common pool. We develop analytical models
for these and determine what sharing mechanisms will be
feasible.

A. Previous Work

Spectrum sharing principles and models have been consid-
ered in the literature in the context of dynamic spectrum access
(DSA) systems [4], [5], [6]. The key difference between DSA
and the model that we consider here is that in DSA the primary
user has priority over the secondary user in the usage of
the spectrum and the sharing mechanism always protects that
priority. Also, the timescale for the operation of the protocols
considered for DSA is much smaller where the competing
users have to determine who is to use the radio resource at
a give a time. Ours is a longer timescale model in the sense
the users (operators) decide what fraction of the resource is
to be shared with others. The closest model in the literature
to that considered here is that in [7], [8] which is motivated
by sharing of hospital beds among different hospitals. The key
difference between the model of [7], [8] and ours is that in the
former, sharing is an “all-or-nothing” while we are interested
in partial sharing. This will become evident as we proceed
in the paper. Thus there does not seem to be much work on
either partial resource sharing or on partial spectrum sharing
to situate our work.

The rest of the paper is organised as follows. In the next
section we analyse the spectrum allocation in the Mumbai
local service area. In Section III we describe and analyse
a probabilistic sharing model for a coalition of two service
providers each of whom have one channel. In Section IV this
model is extended to a larger system for which an analytical
model is developed and analysed. In Section V a deterministic
sharing model is described and analysed. An approximate
analysis via Kelly’s Erlang fixed point analysis is also shown
to be possible. In Section VI we develop a Nash bargaining
framework for the deterministic sharing model. Finally, we
present a revenue sharing framework in Section VII and
conclude with a discussion in Section VIII.

II. SOME GROUND TRUTHS

Spectrum for cellular telephony is allocated in eight differ-
ent bands—700, 800, 900, 1800, 1900, 2100, 2300, and 2600
MHz. In India, the 700 and the 2600 MHz have not yet been
allocated. The country average for total (uplink+downlink for

TABLE I
ASSIGNED AND PLANNED SPECTRUM AND IN DIFFERENT WORLD

MARKETS

USA Eur Austr Braz China India
Assigned 608 540–615 478 554 227 247
Planned 55 0–60 230 0 360 15

paired) spectrum from these bands in different countries is
shown in Table I [9]. Observe that India has almost the lowest
actual and planned allocation.

In India, each local service area (LSA) has at least seven
and up to thirteen operators [3] and the spectrum is unevenly
divided between the operators. This is illustrated in Table II
for the Mumbai LSA.2 The table lists the amount of spectrum
allocated to each of the eight operators in the Mumbai LSA
in the four bands that are currently operational. The total
spectrum available in Mumbai is 105.7 MHz (paired) and
the spectrum held per operator on average is 15.1 MHz,
with a standard deviation of 7.7 MHz. The table also lists
the number of subscribers with each of the carriers and the
number of subscribers per MHz for each of the carriers. Once
again note the disparity among the carriers with a range of
57,000–609,000 subscribers per MHz among the carriers. This
disparity suggests that different operators require very different
cell densities to achieve the same target call drop probability.
Equivalently, if we assume comparable cell densities across
providers, the data suggests a wide disparity in their call drop
probabilities.

We now provide a quantitative feel for potential gains in
efficiency that can be effected through spectrum sharing via
the following stylised model. The cellular service is viewed
as a circuit multiplexed system with K = 40 circuits per
MHz. This is a simplified view of a GSM network. If we
assume a spectrum reuse factor of one and three sectors per
cell, then each cell sector can get a third of the spectrum.
This is an optimistic estimate but is illustrative. Using this
conversion, Table II lists the number of circuits per sector
that is available to each operator. Now let us consider two
service providers, say Idea and Aircel, with 85 and 59 circuits
per sector respectively. A load of 88 Erlangs/sector for Idea
would result in a 10% blocking probability while a load of
about 70 Erlangs/sector for Aircel would result in a blocking
of 20%. If the two just pooled their spectrum and operated as
a single entity, we would have a system with a load of 158
Erlangs/sector and 144 circuits. The overall system blocking
probability would be slightly more than 10%. In this case, the
customers of Aircel would see significant improvement while
those of Idea will actually experience a marginally higher
blocking. Thus full sharing need not benefit both. On the other
hand, if we assume a load of 59 Erlangs/sector for Aircel,
then its blocking operating alone would be 9.7%, whereas
the blocking in the ‘pooled’ system would be 5%. Thus, full
sharing would benefit both parties in this case.

