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Distributed Iterative Optimal Resource Allocation
with Concurrent Updates of Routing and Flow

Control Variables
Jayakrishnan Nair and D. Manjunath

Abstract—Consider a set of active elastic sessions over a
network. Session traffic is routed at each hop (potentially through
multiple network paths) based only on its destination. Each
session is associated with a concave increasing utility function of
its transfer rate. The transfer rates of all sessions and the routing
policy define the operating point of the network. We construct a
metric f of the goodness of this operating point.f is an increasing
function of the session utilities and a decreasing function of the
extent of congestion in the network. We define ‘good’ operating
points as those that maximizef subject to the capacity constraints
in the network. This paper presents a distributed, iterative
algorithm for adapting the session rates and the routing policy
across the network so as to converge asymptotically to the set
of ‘good’ operating points. The algorithm updates session rates
and routing variables concurrently, and is therefore amenable
to distributed online implementation. The convergence of the
concurrent update scheme is proved rigorously.

Index Terms—Optimal routing, optimal rate control, multipath
routing, two timescale iterations.

I. I NTRODUCTION

CONSIDER a network represented by an edge-capacitated
connected digraphG(N ,L), whereN denotes the set of

nodes andL the set of links interconnecting the nodes. Link
l ∈ L has capacitycl. A set of end-to-end elastic sessions,
S shares the resources (link capacities) of this network. We
assume that each sessions ∈ S submits traffic to the network
according to a quasi stationary random process with (adaptive)
transfer ratexs. Each sessions is associated with a concave
increasing utility functionUs(·) of its transfer rate. We define
for each link l ∈ L a convex increasing cost functionφl(·)
of the mean flowwl carried by it. In this paper, we propose
an algorithm that iteratively adapts the session rates and the
routing, seeking to maximize

f :=
∑

s∈S

Us(xs) −
∑

l∈L

φl(wl) (1)

subject to the capacity constraints of the network.
The first term off in (1) represents the ‘aggregate social

utility,’ a quantity many rate control algorithms proposedin
the literature seek to maximize, e.g., [1]–[4]. It is easy tosee
that at an operating point of the network that maximizes this
quantity, some of the links would operate at saturation. This
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of course is not acceptable in practice, as it might result in
unbounded packet queues and delays. The second term off
in (1), which is an increasing function of the link utilizations
represents the level of congestion in the network; see [5], [6]
and the discussion in Section I-A. Thus our objective function
f tempers the social utility by a penalty for congestion in
the network. An alternative approach is to a priori specify an
upper bound on the link utilizations (which would be strictly
less than one). While this approach might help bound delays,
our objective function explicitly captures the tradeoff between
high data rates and network congestion.

In much of the recent literature on adaptive rate control and
routing, it is assumed that each session is associated with a
predefined set of network paths; each session source adapts
the volume of flow along each of these paths. Such a routing
scheme is clearly not scalable. In this paper, we employ the
routing model of [6], [7]; each nodei forwards a fraction
pk
(i,j) of the traffic it receives for destinationk to neighboring

nodej. This distributed, destination-based, multipath routing
is obviously more amenable to implementation.

In this paper, we present and rigorously prove convergence
of a distributed, iterative algorithm for the sessions and the
network to attain respectively, the globally optimal transmis-
sion ratesxs and routing fractionspk

(i,j) that maximizef. Our
algorithm allows for the session rates and routing variables
to be iterated simultaneously, i.e., it avoids the ‘two-level
convergence structure’ that is typical in solutions of non-
convex network optimization problems with variables from
multiples layers of the protocol stack; see [8], [9] for examples
of such solutions. We discuss the issues with such two-level
nested iterations in Section III.

To summarize the above discussion and delineate this work
from other work in network optimization,

1) The objective function factors in social utility of the
sessions as well as a cost for link congestion.

2) The routing algorithm we consider is scalable and hence
more practical.

3) The iterations for the routing and the rate variables are
concurrent.

4) The convergence of the iterative algorithm is proved
rigorously.

In the following we first provide an interesting interpretation
of (1) for a special choice of link cost functionsφl(·). We
follow that up with a discussion of the related literature leading
up to the problem formulation of this paper. Section II details
our problem formulation. Section III outlines the solution
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approach. Sections IV–VI describe the algorithm in detail and
prove its convergence. Section VII discusses the mechanism
for the information exchange required by the algorithm. Sec-
tion VIII presents simulation results for our algorithm.

A. An interpretation of f

An appealing interpretation of the second term off in (1)
is as a penalty for the delay experienced by the packets in the
network. Assume that the average number of packets, either
queued at the input of linkl or in transmission is a function
nl(wl) of its throughputwl. Takingφl(wl) = α nl(wl) where
α > 0, we can rewrite (1) as follows.

f =
∑

s∈S

Us(xs) − α

(

∑

l∈L

nl

)

(2)

=
∑

s∈S

(Us(xs) − αns) (3)

=
∑

s∈S

(Us(xs) − αxsDs) . (4)

Here ns and Ds are, respectively, the average number of
packets of sessions in the network at any time and the
average delay experienced per packet ofs. (4) follows from
(3) via Little’s Theorem. Written in the form (2), maximizing
f implies maximizing the sum total of user utilities subject to
a penalty proportional to the average total number of packets,
say n in the system at any time.n may be viewed as an
indicator of congestion in the network. We remark here that
this is the idea underlying isarithmic flow control [5]. The
forms (3) and (4) indicate that we are maximizing the sum total
of delay sensitive utilitiesUs(xs) − α xsDs of all sessions.
The second term represents a penalty corresponding to the
average delay experienced by a packet of the session. Such
delay sensitive utility functions have been encountered inthe
reverse engineering of TCP-IP networks [10].

B. Background and Relation to Previous Work

A standard technique in network resource allocation is to de-
fine the desired operating point of the network as the solution
of an optimization problem. Iterative procedures to attainthe
optimum are then derived. It is of course desirable that these
iterative procedures be suitable for distributed implementation
in the network. We too will follow this same course. Optimal
rate control of elastic traffic is an old jungle problem and itis
instructive to begin a survey with the following formulation.

max.
∑

s∈S

Us(xs)

s.t. wl =
∑

sessionss using link l

xs ≤ cl ∀ l ∈ L

xs ≥ 0 ∀ s ∈ S

(P1)

This assumes a single fixed route for each session. Distributed
primal and dual algorithms for solving a relaxation of (P1)
based on the o.d.e. method are described in [1]. For the
case of logarithmic utility functions, [11] interprets theglobal
optimum of (P1) as a Nash bargaining solution and presents
a distributed gradient projection based solution of the dual

of (P1). [2] presents a distributed gradient projection based
solution of the dual of (P1) for a more general class of concave
utility functions.

The generalization of (P1) to allow multipath routing has
also received significant attention. It is easy to see that routing
the flow of each session through multiple network paths (the
terms path and route will be used interchangeably) can result
in a better usage of the network resources and a higher
aggregate utility

∑

s∈S Us(xs). However, if each session’s
flow is to be apportioned across multiple paths, then the
network optimization has to determine not only the the session
rates, but also the fractions of session flows to be routed along
each path. Thus the multipath generalization of (P1) combines
routing and rate control.

The most common approach towards a multipath general-
ization of (P1) is as follows. A set of routesRs is defined for
each sessions. Let R := ∪s∈SRs. Denote the rate on route
r ∈ R by yr. The following is a multipath generalization of
(P1).

max.
∑

s∈S

Us(xs) =
∑

s∈S

Us

(

∑

r∈Rs

yr

)

s.t. wl =
∑

routesr using link l

yr ≤ cl ∀ l ∈ L

yr ≥ 0 ∀ r ∈ R

(P2)

Many distributed solutions to this problem have been pro-
posed, e.g., [1], [3], [4], [12]. [1] suggests multipath gener-
alizations of their algorithms for the single route per session
case. [3] converts (P2) into an equivalent unconstrained prob-
lem by adding (non-differentiable) penalty terms to the ob-
jective function corresponding to link capacity constraints and
presents a solution that solves it using subgradient projection.

Solving the dual of (P2) directly (i.e., a multipath gener-
alization of the approach of [2]) is complicated by the fact
that the objective function of (P2) is not strictly concave with
respect to the path ratesyr. The objective function of the dual
is therefore, not guaranteed to be differentiable. [12] suggests
a subgradient projection based algorithm for solving the dual
problem. It has however been observed that the session rates
obtained by the algorithm of [12] may exhibit oscillatory
behavior [3]. In [4], quadratic terms are added to the objective
function of (P2) to make it strictly concave with respect to the
path rates and the dual problem is solved using a proximal
optimization algorithm [13].

