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ABSTRACT
Many internet service providers (ISPs) operate under network neu-

trality regulations which forbid smart data pricing schemes such as

those that provide differential QoS or differential pricing, leading to

lower profitability. Increasing bandwidth-hungry content is mak-

ing the consumers demand improved ISP infrastructure. With the

risk of poor consumer experience squarely on the ISP, the ISPs are

forced to invest in their infrastructure with little scope for moneti-

sation via innovative user pricing. And they are asking the content

providers (CPs) to pick up some of the tab for ISP capacity expan-

sion. In this paper we explore the possibility of network neutral

capacity expansion sponsored by voluntary peering charges from

CPs.

We consider the scenario where CPs peer with an ISP and take

the lead in paying peering charges with the caveat that this has

to be used for capacity expansion. Since ISP capacity expansion

can benefit all the CPs, and possibly even the ISP, selfish CPs will

determine their charges strategically. We consider three models for

the CPs to interact in determining the charge—a cooperative model,

a non-cooperative model, and a bargaining model. Our analysis re-

veals a rather surprising result. We show that the bargaining model

leads to a higher investment in the ISP infrastructure than even

the cooperative model. This leads us to recommend policies that

promote transparency in the interconnection agreements between

CPs and ISPs.
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1 INTRODUCTION
The public discourse on net neutrality—arguments for and against

differential pricing and differential QoS–has been vigorous for quite

some time now and many countries have adopted strong regula-

tions favouring network neutrality. Interconnection agreements,

especially between the access ISPs and content provider (CP) net-

works like those of YouTube, Netflix, and Facebook, or content

delivery networks (CDNs) like Akamai and Lightstream can also

produce effects similar to neutrality violation. However, not much

attention has been paid to the interconnection markets and they

have largely remained unregulated.

That interconnection agreements would determine the structure

of the internet was recognized in [1] in the prescient observation

that “interconnection agreements do not just route traffic in the

internet, they also route money.” It was further recommended in [1]

that any policy on interconnections should focus on transparency

into the workings of the interconnection markets.

In the present paper, we present economic models for the in-

terconnection market between an access ISP and content provider

(CP) networks operating in a net neutrality regime. The objective is

to provide insights into the interconnection market structure and

guidelines for policies that are socially beneficial in the long term.

We show that transparency can actually lead to significantly im-

proved infrastructure investments as compared to an unregulated

regime.

1.1 Background
The internet has traditionally been a hierarchical network with

Tier 1 ISPs at the top and access ISPs and their subscribers (users)

at the bottom of the hierarchy. This hierarchical topology started

to break down with several networks peering around Tier 1 ISPs

and resulting in ‘donut peering’ structures [2]; many of these are

paid peering arrangements (as opposed to settlement-free peering).

With a small number of content providers dominating internet

traffic,
1
such donut peering structures are also being pursued by

CPs. For example, the Netflix Open Connect
2
is a platform for

Netflix to directly connect with an access ISP. Google maintains

multiple points of presence (POP) in most markets and access ISPs

may connect directly to them.

Direct interconnections benefit both the CPs and the end users.

The CPs save on transit costs and the users see improved quality of

experience (QoE). The improved QoE in turn benefits the CPs with

increased customer stickiness. The direct interconnection though

1
According to the Sandvine report (see www.sandvine.com) NetFlix (55.5%), YouTube
(17.5%) and seven other streaming applications together contribute about 80% of down-

load traffic on wireline networks. For mobile networks, the top eight CPs contribute

more than 80% of the downloads.

2
https://media.netflix.com/en/company-blog/

how-netflix-works-with-isps-around-the-globe-to-deliver-a-great-viewing-

experience

https://doi.org/10.1145/3150928.3150931
https://doi.org/10.1145/3150928.3150931


VALUETOOLS 2017, December 5–7, 2017, Venice, Italy Anand Kalvit, Gaurav Kasbekar, D. Manjunath and Jayakrishnan Nair

imposes a cost to the ISP because the improved QoE can drive up

the demand. Hence, as has been pointed out in [3], since the risk of

poor user experience is with the ISP, the ISP needs to improve its

infrastructure through additional investment.

