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Abstract—A two-sided matching system is considered, where
servers are assumed to arrive at a fixed rate, while the arrival
rate of customers is modulated via a price-control mechanism.
We analyse a loss model, wherein customers who are not served
immediately upon arrival get blocked, as well as a queueing
model, wherein customers wait in a queue until they receive
service. The objective is to maximize the platform profit gener-
ated from matching servers and customers, subject to quality of
service constraints, such as the expected wait time of servers in
the loss system model, and the stability of the customer queue
in the queuing model. For the loss system, subject to a certain
relaxation, we show that the optimal policy has a bang-bang
structure. We also derive approximation guarantees for simple
pricing policies. For the queueing system, we propose a simple bi-
modal matching strategy and show that it achieves near optimal
profit.

I. INTRODUCTION

Two-sided queues, where customers and servers both arrive
to a platform/aggregator and then wait to be matched, have
been made fairly popular by ride hailing applications like Uber
and Lyft that match passengers with drivers, meal delivery
couriers like Grubhub and DoorDash that match diners with
delivery couriers, and crowdsourcing platforms like Amazon
MTurk, where tasks are matched to workers/volunteers. The
objective of the platform is to maximize profit, while improv-
ing the market efficiency.

To earn revenue, the platform sets a two sided or one
sided price. With two sided pricing, both the customers and
the servers are advertised a (possibly different) price, and
customers willing to pay the quoted price and servers who
are willing to serve for the quoted price enter the system. The
platform profit is then the difference between the two prices.
In a one sided price model, only the customers are quoted a
price, and customers who are willing to pay enter the system.
The server arrival rate is assumed to be fixed, and insensitive
to price. In this model, the platform keeps a fraction of the
revenue (made from customers) to itself and distributes the
rest uniformly across all servers. In many practical systems,
server payoffs are better modelled as long-term rewards [1],
and thus considering one sided pricing is reasonable. In both
models, the price is dynamically adjusted to maximize profit,
and to efficiently match supply and demand.

With two-sided queues, we consider two well studied mod-
els: the loss model, and the queueing model. For both models,
we assume one sided pricing, where the platform advertises

a state dependent price that determines the rate of arrival of
customers, while the rate of arrival of servers is fixed and
insensitive to the platform price.

Under the loss model, servers arrive into a queue and wait,
while arriving customers are instantaneously matched to the
head of the line server, if any. A customer arriving when
no servers are present is lost. The objective we consider
with the loss model is to maximize a linear combination of
the platform’s profit and the expected delay experienced by
servers, and the goal is to find the optimal dynamic price to
maximize this objective function.

With the queuing model, both the servers and the customers
wait in their respective queues, and are matched appropriately.
In this case, we consider the objective of maximizing the
platform’s profit subject to the stability of the customer queue.
The goal is to design a dynamic pricing and matching strategy
to achieve optimal platform profit while ensuring the stability
of the customer queue.
Prior Work: With a single sided queue (where server is
fixed and only customers arrive), [2] considered a loss-system
with finite resource capacity. A customer arriving when all
resources are occupied is lost, and the problem is to decide
the price of admission given the state of the system at each
time to maximize the expected payoff. Similar pricing models
have been considered for a queuing system, where customers
wait in a queue, and server’s service distribution is exponential
with a tuneable parameter. Optimal admission control, with
and without pricing, and service parameter selection, so as
to maximize a linear combination of expected payoff and ex-
pected waiting time has been considered in [3]–[8], assuming
Poisson arrivals. In particular, [6] exactly characterizes the
optimal policy, though not in closed-form, while [8] derives
an asymptotically optimal dynamic pricing policy.

Two sided queues have been considered in [1], [9]–[15],
where both customers and servers arrive over time, and wait
to be matched. In particular, most of these papers are motivated
from ride-hailing applications such as Uber, Lyft, or meal
delivery services Grubhub, DoorDash, etc. Some of the results
[1], [13]–[15] in this area focus on the importance of dynamic
pricing over static pricing. Under a suitable fluid scaled limit
of this system, [1] showed that static pricing is sufficient to
optimize the objective function, and dynamic pricing only
helps in improving the robustness of the system.

An extension of this two-sided queue model with multiple



types of servers and customers has also been considered
in [10], [16]–[19], where an additional bipartite matching
decision has to be made. In [16], limiting results of matching
rates between certain customer and server types with FCFS
scheduling have been analyzed. Without pricing, the optimal
matching to minimize the queueing cost has been analyzed
in [18] under a suitably scaled large system limit. With the
objective of minimizing the discounted reward obtained by
matching customers and servers over a finite horizon, while
accounting for the waiting costs, [19] analyzed fixed pricing
strategies, while dynamic pricing strategies were considered in
[10], [20]. Most of these analyses are presented using a large
system scaling regime.

To summarize, in prior work, either exactly optimal but non-
closed form policies have been characterized, or structural
properties of the optimal policy have been established, or
performance analysis of simple strategies has been performed.
Importantly, to the best of our knowledge, any analysis of
an explicit policy has been via an asymptotic (large system)
scaling.
Our Contributions: Compared to prior work, the focus of this
work is to consider simple (one-sided) pricing strategies for
two-sided queues without considering any large system limits,
e.g., fluid limits or asymptotics, with near-optimal perfor-
mance. Specifically, we model server arrivals as an exogenous
random process (independent of the system state and the
matching/pricing policy). On the other hand, customer arrivals
are modulated by the price p posted by the platform. Formally,
we model the customer arrival rate µ(p) as a non-increasing
concave function of the platform price p. We consider two
variants of our model: a loss model where customers not
served upon arrival are blocked, and a queueing model, where
customers wait in a FCFS queue until they are matched with a
server. Our contributions for these two models are as follows.

1) Loss System: For the loss system, we consider that the
customer and server arrival processes are Poisson, and the
objective is to maximize a linear combination of the platform’s
profit and the expected delay experienced by servers.

When function µ(p) is linear in p (which is an important
case [21] in pricing/profit models), we consider a suitable
relaxation of the objective, for which we show that the optimal
pricing strategy has a simple bang-bang style threshold struc-
ture. This means that the price is set to be the maximum feasi-
ble value when the number of servers is less than a threshold,
and to the minimum feasible value when the number of servers
exceeds the same threshold. This bang-bang structure of the
optimal policy implies that computing the optimal policy boils
down to a simple one-dimensional search. Moreover, the same
structure can also be exploited to speed up online learning of
the optimal policy via reinforcement learning (see [22]). While
the relaxation we consider is quite similar to models studied
in the literature, that a linear price sensitivity function admits
such a simple optimal policy has not been observed before,
to the best of our knowledge. Additionally, we show that a
simple static pricing model can be near-optimal under certain
conditions. Specifically, we derive universal upper bounds on

the objective value attainable by any policy, and show that
static pricing can achieve a performance that is ‘close’ to the
upper bounds in many cases.