Using the same routing as in (P2), Chapter 6 of [5] presents
the following formulation where the objective function in-
cludes link congestion costs.

min.
∑

s∈S

es(xs) +
∑

l∈L

φl(wl)

s.t. wl =
∑

routesr using link l

yr ≤ cl ∀ l ∈ L

yr ≥ 0 ∀ r ∈ R

(P3)

Here,es(xs) is a convex decreasing penalty for the session rate
xs being too small. Interpreting−es as a utility function for
sessions, (P3) is equivalent to a maximization of our objective
function f subject to the same constraints. Various gradient
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based primal algorithms for solving (P3) are discussed in [5].
An important practical issue in the online implementation

of a solution of (P2) and (P3) is that the source node of each
session needs explicit knowledge of all the routes used by it.
Furthermore, this route needs to be encoded in the packets,
or all the nodes need to be capable of path-based routing.
Such source routing or path-based routing schemes may be
infeasible in a large network where there could potentiallybe
a large number of paths for each session. In this work, we
address this issue by adopting a destination-based multipath
routing model, i.e., the forwarding rule for packets arriving at
a node is a function of only the packet destination. As we will
see, this routing model makes our resource allocation problem
non-convex. As a result, our algorithm as well as its proof of
convergence differ considerably from those of the references
mentioned previously.

We now delineate our work from other research on cross
layer optimizations. As must be evident from our earlier
discussions, our interest in this paper is in the problem of rate
control and routing of elastic traffic in a wireline network.We
adopt the traffic model of [1], i.e., we model the session rates,
but not the link queue lengths. In our case, link congestion is
modeled (indirectly) via a convex function of the total flow
carried by the link. There is considerable recent literature that
focuses on rate control based on the occupancy of the link
queues, especially in the context of wireless networks. For
example, see [14]–[16].

II. PROBLEM FORMULATION

We now describe the network model and the problem
formulation. Recall that a setS of infinitely backlogged, elastic
sessions shares the network, represented by the connected
digraphG(N ,L). Each sessions ∈ S is defined by an origin
or source nodeo(s), a destination noded(s) and a concave
increasing utility functionUs : R+ → R of its transfer rate
xs. Let x = (xs, s ∈ S) denote the vector1 of session rates.
Link l ∈ L has capacitycl and c = (cl, l ∈ L) denotes the
vector of link capacities.

For each nodei ∈ N , defineN(i, k) to be the set of neigh-
bors of nodei to which packets with destinationk ∈ N \ {i}
are forwarded. Nodei forwards a fractionpk

(i,j) of the traffic
it receives for destinationk to neighborj ∈ N(i, k) on link
(i, j). 2 The setsN(i, k), defined for all i, k ∈ N , i 6= k
determine the set of paths that the packets of each session
can take. By appropriately restricting the setsN(i, k), we can
ensure loop-free paths for all sessions. We shall henceforth
assume the following.

(A1) The setsN(i, k) for all i, k ∈ N , i 6= k are defined (and
known at nodei) so that the flow between any source-
destination pair gets routed through loop-free paths.

We note here that this a priori establishment of loop-free paths
for all sessions may be achieved by a simple flooding of link
weights. If H(i, k) denotes the weight of the shortest path

1All vectors are taken to be column vectors.
2We refer to a link by a single index, e.g.,l, or by the directed pair of

nodes that it connects, e.g.,(i, j).

from i to k, we may restrictN(i, k) to contain only those
neighborsj of i that satisfyH(j, k) < H(i, k).

(A1) implies that corresponding to eachk ∈ N , the sets
N(i, k) for i ∈ N \{k} induce a directed acyclic subgraphGk

of G with sink k, over which traffic generated in the network
with destinationk flows.

For i, k ∈ N , i 6= k, let pk
i = (pk

(i,j), j ∈ N(i, k)). The set
of allowable values ofpk

i is

Ωk
i = {pk

i ≥ 0 |
∑

j∈N(i,k)

pk
(i,j) = 1}.

The routing vectorp, obtained by concatenating thepk
i is

an element of the Cartesian product space

Ω =
∏

i,k∈N

i6=k

Ωk
i .

Let al,s(p) denote the fraction of the total flow of sessions
routed through linkl. Clearly,al,s is a sum of products of the
routing fractions. Define the|L| × |S| routing matrixA(p) =
[[al,s(p)]]. The vector of link flowsw(x, p) = (wl(x, p), l ∈
L) = A(p)x. The capacity constraint on the network is thus
w(x, p) = A(p)x ≤ c.

Our optimal multipath rate control and routing is defined
by the following optimization problem.

max.
∑

s∈S

Us(xs) −
∑

l∈L

φl (wl(x, p))

s.t. A(p)x ≤ c
x ≥ 0
p ∈ Ω

(P4)

(P4) is not a convex program because the feasible region of
the rate and routing variables is not convex. We present in this
paper a distributed, iterative algorithm in which

1) the sourceo(s) of each sessions ∈ S adapts its transfer
ratexs, and

2) each nodei adapts the routing fractionspk
i , for k ∈

N \ {i},

so that(x, p) across the network converges asymptotically to
a global optimum3 of (P4). Note that the routing model is
both destination-based and completely distributed.

III. SOLUTION APPROACH

Our solution will involve transforming (P4) into an equiva-
lent program (P5). In this section, we describe this transforma-
tion and the outline of our approach towards solving (P5). We
begin by stating our assumptions on the functions representing
the session utilitiesUs(·) and the link costsφl(·).

(A2) For all s ∈ S, Us(·) is monotonically increasing,
strictly concave and twice continuously differentiable
over (0,∞) with U ′′

s (xs) < 0 for all xs > 0. Also,
limxs→0+ Us(xs) = −∞.

(A3) For all l ∈ L, φl(·) is monotonically increasing,
strictly convex and twice continuously differentiable over

3Henceforth, unless explicitly stated otherwise, an “optimum” refers to a
global optimum.
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[−ǫl, cl) for some smallǫl > 0. Additionally, φ′′
l (wl) > 0

for all wl ∈ [−ǫl, cl) and limwl→cl−
φl(wl) = ∞.

The need for the extension of the definition of the link cost
function φl(·) over the small negative range[−ǫl, 0) will be
explained later in this section.

(A2) guarantees that at an optimum(x̃, p̃) of (P4), all ses-
sion rates are strictly positive, i.e.,x̃ > 0. (A3) guarantees that
all link utilizations are strictly less than one, i.e.,w(x̃, p̃) < c.
Both are clearly desired properties of the optimum point.

We introduce slack variablesz = (zl, l ∈ L) defined by
z = c − w(x, p). Define Vl(zl) := −φl(cl − zl). This
allows us to rewrite (P4) as follows.

max.
∑

s∈S

Us(xs) +
∑

l∈L

Vl(zl)

s.t. z + A(p)x = c
x, z ≥ 0
p ∈ Ω

(P4a)

(A3) implies that for all l ∈ L, Vl(·) is monotone increas-
ing, strictly concave and twice continuously differentiable
over (0, cl + ǫl] with V ′′

l (zl) < 0 for zl ∈ (0, cl + ǫl] and
limzl→0+ Vl(zl) = −∞.

For eachs ∈ S, define Ms :=
∑

j∈N(o(s),d(s)) c(o(s),j).
Ms is the sum total of the capacities of the links available to
session sourceo(s) to route its flow. Define

I := {(x, z) | 0 ≤ xs ≤ Ms, 0 ≤ zl ≤ cl + ǫl}.

Any feasible(x, z) of (P4a) must of course lie inI. However,
it will aid our analysis to add to (P4a) the redundant constraint
(x, z) ∈ I. Note that the extension in the definition ofφl(·)
over [−ǫl, 0) allows the the objective function of (P4a) to be
defined overI.

Since V (zl) is strictly increasing inzl, we may further
replace the equality constraint of (P4a) by an inequality to
obtain the following equivalent program.

max.
∑

s∈S

Us(xs) +
∑

l∈L

Vl(zl)

s.t. z + A(p)x ≤ c
(x, z) ∈ I
p ∈ Ω

(P5)

Consider a solution(x̃, z̃, p̃) of (P5). Clearly,(x̃, z̃, p̃) solves
(P4a) and(x̃, p̃) solves (P4). Notice from the structure of (P5)
that the slack variablezl may be viewed as the volume of
a ‘phantom flow’ on link l with the utility function Vl(zl).
Following this interpretation, we shall henceforth refer to the
tuple (x, z) as flow rates. Note thatzl can be controlled by
the transmitting node of linkl.

We now discuss the approach to solve (P5). If we keep the
routing fractionsp in (P5) frozen, we obtain the following
program.

max.
∑

s∈S

Us(xs) +
∑

l∈L

Vl(zl)

s.t. z + A(p)x ≤ c
(x, z) ∈ I

(P5-TL)

In this problem, the routing matrixA is a constant. This makes
(P5-TL) a convex program parametrized by the routing vector

p. (P5-TL) turns out to be a multipath generalization of the rate
control problem studied in [2]. We will show in Section IV
that its dual can be iteratively solved by a gradient projection
method to obtain unique optimal Lagrange multipliersλ∗(p)
and the unique flow rates(x∗(p), z∗(p)). As in [2], we will
see that the Lagrange multipliersλ will admit an interpretation
as link prices.