To recoup such an investment, the ISP can extract the system sur-

plus from the user-side and/or from the CP side. User-side surplus

may be extracted through pricing innovations; see [4] for several

examples. However, they face several obstacles. Firstly, market ex-

pectations have been shaped by flat fee regimes and a simple pricing

structure is the de riguer in many markets. Secondly, in many mar-

kets, the pricing regimes can be close to marginal cost because

of inter-ISP competition. Finally, regulatory requirements like net

neutrality stipulations severely limit the ability of the ISP to extract

user-side surplus. There appears to be more manoeuvring room for

the ISP to extract CP-side surplus. Also, as has been described in the

analysis in [5], with increasing asymmetry in the ISP and CP rev-

enues, the ISPs demanding the CPs to contribute to the costs of ISP

infrastructure is natural and peering by CPs and/or groups of CPs

(via a hosting service provider) is natural. Further, since different

CPs benefit differently from improved user QoE, it is also natural

that the ISPs charge the CPs in an asymmetric manner. This seems

to be happening to some extent with the paid-peering arrangement

between Netflix and Comcast being the celebrated case. There is

also emerging research interest in characterising what can happen

here.

The net neutrality regulations also affect CP-side surplus ex-

traction, but services such as caching and interconnection, or paid-

peering, are as yet unregulated. To be sure, there have been some

attempts at imposing harsh regulations, e.g., Cogent and Netflix

requested regulatory intervention to prohibit Comcast from collect-

ing peering charges [3]. To the best of our knowledge, the public

discourse on interconnection regulation has not yet happened, but

several governments are exploring this matter. This paper develops

economic models to inform such regulations.

1.2 Previous Work
There is substantial literature on the economics of non-neutral net-

works. The effect of discriminatory QoS on various performance

parameters like social surplus, surplus of users, CPs, and ISPs, and

the incentive of the ISP to invest in its infrastructure has been stud-

ied in, among others, [6–8]. Analysis of the effect of discriminatory

pricing is being increasingly studied, e.g., [9–11]. Coalitional game

theory was used in [5, 12] to analyse the fair sharing of surplus

among the access ISPs and CPs; these papers predict that prevalent

settlement arrangements are not stable. Early work on paid peering,

e.g., [13–15], implicitly assumed that all the networks were ‘similar’.

More recently, [16] suggested a Nash-peering model based on the

value peering.

Our interest in this paper is more along the lines of the work

of [17–19]. In [17], a Nash bargaining model is used to determine

peering prices when there is a churn in the system. In [18], using a

transactional model for demand, a Stackelberg game with the ISP

as the leader and the CPs as the followers is formulated to study

peering prices. In [19], a choice model is used to determine the

value of direct peering and the peering dynamics are analyzed.

1.3 Preview
Traditionally, paid peering has implied that the ISP takes the lead

in setting the peering charges. This can lead to a potentially non-

neutral arrangement between the ISP and the CP. In this paper we

propose a neutral network with CPs taking the lead in contributing

to the ISP infrastructure via voluntary peering payments. Indeed,

they do so in their own self interest. This is not unreasonable

because, as we saw earlier, only a small number of CPs dominate

internet traffic and they are the ones that would be willing to pay

the peering charges. A further motivation for this model is the

belief that many CPs wield significant power over the access ISPs,

especially in markets where the latter do not enjoy a monopoly.

Our objective here is to compare the ISP investment outcome

from the different types of interactions between the CPs. In the next

section, we describe the model in detail. In Section 3, we consider

three mechanisms that the CPs use to determine the peering charge.

First, we consider a cooperative model in which the CPs form a

single coalition that seeks to maximise the total CP surplus. Next

we consider the non-cooperative setup where the CPs strategically

decide the peering charge. Finally, we consider a Nash bargaining

problem between the CPs to determine the ISP investment. Our

key finding in this section is that the bargaining based peering

charges leads to a higher investment than even the cooperative

model where the CPs maximize their net profit. A second important

finding is that in the non-cooperative setup, in most cases, only

one of the two CPs will contribute to capacity expansion and the

other will free-ride.

In Section 4, we illustrate the results with numerical examples

and characterize the differences in the outcome from the three mod-

els. We also provide some policy guidelines for the interconnection

market. We conclude with a discussion on extensions and future

work in Section 5.