The preceding calculation essentially illustrates that “full
sharing” need not in general be beneficial to both the parties.

2User information is obtained from [10] and spec-
trum information is obtained on 19 July 2015 from
http://telecomtalk.info/india-spectrum-data-sheet/134245/.



TABLE II
SPECTRUM ALLOCATIONS IN THE FOUR BANDS TO THE OPERATORS IN MUMBAI LSA.

Operator /Band 900 800 1800 2100 Total Ckts/Sct Subs (K) K Subs/MHz
Airtel 5.0 0.0 15.2 5.0 25.2 336 4,998 198
Vodafone 11.0 0.0 8.2 5.0 24.2 323 8,348 345
Idea 0.0 0.0 6.4 0.0 6.4 85 3,898 609
Reliance 0.0 5.0 5.0 5.0 15.0 200 5,749 383
Aircel 0.0 0.0 4.4 0.0 4.4 59 2,309 525
MTNL 6.2 2.5 6.2 5.0 19.9 265 1,125 57
Tata Docomo 0.0 6.2 4.4 0.0 10.6 142 3,627 342
Total 22.2 13.7 49.8 20.0 105.7 1,410 30,054 284
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Fig. 1. Markov chain representation of the probabilistic sharing model with
each service provider having one channel

This leads us to consider a more general sharing model where
the providers share a fraction of their resources with full
sharing being a special case.

III. A SIMPLE SHARING MODEL

Consider two service providers labeled S1 and S2 each with
one channel. Customers of provider Si arrive according to a
Poisson process of rate λi and the call holding time is unit
mean exponential for both the providers. Probabilistic sharing
works as follows. If a call arrives at S1 (resp. S2) and its
channel is being used by its caller, and if the channel of S2

(resp. S1) is free, then the call is accepted with probability x2
(resp. x1). For modeling convenience, we will assume that if
a call of S1 (resp. S2) is using a channel of S2 (resp. S1) and
if the channel of S1 (resp. S2) becomes free, then the call is
instantaneously shifted to S1 (resp. S2.). This is called call-
repacking and has been commonly used in models for cellular
systems since they were first introduced in [11]. This model
allows us to construct the Markov chain description of the
system shown in Fig. 1 where (n1, n2) represents the state of
the system with ni being the number of active calls of Si.

The Markov chain of Fig. 1 can be easily solved to obtain
the stationary probabilities. To obtain the blocking probabil-
ities, observe that an arriving call of S1 is accepted if the
system is in states (0, 1) or (0, 0), blocked with probability
(1− x2) in state (1, 0), and blocked with probability 1 if the
system is in states (0, 2), (2, 0) and (1, 1). Analogously for
calls of S2. The blocking probabilities, denoted by Bi(λ, x),

where x = (x1, x2) and λ = (λ1, λ2), can be shown to be

B1(λ, x) =
(1− x2)λ1 + x2λ

2
1/2 + x1λ

2
2/2 + λ1λ2

1 + λ1 + λ2 + λ1λ2 + x1
λ2
2

2 + x2
λ2
1

2

B2(λ, x) =
(1− x1)λ2 + x2λ

2
1/2 + x1λ

2
2/2 + λ1λ2

1 + λ1 + λ2 + λ1λ2 + x1
λ2
2

2 + x2
λ2
1

2

Substituting x1 = x2 = 0 in the above gives us

Bi(λ, 0) =
λi

1 + λi
,

the blocking probabilities when the providers do not share
their channels.

We can say that x determines the amount of sharing by the
providers and the natural question to ask is how much should
each provider share. Clearly, a sharing strategy x := (x1, x2)
is acceptable to Si if its blocking probability is less than that
without sharing. Further, if the providers are cooperating, then
a Pareto efficient sharing strategy that is also stable can be
sought. The definition below makes the preceding discussion
more precise.

Definition 1: A sharing strategy x is QoS-stable if
Bi(λ, x) < Bi(λ, 0) for all i. A sharing strategy x is Pareto-
stable if it is QoS-stable and if there does not exist another x′

for which B1(λ, x
′) < B1(λ, x) and B2(λ, x

′) < B2(λ, x).
We are now ready to state our main result.
Theorem 1: For any λ1, λ2 > 0, the set of Pareto-stable

sharing strategies is non-empty. Further, any Pareto-stable
sharing strategy will have xi = 1 for some i.