Now, let U(p) denote the optimum value of the objective
function of (P5-TL). With this notation, (P5) is equivalentto:

max. U(p)
s.t. p ∈ Ω

(P5-NL)

We will show in Section V that the gradient ofU(p) can
be computed as a function ofλ∗(p) and (x∗(p), z∗(p)). This
suggests the following abstract nested iterative algorithm for
solving (P5). In the inner loop, keep the routing fractions fixed
and perform iterations corresponding to (P5-TL) to obtain
λ∗(p) and (x∗(p), z∗(p)). In the outer loop, use these values
to update the routing fractions using an ascent algorithm to
solve (P5-NL). We will show in Section V that the sequence of
session rates and routing fractions generated by such a scheme
will converge to an optimum of (P5).

An online implementation of the above mentioned nested
scheme in a distributed setting would imply that routing
fractions are updated at a slower timescale than the session
rates. That is, at a faster timescale, a transport layer algorithm
updates flow rates(x, z) and link pricesλ and at a slower
timescale, a network layer algorithm updates the routing
fractionsp. Note that this is an approximation to the abstract
scheme described above, since the network layer updates use
only approximately equilibrated values of(x, z) and λ from
the transport layer algorithm.

In optimization problems involving two sets of variables,
this ‘two timescale’ solution technique of using a system of
nested iterations, where the inner level of iterates of one set
of variables is expected to approximately converge between
iterations at the outer level of the other has been suggested
in, among others, [8], [9]. However, in an online distributed
implementation it is difficult to determine when to terminate
the inner loop of iterations. Also, to prove the convergenceof
the iterative scheme, it is necessary to analyze the effect of
point of termination of the inner loop on the convergence of
the outer loop.

An alternative solution to such ‘two timescale’ iterative
schemes that is both elegant and provably correct, has been
described in [17] in the stochastic approximation framework.
This scheme uses a single iterative loop with concurrent
updates of both sets of variables, their stepsizes separated
by an order of magnitude. We adapt this method to devise
a synchronous iterative algorithm that updates all variables
concurrently and converges to the set of solutions of (P5).
This is the key contribution of this paper.

There has been some recent work that has explored ideas
similar to ours. A problem formulation similar to ours has been
reported in [9]. However, the update scheme proposed is based
on the ‘two timescale’ technique of nested iterations described
earlier. Further, to prove the convergence of our concurrent
update scheme, we rigorously prove the convergence of the
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nested iterations.
More recently, a general network utility maximization prob-

lem involving two sets of variables in considered in [18]. The
convergence of an iterative algorithm that makes concurrent
updates to all variables using the idea of [17] is also proved.
However, we note that our problem (P4) is not of the form
considered in [18]. In particular, the problem considered in
[18] is assumed to be convex, whereas (P4) is a non-convex
optimization problem.

Sections IV and V describe respectively the transport layer
and the network layer algorithms, in the abstract nested spirit,
i.e., with the transport layer algorithm seeing a fixedp, and
the network layer algorithm seeing equilibrated link prices and
flow rates. We then use the developments of Sections IV and
V to prove convergence of our proposed scheme of concurrent
updates for all variables in Section VI.

IV. T RANSPORTLAYER ALGORITHM

This section describes the transport layer algorithm which
iteratively solves (P5-TL), treating the routing vectorp as a
parameter inΩ.

(P5-TL) is a convex program with no duality gap. Since
the objective function is strictly concave in(x, z), and I is
compact, (P5-TL) has a unique primal solution(x∗(p), z∗(p)).
Further, (A2) and (A3) imply that(x∗(p), z∗(p)) ∈ I0.
Throughout this section, the parametrization of (P5-TL) by
p will be recorded explicitly.

As in [2], our approach will be to solve the dual of (P5-
TL) iteratively. In the following we will first formulate the
dual program of (P5-TL) and prove uniqueness of its solution.
We then introduce a gradient based projected o.d.e., trajecto-
ries of which converge to this solution. This o.d.e. inspires
our discrete-time algorithm over the Lagrange multipliersof
(P5-TL).

Let λ = (λl, l ∈ L) denote the vector of Lagrange
multipliers. The Lagrangian of (P5-TL) is:

L(x, z, λ, p) =
∑

s∈S

Us(xs) +
∑

l∈L

Vl(zl)

− λT (z + A(p)x − c)

=
∑

s∈S

(Us(xs) − qs(λ, p)xs)

+
∑

l∈L

(Vl(zl) − λlzl) + λT c (5)

where qs(λ, p) =
∑

l∈L al,s(p)λl. If we interpretλl as the
price per unit flow on linkl, qs(λ, p) is the total cost per unit
flow to be borne by sessions.

Define

(x(λ, p), z(λ, p)) := arg max
(x,z)∈I

L(x, z, λ, p).

SinceL is strictly concave with respect to(x, z) and I is a
compact convex set,(x(λ, p), z(λ, p)) is unique for any(λ, p).
Further, it is easy to see from (5) that for eachs ∈ S and

l ∈ L,

xs(λ, p) = arg max
xs∈[0,Ms]

Us(xs) − qs(λ, p)xs, (6)

zl(λ, p) = arg max
zl∈[0,cl+ǫl]

Vl(zl) − λlzl. (7)

Thus each session sourceo(s) can computexs(λ, p) given its
cost per unit flowqs(λ, p) and the transmitting node of each
link l can computezl(λ, p) given the cost per unit link usage
λl.

The dual of (P5-TL) is:

min
λ≥0

D(λ, p)

where

D(λ, p) = max
(x,z)∈I

L(x, z, λ, p) = L(x(λ, p), z(λ, p), λ, p)

D(λ, p) is convex and continuously differentiable inλ; see
[13], pp. 669. LetG(λ, p) = ∇λD(λ, p)4. The components of
G(λ, p) are given by

Gl(λ, p) =
∂D(λ, p)

∂λl

= cl−zl(λ, p)−
∑

s∈S

als(p)xs(λ, p). (8)

We now characterize the dual of (P5-TL).
Lemma 1: The dual program of (P5-TL) has a unique

solutionλ∗(p).
Proof: We know that the solution(x∗(p), z∗(p)) of

the primal problem (P5-TL) lies in the interior ofI.
If λ∗(p) denotes a solution of the dual program, then
(x∗(p), z∗(p), λ∗(p)) must satisfy the KKT conditions; see
Theorems 6.2.5 and 6.2.6, pp. 209 in [19]. Therefore, we
have

V ′
l (z∗l (p)) = λ∗

l (p) ∀ l ∈ L. (9)

The uniqueness of the primal solution(x∗(p), z∗(p)) thus
implies that the solutionλ∗(p) of the dual is unique and is
also strictly positive.

It follows that the objective function of (P5-NL)U(p) =
minλ≥0 D(λ, p) = D(λ∗(p), p). Also, the optimal flow rates
(x∗(p), z∗(p)) = (x(λ∗(p), p), z(λ∗(p), p)) . We shall describe
in this section an iterative algorithm on the Lagrange multi-
pliers λ that converges toλ∗(p).

Lemma 2: There exists a strictly positiveς ∈ R
|L|
+

5 such
that λ∗(p) < ς for all p ∈ Ω.

Proof: We prove in Appendix D thatλ∗ : Ω → R
|L|
+ is a

continuously differentiable map.6 SinceΩ is a compact set,
it follows that λ∗(Ω) is compact and therefore bounded.
Let Λ denote the hyperrectangle{λ ∈ R

|L| | 0 ≤ λ ≤ ς}. It is
assumed that the transmitting node of each linkl knows the
value of ςl. Our iterative algorithm onλ will be constrained
to the setΛ. We comment on how each linkl may compute
ςl in Appendix C.

We are now ready to develop the projected o.d.e. and the
iterative scheme.

4This denotes the gradient ofD with respect toλ.
5
R

k
+ denotes the non-negative orthant ofR

k.
6This means that for anỹp ∈ Ω, there exists an open setΦp̃ containing

p̃ and a continuously differentiable functionλ∗p̃(·) : Φp̃ → R
|L| that agrees

with λ∗(·) over Φp̃ ∩ Ω.
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Lemma 3: G : Λ × Ω → R
|L| is Lipschitz continuous.

We prove this Lemma in Appendix C. Consider the following
gradient descent projected o.d.e. (PrODE). We follow the
notation of [20]; the reader is referred to Appendix A for an
overview.

λ̇(t) = ΠΛ(λ,−G(λ, p))7 (10)

Lemma 3 implies that for any fixedp, the mapG : Λ → R
|L| is

Lipschitz continuous. Thus (10) is well posed (see AppendixB
and also [20]).