2 MODEL AND PRELIMINARIES
We consider a system with a single access ISP and two CPs, labeled

1 and 2, serving a user population. The CPs may peer with the ISP

by paying a voluntary q-charge that is used for capacity expansion

by the ISP, thus increasing the quality of service (QoS) that the

users see and hence their consumption. We will initially assume

that the q-charge to be paid by the CPs to the ISP for improving

the QoS is a fixed charge Qi for CP i .We will also briefly discuss

the case when there is a volume-based charge at rate qi for CP i in
Section 5.

The consumption of the users from the two CPs depends on the

inherent interest in the corresponding content and also on the qual-

ity of service that the network provides. This QoS in turn depends

on the investment made by the ISP towards its infrastructure. Let

µ0 be the baseline investment without the CP peering and let µ be

the additional investment enabled by the asymmetric q-charge on
the CP side. The increased QoS is seen by all the users and, since

the ISP is neutral, it does not control the effect of this increase on

consumption of any specific CP.

The effect of interest and QoS on the consumption by a user of

content of CP i is given by xi0 + xi (µ) where xi0 is the ‘baseline’

consumption, i.e., the consumption without additional investment

afforded by q-charges on the CP, and xi (µ) is the extra consumption
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that is enabled by the additional investment by the ISP. We make

the reasonable assumption that xi (µ) is increasing and concave

in µ with xi (0) = 0 and limµ→∞ x ′(µ) = 0. We assume that the

profitability of a CP is linear in the consumption, i.e., CP i has a
revenue of vi per unit of traffic.

The q-charges that are paid by the CPs are used by the ISP

towards enhancing its infrastructure; thus µ is a function ofQ1 and

Q2. This in turn increases consumption which can be profitable to

both the CPs and also to the ISP. Thus the surplus of each CP will

be a function of both Q1 and Q2; denote this by fi (Q1,Q2). For the

flat charge case, we can now write

fi (Q1,Q2) = vi (xi0 + xi (µ(Q1,Q2))) −Qi (1)

We will make the reasonable assumptions that µ(0, 0) = 0. Also

note that fi (0, 0) = vixi0. Without loss of generality, we assume

fi (0, 0) = 0 since our interest is in the analysis of the incremental

benefits of paid peering by the CPs with a neutral ISP.

We consider two models for the user side charges. There is either

a fixed charge p per user with unlimited usage, or there is a volume

based charge of p per unit consumption.

We will assume a complete information game, i.e., the vi , xi (µ)
and µ(Q1,Q2) are known to both CPs. We will also assume that

the user charge of p is exogenously determined and is not part of

the strategy space of either the ISP or the CPs. Our interest is to

analyze the incentives for CPs to pay for ISP capacity expansion.

As we see above, this is determined by theQi and, when applicable,

by the extra revenue earned from the increased usage.

We will consider the following kinds of interactions between the

CPs and the ISP.

• We first consider a cooperative game between the two CPs

with the objective of maximizing the total revenue, deter-

mining µ cooperatively, and distributing the costs using a

Shapley value mechanism. This is an ‘ideal’ objective and

is useful for purposes of comparison with more ‘realistic’

schemes.

• Nextwe consider the casewhen the CPs lead by non-cooperatively

determining (Q1,Q2).

• The third interaction model that we consider is for the CPs

to determine the (Q1,Q2) using a bargaining framework.

In all of these cases, we will assume that µ ∝ Q1 +Q2.

Finally, we describe the user consumption model. As we said

earlier, our objective here is to model the effect of increased ISP

investment on the user consumption and hence the benefits to the

CPs when the ISP is neutral. To keep the model parsimonious, and

tractable, we assume the ISP investment to be a proxy for user QoS

and assume the following model for xi (µ).

xi (µ) = θiϕ(µ) (2)

where ϕ(·) is an increasing concave function with ϕ(0) = 0 and

limt→∞ ϕ ′(t) = 0. The parameter ai indicates the user preference
towards CP i’s content.

