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Abstract—Consider a set of active elastic sessions over aof course is not acceptable in practice, as it might result in
network. Session traffic is routed at each hop (potentially throub  unbounded packet queues and delays. The second terfn of
multiple network paths) based only on its destination. Each j, (1) which is an increasing function of the link utilizatis
session is associated with a concave increasing utility function of ’ L )
its transfer rate. The transfer rates of all sessions and the roting represent_s the Igve! of corygesuon in the ”etWF’rkv_ see ﬁ]’.[
policy define the operating point of the network. We construct a and the discussion in Section I-A. Thus our objective fuorcti
metric f of the goodness of this operating point{ is an increasing f tempers the social utility by a penalty for congestion in
function of the session utilities and a decreasing function of the the network. An alternative approach is to a priori specify a
extent of congestion in the network. We define ‘good’ operating upper bound on the link utilizations (which would be stctl

points as those that maximizef subject to the capacity constraints - . .
in the network. This paper presents a distributed, iterative less than one). While this approach might help bound delays,

algorithm for adapting the session rates and the routing policy Our objective function explicitly captures the tradeoffieeen
across the network so as to converge asymptotically to the sethigh data rates and network congestion.
of ‘good’ operating points. The algorithm updates session rates  In much of the recent literature on adaptive rate control and
and routing variables concurrently, and is therefore amenable qyting, it is assumed that each session is associated with a
L%ncgj:rrg)#ttic:)d%rglelnsecgﬁqlgr;;eg:gggg.ri;gtreojsglvergence of e redefined set of network paths; each session source adapts
) _ _ ) the volume of flow along each of these paths. Such a routing
Index Terms—Optimal routing, optimal rate control, multipath  gcheme s clearly not scalable. In this paper, we employ the
routing, two timescale iterations. ; _ ) ’ )
routing model of [6], [7]; each nodeé forwards a fraction
p@ ) of the traffic it receives for destinatiahnto neighboring
. INTRODUCTION node j. This distributed, destination-based, multipath routing
ONSIDER a network represented by an edge-capacitatgtobviously more amenable to implementation.
connected digrapt (N, £), where denotes the set of In this paper, we present and rigorously prove convergence
nodes andC the set of links interconnecting the nodes. Linkf a distributed, iterative algorithm for the sessions anel t
I € L has capacity;. A set of end-to-end elastic sessionspetwork to attain respectively, the globally optimal tranis-
S shares the resources (link capacities) of this network. W¥on ratesr, and routing fraction@’&’j) that maximizef. Our
assume that each sessiog S submits traffic to the network algorithm allows for the session rates and routing varible
according to a quasi stationary random process with (aggptito be iterated simultaneously, i.e., it avoids the ‘two-level
transfer rater,. Each session is associated with a concaveconvergence structure’ that is typical in solutions of non-
increasing utility function, (-) of its transfer rate. We define convex network optimization problems with variables from
for each link! € £ a convex increasing cost function(-) multiples layers of the protocol stack; see [8], [9] for exdes
of the mean floww; carried by it. In this paper, we proposeof such solutions. We discuss the issues with such two-level
an algorithm that iteratively adapts the session rates had hested iterations in Section Il

routing, seeking to maximize To summarize the above discussion and delineate this work
from other work in network optimization,
f= ZSUS(J:S) - lz;@(wl) (1) 1) The objective function factors in social utility of the
_ < € sessions as well as a cost for link congestion.
subject to the capacity constraints of the network. _2) The routing algorithm we consider is scalable and hence
The first term of f in (1) represents the ‘aggregate social more practical.

utility, a quantity many rate control algorithms proposed  3) The iterations for the routing and the rate variables are
the literature seek to maximize, e.g., [1]-[4]. It is easysé@ concurrent.

that at an operating point of the network that maximizes this 4) The convergence of the iterative algorithm is proved

quantity, some of the links would operate at saturationsThi rigorously.
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approach. Sections IV=VI describe the algorithm in detad a of (P1). [2] presents a distributed gradient projectionelas
prove its convergence. Section VIl discusses the mechanisolution of the dual of (P1) for a more general class of coacav
for the information exchange required by the algorithm.-Seatility functions.

tion VIII presents simulation results for our algorithm. The generalization of (P1) to allow multipath routing has
also received significant attention. It is easy to see thating
A. An interpretation of f the flow of each session through multiple network paths (the

An appealing interpretation of the second termjfoin (1) Ferms path and route will be used interchangeably) cantr.esul
Re? better usage of the network resources and a higher

is as a penalty for the delay experienced by the packets in { - . )
network. Assume that the average number of packets, eit Srg”?gate Ut'“tyzSES Us(s). However,_ if each session’s
ow is to be apportioned across multiple paths, then the

queued at the input of link or in transmission is a function S : :
na(wy) of its throughputiy. Taking é; (w;) = o ny (w;) where network optimization has to determine not only the the sessi
o > 0, we can rewrite (1) as follows rates, but also the fractions of session flows to be routaujalo

’ ' each path. Thus the multipath generalization of (P1) coetbin

routing and rate control.
ro= Z Us(ws) — (Z m) 2) The most common approach towards a multipath general-
€8 ler ization of (P1) is as follows. A set of routds; is defined for
= Y (Uslxs) —an®) (3) each session. Let R := U,csR,. Denote the rate on route
sE€S r € R by y,.. The following is a multipath generalization of
= Y (Uias) — az.D,). @ (P1).
seS
Here n® and D, are, respectively, the average number of max. ZUs(ﬂcs) = ZUS (Z yr)
packets of sessios in the network at any time and the s€S s€S rER; (P2)
average delay experienced per packets.of4) follows from st w = Z Yr < vV el
(3) via Little’s Theorem. Written in the form (2), maximizing routesr using link !
f implies maximizing the sum total of user utilities subjet t yr >0 vV reR

a penalty proportional to the average total number of packej1any distributed solutions to this problem have been pro-
say n in the systerr_] at_any time: may be viewed as an posed, e.g., [1], [3], [4], [12]. [1] suggests multipath gen
indicator of congestion in the network. We remark here thafizations of their algorithms for the single route per &®ss
this is the idea underlying isarithmic flow control [5]. Thegge. [3] converts (P2) into an equivalent unconstrainet-pr
forms (3) and (4) indicate that we are maximizing the sum oty by adding (non-differentiable) penalty terms to the ob-
of delay sensitive utilitied/, () — a x,D, of all sessions. jective function corresponding to link capacity consttaiand
The second term represents a penalty corresponding 0 fisents a solution that solves it using subgradient piiojec
average delay experienced by a packet of the session. S“C?,owmg the dual of (P2) directly (i.e., a multipath gener-
delay sensit_ive uFiIity functions have been encountereth@ alization of the approach of [2]) is complicated by the fact
reverse engineering of TCP-IP networks [10]. that the objective function of (P2) is not strictly concavishw
respect to the path ratgs. The objective function of the dual
B. Background and Relation to Previous Work is therefore, not guaranteed to be differentiable. [12jgssts
A standard technique in network resource allocation is to d@ subgradient projection based algorithm for solving thal du
fine the desired operating point of the network as the saiuti®roblem. It has however been observed that the session rates
of an optimization problem. Iterative procedures to atthim Obtained by the algorithm of [12] may exhibit oscillatory
optimum are then derived. It is of course desirable thatethel@ehavior [3]. In [4], quadratic terms are added to the object
iterative procedures be suitable for distributed impletagon function of (P2) to make it strictly concave with respecttte t
in the network. We too will follow this same course. OptimaPath rates and the dual problem is solved using a proximal
rate control of elastic traffic is an old jungle problem angit Optimization algorithm [13].
instructive to begin a survey with the following formulatio Using the same routing as in (P2), Chapter 6 of [5] presents
the following formulation where the objective function in-

max. Y Us(xs) cludes link congestion costs.
seS
st w= Y w<a ¥ leL (PD min. Y es(zs) + ) di(w)
sessionss using link [ seES lel
Ts >0 vV se€8 st w = Z y<c¢ V €L (P3)
This assumes a single fixed route for each session. Distdbut routesr using link
yr >0 YV reR

primal and dual algorithms for solving a relaxation of (P1)
based on the o.d.e. method are described in [1]. For tHere,c(zs)is a convex decreasing penalty for the session rate
case of logarithmic utility functions, [11] interprets tgbal =, being too small. Interpreting-e, as a utility function for
optimum of (P1) as a Nash bargaining solution and presemsessiors, (P3) is equivalent to a maximization of our objective
a distributed gradient projection based solution of thel dunction f subject to the same constraints. Various gradient



based primal algorithms for solving (P3) are discussed Jn [5rom i to k, we may restrictV (i, k) to contain only those
An important practical issue in the online implementationeighbors; of i that satisfyH (j, k) < H(i, k).