Proof: First, we characterize the set of QoS-stable sharing
strategies. Consider x 6= 0 and ρ ∈ [0, 1). Some simple algebra
yields that B1(λ, x) < B1(λ, ρx) if and only if

x2 > x1
λ22

2λ1 + λ21
,

Similarly, B2(λ, x) < B2(λ, ρx) if and only if

x2 < x1
2λ2 + λ22

λ21
.

Setting ρ = 0, we see x is QoS-stable if and only if

x1
λ22

2λ1 + λ21
< x2 < x1

2λ2 + λ22
λ21

.

Clearly, the set of QoS-stable strategies is non-empty if and
only if

λ22
2λ1 + λ21

<
2λ2 + λ22

λ21
.



The preceding condition is equivalent to

2λ1λ2 + λ1λ2(λ1 + λ2) > 0,

which is always true for any λ1, λ2 > 0.

Now that we have characterized the set of QoS-stable strate-
gies, we now analyse the subset of Pareto-stable strategies. We
consider the following three cases.
Case 1: 2λ2+λ

2
2

λ2
1
≤ 1.

In this case, we argue that the set of Pareto-stable strategies
is given by

P :=

{
(x1, x2) | x1 = 1, x2 ∈

(
λ22

2λ1 + λ21
,
2λ2 + λ22

λ21

)}
.

To see this, consider x ∈ P, and any QoS-stable x′ such
that x′ 6= x. We need to show that for some i ∈ {1, 2},
Bi(λ, x) ≤ Bi(λ, x′). If x′ ∈ P, this follows easily, since B1

is strictly decreasing in x2 whereas B2 is strictly increasing
in x2. If x′ /∈ P, there exists x′′ ∈ P such that x′′ = ρx′ for
some ρ ∈ (0, 1). Note that there exists i ∈ {1, 2} such that
Bi(λ, x) ≤ Bi(λ, x

′′). Moreover, since x′′ is QoS-stable, it
follows that

Bi(λ, x
′′) < Bi(λ, ρx

′′) = Bi(λ, x
′).

Thus, we have

Bi(λ, x) ≤ Bi(λ, x′).

This completes the argument that P is the set of Pareto-stable
strategies.
Case 2: λ2

2

2λ1+λ2
1
≥ 1.

In this case, an argument similar to that for Case 1 shows
that the set of Pareto-stable strategies is given by{

(x1, x2) | x2 = 1, x1 ∈
(

λ21
2λ2 + λ22

,
2λ1 + λ21

λ22

)}
.

Case 3: λ2
2

2λ1+λ2
1
< 1 <

2λ2+λ
2
2

λ2
1

.

In this case, an argument similar to that for Case 1 shows
that the set of Pareto-stable strategies is given by{

(x1, x2) | x1 = 1, x2 ∈
(

λ22
2λ1 + λ21

, 1

]}⋃
{
(x1, x2) | x2 = 1, x1 ∈

(
λ21

2λ2 + λ22
, 1

]}
.

Clearly, any Pareto-stable sharing strategy satisfies the prop-
erty that xi = 1 for some i. This completes the proof.

Although the system considered here is simple in that there
is only one channel with each provider, the closed form
expressions provide insight on efficient and socially optimum
sharing mechanisms. The rather counter intuitive result of
Theorem 1 in that it requires that one of the providers has to
always accept the others’ overflow calls, motivates an analysis
of a larger system. In the following section we describe a larger
probabilistic sharing system and present its analysis.

IV. PROBABILISTIC SHARING

As in the previous section, calls of Si arrive according to a
Poisson process of rate λi and have unit mean exponential
holding times. Provider Si has Ni channels and they are
pooled and used as follows. Letting ni denote the number
of active calls of Si that are present in the system, (n1, n2)
represents the state of the system. We will use call packing
like in the previous section, and have the following admission
policy. If a call from S1 arrives when the system is in state
(n1, n2) and
• if n1 < N1, it is admitted with probability 1,
• if n1 ≥ N1 and n1 + n2 < N1 +N2, it is admitted with

probability x2 and blocked with probability (1−x2), and
• if n1 + n2 = N1 +N2, it is blocked with probability 1.