Our interest is to analyze the following quantities under the

different interaction models described above: the ISP investment µ
and the CP surplus fi .Wewill use the superscriptC to indicate these

quantities under the cooperative framework, B for the bargaining

framework, and N for the non-cooperative framework. For example

µC would be the ISP investment with cooperation, and f Bi the

surplus of CP i when they bargain on the q-charge.

3 FLAT PEERING AND USER CHARGES:
ANALYTICAL RESULTS

In this section, we consider the case where the CPs pay the ISP a

flat peering charge towards capacity expansion, and users pay a flat

fee (not dependent on data usage) to the ISP for internet access. We

study an idealised cooperative peering model between CPs, as well

as more practical models based on the Nash equilibrium and the

Nash bargaining framework. The cooperative model corresponds

to the scenario where the CPs form a single coalition seeking to

maximize its aggregate profit. At the other extreme, the Nash equi-

librium based model captures a non-cooperative setting where each

CP seeks to maximize its own revenue, in the absence of any com-

munication between the CPs. Finally, the bargaining framework

corresponds to a scenario where the CPs can communicate and

‘bargain’ to arrive at an agreement on the peering charges paid

by each CP. The above models enable us to analyse the impact of

non-cooperation as well as bargaining between the CPs.

Our analysis reveals that from the standpoint of capacity ex-

pansion, bargaining based peering arrangements are more efficient

than the cooperative setting, which in turn is more efficient than

the non-cooperative setting. In other words, the strategic interac-

tion that enables a bargaining solution between the CPs is actually

beneficial to the user base, since it leads to the maximum capacity

expansion. Interestingly, except when the CPs are perfectly sym-

metric, any Nash equilibrium has only one CP contributing towards

capacity expansion. This is undesirable not just because it leads

to lower capacity expansion, but also because it can result in a

push towards (non-neutral) preferential treatment to traffic of the

‘sponsoring’ CP.

From a regulatory standpoint, our analysis suggests that it is

socially beneficial to have a transparent platform for CPs to commit

on their contributions towards network neutral capacity expan-

sion. Indeed, this might be preferable to the present practice where

CPs enter into bilateral (and seemingly non-neutral [20]) peering

arragements with ISPs, the terms of which are kept private.

Throughout this section, we assume that the capacity expansion

µ is proportional to the contributions of the CPs, i.e., µ = γ (Q1+Q2).

Without loss of generality, we set γ = 1. In this case, the CP surplus

functions are given by

fi = vixi (Q1 +Q2) −Qi = θiϕ(Q1 +Q2) −Qi (i ∈ {1, 2}).3

Webegin our analyses by first considering the cooperative regime.

Cooperative peering
We now consider the (idealised) setting where the CPs act as a

single coalition seeking to maximize its net surplus, given by

v1x1(µ) +v2x2(µ) − µ .

3
Under the flat pricing model, it is not meaningful to consider the ISP as being strategic,

i.e., to not couple µ to Q1 +Q2 but instead treat µ as a strategic decision of the ISP in

response to (Q1, Q2). Indeed, under such a model, since the ISP surplus is not tied to

the capacity expansion (q-charges as well as user payments being flat and not volume

based), the ISP has no incentive to increase capacity. If the q-charges are volume-based

(we discuss this case briefly in Section 5), it is indeed meaningful to consider models

with a strategic ISP.
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The first term above is the revenue from the increase in user data

consumption due to capacity expansion µ, and the second is the

q-charge paid by the coalition. Note that this case is an ‘idealisation’

in the sense that we disregard the strategic interactions between

the CPs. Thus, it is natural to benchmark the capacity expansion

under this model to that under more practical settings where the

CPs selfishly seek to maximize their own surplus.

The concavity assumptions on the xi lead to the following ele-

mentary characterization of the cooperative capacity expansion,

denoted by µC .

Lemma 3.1.

µC =

{
0 if θ1 + θ2 ≤ 1

ϕ′(0)

(ϕ ′)−1

(
1

θ1+θ2

)
otherwise

.

Note that if θ1 + θ2 ≤ 1

ϕ′(0)
, then the CP coalition does not have

an incentive to invest in capacity expansion, since the resultant

usage increase does not generate sufficient revenue.