of a solution of (P2) and (P3) is that the source node of each(Al) implies that corresponding to eaéhe N/, the sets

session needs explicit knowledge of all the routes used.by (i, k) for « € N'\ {k} induce a directed acyclic subgragh

Furthermore, this route needs to be encoded in the packetsg with sink k, over which traffic generated in the network

or all the nodes need to be capable of path-based routimgth destinationk flows.

Such source routing or path-based routing schemes may b&ori,k € N, i # k, let p} = (pf; ;.7 € N(i,k)). The set

infeasible in a large network where there could potentib8y of allowable values op¥ is '

a large number of paths for each session. In this work, we

address this issue by adopting a destination-based nthitipa O ={p; >0 | Z pﬁ-,j) =1}

routing model, i.e., the forwarding rule for packets amtyiat JEN(i,k)

a node_ isa fL_mction of only the packet destination._As we will The routing vector, obtained by concatenating thé is

see, this routing model makes our resource allocat.|on pmublan element of the Cartesian product space

non-convex. As a result, our algorithm as well as its proof of

convergence differ considerably from those of the refezenc Q= H QF.
mentioned previously. ;;E]g/

We now delineate our work from other research on cross
layer optimizations. As must be evident from our earlier Let a; s(p) denote the fraction of the total flow of session
discussions, our interest in this paper is in the problenatsf r routed through link. Clearly, a; s is a sum of products of the
control and routing of elastic traffic in a wireline netwokie routing fractions. Define theC| x |S| routing matrix A(p) =
adopt the traffic model of [1], i.e., we model the sessionssatd[a:,s(p)]]. The vector of link flowsw(z,p) = (wi(z,p),l €
but not the link queue lengths. In our case, link congestion &) = A(p)z. The capacity constraint on the network is thus
modeled (indirectly) via a convex function of the total floww(z,p) = A(p)x < c.
carried by the link. There is considerable recent liteatinat ~ Our optimal multipath rate control and routing is defined
focuses on rate control based on the occupancy of the lik the following optimization problem.
gueues, especially in the context of wireless networks. For

example, see [14]-[16]. max. Zs Us(zs) — ; ¢ (wi(z, p))
sE S
st. Az <c (P4)
Il. PROBLEM FORMULATION x>0
pE

We now describe the network model and the problem
formulation. Recall that a s& of infinitely backlogged, elastic (P4) is not a convex program because the feasible region of
sessions shares the network, represented by the connethedate and routing variables is not convex. We presentisn th
digraphG(\, £). Each sessior € S is defined by an origin paper a distributed, iterative algorithm in which
or source node(s), a destination nodé(s) and a concave 1) the source(s) of each session € S adapts its transfer

increasing utility functionlUs : R, — R of its transfer rate rate z, and
z,. Letx = (z4,s € S) denote the vectot of session rates.  2) each node adapts the routing fractiong?, for k
Link [ € £ has capacity; andc = (¢;,1 € £) denotes the N\ {i},

vector of link capacities. ) ) ) so that(z, p) across the network converges asymptotically to
For each node € V, defineN (i, k) to be the set of neigh- 5 giohal optimum?® of (P4). Note that the routing model is

bors of nodei to which packets with destination € NV'\ {i}  poth destination-based and completely distributed.
are forwarded. Node forwards a fractiorpfi ; of the traffic

it receives for destinatiok to neighborj € N(z’, k) on link
(i,7). 2 The setsN(i, k), defined for alli,k € N, i # k Il. SOLUTION APPROACH
determine the set of paths that the packets of each sessio@ur solution will involve transforming (P4) into an equiva-
can take. By appropriately restricting the s&iéi, k), we can |ent program (P5). In this section, we describe this tramséo
ensure loop-free paths for all sessions. We shall hentefofion and the outline of our approach towards solving (P5). We
assume the following. begin by stating our assumptions on the functions repragent
(A1) The setsN (i, k) for all i,k € NV, i # k are defined (and the session utilitied/;(-) and the link costsp(-).
known at nodei) so that the flow between any sourcga2) For all s € S, U,(-) is monotonically increasing,
destination pair gets routed through loop-free paths. strictly concave and twice continuously differentiable
We note here that this a priori establishment of loop-freapa over (0,00) with U/ (z,) < 0 for all zy > 0. Also,
for all sessions may be achieved by a simple flooding of link  lim,, o+ Us(zs) = —oc.
weights. If H(i, k) denotes the weight of the shortest patA3) For all I € L, #(-) is monotonically increasing,
strictly convex and twice continuously differentiable ove
1All vectors are taken to be column vectors.

2We refer to a link by a single index, e.d., or by the directed pair of  3Henceforth, unless explicitly stated otherwise, an “optimiuefers to a
nodes that it connects, e.ds, j). global optimum.



[—ei, ¢) for some smalk; > 0. Additionally, ¢} (w;) > 0  p. (P5-TL) turns out to be a multipath generalization of the ra
for all w; € [—e;, ¢;) andlimy,, ¢, ¢1(w;) = . control problem studied in [2]. We will show in Section IV
The need for the extension of the definition of the link codhat its dual can be iteratively solved by a gradient prepect
function ¢;(-) over the small negative rande-¢;,0) will be method to obtain unique optimal Lagrange multipliersp)
explained later in this section. and the unique flow ratege*(p), z*(p)). As in [2], we will
(A2) guarantees that at an optimuh, p) of (P4), all ses- Se€ that the Lagrange multipliekswill admit an interpretation
sion rates are strictly positive, i.g:,> 0. (A3) guarantees that as link prices.
all link utilizations are strictly less than one, i.e:(Z, p) < c. Now, let U(p) denote the optimum value of the objective
Both are clearly desired properties of the optimum point. function of (P5-TL). With this notation, (P5) is equivaletot
We introduce slack variables = (z;,l € L) defined by
z =c¢ — w(x,p). Define V() == —¢i(e; — z). This
allows us to rewrite (P4) as follows.

max. U(p)

st. peQ (PS-NL)

We will show in Section V that the gradient d@f(p) can

max. Z Us(zs) + ZVI(ZI) be computed as a function of (p) and (z*(p), z*(p)). This
s€S le suggests the following abstract nested iterative algaritor

st z+Apz=c (P4a) solving (P5). In the inner loop, keep the routing fractioned
I?ég 0 and perform iterations corresponding to (P5-TL) to obtain
p

A*(p) and (z*(p), z*(p)). In the outer loop, use these values
(A3) implies that for alll € £, V;(-) is monotone increas- to update the routing fractiqns usi_ng an ascent algorithm to
ing, strictly concave and twice continuously differenteab solve (P5-NL). We will show in Section V that the sequence of
over (0,¢; + ¢ with V}"(z;) < 0 for z; € (0,¢;+¢] and Session rates and routing fractions generated by such asche

lim,, o+ Vi(21) = —o0. will converge to an optimum of (P5).