Lemma 4: λ∗(p) is the unique equilibrium of (10).
Proof: Using Property 2 in Appendix A,

ΠΛ(λ,−G(λ, p)) = 0 iff G(λ, p) ·(λ̃−λ) ≥ 0 ∀ λ̃ ∈ Λ

From the convexity ofD(λ, p) in λ, it follows that the
equilibria of (10) are the global minimizers ofD(λ, p) over
λ ∈ Λ. The claim then follows from Lemmas 1 and 2.

Theorem 1: λ∗(p) is a globally asymptotically stable equi-
librium of (10).

Proof: D(λ, p) will serve as a Lyapunov function for (10).
Using Property 3 in Appendix A,

‖ΠΛ(λ,−G(λ, p))‖2 + G(λ, p) · (ΠΛ (λ,−G (λ, p))) = 0.

For any λ ∈ Λ \ {λ∗(p)}, ‖ΠΛ(λ,−G(λ, p))‖ > 0 and
therefore,

∇λD · (ΠΛ (λ,−G (λ, p))) = G(λ, p) · (ΠΛ (λ,−G (λ, p)))

< 0.

SinceΛ is compact, this implies global asymptotic stability
of the equilibriumλ∗(p) [21].

The transport layer algorithm must ‘track’ the PrODE (10).
The o.d.e. approach to stochastic approximation algorithms
[22], [23] (see Appendix B) suggests the following algorithm.

λ[n + 1] = PΛ

(

λ[n] − b[n]G(λ[n], p)

)

8 (11)

wheren denotes the discrete time index andb[n] is the stepsize
sequence satisfying

b[n] > 0;
∑

n

b[n] = ∞;
∑

n

b[n]2 < ∞.

As Λ is a hyperrectangle, the update of (11) can be performed
in a distributed manner. The transmitting node of each link
l can updateλl given Gl(λ[n], p). Each session sourceo(s)
can update its rate according toxs[n] = xs(λ[n], p), and the
transmitting node of each linkl can perform the updatezl[n] =
zl(λ[n], p).

Theorem 2: For any λ[0] ∈ Λ, the sequence
(x[n], z[n], λ[n]) generated by the procedures described
above converges to(x∗(p), z∗(p), λ∗(p)).

Proof: Since (10) has a strict Lyapunov functionD, it
follows from Theorem 8 in Appendix B thatλ[n] → λ∗(p).
It can be shown thatx(λ, p) andz(λ, p) are continuous maps.
This implies thatx[n] → x(λ∗(p), p) = x∗(p) and z[n] →
z(λ∗(p), p) = z∗(p).

7A dot over a function denotes its derivative with respect to time.
8PΛ : R

|L| → Λ denotes the projection operator ontoΛ, i.e., PΛ(ψ) =
arg minλ∈Λ ‖λ− ψ‖.

The (distributed) transport layer algorithm can now be
described. At time stepn (n ≥ 0):

1) qs(λ[n], p) is conveyed to the sourceo(s) of each ses-
sion s, which computesxs[n] = xs(λ[n], p) according
to (6). The transmitting node of each linkl computes
computeszl[n] = zl(λ[n], p) according to (7).

2) Each link l usesx[n] and z[n] to computeGl(λ[n], p)
according to (8) and performs the update (11).

We comment on the mechanism by which the relevant
information may be exchanged between the links and the
sessions in Section VII.

V. NETWORK LAYER ALGORITHM

This section describes an iterative procedure for the routing
fractions, that converges to the set of solutions of (P5-NL).

max. U(p)
s.t. p ∈ Ω

(P5-NL)

Recall thatU(p) = D(λ∗(p), p) is the optimum value of
(P5-TL) for routing vectorp. The network layer algorithm
operates assuming that the optimal flow rates(x∗(p), z∗(p))
and link pricesλ∗(p) of (P5-TL) are available for eachp ∈ Ω.

As in Section IV, our approach will be to obtain a PrODE
for p, trajectories of which converge to solutions of (P5-NL).
From this o.d.e., we will derive the discrete-time update
scheme for the routing vector. We first characterize the gra-
dient of U(p), in terms of (x∗(p), z∗(p)) and λ∗(p). We
remark here thatU(p) is in general not concave. In fact, as we
demonstrate using an example in Appendix D, there can exist
p ∈ Ω that is not a global maximizer ofU(·), but, satisfies

∇U(p) · (p̃ − p) ≤ 0 ∀ p̃ ∈ Ω
⇔ ΠΩ(p,∇U(p)) = 0.

(12)

The last step follows from Property 2, Appendix A. This
implies that a purely gradient based PrODE will not suffice,
as it did in Section IV. Our PrODE will however be inspired
by the gradient characterization.

Lemma 5: U(p) is continuously differentiable overΩ with
∇U(p) = ∇pL(x∗(p), z∗(p), λ∗(p), p). 9

Note that U(p) is defined overp ∈ Ω, which is a closed
set with an empty interior. The claim regarding continuous
differentiability of U(p) above means the following. For any
p̃ ∈ Ω, there exists an open setΦp̃ containing p̃ and a
continuously differentiable mapUp̃(·) : Φp̃ → R that agrees
with U(·) on Φp̃ ∩ Ω and satisfies

∇Up̃(p̃) = ∇pL(x∗(p̃), z∗(p̃), λ∗(p̃), p̃).

We prove Lemma 5 in Appendix D.
We now derive equations for the components of∇U(p). Let

us denote the component of∇U(p) corresponding to routing
fraction pk

(i,j) by ∂U(p)

∂pk
(i,j)

. For link price vectorλ and routing

vectorp, defineqv
u(λ, p) as the cost per unit flow incurred in

sending traffic from nodeu to nodev. It is easy to see that

9Recall thatqs(λ, p) has a polynomial form. We interpretqs(λ, p) as a
function overR|L|

+ ×R
ω andL(x, z, λ, p) as a function overI×R

|L|
+ ×R

ω ,
whereω denotes the dimension of the routing vector.
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qv
u(λ, p) has a polynomial form and thatqs(λ, p) = q

d(s)
o(s)(λ, p).

Let q(λ, p) be the vector obtained by concatenatingqv
u(λ, p)

for u, v ∈ N in some order.q(λ, p) uniquely satisfies

qv
u(λ, p) = 0 for u = v,

qv
u(λ, p) =

∑

j∈N(u,v)

pv
(u,j)

(

λ(u,j) + qv
j (λ, p)

)

for u 6= v.

(13)
Recall that for anyv ∈ N , the setsN(u, v) for u ∈ N \
{v} induce the acyclic digraphGv of G over which traffic
with destinationv can flow. (13) shows that each nodeu can
computeqv

u given theqv
j of all downstream nodesj in Gv,

i.e., by sequentially propagating values up the acyclic digraph
Gv, each nodeu can computeqv

u.

For routing fractionpk
(i,j), it can be seen with some thought

that

∂qv
u

∂pk
(i,j)

=

{

0 k 6= v
αk

u,i(p)
(

λ(i,j) + qk
j (λ, p)

)

k = v
(14)

whereαk
u,i(p) denotes the fraction of flow of traffic originating

at u destined fork arriving at i.

Using Lemma 5 and (14), we may express the gradient of
U(p) as follows.

∂L

∂pk
(i,j)

= −
∑

s:d(s)=k

xs

∂q
d(s)
o(s)(λ, p)

∂pk
(i,j)

= −
(

λ(i,j) + qk
j (λ, p)

)

∑

s:d(s)=k

xsα
k
o(s),i(p)

⇒
∂U(p)

∂pk
(i,j)

= −tki (p)
(

λ∗
(i,j)(p) + qk

j (λ∗(p), p)
)

(15)

where tki (p) =
∑

s:d(s)=k

x∗
s(p)αk

o(s),i(p) is the total traffic

with destinationk arriving at nodei. Define F k
i (λ, p) :=

(

λ(i,j) + qk
j (λ, p), j ∈ N(i, k)

)

. F (λ, p) is the vector ob-
tained by concatenating theF k

i (λ, p) in the same order as
in the routing fraction vectorp. Also, define∇k

i U(p) :=
(

∂U(p)

∂pk
(i,j)

, j ∈ N(i, k)

)

. From (15), it is clear that

∇k
i U(p) = −tki (p)F k

i (λ∗(p), p). (16)

Now, a gradient ascent PrODE forp would be the following.

ṗ(t) = ΠΩ(p,∇U(p)) (17)

Using Property 2 in Appendix A, we conclude that any local
maximizer of U(p) over Ω is an equilibrium point of (17).
However, as we have remarked earlier, not all equilibria of (17)
are necessarily global maximizers ofU(p). As it turns out, a
sufficient condition for a pointp to be a global maximizer is
obtained if we replace∇U(p) by −F (λ∗(p), p).

Theorem 3: Any p ∈ Ω that satisfies

ΠΩ(p,−F (λ∗(p), p)) = 0,

is a solution of (P5-NL).