While the above cooperative model does prescribe the capac-

ity expansion uniquely, it does not prescribe the q-charges paid
by the respective CPs. Cooperative game theory provides several

solution concepts to capture this settlement between the CPs [21].

However, since our focus is primarily on the capacity expansion

corresponding to the cooperative regime (which forms the bench-

mark against which we compare the capacity expansion under the

non-cooperative and bargaining models), we do not address the

issue of cooperative settlement in this paper.

Non-cooperative peering
Next, we consider the non-cooperative setting, where CPs decide

on their contributions towards capacity expansion selfishly and

without coordination. In this case, it is then natural to consider

Nash equilibria between the CPs, withQi being the ‘action’ of CP i .
Note that QN = (QN

1
,QN

2
) is a (pure) Nash equilibrium if

QN
1

∈ arg max

Q1

f1(Q1,Q
N
2
),

QN
2

∈ arg max

Q2

f2(Q
N
1
,Q2).

A key issue with the non-cooperative setting is the so-called

‘tragedy of commons’, where the CPs under-invest in capacity ex-

pansion (often to their own disadvantage) by acting selfishly. In-

deed, as we will see, except when the CPs are perfectly symmetric,

a Nash equilibrium involves at most one of the CPs making a posi-

tive contribution towards capacity expansion. To formalise this, we

define the following types of Nash equilibria. A Nash equilibrium

(QN
1
,QN

2
) is said to be

• Type 0 if none of the CPs peer, i.e., QN
1
= QN

2
= 0,

• Type 1 if only one of the CPs peers, i.e.,QN
1
= 0 andQN

2
> 0,

or QN
2
= 0 and QN

1
> 0,

• Type 2 if both CPs peer, i.e., QN
1
,QN

2
> 0.

The following theorem characterizes the conditions for existence

of different types of Nash equilibria.

Theorem 3.2. A (pure) Nash equilibrium always exists.

(1) If max(θ1,θ2) ≤ 1

ϕ′(0)
, then the only Nash equilibrium is

Type 0, i.e., (0, 0).

(2) If max(θ1,θ2) >
1

ϕ′(0)
and θ1 > θ2, then the only Nash equi-

librium is Type 1 of the form (QN
1
, 0), whereQN

1
is the unique

solution of ϕ ′(Q1) =
1

θ1

.

(3) If max(θ1,θ2) >
1

ϕ′(0)
and θ2 > θ1, then the only Nash equi-

librium is Type 1 of the form (0,QN
2
), whereQN

2
is the unique

solution of ϕ ′(Q2) =
1

θ2

.

(4) If max(θ1,θ2) >
1

ϕ′(0)
and θ2 = θ1, then there is a continuum

of Type 1 / 2 Nash equilibria (QN
1
,QN

2
), satisfying

QN
1
+QN

2
= µN , QN

1
,QN

2
≥ 0,

where µN is the unique solution of ϕ ′(µ) = 1

θ1

= 1

θ2

.

Theorem 3.2 partitions the θ1 × θ2 space into four regions, and

provides a precise characterization of the Nash equilibria in each

region. Figure 1 provides a pictorial depiction of these regions.

Interpreting θi to be the size of CP i, we see that when the sizes of

both CPs are small (precisely, less than or equal to
1

ϕ′(0)
), the only

Nash equilibrium is (0, 0). Else, except when the sizes are exactly

matched, the unique Nash equilibrium is Type 1, with the ‘larger’

CP being the only contributor towards capacity expansion. This

means that in general, non-cooperative peering results in highly

asymmetric contributions by the CPs.

A direct corollary of Theorem 3.2 is the following.

Corollary 3.3. The capacity expansion µN under any Nash equi-
librium between the CPs is unique.

Proof of Theorem 3.2. If max(θ1,θ2) ≤ 1/ϕ ′(0) (Condition (1)),
then for i = 1, 2, ϕ ′(0) ≤ 1/θi . Thus, the dominant response of CP i
to any action of the other CP is to set Qi = 0. It therefore follows

that Type 0 is the unique equilibrium for this case.