For eachs € S, define M, := EjeN(O(s) d(s)) Co(s).5)- An online implementation of the above mentioned nested
M, is the sum total of the capacities of the links available t8cheme in a distributed setting would imply that routing
session source(s) to route its flow. Define fractions are updated at a slower timescale than the session

rates. That is, at a faster timescale, a transport layeritigo
I'={(x,2) [0<zs <My, 0z < +af. updates flow rategz,z) and link pricesA and at a slower

Any feasible(z, z) of (P4a) must of course lie if. However, fimescale, a network layer algorithm updates the routing

it will aid our analysis to add to (P4a) the redundant costra fractionsp. Note that this is an approximation to the abstract

(z,z) € I. Note that the extension in the definition of(-) scheme described above, since the network layer updates use

over [—¢;,0) allows the the objective function of (P4a) to benly approximately equilibrated values af,z) and A from

defined overl. the transport layer algorithm.

Since V(Zl) is Strict'y increasing inZl, we may further In Optimization problems inVOIVing two sets of Variables,
replace the equality constraint of (P4a) by an inequality t#is two timescale’ solution technique of using a system of

obtain the following equivalent program. nested iterations, where the inner level of iterates of @te s
of variables is expected to approximately converge between
max. ZUS(:L'S) + ZVz(Zz) iterations at the outer level of the other has been suggested
SES leL in, among others, [8], [9]. However, in an online distritdite
st z+Apr<ec (PS)  implementation it is difficult to determine when to termieat
(z,2) €1 the inner loop of iterations. Also, to prove the convergeote
peQ the iterative scheme, it is necessary to analyze the effiect o

Consider a solutioriz, 2, p) of (P5). Clearly,(i, 2, 5) solves point of termination of the inner loop on the convergence of

(P4a) and z, p) solves (P4). Notice from the structure of (P5jhe outer loop.

that the slack variable; may be viewed as the volume of An alternative solution to such ‘two timescale’ iterative

a ‘phantom flow’ on link! with the utility function V;(z;). Schemes that is both elegant and provably correct, has been

Following this interpretation, we shall henceforth referthe described in [17] in the stochastic approximation framéwor

tuple (z, z) as flow rates. Note that; can be controlled by This scheme uses a single iterative loop with concurrent

the transmitting node of link. updates of both sets of variables, their stepsizes separate
We now discuss the approach to solve (P5). If we keep thg an order of magnitude. We adapt this method to devise

routing fractionsp in (P5) frozen, we obtain the following & synchronous iterative algorithm that updates all vaesbl

program. concurrently and converges to the set of solutions of (P5).
This is the key contribution of this paper.
max. Y Us(z.)+ ) Vi(a) There has been some recent work that has explored ideas
s€8 leL (P5-TL) similar to ours. A problem formulation similar to ours hagbe

st z+Ap)r<c reported in [9]. However, the update scheme proposed isibase
(#,2) €1 on the ‘two timescale’ technique of nested iterations dbsdr
In this problem, the routing matriA is a constant. This makesearlier. Further, to prove the convergence of our conctirren
(P5-TL) a convex program parametrized by the routing vectapdate scheme, we rigorously prove the convergence of the



nested iterations. le L,

More recently, a general network utility maximization prob A _ U s() 6
lem involving two sets of variables in considered in [18].€Th s(M.p) jreg[?lﬁﬁ () A p)zs, ©)
convergence of an iterative algorithm that makes conctirren z(\p) = argmax Vi(z)— Nz @)
updates to all variables using the idea of [17] is also proved 2€[0,c14€]

However, we note that our problem (P4) is not of the fom?hus each session souraés) can compute, (), p) given its
considered in [18]. In particular, the problem considered i Cost per unit flowg®(\, p) and the transmitting node of each

[18] is assumed to be convex, whereas (P4) is a non- CONEX 1 can computez; (A, p) given the cost per unit link usage
optimization problem. AL

Sections IV and V describe respectively the transport Iayer-rhe dual of (P5-TL) is:
and the network layer algorithms, in the abstract nestert,spi
i.e., with the transport layer algorithm seeing a fixgdand &H>1B1D()\ )
the network layer algorithm seeing equilibrated link psiead
flow rates. We then use the developments of Sections IV aff
V to prove convergence of our proposed scheme of concurrentp(\ p) = max L(z,z, A, p) = L(x(X, p), z(\, p), A, p)
updates for all variables in Section VI. (z,2)€1

D()\, p) is convex and continuously differentiable k see
[13], pp. 669. LetG(\, p) = VAD(A, p)*. The components of

ere

IV. TRANSPORTLAYER ALGORITHM G(A,p) are given by
_0D(\,p)
This section describes the transport layer algorithm whichGl()"p) - oN cl_zl()"p)_z ais(Pxs(A:p)- (8)

iteratively solves (P5-TL), treating the routing vecioras a ses

parameter ir. We now characterize the dual of (P5-TL). .
Lemma 1. The dual program of (P5-TL) has a unique
solutlon)\*( ).
Proof: We know that the solution(z*(p),z*(p)) of

(P5-TL) is a convex program with no duality gap. Since
the objective function is strictly concave i, z), and I is

compact, (P5-TL) has a unique primal solutiar (p), *(p))- the primal problem (P5-TL) lies in the interior of.

H * * 0
iﬁ::)huegrho(lﬁzzhizngeéﬁ:rz Imglégraﬁgtrgfg}iZn(pgz (55-%_.) blg; A (p denotes a solution of the dual program, then
’ A*(p)) must satisfy the KKT conditions; see

p will be recorded explicitly. Theorems 6 2.5 and 6.2.6, pp. 209 in [19]. Therefore, we
As in [2], our approach will be to solve the dual of (P55,

TL) iteratively. In the following we W|_II first formqlate thg Vi (p) = A\i(p) ¥ e L. )
dual program of (P5-TL) and prove uniqueness of its solution

We then introduce a gradient based projected o.d.e., toajecThe uniqueness of the primal solutigix*(p), z*(p)) thus
ries of which converge to this solution. This o.d.e. inspirémplies that the solutiom*(p) of the dual is unique and is

our discrete-time algorithm over the Lagrange multipliefs also strictly positive. n
(P5-TL). It follows that the objective function of (P5-NLY (p) =
Let A\ = (\,l € L) denote the vector of Lagrange™itr>o D(A,p) = D(X"(p),p). Also, the optimal flow rates
multipliers. The Lagrangian of (P5-TL) is: (@ (p), 2" (p)) = (x(A"(p), ), 2(A" (p), p)) - We shall describe
in this section an iterative algorithm on the Lagrange multi
L(z,z,\,p) = Z Us(zs) + Z Vi(z) pliers \ that converges ta*(p).
s€S leL Lemma 2: There exists a strictly positive € ]R‘f‘ 5> such
ANz + A(p)xr —¢) that A*(p) < ¢ for all p € Q.
_ Z (Us(xs) — ¢* (0, p)s) Proof: We prove in Appendix D thah* : Q — R‘f‘ is a
ses continuously differentiable mag. Since(2 is a compact set,
it follows that \*(Q2) is compact and therefore boundedm
+ ; Vi(zt) = hiz) +ATe - (5) Let A denote the hyperrectang{e. € RI*I | 0 < X <¢}. Itis

, assumed that the transmitting node of each lirfknows the
where ¢*(A, p) = > e ais(p)Ai- If we interpret); as the value of ;. Our iterative algorithm om\ will be constrained
price per unit flow on link, ¢*(A, p) is the total cost per unit to the setA. We comment on how each linkmay compute

flow to be borne by session ¢ in Appendix C.
Define We are now ready to develop the projected o.d.e. and the
iterative scheme.
(x(A\,p),z(A\, p)) := argmax L(x, z, A, p).
(z,2)el 4This denotes the gradient @ with respect to\.