2) Queueing System: Compared to the loss system, with
the queueing system, we consider general customer and server
arrival distributions, and a discrete time setup. The objective
function is to maximize the platform’s profit subject to the
customer queue being stable. Towards that end, we propose
an algorithm that charges a static price, and uses a bi-modal
matching strategy with a single threshold U , to decide the
number of customer-server pairs that should be matched at
each time slot. The main idea of the algorithm is to choose a
static price thereby making the customer arrival rate constant
over time. The threshold U is chosen in such way that
the rate of customer departures (number of customer-server
matched pairs) in each time slot is close to the revenue-
optimal departure rate. Small perturbations in the departure
rate, required to maintain the customer queue at a steady level,
result in near-optimal performance.

In particular, we show that the proposed strategy has an
additive sub-optimality gap of O

(
logU
U

)
. Moreover, the ex-

pected delay experienced by customers with the proposed
strategy is O(U). Thus, even though we do not explicitly
include the expected delay experienced by the customers in
the objective function and only enforce the constraint that the
customer queue should be stable, a by-product of the proposed
algorithm and its analysis is that the expected delay experi-
enced by the customers is also controlled by the threshold U.
Thus, given additional QoS constraints on the expected delay
experienced by the customers, we can choose the threshold U
to achieve a tradeoff between the sub-optimality gap and the
expected delay.

II. LOSS MODEL

In this section, we consider the case where customers do
not wait, i.e., customers that arrive when there are no servers
in the system get lost/blocked.

A. Model and Preliminaries

We model the loss system in continuous time. Servers arrive
to the platform as per a Poisson process with rate λ. Upon
arrival, servers wait in an infinite buffer queue, until they are
matched to a customer. The customer arrival rate µ = g(p) is a
function of the platform’s posted price p, where g is a strictly
decreasing and concave function of p. Specifically, when the
platform posts price p, the time until the next customer arrival
is assumed to be exponentially distributed with mean 1/g(p).
Thus, the function g captures the price sensitivity of the
customer base.

We assume that the price p is constrained to lie in
[pmin, pmax], where 0 < pmin < pmax, and that the price
defaults to pmax when there are no servers available. Cus-
tomers that arrive when there are no servers are blocked/lost,
i.e., customers do not queue.1

1The case where customers also can get queued will be considered in
Section III.



Under the above model, given the memorylessness in server
and customer interarrival times, the state of the system is
captured by the number of servers in the queue. Denoting
the platform’s price when there are i servers in the queue
by pi, the state evolves as per the (controlled) birth-death
Markov chain depicted in Figure 1. Here, µi := g(pi) and
µi ∈ [g(pmax), g(pmin)].
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Fig. 1. Birth death chain for server evolution

The goal of the platform is to set prices (pi, i ∈ N) so
as to maximize C̃ = λE [P ] − w̃E [N ] , where P denotes
the stationary price seen by a (matched) customer, N denotes
the stationary number of servers in the system, and w̃ is a
positive weight. The impicit constraint here is of course that
the server queue is stable, i.e., the Markov chain describing
the temporal evolution of the number of waiting servers is
positive recurrent. The first term in C̃ is the revenue rate for
the platform, the second may be interpreted as the (holding)
cost associated with servers idling. By Little’s law, maximizing
C̃ is equivalent to maximizing

C =
C̃

λ
= E [P ]− w̃E [T ] = E [P ]− wE [N ]

where T denotes the stationary server sojourn time, w = w̃
λ .

The optimal policy can be computed numerically using stan-
dard machinery from the theory of Markov decision process
(see, for example, [23]). Related problem formulations are also
analysed in [2], [6]; these references characterize structural
properties of the optimal policy. However, our goal here is
to consider a relaxed version of the above objective, which
admits a more explicit analysis.

We now describe our relaxed objective. For a given policy
(pi, i ∈ N), let the stationary distribution associated with
the server occupancy be denoted by π = (πi, i ∈ N). Our
objective C may be expressed in terms of π as follows:

C =

∞∑
i=1

πi−1pi︸ ︷︷ ︸
E[P ]

−w

∞∑
i=1

iπi︸ ︷︷ ︸
E[N ]

.

It is important to note that in the expression for E [P ] , we have
πi−1 multiplying pi because the long run fraction of (server)
departures out of state i (i.e., departures that leave behind i−1
servers in the system) equals the long run fraction of server
arrivals that see i−1 servers in the system, which, by PASTA,
equals πi−1. Our relaxed objective is now stated as follows.

Crel =

∞∑
i=1

πi−1pi−1 − w

∞∑
i=1

iπi =

∞∑
i=0

πipi − w

∞∑
i=1

iπi (1)

Note that under this relaxation, the term
∑∞

i=1 πi−1pi
in the objective is replaced by the more tractable term

∑∞
i=1 πi−1pi−1. The motivation for this relaxation is of course

to align the distribution used to average price with the station-
ary distribution.2 Clearly, Crel and C would be close when the
price varies slowly with state. Specifically, for static pricing
policies, the two objectives are identical. However, even for
the bang-bang type policies we consider later, we find that
two objectives are aligned, as we demonstrate as part of our
numerical experiments in Section II-E.

Most of our results will be derived for the case where the
price sensitivity function g is linear:

Assumption 1. g(p) depends linearly on p, i.e., g(p) = β −
αp, where β, α > 0. Moreover, µmax := β − αpmin > λ, and
µmin := β − αpmax > 0.

We also consider a more general class of concave price
sensitivity functions, and prove bounds on the sub-optimality
of simple static pricing policies for this class.

Assumption 2. g(p) = (β − αp)θ, where θ ∈ (0, 1], and
β, α > 0. Moreover, µmax := (β−αpmin)

θ > λ, and µmin :=
(β − αpmax)

θ > 0.

Under both assumptions, note that pmax < β
α . Thus, β

α is
a trivial upper bound on the objective value achievable. More
refined bounds will be derived in Section II-D.

B. Linear price sensitivity & relaxed objective: Optimal policy

Throughout this section, we make Assumption 1, and
consider the relaxed objective Crel (see (1)). Recall that the
number of servers evolves as per the birth death Markov chain
shown in Figure 1. Here, pi, or equivalently µi = g(pi), can
be interpreted as the ‘action’ taken in state i. Recall also that
p0 = pmax; let µ0 := g(p0) = µmin.

We begin by rewriting Crel as follows.

Lemma 1. Under Assumption 1, Crel =
1
α (β − π0µ0 − λ)−

w
∑∞

i=1 iπi.

Lemma 1 states that under linear price sensivity, the first
term in the relaxed objective decreases linearly in π0. In other
words, maximizing the first term boils down to minimizing π0.
We now exploit this property to show that the optimal policy
is of bang-bang type.