Next, if max(θ1,θ2) > 1/ϕ ′(0) and θ1 > θ2, (Condition (2)), it is

easy to check that (0, 0) is not a Nash equilibrium, and that (QN
1
, 0)

is a Nash equilibrium if and only if ϕ ′(Q1) =
1

θ1

. Moreover, if we

assume that (Q̂1, Q̂2) is an equilibrium with Q̂2 > 0, we get the

conditions

ϕ ′(Q̂1 + Q̂2) =
1

θ2

, ϕ ′(Q̂1 + Q̂2) ≤
1

θ1

,

which are clearly inconsistent.

The conclusions under Condition (3) are proved using an identi-

cal argument.

Finally, if max(θ1,θ2) > 1/ϕ ′(0) and θ2 = θ1 (Condition(4)),

then ϕ ′(0) > 1/θi . It is easy then to check that (0, 0) is not a Nash

equilibrium. Moreover (Q̂1, Q̂2) , (0, 0) is a Nash equilibrium if and

only if

ϕ ′(Q̂1 + Q̂2) =
1

θ1

=
1

θ2

.

Thus, we have a continuum of Type 1 / 2 Nash equilibria as claimed.

□

Our next result states that non-cooperative peering always leads

to a lower capacity expansion compared to the cooperative model.

Theorem 3.4. If θ1 + θ2 ≤ 1

ϕ′(0)
, then µN = µC = 0. If θ1 + θ2 >

1

ϕ′(0)
, then µN < µC .
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 N = (0,0)

 N = (QN,0)

 N = (0,QN)

 θ
1
 = θ

2

 θ
2
 = 1/φ′(0)

 θ
1
 = 1/φ′(0)

Figure 1: Conditions for existence of different types of Nash
equilibria. Note the partition of the θ1 × θ2 space into 3 re-
gions. There exists a unique Nash equilibrium at each point
in the space except for those lying on the infinite ray θ1 =

θ2 > 1/ϕ ′(0). At each point along this infinite ray, there exists
a continuum of Nash equilibria, all with the same µN .

Proof. Recall from Theorem (3.2) that the conditions for ex-

istence of different types of Nash equilibria partition the θ1 × θ2

space into four non-overlapping subsets (see Figure 1). It is therefore

sufficient to prove the statement of the theorem for each subset.

For the subset corresponding to Condition (1), this is elementary.

For the subsets corresponding to Conditions 2, 3, and 4, note that

µN satisfies

ϕ ′(µN ) = min

(
1

θ1

,
1

θ2

)
.

On the other hand, µC satisfies

ϕ ′(µC ) =
1

θ1 + θ2

< min

(
1

θ1

,
1

θ2

)
.

It now follows that µN < µC given the concavity assumptions on

ϕ(·). □

Finally, we consider the price of anarchy (POA), defined as

POA =
µC

µN
.

The POA captures the inefficiency due to the non-cooperation

between the CPs with respect to capacity expansion. Clearly, the

POA is well defined when θ1 + θ2 >
1

ϕ′(0)
(otherwise, we have

µC = µN = 0). Moreover, if θ1 + θ2 >
1

ϕ′(0)
, Theorem 3.4 implies

that POA > 1. For an explicit characterization of the value of the

POA, we consider specific examples of usage functions. For the

logarithmic usage function xi = θi log(1+bµ) (where b > 0), it can

be shown that (assuming θ1 + θ2 >
1

ϕ′(0)
= 1

b )

POA =

{
∞ max(θ1,θ2) ≤

1

b
b(θ1+θ2)−1

b max(θ1,θ2)−1
max(θ1,θ2) >

1

b
.

For the bounded exponential usage function xi = θi (1 − e−bµ )
(where b > 0), it can be similarly shown that (assuming again that

θ1 + θ2 >
1

ϕ′(0)
= 1

b )

POA =

{
∞ max(θ1,θ2) ≤

1

b
ln(b(θ1+θ2))

ln(b max(θ1,θ2))
max(θ1,θ2) >

1

b
.

In both the above cases, note that evenwithin the regionmax(θ1,θ2) >
1

b , the POA is unbounded. Interestingly, the POA approaches 1

when max(θ1,θ2) >> min(θ1,θ2), i.e., when the CP sizes are highly

asymmetric.