. . . . . SRk denotes the non-negative orthantRf
T .
Since L is strictly concave with respect ttx, z) and [ is a 5This means that for any € ©, there exists an open sét; containing

compact convex setx(A, p),z(A, p)) is unique for any(A, p). 5 and a continuously differentiable functiorf(-) : ®; — RI<! that agrees
Further, it is easy to see from (5) that for eache S and  with \*(-) over®; N Q.



Lemma 3: G : A x Q — RI£lis Lipschitz continuous. The (distributed) transport layer algorithm can now be
We prove this Lemma in Appendix C. Consider the followinglescribed. At time step (n > 0):
gradient descent projected o.d.e. (PrODE). We follow the 1) ,s(\[n], p) is conveyed to the sourags) of each ses-
notation of [20]; the reader is referred to Appendix A for an sion s, which computesr,[n] = x;(\[n], p) according
overview. . . to (6). The transmitting node of each linkcomputes

A(t) = AN, —G(\,p)) (10) computesz; [n] = z(A[n], p) according to (7).

Lemma 3 implies that for any fixed the mapGr : A — RI£lis ~ 2) Each linkl usesz[n] and z[n] to computeG;(Aln], p)
Lipschitz continuous. Thus (10) is well posed (see Appeftix according to (8) and performs the update (11).

and also [20]). We comment on the mechanism by which the relevant
Lemma 4: \*(p) is the unique equilibrium of (10). information may be exchanged between the links and the
Proof: Using Property 2 in Appendix A, sessions in Section VII.

Oa(X\, =G\, p)) =0 iff G\p)-(A=A)>0 V AeA
Al (Ap)) () ) V. NETWORK LAYER ALGORITHM
From the convexity of D(\,p) in A, it follows that the

equilibria of (10) are the global minimizers dd(\, p) over
A € A. The claim then follows from Lemmas 1 and 2. m
Theorem 1. A\*(p) is a globally asymptotically stable equi- max. U(p)
librium of (10). st. peQ
Proof: D(, p) will serve as a Lyapunov function for (10).
Using Property 3 in Appendix A,

This section describes an iterative procedure for the mguti
fractions, that converges to the set of solutions of (P5:NL)

(P5-NL)

Recall thatU(p) = D(\*(p),p) is the optimum value of
(P5-TL) for routing vectorp. The network layer algorithm
ITTIA(N, =G\ p)||? + G\, p) - (TIx (A, —G (X, p))) = 0.  operates assuming that the optimal flow rates(p), z*(p))
. and link prices\*(p) of (P5-TL) are available for eaghe Q.
For any A € AN\ {A"(p)}, [Ha(A ~G(Ap))ll > 0 and  Aqin section IV, our approach will be to obtain a PrODE
therefore, for p, trajectories of which converge to solutions of (P5-NL).
VaD - (x (A, =G (A, p) = G\, p) - (I (A, =G (\,p)))  From this o.d.e., we will derive the discrete-time update
<0 scheme for the routing vector. We first characterize the gra-
’ dient of U(p), in terms of (z*(p),z*(p)) and \*(p). We
Since A is compact, this implies global asymptotic stabilitremark here that/(p) is in general not concave. In fact, as we
of the equilibriumA*(p) [21]. m demonstrate using an example in Appendix D, there can exist
The transport layer algorithm must ‘track’ the PrODE (10} € © that is not a global maximizer df(-), but, satisfies
The o.d.e. approach to stochastic approximation algogthm VUM) (G—p) <0 ¥ peQ
[22], [23] (see Appendix B) suggests the following algaomith = Mo (p, VU (p)) = 0.

An+ 1] =Pa (/\[n] —b[n]G()\[n],p))B (11) The last step follows from Property 2, Appendix A. This
implies that a purely gradient based PrODE will not suffice,
wheren denotes the discrete time index &d)] is the stepsize as it did in Section IV. Our PrODE will however be inspired

(12)

sequence satisfying by the gradient characterization.
Lemma 5: U(p) is continuously differentiable oveR with
. _ . 2

) Note thatU(p) is defined overp € Q, which is a closed
As A is a hyperrectangle, the update of (11) can be performgg; with an empty interior. The claim regarding continuous

in a distributed manner. The transmitting npde of each linkifferentiability of U/(p) above means the following. For any
I can update\; given G;(A[n],p). Each session sourags) 5 c ) there exists an open sdt; containingj and a
can update its rate according #Q[n] = x;(A[n],p), and the continuously differentiable map’;(-) : ®; — R that agrees

transmitting node of each linkcan perform the update(n] = with /(-) on ®; N Q and satisfies
zi(Aln], p). _ i e
Theorem2: For any A0] e A, the sequence VU;(p) = VpL(2™(p), 2" (D), A" (D), P)-

(z[n], z[n], A[n]) generated by the procedures describgge prove Lemma 5 in Appendix D.

abovs cofrilvg_rgeS ttlwg (];])’ 2" (p) ’t/\'*t(plz). functign. it e now derive equations for the components7f (p). Let
roof: Since (10) as a strict Lyapunov tunctio, It s qenote the component ®U (p) corresponding to routing
follows from Theorem 8 in Appendix B that[n] — A*(p). ok aU (p) ; : :
. fraction p7. . by -——=**. For link price vector\ and routing
It can be shown that(), p) andz(\, p) are continuous maps. (1.9) =7 opf; ) ) i
This implies thatz[n] — x(A\*(p),p) = 2*(p) and z[n] — Vectorp, defineq; (X, p) as the cost per unit flow incurred in

z(\*(p), p) = 2*(p). m sending traffic from node: to nodew. It is easy to see that
A dot over a function denotes its derivative with respectitioet 9Recall thatg®(\, p) has a polynomial form. We interpret' (A, p) as a
8P, : RIZI — A denotes the projection operator omg i.e., Px () =  function overJR‘f‘ xR« and L(z, z, \, p) as a function overl xR‘f' xR¥,

argminyen ||A — ]| wherew denotes the dimension of the routing vector.



g% (A, p) has a polynomial form and that(\, p) = q(‘f((j))()\,p). choose our network layer PrODE to be
Let g(\, p) be the vector obtained by concatenatifjg A, . X
a(2p) Y T 2) P(t) = Ta(p, —F (X" (p), ). (18)

for u,v € N in some orderg(), p) uniquely satisfies
Note that since\*(p) is continuously differentiable ove®,
. B . v S0 is F'(A\*(p),p). This implies thatF'(A\*(p),p) is Lipschitz
av(\p) = | Yo Py P TG Ap)) foruzto. o dis ove and that (18) is well posed.
JEN (u,v) As per (18), the routing fractions at nodecorresponding

g5 (\p) =0 for u = v,

(13) -
Recall that for anyv € N, the setsN(u,v) for u € N\ o destination; evolve as
{v} induce the acyclic digrapl¢/, of G over which traffic pr(t) = Hﬂf(pf,—Fik()\*(p),p)).

with destinationv can flow. (13) shows that each nodecan . . _
computeq;, given theq! of all downstream nodeg in G,, Ifwe interpretAf; . (p)+4q; (A" (p), p) as the cost per unit flow

i.e_, by Sequentia“y propagating values up the acycnmaﬁg at nodes; of routing traffic tok via j, then (18) Continua”y
G., each node: can compute;”. increases the routing fractions along the ‘cheaper’ patves.