A similar protocol is defined for calls of S2. It can be seen
that n = (n1, n2) evolves as a reversible Markov chain and the
stationary distribution, π(n) has the following product form
structure.

π(n) =
1

G
f1(n1)f2(n2)

where

f1(n) =

{
λn1/n! if n < N1

λn1x
N1−n
2 /n! if N1 ≤ n ≤ N1 +N2

f2(n) =

{
λn2/n! if n < N2

λn2x
N2−n
1 /n! if N2 ≤ n ≤ N1 +N2

G =
∑

n:n1+n2≤N1+N2

f1(n1)f2(n2)

Denoting the blocking probability for calls of Si under a
probabilistic sharing strategy x by B(p)

i (λ, x), we have,

B
(p)
1 (λ, x) =

∑
n:n1+n2=N1+N2

π(n)

+
∑

n:ni≥Ni,n1+n2<N1+N2

π(n)(1− x2),

B
(p)
2 (λ, x) =

∑
n:n1+n2=N1+N2

π(n)

+
∑

n:n2≥N2,n1+n2<N1+N2

π(n)(1− x1).

The well known Kaufman-Roberts recursion (see Chapter 6 in
[12]) can be adapted to efficiently compute G and the blocking
probabilities. We omit the description of the adaptation but
provide some numerical results and discuss these. We use
N1 = 10, N2 = 6, λ1 = 7 and λ2 = 6. This is representative
of a larger, uncongested S1 and a smaller, congested S2.

Figure 2 shows how the B(p)
i (λ, x) vary with x. We first note

that for a fixed x2, B
(p)
1 is significantly affected by increasing

x1. Further, the effect of a small change in x2 is significant,
especially for x2 closer to 1. While the latter effect is present
for B(p)

2 and is in fact more pronounced, the impact of change
in x2 appears to be minimal. Our extensive numerical analysis
indicates that this asymmetry in the effect of changes to x is
more pronounced when the relative loads on the two systems
are not comparable.
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Fig. 2. Plots of B(p)
1 (λ, x) as a function of x1 keeping x2 fixed (left panel)

and of B(p)
2 (λ, x) as a function of x2 keeping x1 fixed (right panel). We

have used N1 = 10, N2 = 6, λ1 = 7 and λ2 = 6.
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Fig. 3. Figure shows the blocking probabilities, B1(λ, x) and B2(λ, x) for
different x with the x indicated by the numbers against the circles.

We now investigate the stable x. Since the closed form
expression is hard to analyse, we take recourse to a numerical
study. We evaluate B(p)

i (λ, x) for different x and in Figure 3,
we indicate the set of QoS-stable x and the corresponding
blocking probabilities. Observe that the Pareto-stable points
seem to satisfy x2 = 1. This, and a more extensive numerical
study, seems to indicate that Theorem 1 is possibly more
generally true and not just for N1 = N2 = 1. A better
analytical understanding of this model is being pursued.

V. DETERMINISTIC SHARING

We now describe a deterministic scheme and its analysis.
As in the preceding section, we consider two service providers

Fig. 4. A circuit multiplexed network whose analysis is the same as the
analysis of the deterministic sharing scheme.

with Ni, λi, ni and n having the same interpretation as in
the previous section. Rather than probabilistically sharing a
channel, service provider Si provides ki ≤ Ni of its channels
to a common pool and the combined system operates as
follows. When the system is in state n and a new call from
S1 arrives then it is admitted if n1 + n2 < N1 + N2 and
n1 < N1 + k2, otherwise it is dropped. Similarly, a call from
S2 is admitted if n1 + n2 < N1 +N2 and n2 < N2 + k1. In
this scheme provider Si shares upto ki of its channels with the
other provider. The set of feasible n, denoted by S, is defined
as follows.

S = {n : n1 + n2 ≤ N1 +N2, n1 ≤ N1 + k2, n2 ≤ N2 + k1}

Once again, we can show that n evolves as a reversible Markov
chain over S and the stationary distribution, denoted by π(n)
has a product form structure. Specifically, for n ∈ S,

π(n) =
1

G(S)
λn1
1

n1!

λn2
2

n2!
,

G(S) =
∑
n∈S

λn1
1

n1!

λn2
2

n2!
.