Bargaining based peering
Finally, we consider the setting where the CPs ‘bargain’ to arrive

at an agreement on their peering payments. Note that this requires

that the CPs are able to communicate with one another. We invoke

the classical Nash bargaining solution from the bargaining literature

to capture the agreement between the CPs. Our main result is that

the bargaining solution is even more efficient than the cooperative

regime with respect to capacity expansion. As discussed before,

this has significant implications from a regulatory standpoint.

To define the Nash bargaining solution (NBS), we first define the

set of feasible, non-negative surplus pairs:

F := {(f1(Q1), f2(Q2)) | Q1,Q2 ≥ 0} ∩ R2

+.

A Nash bargaining solution (NBS) f B = (f B
1
, f B

2
) is defined to

be a solution of the following maximization.

max
ˆf1 ˆf2

such that ( ˆf1, ˆf2) ∈ F (3)

Note that we are maximizing the product of the CP surpluses, sub-

ject to the constraint that each surplus is non-negative. It is impor-

tant to note that the axiomatic development of the Nash bargaining

formulation assumes that the payoff space, which is the set of all

payoff pairs of both players, is convex. This in turn implies that

the NBS is unique. In the present setting, we are unable to prove

the convexity of the set F (although numerical experiments sug-

gest that the set is indeed convex). However, we prove via direct

arguments that the optimization (3) has a unique maximizer (see

Lemma 3.6).

The Nash bargaining framework involves a disagreement out-
come, which is the vector of payoff pairs if the two parties fail to

arrive at an agreement. In the present setting, it is natural to take

the disagreement outcome to be (0, 0),which corresponds to the CPs

not peering. Note that under the Nash bargaining framework, the

CPs arrive at an agreement if and only if the optimization (3) has a

optimal value that is strictly positive.

Our first result characterizes the condition for a bargaining agree-

ment between the CPs.

Lemma 3.5. The CPs arrive at a bargaining agreement if and only
if θ1 + θ2 >

1

ϕ′(0)
.

Proof. Suppose that θ1 + θ2 >
1

ϕ′(0)
. Then there exists µ̄ > 0

such that

v1x1(µ̄) +v1x1(µ̄) − µ̄ > 0.
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It is easy to see that one can find Q̄1, Q̄2 ≥ 0, such that

Q̄1 + Q̄2 = µ̄,

¯f1 := v1x1(µ̄) − Q̄1 > 0,

¯f2 := v2x2(µ̄) − Q̄2 > 0.

Since we have demonstrated a point ( ¯f1, ¯f2) ∈ F that yields a

strictly positive objective value for the optimization (3), it follows

that we have a bargaining agreement.

Next, suppose that there exists a bargaining agreement. This

implies that there exists Q̂1, Q̂2 ≥ 0 such that
ˆfi := fi (Q̂1, Q̂2) > 0

for i = 1, 2. This in turn implies that

v1x1(Q̂1 + Q̂2) +v2x2(Q̂1 + Q̂2) − (Q̂1 + Q̂2) > 0,

which proves that the capacity optimization under the cooperative

regime has a positive solution. It now follows that θ1 + θ2 >
1

ϕ′(0)

(see Lemma 3.1). □

Note that existence of a non-trivial NBS is equivalent to the

capacity expansion under the cooperative regime being strictly

positive (see Lemma 3.1). Thus, the set of system parameters over

which we have a non-trivial NBS is a strict superset of the set

of system parameters over which a non-trivial Nash equilibrium

exists.

Our next result establishes the uniqueness of the NBS.

Lemma 3.6. If θ1 + θ2 >
1

ϕ′(0)
, then the optimizer f B = (f B

1
, f B

2
)

of (3) is unique.

Proof. Suppose, for the purpose of obtaining a contradiction,

that there exist two optimizers
ˆf = ( ˆf1, ˆf2) and ¯f = ( ¯f1, ¯f2) of (3).

Clearly, there exists (Q̂1, Q̂2) and (Q̄1, Q̄2) such that

fi (Q̂1, Q̂2) = ˆfi , fi (Q̄1, Q̄2) = ¯fi , i = 1, 2.