will prove in Appendix D that at an equilibrium point of (18),

. o :
For routing fractiony; ;. it can be seen with some thoughty,e royting fractions are non-zero along only those forivayd

that links that provide minimum cost paths to the destination.
dq, [0 k # v (14) We now analyze the asymptotic behavior of (18) using the
(’)p’(“i B T ek My i Np) k=v Lyapunov functionU (p).
’ Lemma 6:
wherea ;(p) denotes the fraction of flow of traffic originating i}
at u destined fork arriving ati. VU(p) - a(p, —F(A\*(p),p)) 20 V peQ
Using Lemma 5 and (14), we may express the gradient of Proof: Since(2 is the Cartesian product 6% for i,k €
U(p) as follows. N, i #k,
d(s) VU(p) - Ua(p, —F(N\*(p),p
DLy g M) . g TE) Tl o EH )
P(i.j) sid(s)=k P(ij) RN '
B Eoy N ik
=~ (ap +a;Ap) ; eCtei(P) = "~ W)FFN (0).0) - T (0, ~FE (X (0), ).
s:als)= i keN
oU . . itk
= 00— ) (Vg0 N 0L (8 | | (19
D) Using Property 3 in Appendix A, we have
where t#(p) = Z wi(p)al, .(p) is the total traffic FF(X(p),p)) - s (pf, —FF (X (p), p)) < 0.
s:d(s)=k

with destinationk arriving at nodei. Define FF(\,p) =
() + 4§\ p),j € N(i,k)) . F()\,p) is the vector ob-
tained by concatenating thef(\,p) in the same order as
in the routing fraction vectop. Also, define VEU(p) =

[
DefineE :={p e Q| VU(p) - Ua(p, —F(\*(p),p)) = 0}.
Since F'(A\*(p),p) is strictly positive, we can see from (16)
and (19) thatE' consists precisely of the equilibrium points of
7).

(ggﬁ@)’j c N(z’,k)) . From (15), it is clear that Invoking Theorem 6 of Appendix A, we can say that
() trajectories of (18) converge to an invariant subsetoflet
ViU (p) = —tF(p) EF (N (p), p). (16) J = {p € Q| U(p) = maxzeq U(p)} denote the set of

solutions of (P5-NL). Obviously/ C FE.
Now, a gradient ascent PrODE fowould be the following.  Lemma 7: The largest subset oF invariant under (18) is
) contained inJ.
(1) = la(p, VU(p)) (I7)  The proof is given in Appendix D. We argue there that a

Using Property 2 in Appendix A, we conclude that any locdfajectory of (18) initiated at a point i’ not in .J cannot
maximizer of U(p) over Q is an equilibrium point of (17). femain in £. We now know that the trajectories of (18)

However, as we have remarked earlier, not all equilibrial@) ( @PProach the sef of solutions of (P5-NL). o
are necessarily global maximizers G{p). As it turns out, a As before, the o.d.e. approach to stochastic approximation

sufficient condition for a poinp to be a global maximizer is @lgorithms suggests the following algorithm.
obtained if we replac&U(p) by —F(\*(p), p)- < )

i+ 1] = Pq | pln] — m[RlF(\* (p[n)), pln 20

Theorem 3: Any p € 2 that satisfies 7! ] o (el PLEA i) plnl) (20)

o (p, —F(\*(p),p)) = 0 wheren denotes the discrete time index of the network layer
’ ' ’ algorithm andm|n] is the stepsize sequence satisfying
is a solution of (P5-NL).

We prove this theorem in Appendix D. This inspires us to

m[a] > 0; Zm[ﬁ] = 00; Zm[ﬁ]Q < o0.



The structure ofQ allows for the update of (20) to bewith equality over the se{(\*(p),p) : p € Q} (see proof
performed in a distributed manner. Each nadean perform of Theorem 1) . The claim thus follows from Theorem 8 of
the following update for every destinatidn Appendix B. ]

It is easy to see that Lemma 8 implies that

ki _ o oFIal — mIalFEEOF (pla n
o+ 1] = Pog (] - el PN ) o)) ] — Aol "I o, (24)

We comment on the mechanism of exchanging the relevell_rét_,/\[n] asymptotically tracks\*(p[n]). Recall that/ denotes
information between the nodes so that the above update ¢@lY . ¢ <olutions of (P5-NL)

be performed across the network in Section VII. Lemma 9: pln] generated by (21) approaches the Seds

Theorem 4: The sequenceglfni] generated by (20) converges,

o J. ) Proof: We rewrite thep-update of (21) as follows.
The proof follows easily from Lemmas 6, 7 and Theorem 8
in Appendix B. pln 411 = Pa (] = mfnl (PO o) i) + )

where p[n] = F(\[n],p[n]) — F(A\*(p[n]), p[n]). Since F' is

VI. CONCURRENTUPDATES FORLINK PRICES AND Lipschitz continuous oveh x €,

ROUTING FRACTIONS
* nToo

In this section, we propose and prove convergence of an lofelll < CrlAlR] = A*(pln))] =0

iterative scheme that updates the link prices and the mutiwhere Cr» denotes the Lipschitz constant df. Invoking

fractions simultaneously. This scheme is inspired by thekwoTheorem 7 of Appendix B, we conclude thgl:] tracks the

of Borkar [17]. The stepsize sequence used bythgpdate PrODE (18). It follows from Lemmas 6 and 7 and Theorem

is made asymptotically negligible as compared to that us8dof Appendix B thatp[n] converges to the sek [ ]

by the A\-update. As a result, th&-update eventually sees We are now ready to prove the desired convergence result.

as quasi static, while the eaghupdate eventually sees as Theorem 5: (x[n], z[n], p[n]) generated by (21) converges

approximately equilibrated. The scheme is described by tteesolutions of (P5).

following equations. Proof: Recall that the set of solutions of (P5) is
_ {(z*(p),z*(p),p) : p € J}. Lemma 9 tells us that
im ; )Z(Eimi {ZB p[n] approachesJ. Consider any convergent subsequence
’ plk[n]] — p € J. From (24) and the continuity of\*(p),
Aln+1] = PalAn]— b[n]G(A[n],p[n])) (21) it follows that A[k[n]] — A*(p). The continuity of the map
x(A,p) implies that z[k[n]] — x(A\*(p),p) = z*(p). It
pln+1] = Paqlpn| - m[n]F(A[n],p[n])) similarly follows thatz[k[n]] — 2*(p).

Since every limit point of the bounded sequence
Here,n denotes the discrete time index for the updates. ng[n]’z[n],p[n]) lies in the set{(z*(p), z*(p),p) : p € J},

stepsize sequencé$:| andmn| satisfy the result follows. ]
bn] >0, 3 bn]=o00, 3, bln)? < oo, It is interesting to note that the proof of the concurrent
mln] > 0; S mn]=o0; >, mn)? < oo, 22) update scheme follows naturally from.the deyelopmentsaaf th
m[n] nico ‘abstract’ nested scheme developed in Sections IV and V.
bn] )
We will now prove that the the sequen¢e(n], z[n], p[n]) VIl. PROTOCOL FORINFORMATION EXCHANGE

generated by (21) converges to solutions of (P5). The proo?n this section, we discuss the mechanism for relevant

technique is an adaptation of the deyelopment in Chapter 6;0f, mation to be exchanged in the network to enable the
[23]. We proceed through the following sequence of Iemma\%spective entities to perform the iterations (21).
Lemma 8: (\[n], p[n]) generated by (21) approaches the set
{(\*(p),p) : p € Q} asn — . | |
Proof: We rewrite thep-update of (21) as A. Update of Link Price

Recall that the transmitting node of each lihkdenoted by

pln+ 1] = Pq (p[n] - b[n](mF(A[n],p[nD)). t, updatesz; and \; according to
= —A 25
Note that ag is bounded o\ x Q, || ’ZZL[Z}]F()\[n],p[n})|| — 0. aln] ;"é[%f}iﬁ] Vi) = Ailnlat, (25)
Theorem 7 of Appendix B implies that\[n], p[n]) tracks the Ain+1] = Pjo.q) (Aln] — b[n]Gi(Aln],p[n])),  (26)
PrODE )
p(t) = 0. whereGi(A[n],p[n]) = ¢ — ziln] — >, cs ar,s(p[n])ws[n].
Now The update for;[n] requires the value of[n], which is known

) at ¢;. For the price update, each sessioneeds to convey to
D\, p) =G\, p)-TIa(N\, —G(A\,p)) < 0, each link! that carries its flow the fraction; ; of its flow



routed through that link. This may be done as follows. The
setsN (i, k) define the acyclic digrap8® of G over which the
flow of sessions can flow. As an example, Fig. 1 depicts this
graph corresponding to Session 1 for the simulation scenari
of Section VIII. It is easy to see how the valuesaf; (p) can
propagate down this graph. The transmitting node of eaéh lin
lin G® conveysq,  to its receiving node by multiplying the
routing fraction along that link by the sum of the fractions i
receives from its upstream neighbors.