The blocking states for calls of S1 is obtained from the pro-
tocol description as SB1 = {n : n1 + n2 = N1 +N2 or n1 ≥
N1+k2}. SB2 is analogously defined. Here too, the Kaufman-
Roberts recursion can be adapted to calculate the stationary
and blocking probabilities. We will omit the discussion on that
adaptation. While the exact result is appealing, an approximate
result provides significant insight that is asymptotically exact.
We describe this analysis next.

Consider the circuit multiplexed network shown in Figure 4.
There are two routes in the network—route 1 uses links 1 and
3 while route 2 uses links 2 and 3. The number of circuits on
the three links is as shown. A call on route 1 is lost if either of
links 1 or 3 are full; similarly, a call on route 2 is lost if either
of links 2 or 3 are full. It can be checked that the state space
and the stationary distribution for this network is identical to
the deterministic sharing system when the offered load is λi
Erlangs on route i. Further, the blocking probability of route
i calls is the same as that of Si in the deterministic sharing
system.

The network of Figure 4 can be analysed using the reduced
load approximation and Erlang fixed point method of [14]. A
short summary follows.



0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25
Service Provider−1

Traffic Intensity (Erlang)

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

 

 
ERT−Overflow
Erlang Fixed Point
Exact−Method

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25
Service Provider−2

Traffic Intensity (Erlang)

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

 

 
ERT−Overflow
Erlang Fixed
Exact−Method

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25
Service Provider−1

Traffic Intensity (Erlang)

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

 

 
ERT−Overflow
Erlang Fixed Point
Exact−Method

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25
Service Provider−2

Traffic Intensity (Erlang)

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

 

 
ERT−Overflow
Erlang Fixed
Exact−Method

Fig. 5. The two graphs on the left are for k1 = k2 = 1 and the two on the
right are for k1 = 10 and k1 = 6.

Let E(ν, C) be the Erlang-B formula for a load of ν Erlangs
on C circuits. Define

b1 = E(λ1(1− b3), N1 +K2)

b2 = E(λ2(1− b3), N2 +K1)

b3 = E(λ1(1− b1) + λ2(1− b2), N1 +N2). (1)

From [14], the set of equations (1) form a vector fixed point
equation and has a unique solution. Further, the bi can be com-
puted via repeated substitution. bi above are interpreted as the
‘link’ blocking probabilities. The route blocking probabilities
can be obtained as

B
(d)
1 (λ, k) = 1− (1− b1)(1− b3)

B
(d)
2 (λ, k) = 1− (1− b2)(1− b3) (2)

Here k = (k1, k2) denotes the sharing strategy.
The goodness of the approximation is examined through

numerical results. To make comparison easy, we use λ1 = λ2
and, as before N1 = 10 and N2 = 6. For two sets of k,
Figure 5 plots B(d)

i (λ, k) as obtained from the exact analysis,
from the Erlang fixed point analysis and from a second
kind of approximation that uses moment matching techniques
called equivalent random theory (ERT). As can be seen, the
approximations do well and can be used to obtain additional
insight into the economics of partial sharing. Specifically, the
economic interpretation from [16] is directly applicable.

We now explore the effect of changing k on the blocking
probabilities of the two providers. Figure 6 shows the effect
of k on the blocking probabilities. We see that the results
are much like that in Figure 2 except that the role of x is
now played by k. A good mapping between x and k is not
straightforward and is subject of future work.

Turning to our key interest—analysing stable k, Figure 7
shows the QoS-stable blocking probabilities for different k
when N1 = 10, N2 = 6, λ1 = 7 and λ2 = 6. It is interesting
to compare this with Figure 3. Once again, it appears that a
Pareto-stable sharing would require S2 to put all its channels
into the common pool.

VI. SHARING AGREEMENTS

In the previous sections, we have studied two spectrum
sharing models: a deterministic sharing model and a proba-

0 1 2 3 4 5 6 7 8 9 10
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12
Service Provider−1 

Channel Shared by Provider−1 

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

K2 = N2

K2 = 0

0 1 2 3 4 5 6
0.05

0.1

0.15

0.2

0.25

0.3
Service Provider−2 

Channel Shared by Provider−2

B
lo

ck
in

g 
P

ro
ba

bi
lit

y

K1 = 0

K1 = N1

Fig. 6. For a system with N1 = 10, N2 = 6, λ1 = 7, and λ2 = 6, left
panel shows B(d)

1 (λ, k) as a function of k1 for a fixed k2 while the right
panel shows B(d)

2 (λ, k) as a function of k2 for a fixed k1.