Theorem 3. Under Assumption 1 (wherein the price sensitivity
function g is linear), there exists a policy that optimizes Crel

of the form

pi =

 pmax for i < ℓ∗

p∗ for i = ℓ∗

pmin for i > ℓ∗
,

where ℓ∗ ∈ N ∪ {∞}, p∗ ∈ [pmin, pmax].

The bang-bang policy stated in Theorem 3 has the following
interpretation: When there are fewer than ℓ∗ servers in the

2This ‘mis-alignment’ arises in C because we control the left transition
rates in this model. In an alternative model wherein the control is on the
rightward transition rates (this would arise if customers were to queue, and
servers do not; think of an airport taxi lot), the ‘mis-alignment’ would not
occur, and we would not need to relax the objective in this manner.



system, the platform sets the maximum price, thereby limiting
customer arrivals as far as possible so as to provide the
maximum upward drift to the server queue. On the other hand,
when the number of servers exceeds ℓ∗, the platform sets
the minimum price, thereby maximizing the rate of customer
arrivals and providing the maximum downward drift to the
server queue. Finally, when there are exactly ℓ∗ servers, the
platform sets an intermediate price p∗. Thus, the platform in
effect seeks to maintain the number of servers at around ℓ∗

to the extent that its control over customer arrivals permits.
As will be apparent from the proof of Theorem 3, the afore-
mentioned policy effectively minimizes the probability that the
server queue becomes empty, subject to an upper bound on the
expected stationary number of servers in the system.

Remark 4. It is important to note that the bang-bang structure
of the optimal policy as stated in Theorem 3 is significantly
stronger than the monotonicity properties that are typically
established in structured MDPs (see, for example, [24]). More-
over, note that Theorem 3 is proved using the representation of
the relaxed objective in Lemma 1, which in turn relies heavily
on the linearily of the price sensitivity function g.

Remark 5. While the optimal policy as stated in Theorem 3
is parameterized by (ℓ∗, p∗), it can also be parameterized via
a single parameter x∗ ∈ R+. The two parameterizations are
related as follows: ℓ∗ = ⌈x∗⌉ , and p∗ = pmax − (⌈x∗⌉ −
x∗)(pmax−pmin). This one-dimensional parameterization sim-
plifies the task of computing the optimal policy as a function
of the system parameters, and is amenable to efficient online
learning via standard stochastic approximation techniques
(see [22]).

Proof of Theorem 3. It suffices to show that an optimal policy
of the specified form exists for any constrained optimization
of the following form, parameterized by C > 0.

max
1

α
(β − π0µ0 − λ) s.t.

∞∑
i=1

iπi ≤ C

Equivalently, it suffices to show that an optimal policy of the
specified form exists for any constrained optimization of the
following form:

min π0 s.t.

∞∑
i=1

iπi ≤ C (2)

That this problem, which is well motivated in its own right,
has an optimal solution of the bang-bang form specified, is
proved as Lemma 2.

The optimization (2) is a natural and well-motivated prob-
lem in the context of controlled birth death Markov chains
over Z+, where the goal is to minimize the stationary probabil-
ity of state 0, subject to an upper bound on the expectation of
the steady state distribution. Since this problem is interesting
in its own right, we study it (independently of its application
to our dynamic pricing model) in the following section.

C. A bang-bang lemma for controlled Markov chains

Consider a birth death Markov chain over state space Z+.
The transition rate from state i to i + 1 is denoted by λi for
i ≥ 0 and the transition rate from state i to i − 1 is denoted
by µi for i ≥ 1. For i ≥ 1 ρi :=

λi−1

µi
.

Assuming the chain is positive recurrent, the stationary
distribution is given by πi = hi∑∞

j=0 hj
, where h0 = 1,

hi =
∏i

j=1 ρj for i ≥ 1.
With ρi constrained to lie in [ρ, ρ̄], where 0 < ρ < ρ̄, our

goal is to minimize π0 subject to a moment condition on the
stationary distribution. Formally, this is posed as:

min . π0

s.t.
∑∞

i=0 iπi ≤ C
ρi ∈ [ρ, ρ̄] (i ≥ 1)

(3)

An implicit constraint here is of course that the chain is
positive recurrent. Clearly, ρ < 1 is necessary and sufficient
for the feasibility of positive recurrence of the chain. Note
also that if ρ < 1 and

ρ

1−ρ > C, then the optimization (3) is
infeasible (since the expected steady state value of the chain
is easily seen to be at least

ρ

1−ρ ). Thus, the optimization (3) is

well posed if ρ < 1 and
ρ

1−ρ ≤ C. Under these conditions, the
following lemma shows that the optimal control is of bang-
bang type.

Lemma 2. Assuming ρ < 1 and
ρ

1−ρ ≤ C, the optimal
solution of (3) is of the form

ρi =


ρ̄ for i < ℓ∗

r∗ for i = ℓ∗

ρ for i > ℓ∗
,

where ℓ∗ ∈ N ∪ {∞}, r∗ ∈ [ρ, ρ̄].

This lemma is proved by showing that any feasible policy
that does not have the above bang bang structure can be im-
proved upon via a perturbation towards this structure (details
can be found in [25]). The proof arguments are similar to those
in [26], where a bang-bang style policy is shown to be optimal
in a different context.

D. Single (static) price policies

Next, we consider the simplest pricing policy: a constant,
state-independent price, under the relaxed objective Crel.

3

While static pricing might seem naive, we show that under
certain conditions, if the static price is chosen carefully, the
suboptimality relative to the (unknown) optimal policy can
be bounded. This is somewhat analogous to what happens
with the classical server speed scaling problem, where it is
known that a suitably chosen static speed choice is constant
competitive under a stochastic workload model [27], [28].

We begin by deriving some universal upper bounds on the
objective value under any policy (not necessarily static).

3Note that under static pricing, C and Crel are equal. However, we since
one of our universal upper bounds (Lemma 3) is only proved for the relaxed
objective, we persist with the use of Crel throughout this section.



1) Universal upper bounds:

Lemma 3. Under Assumption 2, for any policy, we have
Crel ≤ g−1(λ).

Lemma 4 (Light traffic bound). Under Assumption 2, for any
policy, Crel ≤ maxp∈[pmin,pmax]

(
p− w̃

g(p)

)
.

Next, we apply these upper bounds to study the competi-
tiveness of static pricing for the case of linear price sensitivity.