2tk
® 1.2)P(2.3 @3

(7"(11 2Pl + P?lj)?’?m:j))p(is.n

14
Pa1,7)P(7,3)

.—>d1

4 4
P1,7)P(7,5)

4 4 4 4 4
(Pu.ﬁ)?’(o‘s) + PP 5))”(5,4)

01

4 Fig. 2.

Network topology

to the number shown in the middle of the segment. Session
flows are routed only through minimum hop length paths. That

PlePlos 5
°o is, if H(i, k) denotes the hop-length of the shortest path from
Fig. 1. ¢! i to k, then N (i, k) contains exactly those neighbojsof i
that satisfyH (5, k) < H (i, k).
Four sessions, denoted By= 1,2, 3,4 use this network.
B. Update of Session Rates and Routing Fractions The source node, and destination nodé, of each of these

Recall the following.

« The sourcen(s) of each session updates its session rate
x¢ according to

xs[n] = argmax Uy (z5) — ¢°(A\[p], p[n])zs. 27)

is marked in the figure. The utility functions of the sessions
are taken to be

Ul(l‘l) =200 lOg(Jil), Ug(l‘g) =150 IOg(Ig),
Us(z3) = 1501log(z3), Us(zs) = 100log(zs).

z.EM, For each linkl, Vi(z) = #_“. We use the stepsize schedule

« Every nodei updatesp? for all k € '\ {k} according
to

m[n] =
The evolution of session rates and the routing fractions
at Node 1 corresponding to destination Node 4 are shown

12, bfn] = 15

Piln+1) = Pos <pf [n] — m[n]Ff(A*(p[n]),pM)) respectively in Figures 3 and 4.

(28)
As discussed in Section V, for any destinatibnthe values
of ¢¥(A[n],p[n]) can be computed at all nodes @. by
propagating values up this graph. In this manner, eachaessi
s with destinationk will be able to compute the value of
q*(A[p], p[n]), enabling it to perform the update (27). Also,
each node in G will obtain the values of];‘-’(A[n],p[n]) for
all downstream nodeg € N(i, k), enabling it to update?
according to (28).

Note that as is the case with most network utility maximiza-
tion literature, we assume the existence of a transport laye
mechanism for adapting the session rate. Routing fractians
be stored in the forwarding table of a router and a randomized
strategy followed in determining the next hop of a packet.

VIII. NUMERICAL RESULTS

In this section, we present simulation results for our algéig- 3.

rithm.
The network topology used for the simulation is depicted
in Fig. 2. The network has 7 nodes, labeled 1 through 7 in

Session rates
2 T T T T T T

T T T
session 1 —+—
session 2 -

session 4 at

0.4 | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

iteration

Evolution of session rates

IX. CONCLUSION

the figure. A segment joining two nodésndj indicates that  This paper presents and rigorously proves convergence
there exist linkg(¢, 7) and(j, ), both having a capacity equalof a distributed, discrete time algorithm to solve the non-
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Routing fractions at node 1 for destination node 4 Define the set of inward normals #§ atw € 0K as

i:ﬂEﬁ% - nu)={yeR* :|y[[=1and (y,a—u) >0V ac K}
ink (1,7) ---%---

08k % . Let y(u,v) = arg max, ¢, () (v, —7). It can be shown that

My (u,0) = 0+ (v, ~7(w,0)) V0) y(w,0)  (30)

wherea V b denotes the larger of the realsandb (see [20]).
We now state some useful properties of the operhigr
1 Property 1: Foru € K, v € R*, anda > 0,

06}y i

Mg (u, av) = aIlk (u,v)

This is of course obvious from (30).
Property 2: Foru € K, v € R¥,

0 200 400 600 800 1000 1200 1400 1600 1800 2000 . ~ ~
woration Mg (u,v)=0 iff. v-(t—u)<0 V uekK.

: . . 0 o
Fig. 4. Evolution of routing fractions at Node 1 correspamyio destination PrQOf' T_he result is obvious whem € K™ or v __O'
Node 4 Otherwise, it follows from (30) thafllx(u,v) = 0 iff.

—v/[vll € nlw). m

Property 3: Foru € K, v € R*,
convex network utility maximization problem (P4). The key )
feature of our problem formulation is a distributed, mutip, M (w, 0) |7 = v - Tk (u, 0).
destination-based routing model. This model is more st@lab  pygof: The equality holds trivially in either of the follow-
than the multipath routing models conventionally used iFﬂ\g cases.
cross-layer networking literature. Moreover, the aldoritwe 1) u € KO
propose iterates routing and flow variables concurrently. B 5 8K' dlv. — <0
not requiring that different updates take place at differen ) u € OK and (v, —y(u,v)) < 0.
timescales, our algorithm is amenable to implementation Y¥henu € 9K and (v, —y(u,v)) > 0,
an online distributed setting. e (1, 0) = v + (v, —y(u, )7 (u, v)

)
It is easy to se@ly (u,v) L v(u,v). The claim thus follows.
APPENDIXA -
PROJECTEDORDINARY DIFFERENTIAL EQUATIONS Let g : K — R* be a Lipschitz continuous vector field. We

In this section, we introduce our notation for projected of'® interested in o.d.e.s of the form

dinary differential equations (PrODESs) and state someltsesu i =Tk (z, g(x)). (31)
that are used in this work.

Let K denote a non-empty convex polyhedral subsek/of
Px : RF — K denotes the projection operator ortodefined
by Pk (v) = arg min,ex [|u—v|. For anyu € K andv € R¥,
the following limit is well defined [20].

(31) is called the projected o.d.e. (PrODE) associated with
and K. The projection on the right-hand side forces solution
trajectories of (31) to evolve within the séf. If the vector
field ¢g drives a trajectory to the boundary & and points
outward of K, then the operatoll, projectsg back onto the
Mg (u,v) = lim LE(@F V) —u (29) boundary.

6—0F Y (31) is a non-classical autonomous o.d.e. since its righdh

Foru € KO it is easy to see thallx(u,v) = v. Side may be discontinuous @hK. It has been shown however

Intuitively, whenu € 0K, Tl (u,v) crops off the component that for Lipschitz continuoug, (31) is well posed, i.e., for

of v pointing outward of the boundary m(see F|g 5) We any initial condition xro € K, there is a Unique absolutely
make this intuition precise below. continuous functionz(t) over [0,00) with z(0) = z, that

satisfies (31) almost everywhere. Moreover, this solutenies
continuously with the initial conditiorg (see [20]).

A set M is said to be invariant with respect to (31) if for
any solutionz(t) of (31), z(0) € M = z(t) € M ¥V ¢t > 0.

Ik (u,v) We now state a version of LaSalle’s invariance theorem for
u PrODEs that is useful to us [22].
K Theorem 6: Assume thatK is compact. Letl : K — R
be a continuously differentiable function satisfyiRg/ (z) -
Fig. 5. An illustration of the operatdfl Ik (x,g(x)) <0 forall z € K. "DefineE := {z € K

1050 anddK denote respectively the interior and the boundaryof Hov(z) = (62;(?) ,J =1, ,k) denotes the gradient df.
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VV(x) Mg (x,g(x)) = 0}. Then solutions of (31) approachdepend on the session utility functions and link cost fuoreti

the largest invariant subset @f. We now show how each link may compute;; for a special
case.
APPENDIXB Let S; denote the sessions that can route their flow through
CONSTRAINED STOCHASTIC APPROXIMATION link I. Denotes; = [&|.