0.05 0.055 0.06 0.065 0.07 0.075 0.08
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28
Stable Blocking Probability Points

Blocking Probability of Provider−1

B
lo

ck
in

g 
P

ro
ba

bi
lit

y 
of

 P
ro

vi
de

r−
2

1,2

2,2
2,1

1,1

2,3

2,5
2,6

3,5
3,6

3,3

0,0

1,31,4

2,4

3,4

1,5
1,6

Fig. 7. Figure shows the blocking probabilities for different k with the k
indicated by the numbers against the circles.

bilistic sharing model. For these models, we characterised the
call blocking probability of each provider under all possible
sharing configurations. In this section, we turn to the game
theoretic question of which sharing configuration (if any) the
two providers would agree upon, given that each provider’s
interest is to minimise its own call blocking probability.

A natural game theoretic framework for capturing a sharing
agreement between the service providers is the Nash bar-
gaining solution [15]. In the following, we describe how the
sharing models proposed in the previous sections enable us to
apply the Nash bargaining framework to the spectrum sharing
problem. To keep the discussion brief, we focus only on the
deterministic sharing model here.



We begin with a brief description of the Nash bargaining
solution, following by its application to the deterministic
sharing model.

A. Nash bargaining solution

A bargaining problem seeks to capture situations where the
utility of each player depends on the actions of all players, and
the players can ‘bargain’ and agree on a mutually beneficial
action profile. A two-player bargaining problem is described
as follows. For i ∈ {1, 2}, let ui denote the utility of Player i.
The bargaining problem is defined by the tuple (U, d). U ⊂ R2

is the set of feasible utility pairs (u1, u2), i.e., the set of utility
pairs that can be achieved over all action profiles. It is assumed
that the set U is convex and compact. d = (d1, d2) ∈ U is the
disagreement outcome; di is the utility of Player i if the players
fail to reach an agreement. A bargaining solution is a function
f(U, d) that specifies an outcome (f1(U, d), f2(U, d)) ∈ U
corresponding to the ‘bargaining’ between the two players.

Nash [15] proved that the following four axioms uniquely
specify a bargaining solution fN (U, d), called the Nash bar-
gaining solution (NBS).

1) Pareto efficiency: The solution is Pareto efficient, i.e.,
there does not exist a (v1, v2) ∈ U such that vi ≥
fi(U, d) for all i and vi > fi(U, d) for some i.

2) Symmetry: If (v1, v2) ∈ U implies that (v2, v1) ∈ U,
and d1 = d2, then f1(U, d) = f2(U, d).

3) Invariance to equivalent utility representations:
Given a bargaining problem (U, d) and constants α > 0,
β ∈ R, solution corresponding to the transformed
problem (Ũ , d̃), where

Ũ = {(αu1 + β, αu2 + β) : (u1, u2) ∈ U},
d̃ = (αd1 + β, αd2 + β),

satisfies fi(Ũ , d̃) = αfi(U, d) + β for each i.
4) Invariance to irrelevant outcomes: Given two bar-

gaining problems (U, d) and (Ũ , d), where U ⊆ Ũ , if
f(Ũ , d) ∈ U, then f(U, d) = f(Ũ , d).

Formally, Nash [15] proved the following result: There is
a unique bargaining solution fN (U, d) that satisfies the above
axioms. Moreover, fN (U, d) is the unique solution of the
following optimization.

max . (u1 − d1)(u2 − d2)
s.t. (u1, u2) ∈ U

u1 ≥ d1, u2 ≥ d2

B. Applying the Nash bargaining framework to spectrum
sharing

We now discuss how spectrum sharing problem can be cast
into the Nash bargaining framework. Consider the determinis-
tic sharing model introduced in Section V. Let B(d)

i (k) denote
the blocking probability of Provider i, corresponding to the
sharing configuration k = (k1, k2). Define

Ũ = {(−B(d)
1 (k),−B(d)

2 (k)) : 0 ≤ ki ≤ Ni, i = 1, 2}.