2) Competitiveness under linear model: We begin by spe-
cializing the above universal bounds to Assumption 1, i.e.,
g(p) = β − αp, where β, α > 0. An application of Lemma 3
for this case yields: Crel ≤ β−λ

α . Next, application of Lemma 4
yields: Crel ≤ maxp∈R

(
p− w̃

β−αp

)
= β−2

√
w̃α

α . Combining
the two bounds above together, under Assumption 1, for any
policy,

Crel ≤
β

α
−max

(
λ

α
,
2
√
w̃α

α

)
. (4)

Clearly, the condition β > 2
√
w̃α is a necessary

condition for positive objective value under any pol-
icy. Now the optimal static price is given by p∗ =

argmaxp∈[pmin,pmax]

(
p− w̃

β−αp−λ

)
. If µmax = β−αpmin ≥

λ+
√
αw̃, then p∗ = β−

√
αw̃−λ
α . The static policy that always

chooses the price p∗ would then have payoff

Crel(p
∗) =

β − 2
√
αw̃ − λ

α
. (5)

Comparing (4) and (5), it follows that so long as µmax ≥
λ +

√
αw̃, i.e., it is feasible to maintain a

√
αw̃ slack in the

customer arrival rate relative to the server arrival rate, the
reduction in payoff from β

α under the optimal static pricing
policy is at most twice that under any policy. Reframing the
objective as a minimization of the payoff reduction from its
(unattainable) upper bound β

α , this implies a competitive ratio
of at most two.

3) Competitiveness under non-linear model: We now con-
sider the more general concave price sensitivity model speci-
fied by Assumption 2. Specializing our two upper bounds to
this particular choice of g(·), we get that under any policy,

Crel ≤
β

α
−max

(
λ1/θ

α
,
B

α

)
, (6)

where B := (w̃αθ)1/(θ+1)(1 + 1/θ).

Unlike in the linear case however, this non-linear model
for g(·) does not admit a closed form characterization of the
optimal static price. We thus consider two separate cases based
on which term contributes to the max in (6). For each of
these cases, a different reasonable choice of static price is
considered.
Case 1 (heavy traffic): λ1/θ ≥ B

(a) w = 0.05 (b) w = 0.1

Fig. 2. Comparison of the original objective C and the relaxed objective Crel
for bang-bang policies. The policy parameters are related to the x-axis label
as follows: ℓ = ⌈x⌉ , p = pmax − (⌈x⌉−x)(pmax − pmin). Chosen system
parameters are as follows: λ = 2, pmin = 1, pmax = 2, β = 3.5, α = 1.

Consider the static policy that sets the price p such that
µ = (β − αp)θ = γλ, where γ > 1. Clearly, such a γ exists,
given that µmax > λ. The payoff under this policy is

Crel =
β

α
− (γλ)1/θ

α
− w

(γ − 1)λ
.

For large λ, the last term above would be negligible, meaning
the payoff reduction from β

α would be (approximately) at most
a factor of γ1/θ of that under any policy.
Case 2 (light traffic): λ1/θ < B

In this case, consider the static policy that sets the price
such that µ = (β−αp)θ = γBθ, where γ > 1. Such a choice
is of course feasible only when µmax > Bθ. If so, the cost
under this policy is bounded as:

Crel ≥
β

α
− γ1/θB

α
− w

(γ − 1)Bθ
.

For large B, the last term above would be negligible, mean-
ing the payoff reduction from β

α would be (approximately) at
most a factor of γ1/θ of that under any policy, as before.

E. Numerical experiments

Since we have used the relaxed objective Crel in the
preceding sections, we now present some numerical results
illustrating the connection between Crel and C. Specifically,
we compare both objectives over the (one-dimensional) space
of bang-bang policies of the kind we proved as optimal for
Crel for linear price sensitivity.

In Figure 2, we plot Crel and C as a function of a single
parameter x that specifies the bang bang policy, as described in
Section II-B, for different values of w. We note that increasing
the weight w on the holding cost decreases the objective
values, and decreases the optimal choice of x, as expected.
However, what is interesting to note is that the optimal choice
of x under the relaxed objective matches almost perfectly with
the optimal choice under the original objective. This suggests
that the optimal bang-bang policy under the relaxed objective
is also a near optimal choice (within the class of bang-bang
policies) for our original objective.

III. QUEUEING MODEL

Consider a discrete time system, where the arrival rate for
servers is insensitive to price and is equal to λ(t) = λ for each



time t4. The customers respond to price set by the platform,
and the arrival rate of customers in any time slot t is µ(p(t))
if the price chosen by the platform is p(t) at time t. We
assume the natural model, where µ(p) is a non-increasing
continuous function of p. In addition, we assume that µ(p)
is a concave function, and pµ(p) is a unimodal function
of p, following prior work [11]. Recall that for notational
convenience in Section II, we assumed that the customer
arrival rate is µ = g(p), while in this section, we use simply
µ(p).

Under this model, let A(t) and B(t) be the number of
servers and customers that arrive in time slot t, following i.i.d.
processes, with rate λ and µ(p(t)), respectively. In particular,
λ = E{A(t)} and µ(p(t)) = E{B(t)}. Let M(t) be the set of
customers that depart (number of customer-server pairs that are
matched) at time t. Since there are two queues corresponding
to servers and customers, making both queues stable (that al-
lows the existence of steady state distribution) simultaneously
is not possible without some exogenous constraint (unless we
have a separate price lever for each queue, as is done in [10]).
So to keep the server queue stable, we consider an upper
limit S̄ on the number of outstanding servers, while ensuring
the stability of customer queue will be part of the considered
problem. Thus, a server arriving when the server queue size
is S̄ is not admitted.

The number of servers S(t), and customers C(t), in the
system at time t, evolve as follows.

S(t+ 1) = min{(S(t) +A(t)− |M(t)|)+, S̄}, (7)

C(t+ 1) = (C(t) +B(t)− |M(t)|)+, (8)

where |M(t)| is the number of customer-server pairs that are
matched by the platform in time slot t, and (x)+ = max{0, x}.
The evolution of S(t) and C(t) is hence coupled via M(t).

Remark 6. Compared to Section II, where we considered a
loss model, in this section, customers wait in the queue, and
depart only when they are matched to any server. Moreover,
we are considering a more general system than Section II, that
evolves in discrete time, and the customer and server arrival
processes are not restricted to follow a Poisson distribution.

Customer i arriving at time t sees or commits to price pi =
p(t), and let the platform make profit of pi when customer i
is matched (departs) to some server at time t′ ≥ t. Thus, the
profit made by the platform at time t is determined by the set
of M(t) customers that depart at time t, and the price they
saw when they arrived pi, i ∈ M(t). Thus, given the price p(t)
chosen by the platform, its profit (that is a function of price
p(t)) is given by

V = lim
T→∞

1

T

T∑
t=1

V

 ∑
i∈M(t)

pi

 , (9)

where V is a non-decreasing concave function.

4With abuse of notation, we are calling λ as the arrival rate with a discrete
time system similar to the continuous time loss model of Section II.

Note that in defining the platform’s profit (9), we have not
directly accounted for the payment to the servers, however,
that is implicitly captured by assuming that the platform keeps
a constant factor of the profit to itself and distributes the
rest uniformly across all servers. Thus, maximizing profit, is
equivalant to maximizing the payment to the servers. Servers
not being incentivised per-customer matching is well justified
following [1], which shows that servers payoffs are better
modelled as long-term rewards.