In this section, we state two convergence results related toLemma 10: Consider the case

constrained stochastic approximation algorithms. Seegteha Us(zs) = alog(zs) V seS,
5 of [22] and Chapter 2 of [23] for proofs of these theorems. 21— ¢

Let K denote a non-empty compact convex polyhedral Via)) = 2 v i€kl
subset ofR*. ¢ : K — RF is a Lipschitz continuous vector

field. We are mterested in the convergence properties of rwﬁerea > 0. Lete € (0,¢).
stochastic approximation algorithm

2o+ 1] = Py (xm + afn] (g(zln]) + p[n])> (32)

wheren denotes the discrete time index anf] € K. Note

that the projection operatdPx constrains the iterates to the zi(p) = argmax Us(zs) — ¢*(A*(p),p)zs

set K. We make the following assumptions: s €[0,M]

(@l) ajn] >0; >, aln]=00; >, a[n]® <oo < — *a < o < a—€

(@2) p[n] is a random sequence of ‘errors’ satisfying (A (p),p) — as(p)a — ais(p)(si +1)
llp[n ]H 5% 0 almost surely (a.s.) Similarly, it may be shown that; (p) < 23¢. This implies

The o.d.e. approach to the analysis of (32) [22], [23] ineslv that
(r)efl?gggp:g% Esymptoncs of (32) to the asymptotic propsrti Z ar.s Y+2i(p) < —e <a.

We may choose
1 1)2
§l:max{a(8l+ ),CZ(Sl+ )2}
L —€ (Cl - El)

Proof: Assume that\; (p) > .. Then, fors € S,

SES;

However, the optimal Lagrange multipliess (p) of (P5-TL)

Define the sequencen] as follows: ¢[0] = 0, t[n] = must satsfyw = ¢, —wj (p) = 0. We therefore have
Sr=lalk] for n > 1. Clearly, t{n] "% oo. Let z(t) a contradiction. ]
denote the continuous time (piecewise linear) interpotati The intuitive explanation for the proof is that is a large
of z[n] defined by:z(t[n]) = x[n] for n > 0 and z(t) = enough link price that ensures the under-utilization ok lin
x[k] + ﬁ[]”( [k + 1] — z[k]) for t € (t[k], t[k + 1]). Using this idea, one can extend Lemma 10 to cover the case

For anys > 0, let 2#(¢) denote the solution of (33) overwhere each session utility is of forti; (z;) = o log(xs) or
t>s satisfyingz(s) = Z(s). Us(xs) = —agz; P (s, Bs > 0).

Theorem 7: Under (al) and (a2), the sequende] gener-
ated by (32) tracks the PrODE (33) a.s. in the sense that

1) for anyT > 0,

' B. Proof of Lemma 3

Recall that forl € £

lim su z(t) —2°(t)]| =0
A e, 120 =@l GiAp) = c—z(0np) — 3 an@xa(hp).

seS
We will now prove thatG;(\,p) is Lipschitz. Let Cr(K)
denote the set of Lipschitz continuous functions that mayp th
compact set into R. Sinceq®(\,p) anda;s(p) are continu-
ously differentiable, it follows thag®(\, p) € C(A x Q) and
ais(p) € CL(9).
Define, for alls € S andl € L

2) z[n] converges to a compact invariant set of (33).

If (a2) holds always (as against a.s.), then the conclusiéns
Theorem 7 hold true for every sample path.

Theorem 8: Assume (al) and (a2). Say there exists a con
tinuously differentiable functionV” : K — R such that
VV(z) -1k (z,g(z)) <0 for all z € K. DefineE = {z €
K | VV(z) -1l (z,g(z)) = 0}. Thenxz[n] generated by (32)

converges a.s. to a subset Bfinvariant under (33). T,(t) = arg max Ug(z,) — tx,,
As before, if (a2) always holds, then so do the conclusions of } @5 €[0,Mo]
Theorem 8. Z(t) = arg max Vi(z)—ta.
21€[0,c1+€]
APPENDIX C i,(t) is differentiable over0, co) — {U(M,)} with
TRANSPORTLAYER ALGORITHM
. 0 t <UL(My)
N s (M
A. Computation of A Th(t) = { U”(} o t> (M)

Recall that our link price iterations require each linknow
g that satisfies\; (p) < ¢ for all p € . We show in Lemma 2 Since \U/, | is bounded above ovef0, M], it follows
that such a constant exists. Computation of will in general that Z,(t) € CL(R). Now x,(\,p) = &,(¢*(\,p)). Since a
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composition of Lipschitz functions is Lipschitz, we cond&u  For eachp € Q, Lemmas 11 and 12 allow us to invoke the
that xs(A,p) € CrL(A x Q). It can be similarly argued that Implicit Function Theorem [24] for the system of equations
zi(\,p) € Cr(A x Q). (34), i.e., there exists an open skt C R containingp and

As the product of two bounded Lipschitz functions i% ¢! function (x;(-),z;(-),A;;(-)) (D5 — I x R'f‘ such that
Lipschitz, a;s(p)xs (A, p) € Cpr(A x Q). This in turn implies

that Gy(\, p) € Cr(A x Q). Therefore, G : A x Q@ — RI¢l s Vi) L(@5(p), 75 (p): A5 ();p) =0V p e Py
Lipschitz continuous. From Lemma 11, we conclude that
APPENDIXD (25(p), 25(p), A5(p)) = (2 (p), 2" (p), A" (p))
NETWORK LAYER ALGORITHM
forall p e 5N Q.
A. Proof of Lemma 5 DefineU;(-) : ®; — R by
We recall that for any € 2, (P5-TL) has a unique primal . . .
solution (z*(p), z*(p)) and its dual has a unique solution Up(p) = L(z5(p), 25 (p), A5(p), p)-

A*(p). We will now invoke the Implicit Function Theorem [24] |nyoking the chain rule of differentiation and Lemma 11,sit i
to deduce smoothness of the mapsp), z*(p) andA*(p).  easy to see that
Let w denote the dimension of the routing vectorTreat

the LagrangianL(z, z, A,p) of (P5-TL) (Equation (5)) as a VU;3(p) = VpL(z*(p), 2*(p), A" (D), P)
function over/l x R'f' x R,
Lemma 11: For anyp € (2, the system of equations B. Proof of Theorem 3
VL, 2,2, p)2 =0 (34) We will show that at an equilibrium o of (18), the tuple

) _ R R R (x*(p), z*(p), p) is a solution of (P5). The proof approach will
has trl]g unique solutiotw™(p), 2*(p), A*(p)) over (z,z,A) € pe to define a convex program equivalent to (P5) and show
IR ) that conditions satisfied bfx*(p), z*(p), p) are equivalent to

Proof: Since (z*(p), 2*(p)) € I°, (z*(p),2*(§), \"(P)) the KKT conditions for optimality of the convex program.
must satisfy the KKT conditions for (P5-TL) for rquting Recall that the set&V (i, k), defined fori,k € N, i # k
fraction p; see Theorems 6.2.5 and 6.2.6, pp. 209 in [19%efine the set of path®, that may be taken by the flow of
Since\*(p) > 0, it follows that each session. Let R := U,cgR, andy = (y,,7 € R),