We prove this theorem in Appendix D. This inspires us to

choose our network layer PrODE to be

ṗ(t) = ΠΩ(p,−F (λ∗(p), p)). (18)

Note that sinceλ∗(p) is continuously differentiable overΩ,
so is F (λ∗(p), p). This implies thatF (λ∗(p), p) is Lipschitz
continuous overΩ and that (18) is well posed.

As per (18), the routing fractions at nodei corresponding
to destinationk evolve as

ṗk
i (t) = ΠΩk

i
(pk

i ,−F k
i (λ∗(p), p)).

If we interpretλ∗
(i,j)(p)+qk

j (λ∗(p), p) as the cost per unit flow
at nodei of routing traffic tok via j, then (18) continually
increases the routing fractions along the ‘cheaper’ paths.We
will prove in Appendix D that at an equilibrium point of (18),
the routing fractions are non-zero along only those forwarding
links that provide minimum cost paths to the destination.

We now analyze the asymptotic behavior of (18) using the
Lyapunov functionU(p).

Lemma 6:

∇U(p) · ΠΩ(p,−F (λ∗(p), p)) ≥ 0 ∀ p ∈ Ω

Proof: SinceΩ is the Cartesian product ofΩk
i for i, k ∈

N , i 6= k,

∇U(p) · ΠΩ(p,−F (λ∗(p), p))

=
∑

i,k∈N

i6=k

∇k
i U(p) · ΠΩk

i
(pk

i ,−F k
i (λ∗(p), p))

=
∑

i,k∈N

i6=k

−tki (p)F k
i (λ∗(p), p) · ΠΩk

i
(pk

i ,−F k
i (λ∗(p), p)).

(19)
Using Property 3 in Appendix A, we have

F k
i (λ∗(p), p)) · ΠΩk

i
(pk

i ,−F k
i (λ∗(p), p)) ≤ 0.

DefineE := {p ∈ Ω | ∇U(p) ·ΠΩ(p,−F (λ∗(p), p)) = 0}.
Since F (λ∗(p), p) is strictly positive, we can see from (16)
and (19) thatE consists precisely of the equilibrium points of
(17).

Invoking Theorem 6 of Appendix A, we can say that
trajectories of (18) converge to an invariant subset ofE. Let
J = {p ∈ Ω | U(p) = maxp̃∈Ω U(p̃)} denote the set of
solutions of (P5-NL). Obviously,J ⊆ E.

Lemma 7: The largest subset ofE invariant under (18) is
contained inJ.
The proof is given in Appendix D. We argue there that a
trajectory of (18) initiated at a point inE not in J cannot
remain in E. We now know that the trajectories of (18)
approach the setJ of solutions of (P5-NL).

As before, the o.d.e. approach to stochastic approximation
algorithms suggests the following algorithm.

p[n̄ + 1] = PΩ

(

p[n̄] − m[n̄]F (λ∗(p[n̄]), p[n̄])

)

(20)

wheren̄ denotes the discrete time index of the network layer
algorithm andm[n̄] is the stepsize sequence satisfying

m[n̄] > 0;
∑

n̄

m[n̄] = ∞;
∑

n̄

m[n̄]2 < ∞.
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The structure ofΩ allows for the update of (20) to be
performed in a distributed manner. Each nodei can perform
the following update for every destinationk.

pk
i [n̄ + 1] = PΩk

i

(

pk
i [n̄] − m[n̄]F k

i (λ∗(p[n̄]), p[n̄])

)

We comment on the mechanism of exchanging the relevant
information between the nodes so that the above update can
be performed across the network in Section VII.

Theorem 4: The sequencep[n̄] generated by (20) converges
to J.

The proof follows easily from Lemmas 6, 7 and Theorem 8
in Appendix B.

VI. CONCURRENTUPDATES FORL INK PRICES AND

ROUTING FRACTIONS

In this section, we propose and prove convergence of an
iterative scheme that updates the link prices and the routing
fractions simultaneously. This scheme is inspired by the work
of Borkar [17]. The stepsize sequence used by thep-update
is made asymptotically negligible as compared to that used
by the λ-update. As a result, theλ-update eventually seesp
as quasi static, while the eachp-update eventually seesλ as
approximately equilibrated. The scheme is described by the
following equations.

x[n] = x(λ[n], p[n])
z[n] = z(λ[n], p[n])

λ[n + 1] = PΛ

(

λ[n] − b[n]G(λ[n], p[n])

)

p[n + 1] = PΩ

(

p[n] − m[n]F (λ[n], p[n])

)

(21)

Here,n denotes the discrete time index for the updates. The
stepsize sequencesb[n] andm[n] satisfy

b[n] > 0,
∑

n b[n] = ∞,
∑

n b[n]2 < ∞,
m[n] > 0;

∑

n m[n] = ∞;
∑

n m[n]2 < ∞,
m[n]
b[n]

n↑∞
→ 0.

(22)

We will now prove that the the sequence(x[n], z[n], p[n])
generated by (21) converges to solutions of (P5). The proof
technique is an adaptation of the development in Chapter 6 of
[23]. We proceed through the following sequence of lemmas.

Lemma 8: (λ[n], p[n]) generated by (21) approaches the set
{(λ∗(p), p) : p ∈ Ω} asn → ∞.

Proof: We rewrite thep-update of (21) as

p[n + 1] = PΩ

(

p[n] − b[n]
(m[n]

b[n]
F (λ[n], p[n])

)

)

.

Note that asF is bounded onΛ×Ω, ‖m[n]
b[n] F (λ[n], p[n])‖ → 0.

Theorem 7 of Appendix B implies that(λ[n], p[n]) tracks the
PrODE

λ̇(t) = ΠΛ(λ,−G(λ, p))
ṗ(t) = 0.

(23)

Now

Ḋ(λ, p) = G(λ, p) · ΠΛ(λ,−G(λ, p)) ≤ 0,

with equality over the set{(λ∗(p), p) : p ∈ Ω} (see proof
of Theorem 1) . The claim thus follows from Theorem 8 of
Appendix B.

It is easy to see that Lemma 8 implies that

‖λ[n] − λ∗(p[n])‖
n↑∞
→ 0, (24)

i.e.,λ[n] asymptotically tracksλ∗(p[n]). Recall thatJ denotes
the set of solutions of (P5-NL).

Lemma 9: p[n] generated by (21) approaches the setJ as
n → ∞.

Proof: We rewrite thep-update of (21) as follows.

p[n + 1] = PΩ

(

p[n] − m[n]
(

F (λ∗(p[n]), p[n]) + ρ[n]
)

)

whereρ[n] = F (λ[n], p[n]) − F (λ∗(p[n]), p[n]). SinceF is
Lipschitz continuous overλ × Ω,

‖ρ[n]‖ ≤ CF ‖λ[n] − λ∗(p[n])‖
n↑∞
→ 0

where CF denotes the Lipschitz constant ofF. Invoking
Theorem 7 of Appendix B, we conclude thatp[n] tracks the
PrODE (18). It follows from Lemmas 6 and 7 and Theorem
8 of Appendix B thatp[n] converges to the setJ.

We are now ready to prove the desired convergence result.
Theorem 5: (x[n], z[n], p[n]) generated by (21) converges

to solutions of (P5).
Proof: Recall that the set of solutions of (P5) is

{(x∗(p), z∗(p), p) : p ∈ J}. Lemma 9 tells us that
p[n] approachesJ. Consider any convergent subsequence
p[k[n]] → p̀ ∈ J. From (24) and the continuity ofλ∗(p),
it follows that λ[k[n]] → λ∗(p̀). The continuity of the map
x(λ, p) implies that x[k[n]] → x(λ∗(p̀), p̀) = x∗(p̀). It
similarly follows thatz[k[n]] → z∗(p̀).

Since every limit point of the bounded sequence
(x[n], z[n], p[n]) lies in the set{(x∗(p), z∗(p), p) : p ∈ J},
the result follows.
It is interesting to note that the proof of the concurrent
update scheme follows naturally from the developments of the
‘abstract’ nested scheme developed in Sections IV and V.

VII. PROTOCOL FORINFORMATION EXCHANGE

In this section, we discuss the mechanism for relevant
information to be exchanged in the network to enable the
respective entities to perform the iterations (21).

A. Update of Link Price

Recall that the transmitting node of each linkl, denoted by
tl updateszl andλl according to

zl[n] = arg max
zl∈[0,cl+ǫl]

Vl(zl) − λl[n]zl, (25)

λl[n + 1] = P[0,ςl] (λ[n] − b[n]Gl(λ[n], p[n])) , (26)

whereGl(λ[n], p[n]) = cl − zl[n] −
∑

s∈S al,s(p[n])xs[n].
The update forzl[n] requires the value ofλ[n], which is known
at tl. For the price update, each sessions needs to convey to
each link l that carries its flow the fractional,s of its flow
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routed through that link. This may be done as follows. The
setsN(i, k) define the acyclic digraphGs of G over which the
flow of sessions can flow. As an example, Fig. 1 depicts this
graph corresponding to Session 1 for the simulation scenario
of Section VIII. It is easy to see how the values ofal,s(p) can
propagate down this graph. The transmitting node of each link
l in Gs conveysal,s to its receiving node by multiplying the
routing fraction along that link by the sum of the fractions it
receives from its upstream neighbors.