The optimization problem that we consider is as follows.

max
p(t),M(t)

V s.t. lim
T→∞

1

T

T∑
t=1

E{C(t)} < ∞︸ ︷︷ ︸
stability of customer queue

. (10)

The stability condition in (10) takes care of the fact that the
delay seen by arriving customers is bounded.

Remark 7. An alternate formulation to (10) is to maximize
V subject to a constraint on the expected delay seen by
the customers, or maximize a linear combination of V and
expected delay seen by the customers. Both these alterna-
tives are, however, more challenging to solve in the setting
considered, where we are not considering any scaling limit
regime, unlike [1] and similar papers. In what will follow,
the algorithm we propose to solve (10), will have a parameter
that will tradeoff the sub-optimality gap (Theorem 10) and the
expected delay (Lemma 8) seen by the customers. Thus, given
a constraint on the expected delay seen by the customers, we
can tune the parameter and bound the sub-optimality gap.

Let the optimal price be p⋆(t) and optimal matching
decision be M⋆(t) to maximize (10) under the stability
constraint, and let the optimal profit be VOPT. Next, we upper
bound VOPT. Towards that end, we define a critical quantity
p⋆, as follows.

p⋆ = arg max
p,λ≥µ(p)

p · µ(p). (11)

Note that since µ(p) is assumed to be a non-increasing
continuous concave function of p, it follows that pµ(p) is a
concave function. Using this fact, we get the following upper
bound on VOPT.

Lemma 5. VOPT ≤ V (p⋆µ(p⋆)).

Lemma 5 essentially says that the largest profit is pos-
sible if the price is set as constant p⋆, and the number of
matched customer-server pairs |M(t)| is a constant equal to
the expected customer arrival rate µ(p⋆) at price p⋆. The
proof follows from a straightforward application of Jensen’s
inequality, given that V is a concave function.

Next, we propose an algorithm for setting the price p(t),
and choosing the number of matched customers |M(t)| in each
time slot t, and lower bound its profit.

Algorithm A: Following the definitions of S(t) (7) and C(t)
(8), let N(t) = min{S(t), C(t)}. Solving (11), either we have
λ > µ(p⋆) or λ = µ(p⋆).



If λ > µ(p⋆), the algorithm chooses constant price p(t) =
p⋆, ∀ t, defined in (11), and the number of customer-server
pairs matched in slot t using FIFO schedule are

|MA(t)| =


0 if N(t) < µ(p⋆)− δ,

µ(p⋆)− δ if µ(p⋆)− δ ≤ N(t) ≤ U/2,

µ(p⋆) + δ if N(t) > U/2,

(12)

where U < S̄ is some threshold, and δ > 0 that will be
chosen later. Threshold U will control both the profit made
by the platform as well as the expected waiting time of any
customer.

If λ = µ(p⋆), then p(t) = p⋆+ϵ (to ensure that the customer
arrival rate is lower than the server arrival rate), while choice
of |MA(t)| remains unchanged as in (12).

For the rest of this section, we consider the case when λ >
µ(p⋆). All results will go through even when λ = µ(p⋆) with
an additional O(ϵ) penalty.

Remark 8. Note that we are not enforcing the integrality
constraint on |MA(t)|, similar to prior works [29], [30] on dy-
namic decision problems with server-customer queues, where
the consideration is that the number of servers/customers is
large enough at an aggregate scale, and |MA(t)| can be
thought of as the fraction of customers served.

With algorithm A, for both cases, λ > µ(p⋆) or λ =
µ(p⋆), the arrival rate of servers is more than the arrival
rate of customers with the algorithm, ensuring stability of
the customer queue, satisfying the constraint in (10). Thus,
we only need to derive a lower bound on the profit of
algorithm A, for which we need the following definition. Let
σ2
C = limT→∞

1
T var

(∑T
t=1 B(t)

)
be the variance of process

B(t), number of arrivals of customers at time t.

Remark 9. With the algorithm A that charges price p(t) = p⋆,
the process B(t) (the number of customer arrivals with mean
µ(p⋆)) is an i.i.d. process. Therefore, σ2

C is well-defined.

The main result of this section is the following.

Theorem 10. Choosing δ = α
(

logU
U

)
, where α = βσ2

C and
β ≥ 2, for algorithm A,

VA ≥ VOPT −O

((
logU

U

)2
)
.

Thus, algorithm A is near-optimal and the sub-optimality
gap is governed by the choice of threshold U .

Proof Sketch: Let N be distributed as as per the steady
state distribution of N(t) with algorithm A. By definition,
algorithm A can achieve profit close to V (p⋆µ(p⋆)) (where
VOPT ≤ V (p⋆µ(p⋆))) as long as N > µ(p⋆)−δ. So the main
result is to show that for A, Poutage = P(N < µ(p⋆) − δ) =

O
(
U−β

)
for δ = α

(
logU
U

)
, where α = βσ2

C and β ≥ 2,
which we prove in Lemma 6.

Lemma 6. For algorithm A (12) with price p(t) = p⋆, ∀ t,

Poutage = P(N < µ(p⋆)− δ) = O
(
U−β

)
,
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Fig. 3. Outage probability with Poisson driver and customer arrivals with
different values of µ(p⋆) and ∆ = .1, respectively, as a function of U .
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Fig. 4. Expected delay experienced by a customer with Poisson driver and
customer arrivals with different value of µ(p⋆) and ∆ = .1, respectively, as
a function of U .

by choosing δ = α
(

logU
U

)
, where α = βσ2

C and β ≥ 2.

Similar to the Lemma 6, we can get an upper bound on the
P (N ≥ x) for x ≥ U as follows.

Lemma 7. For algorithm A (12) with price p(t) = p⋆, ∀ t,

P(N ≥ x) = O
(
U−β

)
by choosing δ = α

(
logU
U

)
, where α = βσ2

C and β ≥ 2, and
x > U .

Proof of Lemma 7 is identical to that of Lemma 6 and is
omitted. An important consequence of Lemma 7 is a bound
on the expected customer queue length, which using Little’s
law gives a bound on the average delay seen by the customers.

Corollary 11. E{N} = O(U) by choosing β ≥ 3.

Lemma 7 helps us in bounding the expected waiting time
E{W} seen by any customer using Little’s Law. Recall
that with algorithm A, the customer arrival rate is constant
µ(p⋆), and the system is stable. Thus, the expected customer
departure rate is also µ(p⋆). Thus, using Little’s Law,

E{W} = E{N}/µ(p⋆) = O
(

U

µ(p⋆)

)
. (13)

Thus, we have proved the following lemma.



Lemma 8. With algorithm A, the expected waiting time
E{W} seen by any customer is E{W} = O

(
U

µ(p⋆)

)
.