λ2 Nash bargaining solution
(k1, k2) p (k′1, k

′
2)

2 (10,1) 0.761 (10,2)
4 (10,4) 1 –
6 (10,10) 1 –
8 (2,10) 0.934 (3,10)

10 (1,10) 0.244 (2,10)
TABLE III

N1 = N2 = 10, λ1 = 6

The bargaining problem (U, d) is defined as follows:

U = conv(U ′),

d = (−B(d)
1 (0, 0),−B(d)

2 (0, 0)).

Here conv(A) denotes the convex hull of A. Note that we are
taking the utility of a provider to be (−1) times its blocking
probability. Indeed, the U ′ is the set of all utility pairs achiev-
able under different (static) sharing configurations. By taking
U to be convex hull of U ′, we are allowing for agreements
involving time sharing between different spectrum sharing
configurations k. For example, we allow for agreements of
the following form: configuration (k1, k2) is followed for a
fraction of time p, and configuration (k′1, k

′
2) is followed for

fraction of time 1− p, where p ∈ [0, 1]. It is easy to see that
the NBS corresponds to a convex combination of at most two
(static) configurations.

C. Numerical experiments

In this section, we present some numerical experiments,
computing the spectrum sharing agreement postulated by
the NBS in various scenarios. For our experiments, we set
N1 = N2 = 10, λ1 = 6, µ = 1. For different values of λ2,
the sharing agreement corresponding to the Nash bargaining
solution (NBS) is tabulated in Table III. Note that in general,
the sharing agreement is of the following form: (k1, k2) for a
fraction of time p, and (k′1, k

′
2) for a fraction of time 1 − p,

with p ∈ [0, 1].
We note that time-shared as well as ‘static’ configurations

may emerge as the NBS. When λ2 is much smaller than λ1,
the NBS corresponds to Provider 1 pooling all its channels
and Provider 2 pooling only a few. In the symmetric scenario,
i.e., λ2 = λ1, the NBS corresponds to both providers pooling
all their channels. Finally, when λ2 is much larger than λ1,
the NBS corresponds to Provider 2 pooling all its channels
and Provider 1 pooling only a few. Interestingly, note that
each NBS configuration involves at least one of the providers
pooling all its channels.

VII. REVENUE SHARING

In the previous sections, we study spectrum sharing between
two providers, with each provider being interested solely in
minimizing its call blocking probability. An alternative setting
is where the providers can also make side payments to one
another. This is equivalent to the scenario wherein the two
providers form a coalition and the total revenue of the coalition
is split between the providers in a suitable manner. In this
section, we briefly discuss this scenario.



Since there is partial sharing in the coalition, the key
question is how revenue should be shared among the members,
and hence several revenue sharing models can be envisaged.
Let λi be the offered load to Si, Bi the blocking probability
experienced by its callers and ri be the revenue per carried
Erlang. Let B̂i be the blocking experienced in Si without
spectrum sharing. The Shapley value is usually used to share
the revenue or costs in a coalition and we will use that here.
Before proceeding, note that the revenue for Si without the
coalition, denoted by R̂i is given by

R̂i = riλi(1− B̂i)

A simple model would be to pool the total revenue and use
the Shapley value to share this revenue. The total revenue for
the coalition, Rt, is

Rt = r1λ1(1−B1) + r2λ2(1−B2),

and provider Si would receive

R1 =
1

2

{
R̂1 +Rt − R̂2

}
R2 =

1

2

{
R̂2 +Rt − R̂1

}
An alternative would be to guarantee each provider R̂i and

share only the surplus arising from the coalition,

SR = r1(B̂1 −B1)λ1 + r2(B̂2 −B2)λ2

in the Shapley ratio. Note that this is the revenue earned by
the system in the states made possible by the coalition. It can
be shown that both these schemes result in the same revenue
for the providers.

VIII. DISCUSSION

In this paper we explored the notion of partial sharing of
resources using two analytically tractable models. Of course
these are simple models and several variations are immediately
possible. For example, in probabilistic sharing, xi could be
state dependent. Similarly, each provider could release a
channel into the common pool based on the current state of the
system. We could also develop a spot market where the price
of a free channel is dynamically decided and dependent on the
state of the system. These models will need to be explored.

A key question that needs to be expressed is the network
formation. In probabilistic sharing this would mean determin-
ing xi,j , the probability with which an overflow call from Sj
is accepted by Si. The stable xi,j would be of interest.
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