1
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4

56
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)

p4
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Fig. 1. G1

B. Update of Session Rates and Routing Fractions

Recall the following.

• The sourceo(s) of each session updates its session rate
xs according to

xs[n] = arg max
xs∈Ms

Us(xs) − qs(λ[p], p[n])xs. (27)

• Every nodei updatespk
i for all k ∈ N \ {k} according

to

pk
i [n + 1] = PΩk

i

(

pk
i [n] − m[n]F k

i (λ∗(p[n]), p[n])

)

.

(28)

As discussed in Section V, for any destinationk, the values
of qk

i (λ[n], p[n]) can be computed at all nodes inGk by
propagating values up this graph. In this manner, each session
s with destinationk will be able to compute the value of
qs(λ[p], p[n]), enabling it to perform the update (27). Also,
each nodei in Gk will obtain the values ofqk

j (λ[n], p[n]) for
all downstream nodesj ∈ N(i, k), enabling it to updatepk

i

according to (28).
Note that as is the case with most network utility maximiza-

tion literature, we assume the existence of a transport layer
mechanism for adapting the session rate. Routing fractionscan
be stored in the forwarding table of a router and a randomized
strategy followed in determining the next hop of a packet.

VIII. N UMERICAL RESULTS

In this section, we present simulation results for our algo-
rithm.

The network topology used for the simulation is depicted
in Fig. 2. The network has 7 nodes, labeled 1 through 7 in
the figure. A segment joining two nodesi andj indicates that
there exist links(i, j) and(j, i), both having a capacity equal

4

1

2

1

3

3

4 7

2 2

2

1

1

6

3

5

d1

d3

d4

o2

o4

o1

o3 d2

Fig. 2. Network topology

to the number shown in the middle of the segment. Session
flows are routed only through minimum hop length paths. That
is, if H(i, k) denotes the hop-length of the shortest path from
i to k, then N(i, k) contains exactly those neighborsj of i
that satisfyH(j, k) < H(i, k).

Four sessions, denoted bys = 1, 2, 3, 4 use this network.
The source nodeos and destination nodeds of each of these
is marked in the figure. The utility functions of the sessions
are taken to be

U1(x1) = 200 log(x1), U2(x2) = 150 log(x2),
U3(x3) = 150 log(x3), U4(x4) = 100 log(x4).

For each linkl, Vl(zl) = zl−cl

zl
. We use the stepsize schedule

m[n] = 10
n

, b[n] = 10
n2/3 .

The evolution of session rates and the routing fractions
at Node 1 corresponding to destination Node 4 are shown
respectively in Figures 3 and 4.
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Fig. 3. Evolution of session rates

IX. CONCLUSION

This paper presents and rigorously proves convergence
of a distributed, discrete time algorithm to solve the non-
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Fig. 4. Evolution of routing fractions at Node 1 corresponding to destination
Node 4

convex network utility maximization problem (P4). The key
feature of our problem formulation is a distributed, multipath,
destination-based routing model. This model is more scalable
than the multipath routing models conventionally used in
cross-layer networking literature. Moreover, the algorithm we
propose iterates routing and flow variables concurrently. By
not requiring that different updates take place at different
timescales, our algorithm is amenable to implementation in
an online distributed setting.

APPENDIX A
PROJECTEDORDINARY DIFFERENTIAL EQUATIONS

In this section, we introduce our notation for projected or-
dinary differential equations (PrODEs) and state some results
that are used in this work.

Let K denote a non-empty convex polyhedral subset ofR
k.

PK : R
k → K denotes the projection operator ontoK defined

byPK(v) = arg minu∈K ‖u−v‖. For anyu ∈ K andv ∈ R
k,

the following limit is well defined [20].

ΠK(u, v) := lim
δ→0+

PK(u + δv) − u

δ
(29)

For u ∈ K0, 10 it is easy to see thatΠK(u, v) = v.
Intuitively, whenu ∈ ∂K, ΠK(u, v) crops off the component
of v pointing outward of the boundary atu (see Fig. 5). We
make this intuition precise below.

v

ΠK(u, v)
u

K

Fig. 5. An illustration of the operatorΠK

10K0 and∂K denote respectively the interior and the boundary ofK.

Define the set of inward normals toK at u ∈ ∂K as

η(u) = {γ ∈ R
k : ‖γ‖ = 1 and 〈γ, ũ − u〉 ≥ 0 ∀ ũ ∈ K}.

Let γ(u, v) = arg maxγ∈η(u)〈v,−γ〉. It can be shown that

ΠK(u, v) = v + (〈v,−γ(u, v)〉 ∨ 0) γ(u, v) (30)

wherea∨ b denotes the larger of the realsa andb (see [20]).
We now state some useful properties of the operatorΠK .
Property 1: For u ∈ K, v ∈ R

k, andα ≥ 0,

ΠK(u, αv) = αΠK(u, v)

This is of course obvious from (30).
Property 2: For u ∈ K, v ∈ R

k,

ΠK(u, v) = 0 iff. v · (ũ − u) ≤ 0 ∀ ũ ∈ K.

Proof: The result is obvious whenu ∈ K0 or v = 0.
Otherwise, it follows from (30) thatΠK(u, v) = 0 iff.
−v/‖v‖ ∈ η(u).

Property 3: For u ∈ K, v ∈ R
k,

‖ΠK(u, v)‖2 = v · ΠK(u, v).

Proof: The equality holds trivially in either of the follow-
ing cases.

1) u ∈ K0.
2) u ∈ ∂K and 〈v,−γ(u, v)〉 ≤ 0.

Whenu ∈ ∂K and 〈v,−γ(u, v)〉 > 0,

ΠK(u, v) = v + 〈v,−γ(u, v)〉γ(u, v)

It is easy to seeΠK(u, v) ⊥ γ(u, v). The claim thus follows.

Let g : K → R
k be a Lipschitz continuous vector field. We

are interested in o.d.e.s of the form

ẋ = ΠK(x, g(x)). (31)

(31) is called the projected o.d.e. (PrODE) associated withg
andK. The projection on the right-hand side forces solution
trajectories of (31) to evolve within the setK. If the vector
field g drives a trajectory to the boundary ofK and points
outward ofK, then the operatorΠK projectsg back onto the
boundary.

(31) is a non-classical autonomous o.d.e. since its right-hand
side may be discontinuous on∂K. It has been shown however
that for Lipschitz continuousg, (31) is well posed, i.e., for
any initial conditionx0 ∈ K, there is a unique absolutely
continuous functionx(t) over [0,∞) with x(0) = x0 that
satisfies (31) almost everywhere. Moreover, this solution varies
continuously with the initial conditionx0 (see [20]).

A set M is said to be invariant with respect to (31) if for
any solutionx(t) of (31), x(0) ∈ M ⇒ x(t) ∈ M ∀ t ≥ 0.
We now state a version of LaSalle’s invariance theorem for
PrODEs that is useful to us [22].

Theorem 6: Assume thatK is compact. LetV : K → R

be a continuously differentiable function satisfying∇V (x) ·
ΠK(x, g(x)) ≤ 0 for all x ∈ K. 11Define E := {x ∈ K :

11∇V (x) :=
“

∂V (x)
∂xj

, j = 1, · · · , k
”

denotes the gradient ofV.
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∇V (x) · ΠK(x, g(x)) = 0}. Then solutions of (31) approach
the largest invariant subset ofE.

APPENDIX B
CONSTRAINED STOCHASTIC APPROXIMATION

In this section, we state two convergence results related to
constrained stochastic approximation algorithms. See Chapter
5 of [22] and Chapter 2 of [23] for proofs of these theorems.

Let K denote a non-empty compact convex polyhedral
subset ofRk. g : K → R

k is a Lipschitz continuous vector
field. We are interested in the convergence properties of the
stochastic approximation algorithm

x[n + 1] = PK

(

x[n] + a[n]
(

g(x[n]) + ρ[n]
)

)

(32)

wheren denotes the discrete time index andx[0] ∈ K. Note
that the projection operatorPK constrains the iterates to the
setK. We make the following assumptions:

(a1) a[n] > 0;
∑

n a[n] = ∞;
∑

n a[n]2 < ∞
(a2) ρ[n] is a random sequence of ‘errors’ satisfying

‖ρ[n]‖
n↑∞
→ 0 almost surely (a.s.)

The o.d.e. approach to the analysis of (32) [22], [23] involves
relating the asymptotics of (32) to the asymptotic properties
of the PrODE

ẋ = ΠK

(

x, g(x)
)

. (33)

Define the sequencet[n] as follows: t[0] = 0, t[n] =
∑n−1

k=0 a[k] for n ≥ 1. Clearly, t[n]
n↑∞
→ ∞. Let x̄(t)

denote the continuous time (piecewise linear) interpolation
of x[n] defined by:x(t[n]) = x[n] for n ≥ 0 and x(t) =

x[k] + t−t[k]
t[k+1]−t[k] (x[k + 1] − x[k]) for t ∈ (t[k], t[k + 1]).