Discussion: The upshot of Theorem 10 is that near optimal
profit can be obtained with static pricing, and advantage of
dynamic pricing is arbitrarily small. Similar conclusions have
been derived in earlier papers e.g., [1], with an objective
function that is a sum of the platform profit and the expected
delay seen by the servers, however, these results were shown
in limiting regimes, such as scaling the number of customers
and servers, and considering a fluid limit. Moreover, Lemma 8
shows that the static pricing policy that achieves near optimal
profit has bounded expected delay for customers, as a function
of the parameter U that also controls the sub-optimality gap.
Thus, threshold level U provides a tradeoff between the sub-
optimality gap from Theorem 10 and the expected delay seen
by a customer (13), and can be appropriately chosen given
QoS requirements.

In Figs. 3 and 4, we illustrate the tradeoff between the
sub-optimality gap and the expected customer delay as a
function of U , when both the customer and the server arrival
distributions are Poisson. Recall that the sub-optimality gap is
essentially controlled by the outage probability. Thus, we plot
the outage probability and expected customer queue length
(that controls the expected delay), as a function of U for
different values of µ(p⋆) and ∆ = λ − µ(p⋆) = 0.1. This
way we avoid making specific choices of V and µ, while
still capturing the quantities of interest. We observe that the
simulated performance remains unchanged for higher values of
∆, since the minimum of the two rates λ, µ(p⋆), controls the
performance. Hence to avoid cluttered plots, we only illustrate
the ∆ = 0.1 case. For simulations, we use β = 2, σ2

C = 2 that
completely defines algorithm A’s choice of δ. As promised
by theory, the outage probability falls off as power-law with
respect to U , while the expected delay is close to U/2.

IV. CONCLUSIONS

In this paper, we have considered simple pricing strategies
for two sided queue matching problems, that have typically
been either analysed in large system limits, or for which op-
timal but non-closed form policies are known. We considered
both the loss and the queueing systems, which are relevant
for practical applications. For the loss system, we showed an
important structural result that the optimal policy is of the bang
bang type when the customer arrival rate is a linear function
of the price. For the queueing model, we propose a simple
static pricing strategy, and a bi-modal matching decision that
is shown to be near-optimal, together with a bound on the
expected delay seen by the customers.
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V. APPENDICES

A. Proof of Lemma 1

Proof. Under Assumption 1, we rewrite the first term of Crel as follows.
∞∑
i=0

πipi =
1

α

∞∑
i=0

πi(β − µi)

=
β − π0µ0 −

∑∞
i=1 πiµi

α
(a)
=

β − π0µ0 −
∑∞

i=1 πi−1λ

α

=
β − π0µ0 − λ

α
.

Step(a) follows from the reversibility of the birth death Markov chain, which gives πi−1λ = πiµi for i ≥ 1.

B. Proof of Lemma 2

This section is devoted to the proof of Lemma 2, which shows that any feasible policy that does not have the above bang-bang
structure can be improved upon by making a perturbation ‘towards this structure’. We start with the following lemma.

Lemma 9. Assuming positive recurrence, for any i ≥ 1, π(0) is a strictly decreasing function of ρi and
∑∞

i=0 iπi is a strictly
increasing function of ρi.

The proof of Lemma 9 is trivial; we omit the proof.

Proof of Lemma 2. If ρ̄ < 1 and ρ̄
1−ρ̄ ≤ C, then the optimal solution, in light of Lemma 9, is: ρi = ρ̄ for all i (i.e., ℓ∗ = ∞).

Thus, in the remainder of this proof, we assume that either (i) ρ̄ ≥ 1, or (ii) ρ̄ < 1 and ρ̄
1−ρ̄ > C. In this case, in light of

Lemma 9, moment constraint in (3) must hold with equality at the optimum.
Let

f(ρ) :=
1

π0
=

∞∑
j=0

hj ,

m(ρ) :=

∞∑
i=0

(i− C)hi.

Denoting the optimal solution of (3) by ρ∗, note that m(ρ∗) = 0.
The statement of the lemma now follows from the following claim.
Claim 1: Consider ρ = (ρi, i ≥ 1) such that
• m(ρ) = 0, and
• there exists i ≥ 1 satisfying ρi < ρ̄, ρi+1 > ρ.

Then ρ is not optimal. Specifically, one can construct ρ̃, where ρ̃j = ρj for j ̸= i, i + 1, and for ϵ, δ > 0, ρ̃i = ρi + ϵ,
ρ̃i+1 = ρi−1 − δ, such that m(ρ̃) = 0, f(ρ̃) > f(ρ).

Proof of Claim 1: First, consider the difference f(ρ̃)− f(ρ).

f(ρ̃)− f(ρ) =
∑
j

h̃j −
∑
j

hj = hi−1

(ρ̃i − ρi) +

∞∑
j≥i+1

(
j∏

k=i

ρ̃k −
j∏

k=i

ρk

)
= hi−1

(
(ρ̃i − ρi) + (ρ̃iρ̃i+1 − ρiρi+1) +

∞∑
j≥i+2

(ρ̃iρ̃i+1 − ρiρi+1)

j∏
k=i+2

ρk

)

= hi−1

(
(ρ̃i − ρi) + (ρ̃iρ̃i+1 − ρiρi+1)

(
1 +

∞∑
j≥i+2

j∏
k=i+2

ρk

))
. (14)

Next, consider the difference m(ρ̃)−m(ρ).

m(ρ̃)−m(ρ) =
∑
j

h̃j(j − C) −
∑
j

hj(j − C) =
∑
j

(h̃j − hj)(j − C)

= hi−1

(
(ρ̃i − ρi)(i− C) + (ρ̃iρ̃i+1 − ρiρi+1)

(
(i+ 1− C) +

∑
j≥i+2

(j − C)

j∏
k=i+2

ρk

))
.



Setting the above difference to zero gives us the following condition that relates the perturbations ϵ and δ.

ρ̃iρ̃i+1 − ρiρi+1 =
−(ρ̃i − ρi)(i− C)

(i+ 1− C) +
∑

j≥i+2(j − C)
∏j

k=i+2 ρk
.

Substituting the above into (14), we have

f(ρ̃)− f(ρ) = hi−1

(
(ρ̃i − ρi)−

(ρ̃i − ρi)(i− C)
(
1 +

∑∞
j≥i+2

∏j
k=i+2 ρk

)
(i+ 1− C) +

∑
j≥i+2(j − C)

∏j
k=i+2 ρk

)

=
hi−1(ρ̃i − ρi)

(i+ 1− C) +
∑

j≥i+2(j − C)
∏j

k=i+2 ρk

(
1 +

∑
j≥i+2

(j − i)

j∏
k=i+2

ρk

)
.

It thus suffices to show that

(i+ 1− C) +
∑

j≥i+2

(j − C)

j∏
k=i+2

ρk > 0. (15)

This is trivial if i+ 1 ≥ C. Suppose then that i+ 1 < C. In this case, note that

m(ρ) =

i∑
j=0

(j − C)hj +

∞∑
j=i+1

(j − C)hj = 0.