Viwe L(@* (B), 2 (5), \* (), ) = 0. wherey,.« den_otes that.flow routed via pathThe tran§fer rate

i of sessions is then given byrs = 3 . y,. Consider the
Any tuple (Z, Z, A) that satisfies (34) also satisfies the KKTollowing convex formulation.
conditions for (P5-TL), implying thatz, z) and A solve (P5-
TL) and its dual respectively for routi(ng fZacti(pEn Since these max. 3 ..es Us (@s) +21e Vi(21)
s.t. LL‘S:ZW:_RS Yy V s€S

solutions are known to be unique, the claim follows. m (P6)
Lemma 12: For any p € Q, the matrix ztHy<c
Ve L@ (B), (), \*(D), P) 13 is non-singular. ¥z 20
Proof: Define the diagonal matriXV as follows. Here, H = [[h;,]] is the|L| x |R| binary routing matrix i.e,
hi» = 1 if route r includes link{ and ; ,, = 0 otherwise.
W= Diag(((U;’(:cZ(ﬁ)),s €S);(Vi"(z/(p),l € 5)))14 It can be seen that for any feasite, z, 5) of (P5), there
. . o . exists ay such that(z,y, 2) is feasible for (P6) with the
With this notation, it may be verified that same objective function value. Similarly, correspondinguy
) I W ‘ —APT feasible point(z,y, 2) of (P6), there exists a feasible point
Vi, L™ (D), 2" (D), \* (D), P) = —AG 0 j (2, 2,p) of (P5) with the same objective function value.
(35) Let p denote an element &t. Let us denote for simplicity

where A(p) is obtained by concatenating thé| x |£| identity  (z*(p), 2*(p), A" (D)) by (2, 2, \) and g(\*(p),p) by 4.
matrix to the right of the routing matrixi(p). (A2) and (A3)  Lemma 13: p is an equilibrium of (18) iff.

imply that the diagonal entries of) are negative. Using B N 4ok
elementary row transformations, we can transform the right G = A0 T

}v ikeEN, itk

hand side of (35) into P (Gf - (Nm +ay))=o0.
Wl AT (36)
B = L _ ) Proof: Using Property 2 in Appendix B,
0 [ -ApwAp)" }
As A(p) has full row rank,—A(p)W~LA(p)T is positive FF(\*(p),p)) =0 iff
definite and hence invertible. This proves thatis non- Y ienim A + q?)(ﬂ&J) 71\)%)) >0V ke Ok
singular, and the claim follows. [ | (37)
. . . A \k
12This denotes the gradient @f with respect to the tupléz, z, \). _(36) 1S eq_uwalent to (3_7)' If we Interpret(m). +_qj a§ Fhe
13This denotes the Hessian &f with respect to the tupléz, z, ). price per unit flow of routing traffic from to & via link (i, j),

14(y; v) denotes the concatenation of the column vectoend v. then both (36) and (37) hold iff. routing fractions §of are
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non-zero only along forwarding links that provide minimum Consider the Lyapunov functio®(p) = >, ,cr ¢ (A, p)-

price paths tdk. . m From (14), we may write the partial derivative ¢f with
As (1,%2) € I° the tuple (2,2, )\) satisfies the KKT respect to routing fractiop’(?i_j) as follows.

conditions for (P5-TL) (see [19], pp. 211). This impliesttha ’

s ) |
U) =) v ses, (38) ap'?. _ ( 3 a;_,k) Mgy + "0 p)),
Vik)=N ¥V leL. (39) 3) \ueN—{k}

wherec, , is the fraction of flow originating at destined for

For router € R, taken by the flow of session definey, = e o _ )
k arriving ati. Sinceal , =1, 7F(p) = Do ueN—{k} Yk >

¥ [, 7). Taking § = (3, € R), we see that, J, )
is a feasible point of (P6). Furthermore, (38) and (36) impl?r
that

\ Let VEQ(p) = (aj({?_),j € N(i,k)). Clearly, VEQ(p) =
Ur >0 = Ulds) =D ier My 40) TF(PEF(Ap). Using Property 3 in Appendix A,
Ur=0 = Uiy < Zler Al k k
(40) and (39) are the KKT conditions for (P6). Thiis i/, %) o (s, ~F7 (o))l > 0
is a solution of (P6) and hencéy, 2, p) is a solution of (P5) = FF(\p) - Ty (pi', —FF (A,p)) <0
= ViQ(p) - Tgr (pf, —FF (A, p)) <0.

C. Proof of Lemma 7 Theret ; u
It is clear from our decomposition of (P5) into (P5-TL) and erefore, forp ¢ M,

(P5-NL) and from the development in Sections IV and V that VQ(p) - o (p, —F(\,p))

the set of solutions of (P5) i$(z*(p),z*(p),p) | p € J}, _ k _ k ok

where J is the solution set of (P5-NL). We prove Lemma 7 N ‘kz‘;j«sz(p) Moy (b, ~FF(\.p)) <0.
through the following sequence of Lemmas. Vidk

Lemma 14: Overp € J, the tuple(z*(p), 2*(p), A"(P)) IS The claim thus follows from the Invariance principle. m
a constant, sagz", z*, A"). Furtherp < J iff Now, consider a trajectory of (18) that is initiated at a poin
(z*(p), 2*(p), \*(p)) = (z*, 2*, \*). (41) pin EnotinJ. We claim that the trajectory cannot remain in
_ . E for all ¢ > 0. Let us assume the contrary. We conclude that
. E’roof: It is easy to see that the Optlmét', z) of. (P6) (z*(p), 2*(p), A* (p)) must remain constant (Lemma 15)¢)
is unique. We can then conclude from th_e discussion in th&|l then converge to its set of equilibrium points (Lemma,16
proof of Theorem 3 above thé&t™(p), z*(p)) is constant over \yhich must be optimal for (P5-NL) (Theorem 3). But this is

J. That \*(p) is constant ovet/ follows from (9). a contradiction as
Since the objective function of (P5) is a function of only
(z,z), we conclude that (41) implies thate J. [ (x*(p), 2" (D), A" (D)) # (z%, 27, A7)
Lemma 15: With p(-) evolving as per (18)), ib(t) € E, (Lemma 14)
then ’
#*(pt)) = 0, D. Example showing non-concavity of U(p)
Z(p(t) = 0,
A (p(t) = 0. Y, & 10 ,2->d
Proof: Intuitively, it is easy to see why this is true. When Uitz =10loglz)\ no -
p € E, then 100 100

t; (p)gx (pf, —FF (X (p),p)) = 0

for all i,k € N,i # k. Thus p¥ can evolve only at nodes
i wheret¥(p) = 0, i.e., at nodes that receive no traffic for %
destinationk. This should allow the solution of (P5-TL) to 5
remain constant. Vi) = (51— )

This can be proved formally using the equation for the
derivative of the implicit function in the Implicit Functio Fig. 6. Example topology to show non-concavity 6{p).
Theorem [24].

Lemma 16: For any fixed, strictly positivex e RI4l, Consider the network topology shown in Fig. 6. Node labels,
solutions of the PrODE link capacities and utility functions are marked on the fegur
. There is a single session, with source node 1 and destination
p(t) = Ia(p, —F(A,p)) (42)  hode 2. The routing is characterized by the valueg?ot, ,
converge to its set of equilibria. denoted byp; andp%M), denoted byps.

Proof: Let M, denote the equilibrium set of (42). It is Consider the casg, = p» = 1. All session traffic is routed
easy to see that this set is non-empty. on the link (1,2). The solution(z, z,\) of (P5-TL) for this



1 (2.7, 1.4) 2
0, —= @ - @ — d;
r1 =173
(100, 0.01) (100, 0.01)
3 (0.5,2) 4
(100, 0.01) (100, 0.01)
5

Fig. 7. (21, A;) is marked along each link

routing is shown in Figure 7. Note that; ) < A(13) + 43
It is easy to verify that this routing satisfies (12). However
is not optimal. The reader may verify that the routing =
p2 = 0, (all session traffic gets routed along the path 1-3-5-4- ing Co., 1976.
2) achieves a higher objective value.
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