For anys ≥ 0, let xs(t) denote the solution of (33) over
t ≥ s satisfyingx(s) = x̄(s).

Theorem 7: Under (a1) and (a2), the sequencex[n] gener-
ated by (32) tracks the PrODE (33) a.s. in the sense that,

1) for anyT > 0,

lim
s→∞

sup
t∈[s,s+T ]

‖x̄(t) − xs(t)‖ = 0

2) x[n] converges to a compact invariant set of (33).

If (a2) holds always (as against a.s.), then the conclusionsof
Theorem 7 hold true for every sample path.

Theorem 8: Assume (a1) and (a2). Say there exists a con-
tinuously differentiable functionV : K → R such that
∇V (x) · ΠK

(

x, g(x)
)

≤ 0 for all x ∈ K. Define E = {x ∈
K | ∇V (x) ·ΠK

(

x, g(x)
)

= 0}. Thenx[n] generated by (32)
converges a.s. to a subset ofE invariant under (33).
As before, if (a2) always holds, then so do the conclusions of
Theorem 8.

APPENDIX C
TRANSPORTLAYER ALGORITHM

A. Computation of Λ

Recall that our link price iterations require each linkl know
ςl that satisfiesλ∗

l (p) < ςl for all p ∈ Ω. We show in Lemma 2
that such a constant exists. Computation of aςl will in general

depend on the session utility functions and link cost functions.
We now show how each linkl may computeςl for a special
case.

Let Sl denote the sessions that can route their flow through
link l. Denotesl = |Sl|.

Lemma 10: Consider the case

Us(xs) = α log(xs) ∀ s ∈ S,

Vl(zl) =
zl − cl

zl

∀ l ∈ L,

whereα > 0. Let ǫl ∈ (0, cl). We may choose

ςl = max

{

α(sl + 1)

cl − ǫl

,
cl(sl + 1)2

(cl − ǫl)2

}

.

Proof: Assume thatλ∗
l (p) ≥ ςl. Then, fors ∈ Sl,

x∗
s(p) = arg max

xs∈[0,Ms]

Us(xs) − qs(λ∗(p), p)xs

≤
α

qs(λ∗(p), p)
≤

α

als(p)ςl
≤

cl − ǫl

als(p)(sl + 1)
.

Similarly, it may be shown thatz∗l (p) ≤ cl−ǫl

sl+1 . This implies
that

w∗
l (p) :=

∑

s∈Sl

al,s(p)x∗
s(p) + z∗l (p) ≤ cl − ǫl < cl.

However, the optimal Lagrange multipliersλ∗(p) of (P5-TL)
must satisfy∂D(λ∗(p),p)

∂λl
= cl −w∗

l (p) = 0. We therefore have
a contradiction.
The intuitive explanation for the proof is thatςl is a large
enough link price that ensures the under-utilization of link l.
Using this idea, one can extend Lemma 10 to cover the case
where each session utility is of formUs(xs) = αs log(xs) or
Us(xs) = −αsx

−βs
s (αs, βs > 0).

B. Proof of Lemma 3

Recall that forl ∈ L

Gl(λ, p) = c − zl(λ, p) −
∑

s∈S

als(p)xs(λ, p).

We will now prove thatGl(λ, p) is Lipschitz. Let CL(K)
denote the set of Lipschitz continuous functions that map the
compact setK into R. Sinceqs(λ, p) andals(p) are continu-
ously differentiable, it follows thatqs(λ, p) ∈ CL(Λ×Ω) and
als(p) ∈ CL(Ω).

Define, for alls ∈ S and l ∈ L

x̃s(t) = arg max
xs∈[0,Ms]

Us(xs) − txs,

z̃l(t) = arg max
zl∈[0,cl+ǫl]

Vl(zl) − tzl.

x̃s(t) is differentiable over[0,∞) − {U ′
s(Ms)} with

x̃′
s(t) =

{

0 t < U ′
s(Ms)

1
U ′′

s (x̃s(t)) t > U ′
s(Ms)

Since | 1
U ′′

s (xs) | is bounded above over(0,Ms], it follows
that x̃s(t) ∈ CL(R). Now xs(λ, p) = x̃s(q

s(λ, p)). Since a
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composition of Lipschitz functions is Lipschitz, we conclude
that xs(λ, p) ∈ CL(Λ × Ω). It can be similarly argued that
zl(λ, p) ∈ CL(Λ × Ω).

As the product of two bounded Lipschitz functions is
Lipschitz, als(p)xs(λ, p) ∈ CL(Λ × Ω). This in turn implies
that Gl(λ, p) ∈ CL(Λ × Ω). Therefore,G : Λ × Ω → R

|L| is
Lipschitz continuous.

APPENDIX D
NETWORK LAYER ALGORITHM

A. Proof of Lemma 5

We recall that for anỹp ∈ Ω, (P5-TL) has a unique primal
solution (x∗(p̃), z∗(p̃)) and its dual has a unique solution
λ∗(p̃). We will now invoke the Implicit Function Theorem [24]
to deduce smoothness of the mapsx∗(p), z∗(p) andλ∗(p).

Let ω denote the dimension of the routing vectorp. Treat
the LagrangianL(x, z, λ, p) of (P5-TL) (Equation (5)) as a
function overI × R

|L|
+ × R

ω.
Lemma 11: For anyp̃ ∈ Ω, the system of equations

∇(x,z,λ)L(x, z, λ, p̃)12 = 0 (34)

has the unique solution(x∗(p̃), z∗(p̃), λ∗(p̃)) over (x, z, λ) ∈

I × R
|L|
+ .

Proof: Since (x∗(p̃), z∗(p̃)) ∈ I0, (x∗(p̃), z∗(p̃), λ∗(p̃))
must satisfy the KKT conditions for (P5-TL) for routing
fraction p̃; see Theorems 6.2.5 and 6.2.6, pp. 209 in [19].
Sinceλ∗(p̃) > 0, it follows that

∇(x,z,λ)L(x∗(p̃), z∗(p̃), λ∗(p̃), p̃) = 0.

Any tuple (x̃, z̃, λ̃) that satisfies (34) also satisfies the KKT
conditions for (P5-TL), implying that(x̃, z̃) and λ̃ solve (P5-
TL) and its dual respectively for routing fractioñp. Since these
solutions are known to be unique, the claim follows.

Lemma 12: For any p̃ ∈ Ω, the matrix
∇2

(x,z,λ)L(x∗(p̃), z∗(p̃), λ∗(p̃), p̃) 13 is non-singular.
Proof: Define the diagonal matrixW as follows.

W := Diag

(

(

(U ′′
s (x∗

s(p̃)), s ∈ S); (V ′′
l (z∗l (p̃)), l ∈ L)

)

)

14

With this notation, it may be verified that

∇2
(x,z,λ)L(x∗(p̃), z∗(p̃), λ∗(p̃), p̃) =

[

W −A(p̃)T

−A(p̃) 0

]

(35)
whereA(p̃) is obtained by concatenating the|L|×|L| identity
matrix to the right of the routing matrixA(p̃). (A2) and (A3)
imply that the diagonal entries ofW are negative. Using
elementary row transformations, we can transform the right
hand side of (35) into

B =

[

W −A(p̃)T

0 −A(p)W−1A(p̃)T

]

.

As A(p̃) has full row rank,−A(p̃)W−1A(p̃)T is positive
definite and hence invertible. This proves thatB is non-
singular, and the claim follows.

12This denotes the gradient ofL with respect to the tuple(x, z, λ).
13This denotes the Hessian ofL with respect to the tuple(x, z, λ).
14(u; v) denotes the concatenation of the column vectorsu andv.

For eachp̃ ∈ Ω, Lemmas 11 and 12 allow us to invoke the
Implicit Function Theorem [24] for the system of equations
(34), i.e., there exists an open setΦp̃ ⊂ R

ω containingp̃ and
a C1 function (x∗

p̃(·), z
∗
p̃(·), λ∗

p̃(·)) : Φp̃ → I × R
|L|
+ such that

∇(x,z,λ)L(x∗
p̃(p), z∗p̃(p), λ∗

p̃(p), p) = 0 ∀ p ∈ Φp̃.

From Lemma 11, we conclude that

(x∗
p̃(p), z∗p̃(p), λ∗

p̃(p)) = (x∗(p), z∗(p), λ∗(p))

for all p ∈ Φp̃ ∩ Ω.
DefineUp̃(·) : Φp̃ → R by

Up̃(p) = L(x∗
p̃(p), z∗p̃(p), λ∗

p̃(p), p).