Since the first term above is negative, it follows that the second is positive, i.e.,

∞∑
j=i+1

(j − C)hj = hi+1

(i+ 1− C) +
∑

j≥i+2

(j − C)

j∏
k=i+2

ρk

 > 0,

which implies (15).

C. Proofs of results in Section II-D1

Proof of Lemma 3. The proof follows by considering only the revenue component of the objective, and via an application of
Jensen’s inequality.

Crel ≤
∞∑
i=0

πig
−1(µi) ≤ g−1

( ∞∑
i=0

πiµi

)
≤ g−1(λ).

In the last step above, we use λ =
∑∞

i=1 πiµi ≤
∑∞

i=0 πiµi.

Proof of Lemma 4. Consider a tagged server arriving into the system in steady state. If the server is matched at price p, its
mean sojourn time is at least 1

g(p) . Optimizing with respect to p yields the upper bound. Since we are ignoring congestion
from other (waiting) servers, this bound is expected to be tight in light traffic.

D. Proof of Lemma 5

Proof. Consider stationary Markov policies which apply a finite collection of prices {pk, k ∈ K}, such that the long run
fraction of time price pk is used by the platform is θk > 0. Since the customer queue must be stable, we have

λ ≥
∑
k∈K

θkµ(pk).



Let Nk,t denote the number of times price pk has been used until time t, and Bk,i is the random number of customer
arrivals that take place the ith time price pk is used. Clearly, {Bk,i}i≥1 is an i.i.d. sequence with mean µ(pk). Using this, we
bound the objective as follows.

1

T

T∑
t=1

V (
∑

i∈M(t)

pi) ≤ V

(∑T
t=1

∑
i∈M(t) pi

T

)

= V

(∑T
t=1 p(t)B(t)−

∑
j∈C(t+1) pj

T

)

= V

(∑
k∈K pk

∑Nk,t

i=1 Bk,i −
∑

j∈C(t+1) pj

T

)

= V

(∑
k∈K

pk

∑Nk,t

i=1 Bk,i

Nk,t

Nk,t

T
−
∑

j∈C(t+1) pj

T

)
Letting T → ∞, we get that almost surely,

lim sup
T→∞

1

T

T∑
t=1

V (
∑

i∈M(t)

pi) ≤ V

(∑
k∈K

pkµ(pk)θk

)
≤ V (p⋆µ(p⋆)) .

The last step above uses the concavity of the function pµ(p).

E. Proof of Theorem 10

Proof. With algorithm A (12), since a constant price p(t) = p⋆ is charged to all the customers, we rewrite the profit (9) as

VA = lim
T→∞

1

T

T∑
t=1

V (p⋆|MA(t)|). (16)

Note that this rewriting of the profit (9) is possible only for algorithms that charge a constant price across time, however,
VOPT allows arbitrary pricing p(t).

Next, we show that

lim
T→∞

1

T

T∑
t=1

V (p⋆|MA(t)|) ≥ V (p⋆µ(p⋆))−O

((
logU

U

)2
)
.

Let V + and V − be the profit made by the algorithm A when N ≥ U/2 by using |MA(t)| = µ(p⋆)+ δ, and when N < U/2
(assuming N(t) > µ(p⋆)− δ), with |MA(t)| = µ(p⋆)− δ, respectively. The Taylor series expansion of the profit (V + and V −)
about p⋆µ(p⋆) can be written as

V + = V (p⋆(µ(p⋆) + δ)) = V (p⋆µ(p⋆)) + V (1) (p⋆µ(p⋆)) δ′ + V (2) (p⋆µ(p⋆)) δ′2 + o(δ′2), (17)

V − = V (p⋆(µ(p⋆)− δ)) = V (p⋆µ(p⋆))− V (1) (p⋆µ(p⋆)) δ′ + V (2) (p⋆µ(p⋆)) δ′2 + o(δ′2). (18)

where V (i) is the ith derivative of V and δ′ = p⋆δ.
Define ρ+ as the fraction of time that N > U

2 , and ρ− as the fraction of time that N ≤ U
2 . Then the profit (16) can be

written as

VA
(a)
= ρ+V + +

(
ρ− − Poutage

)
V −,

(b)
= V (p⋆µ(p⋆)) + V (1)(p⋆µ(p⋆))(ρ+δ′ − ρ−δ′) + Θ

(
(logU)2

U2

)
, (19)

where (a) follows from the fact that at most |MA(t)| = µ(p⋆)− δ when N < U/2 and V − is overestimated, (b) follows from
(17) and (18) and Lemma 6, i.e., Poutage = Θ

(
U−β

)
, with δ = Θ

(
logU
U

)
, ρ+ + ρ− = 1, and V (2)(µ(p⋆)) is constant.

By applying the conservation of customer arrivals, i.e., the departed customers is equal to the arrived customers, we have
ρ+ (µ(p⋆) + δ) + (ρ− − Poutage) (µ(p

⋆)− δ) = µ(p⋆), following (12).
Rearranging this, and substituting the expression for Poutage from Lemma 6, we get

ρ+δ − ρ−δ = Θ
(
U−β

)
. (20)



Using (20), from (19),

VA
(a)

≥ V (p⋆µ(p⋆)) + Θ
(
U−β

)
+Θ

(
(logU)2

U2

)
.

From Lemma 5, VOPT ≤ V (p⋆µ(p⋆)). Hence, we get that

VOPT − VA ≤ Θ

(
(logU)2

U2

)
,

since β ≥ 2.

Next, provide the remaining proof of Lemma 6.

Proof of Lemma 6. Let the event N < µ(p⋆)− δ be called as the outage event. Since we are letting U large, the outage event
is similar to N = 0. Hence, we will try to bound the outage probability P(N = 0) = limT→∞

1
T

∑T
t=1 P(N(t) = 0).

We will break the time into intervals I, where each interval has U
2L > 1 time slots, and L is some constant to be chosen later.

Without loss of generality, we let U
2L to be an integer. We call slot t ∈ Ii if slot t falls in the interval Ii = [i U

2L , (i+ 1) U
2L ].

Let the system be in operation since time −∞.
Then event Ei is defined as N(0) = 0 and I−i be the last interval during which N(t) ≥ U/2, i.e., t ∈ I−i.
The basic idea in defining Ei, is that throughout time consisting of i intervals, starting from interval I−i till interval I0, the

algorithm (12) will be using |MA(t)| = µ(p⋆)−δ since N(t) ≥ U/2 throughout, while the arrival process N(t) has increments
with mean at least µ(p⋆). Thus, there is a positive bias to the process N(t), during interval I−i till interval I0, and hence the
probability P (Ei) is expected to be exponentially small with respect to U .

Under these definitions,

P(N = 0) =

∞∑
i=0

P (Ei).

We define two events that only depend on server arrivals A(t) and customer arrivals B(t) in time slot t, respectively. Let

Fi1 :

0∑
t=−i U

2L

(|MA(t)| −B(t)) > U/2,

and

Fi2 :

0∑
t=−i U

2L

(|MA(t)| −A(t)) > U/2.