Invoking the chain rule of differentiation and Lemma 11, it is
easy to see that

∇Up̃(p̃) = ∇pL(x∗(p̃), z∗(p̃), λ∗(p̃), p̃)

B. Proof of Theorem 3

We will show that at an equilibrium ofp of (18), the tuple
(x∗(p), z∗(p), p) is a solution of (P5). The proof approach will
be to define a convex program equivalent to (P5) and show
that conditions satisfied by(x∗(p), z∗(p), p) are equivalent to
the KKT conditions for optimality of the convex program.

Recall that the setsN(i, k), defined fori, k ∈ N , i 6= k
define the set of pathsRs that may be taken by the flow of
each sessions. Let R := ∪s∈SRs and y = (yr, r ∈ R),
whereyr denotes that flow routed via pathr. The transfer rate
of sessions is then given byxs =

∑

r∈Rs
yr. Consider the

following convex formulation.

max.
∑

s∈S Us (xs) +
∑

l∈L Vl(zl)
s.t. xs =

∑

r∈Rs
yr ∀ s ∈ S

z + Hy ≤ c
y, z ≥ 0

(P6)

Here,H = [[hl,r]] is the |L| × |R| binary routing matrix i.e,
hl,r = 1 if route r includes linkl andhl,r = 0 otherwise.

It can be seen that for any feasible(x̃, z̃, p̃) of (P5), there
exists a ỹ such that(x̃, ỹ, z̃) is feasible for (P6) with the
same objective function value. Similarly, corresponding to any
feasible point(x̂, ŷ, ẑ) of (P6), there exists a feasible point
(x̂, ẑ, p̂) of (P5) with the same objective function value.

Let p̀ denote an element ofΩ. Let us denote for simplicity
(x∗(p̀), z∗(p̀), λ∗(p̀)) by (x̀, z̀, λ̀) andq(λ∗(p̀), p̀) by q̀.

Lemma 13: p̀ is an equilibrium of (18) iff.

q̀k
i ≤ λ̀(i,j) + q̀k

j

p̀k
(i,j)

(

q̀k
i −

(

λ̀(i,j) + q̀k
j

))

= 0.

}

∀ i, k ∈ N , i 6= k

(36)
Proof: Using Property 2 in Appendix B,

F k
i (λ∗(p), p)) = 0 iff
∑

j∈N(i,k)(λ̀(i,j) + q̀k
j )(p̃k

(i,j) − p̀k
(i,j)) ≥ 0 ∀ p̃k

i ∈ Ωk
i .
(37)

(36) is equivalent to (37). If we interpret̀λ(i,j) + q̀k
j as the

price per unit flow of routing traffic fromi to k via link (i, j),
then both (36) and (37) hold iff. routing fractions inΩk

i are
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non-zero only along forwarding links that provide minimum
price paths tok.

As (x̀, z̀) ∈ I0, the tuple (x̀, z̀, λ̀) satisfies the KKT
conditions for (P5-TL) (see [19], pp. 211). This implies that

Us(x̀s) = q̀
d(s)
o(s) ∀ s ∈ S, (38)

Vl(z̀l) = λ̀l ∀ l ∈ L. (39)

For router ∈ Rs taken by the flow of sessions, defineỳr =

x̀s

∏

l∈r p̀
d(s)
l . Taking ỳ = (ỳr, r ∈ R), we see that(x̀, ỳ, z̀)

is a feasible point of (P6). Furthermore, (38) and (36) imply
that

ỳr > 0 ⇒ U ′
s(x̀s) =

∑

l∈r λ̀l,

ỳr = 0 ⇒ U ′
s(x̀s) ≤

∑

l∈r λ̀l.
(40)

(40) and (39) are the KKT conditions for (P6). Thus(x̀, ỳ, z̀)
is a solution of (P6) and hence,(x̀, z̀, p̀) is a solution of (P5)

C. Proof of Lemma 7

It is clear from our decomposition of (P5) into (P5-TL) and
(P5-NL) and from the development in Sections IV and V that
the set of solutions of (P5) is{(x∗(p), z∗(p), p) | p ∈ J},
whereJ is the solution set of (P5-NL). We prove Lemma 7
through the following sequence of Lemmas.

Lemma 14: Over p ∈ J, the tuple(x∗(p), z∗(p), λ∗(p)) is
a constant, say(x∗, z∗, λ∗). Furtherp ∈ J iff

(x∗(p), z∗(p), λ∗(p)) = (x∗, z∗, λ∗). (41)

Proof: It is easy to see that the optimal(x, z) of (P6)
is unique. We can then conclude from the discussion in the
proof of Theorem 3 above that(x∗(p), z∗(p)) is constant over
J. That λ∗(p) is constant overJ follows from (9).

Since the objective function of (P5) is a function of only
(x, z), we conclude that (41) implies thatp ∈ J.

Lemma 15: With p(·) evolving as per (18)), ifp(t) ∈ E,
then

ẋ∗(p(t)) = 0,

ż∗(p(t)) = 0,

λ̇∗(p(t)) = 0.

Proof: Intuitively, it is easy to see why this is true. When
p ∈ E, then

tki (p)ΠΩk
i
(pk

i ,−F k
i (λ∗(p), p)) = 0

for all i, k ∈ N , i 6= k. Thus pk
i can evolve only at nodes

i where tki (p) = 0, i.e., at nodes that receive no traffic for
destinationk. This should allow the solution of (P5-TL) to
remain constant.

This can be proved formally using the equation for the
derivative of the implicit function in the Implicit Function
Theorem [24].

Lemma 16: For any fixed, strictly positiveλ ∈ R
|L|,

solutions of the PrODE

ṗ(t) = ΠΩ(p,−F (λ, p)) (42)

converge to its set of equilibria.
Proof: Let Mλ denote the equilibrium set of (42). It is

easy to see that this set is non-empty.

Consider the Lyapunov functionQ(p) =
∑

u,v∈N qv
u(λ, p).

From (14), we may write the partial derivative ofQ with
respect to routing fractionpk

(i,j) as follows.

∂Q

∂pk
(i,j)

=





∑

u∈N−{k}

αi
u,k



 (λ(i,j) + qk
j (λ, p)),

whereαi
u,k is the fraction of flow originating atu destined for

k arriving at i. Sinceαi
i,k = 1, τk

i (p) :=
∑

u∈N−{k} αi
u,k >

0.
Let ∇k

i Q(p) = ( ∂Q

∂pk
(i,j)

, j ∈ N(i, k)). Clearly, ∇k
i Q(p) =

τk
i (p)F k

i (λ, p). Using Property 3 in Appendix A,

‖ΠΩk
i

(

pk
i ,−F k

i (λ, p)
)

‖ > 0

⇒ F k
i (λ, p) · ΠΩk

i

(

pk
i ,−F k

i (λ, p)
)

< 0

⇒ ∇k
i Q(p) · ΠΩk

i

(

pk
i ,−F k

i (λ, p)
)

< 0.

Therefore, forp /∈ Mλ,

∇Q(p) · ΠΩ

(

p,−F (λ, p)
)

=
∑

i,k∈N

i6=k

∇k
i Q(p) · ΠΩk

i

(

pk
i ,−F k

i (λ, p)
)

< 0.

The claim thus follows from the Invariance principle.
Now, consider a trajectory of (18) that is initiated at a point

p̀ in E not in J. We claim that the trajectory cannot remain in
E for all t > 0. Let us assume the contrary. We conclude that
(x∗(p), z∗(p), λ∗(p)) must remain constant (Lemma 15).p(t)
will then converge to its set of equilibrium points (Lemma 16),
which must be optimal for (P5-NL) (Theorem 3). But this is
a contradiction as

(x∗(p̀), z∗(p̀), λ∗(p̀)) 6= (x∗, z∗, λ∗)

(Lemma 14).

D. Example showing non-concavity of U(p)

1 2

3 4

5

10

100100

100100

0.5

p1

p2

Vl(zl) = (zl − cl)/zl

o1 d1

U1(x1) = 10 log(x1)

Fig. 6. Example topology to show non-concavity ofU(p).

Consider the network topology shown in Fig. 6. Node labels,
link capacities and utility functions are marked on the figure.
There is a single session, with source node 1 and destination
node 2. The routing is characterized by the values ofp2

(1,2),

denoted byp1 andp2
(3,4), denoted byp2.

Consider the casep1 = p2 = 1. All session traffic is routed
on the link (1, 2). The solution(x, z, λ) of (P5-TL) for this
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1 2

3 4

5

(100, 0.01)(100, 0.01)

(100, 0.01) (100, 0.01)

(0.5,2)

(2.7, 1.4)
o1 d1

x1 = 7.3

Fig. 7. (zl, λl) is marked along each linkl

routing is shown in Figure 7. Note thatλ(1,2) < λ(1,3) + q2
3 .

It is easy to verify that this routing satisfies (12). However, it
is not optimal. The reader may verify that the routingp1 =
p2 = 0, (all session traffic gets routed along the path 1-3-5-4-
2) achieves a higher objective value.
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