We claim that event Ei implies that at least one of Fi1 or Fi2, since the arrivals for either A(t) or B(t) are insufficient
compared to |MA(t)| for event Fi1 or Fi2 to happen.

To prove the claim consider the following two cases. The condition we know is that at time t, N(t) = min{S(t), C(t)} =
U/2. Case I : S(t) = U/2 and C(t) ≥ U/2. Therefore, if both Fi1 and Fi2 are false, then N(0) > 0, and hence Ei is also
false. Identical argument holds when Case II : S(t) ≥ U/2 and C(t) = U/2.

Thus, we have that Ei implies Fi1 ∪ Fi2, and therefore P (Ei) ≤ P (Fi1) + P (Fi2).
Moreover, since B(t) (with arrival rate λ > µ(p⋆)) stochastically dominates A(t) (with arrival rate µ(p⋆)), we have P (Fi1) ≤

P (Fi2). Hence, we have

P (Ei) ≤ 2P (Fi2).

B(t)
Next, we upper bound P (Fi2) using Chernoff’s bound as follows, where the proof is similar to [31], and is provided for

completeness..
We begin by noting that P (Fi1) = P

(∑0
t=−i U

2L
(|MA(t)| −B(t)) > U/2

)
and



P
(∑0

t=−i U
2L

(|MA(t)| −B(t)) > U/2
)

(a)

≤E

exp

θi

0∑
t=−i U

2L

(|MA(t)| −B(t))

 exp (−θiU/2) (21)

(b)

≤E

exp

−θi

0∑
t=−i U

2L

B(t)

 exp

(
θi

U

2L
(µ(p⋆)− δ)

)
exp (−θiU/2) , (22)

(b)
= exp

(
−U

2

(
θi

(
1− i+ 1

L
(µ(p⋆)− δ)

)
− i+ 1

L
MC(−θi) + ϵi(U, θi)

))
, (23)

where (a) follows from Chernoff’s bound for θi ≥ 0, (b) follows since |MA(t)| ≤ µ(p⋆)− δ for all slots t from −i U
2L till 0,

where for (c) we define MC(s) = limT→∞
1
T E
{
exp

(
s
∑T

t=1 B(t)
)}

as the semi-invariant log-moment generating function
of B(t) the number of customer arrivals in slot t, and ϵi(U, θi) → 0 as U → ∞. Note that ϵi(U, θi) appears since the limit of
the summation in (a) is from t = −i U

2L to 0, and not from t = 0 to ∞ and no limits are taken.
From (23), let fi(θ) =

(
θ
(
1− i+1

L (µ(p⋆)− δ)
)
− i+1

L MC(−θ)
)
, and

θ∗i = argmax
θ

fi(θ).

Note that E{B(t)} = µ(p⋆) > µ(p⋆)−δ. Hence the function θ(µ(p⋆)−δ)+MC(−θ) has a negative slope at θ = 0. Hence,
there exists a θ′ such that θ′(µ(p⋆)− δ) +MC(θ

′) < 0. Moreover, we get that for such a θ′, there exists i such that for i ≥ i
and γ > 0, such that

fi(θ
′) ≥ fOPT + iγ, (24)

where
fOPT = inf

i≥0
sup
θ≥0

fi(θ).

Recall that

P(N = 0) =

∞∑
i=0

P (Ei) ≤ 2

∞∑
i=0

P (Fi2). (25)

Writing a partial sum P (Fi2) for i ≥ i from (23),∑
i≥i

P (Fi2) ≤
∑
i≥i

exp

(
−U

2

(
θi

(
1− i+ 1

L
(µ(p⋆)− δ)

)
− i+ 1

L
MC(θi) + ϵi(U, θi)

))
,

≤
∑
i≥i

exp

(
−U

2
(fi(θ

′) + ϵi(U, θ
′))

)
, (26)

(a)

≤
∑
i≥i

exp

(
−U

2

(
fOPT + iγ + inf

i≥i
ϵi(U, θ

′)

))
, (27)

= exp

(
−fOPT

U

2L

)
exp

(
−U

2 ((i+ 1)γ + infi>i ϵi(U, θ
′))
)

1− exp
(
−γ U

2

) , (28)

where (a) follows from (24). Thus, supU→∞
2
U log(

∑
i≥i P (Fi1)) = 0.

The sum of P (Fi2) for the first i− 1 terms is at most∑
i<i

P (Fi2) ≤
∑
i<i

exp

(
−U

2

(
θi

(
1− i+ 1

L
(µ(p⋆)− δ)

)
− i+ 1

L
MC(θi) + ϵi(U, θi)

))
,

≤
∑
i≤i

exp

(
−fOPT

U

2

)(
(i+ 1) min

0≤i<i
exp(ϵi(U, θ

∗
i )

)
. (29)

Combining, (28) and (29),

sup
U→∞

2

U
log(

∞∑
i=0

P (Fi2)) = −fOPT.

Thus, from (25)
sup

U→∞

2

U
logP(N = 0) ≤ −fOPT. (30)



This is true for all values of L, thus we let L → ∞, and tighten the bound (30) as follows by using the definition of fOPT.

sup
U→∞

2

U
logP(N = 0) ≤ −fOPT =− inf

i≥0
sup
θ≥0

fi(θ), (31)

= inf
i≥0

sup
θ≥0

(
θ

(
1− i

L
(µ(p⋆)− δ)

)
− i

L
MC(−θ)

)
, (32)

= inf
T≥0

sup
θ≥0

(θ (1− T (µ(p⋆)− δ))− TMC(−θ)) , (33)

= inf
T≥0

sup
θ≥0

T

(
−θ

(
− 1

T
+ (µ(p⋆)− δ)

)
−MC(−θ)

)
. (34)

This infimum and supremum is achieved at T = τ∗ and θ = T , where τ∗ is such that MC(−τ∗) = τ∗(µ(p⋆)− δ).
Hence, we get that

sup
U→∞

2

U
logP(N = 0) ≤ −τ∗.

Rewriting τ∗ as the root of g(τ) = MC(−τ∗)− τ∗(µ(p⋆)− δ), Lemma 10 implies that dτ∗

dδ = − 2
σ2
C
+ o(δ). Thus, we get

τ∗ = 2δ
σ2
C
+ o(δ).

Therefore, choosing δ = α logU
U and α = βσ2

C for β ≥ 2, we get

P(N = 0) = O(U−β).

Lemma 10.
dτ∗

dδ

∣∣∣
δ=0

= − 2

σ2
C

,

where σ2
C = limT→∞

1
T var

(∑T
t=1 B(t)

)
, the variance of process B(t), the number of arrivals of customers.

Recall that since the price p(t) is a constant, process B(t) is an i.i.d. process and σ2
C is well defined.
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