It is easy to see that(
ˆf1 + ¯f1

2

) (
ˆf2 + ¯f2

2

)
> ˆf1 ˆf2 = ¯f1 ¯f2 > 0. (4)

Consider now, for i = 1, 2,

˜fi := fi

(
Q̂1 + Q̄1

2

,
Q̂2 + Q̄2

2

)
= vixi

(
Q̂1 + Q̄1

2

,
Q̂2 + Q̄2

2

)
−
Q̂i + Q̄i

2

<
1

2

vixi (Q̂1 + Q̂2) +
1

2

vixi (Q̄1 + Q̄2) −
Q̂i + Q̄i

2

=
ˆfi + ¯fi

2

.

The bounding above invokes Jensen’s inequality. It now follows,

from (4), that

˜f1 ˜f2 > ˆf1 ˆf2 = ¯f1 ¯f2.

Since ( ˜f1 ˜f2) ∈ F , we have a contradiction. □

Having established the uniqueness of the NBS, the next step is

to characterize the capacity expansion under the NBS. However, it

turns out that the capacity expansion under the NBS f B = (f B
1
, f B

2
)

is not necessarily unique. Indeed, we show that theNBS is associated

with at least one and at most two values of capacity expansion.

When there is a unique capacity expansion associated with the

NBS, we show that it is equal to the cooperative capacity expansion

µC .When there are two possible values, the smaller value is less

than µC , whereas the greater value exceeds µC . If we thus follow
the convention that for the same surplus vector, the CPs choose

the greater capacity expansion (resulting in a greater benefit to the

users), we conclude that the capacity expansion under NBS actually

exceeds that under the cooperative regime. This is formalised in

the following theorem.

Theorem 3.7. If θ1 + θ2 >
1

ϕ′(0)
, then there exists a unique µB ≥

µC , QB
1
,QB

2
≥ 0, such that

µB = QB
1
+QB

2
,

fi (Q
B
1
,QB

2
) = f Bi , i = 1, 2.

Proof. Let д(µ) := v1x1(µ)+v2x2(µ) − µ denote total surplus of

CPs 1 and 2. Clearly, f B
1
+ f B

2
≤ д(µC ).

Now, suppose that f B
1
+ f B

2
< д(µC ). Given convexity properties

of д, it follows that there exist unique values µ, µ̄ such that 0 < µ <

µC < µ̄, and д(µ) = д(µ̄) = f B
1
+ f B

2
. Note that µ and µ̄ are the only

possible capacity expansions under the NBS f B .
Now, let (Q

1

,Q
2

) and (Q̄1, Q̄2) be defined as follows. For i = 1, 2,

f Bi = vixi (µ) −Q
i
, f Bi = vixi (µ̄) − Q̄i .

Note that (Q
1

,Q
2

) and (Q̄1, Q̄2) are the q-charges corresponding to

µ and µ̄ respectively, if feasible. Clearly, (Q̄1, Q̄2) > (Q
1

,Q
2

). Since

at least one of µ and µ̄ is feasible, it follows that (Q̄1, Q̄2) ≥ (0, 0).

This completes the proof, setting µB = µ̄, and (QB
1
,QB

1
) = (Q̄1, Q̄2).

The case of f B
1
+ f B

2
= д(µC ) is trivial; in this case, we have

µB = µC . This completes the proof. □

Note that while the cooperative regime does generate a higher

aggregate surplus for the CPs, the bargaining framework results in

a higher capacity expansion. This means that even though strategic

interaction between the CPs can lower CP surplus, it is beneficial

to the user base.

We conclude by defining the benefit of bargaining (BOB), which

captures the relative benefit of the bargaining solution over the

cooperative model with respect to capacity expansion:

BOB =
µB

µC
.

Note that the BOB is well defined for θ1 + θ2 >
1

ϕ′(0)
, and is lower

bounded by 1. However, a closed form characterization of the BOB

is infeasible for even the simplest usage models. In Section 4 that

follows, we thus resort to numerical experiments to gain additional

insights on the efficiency of the bargaining based solution.

4 FLAT PEERING AND USER CHARGES:
NUMERICAL RESULTS AND POLICY
IMPLICATIONS

Given the analytical results in Section 3, the goal of this section is

to gain additional insights on the impact of non-cooperation and
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bargaining between the CPs via numerical experiments, and to

summarize the policy implications of our results.

We first consider the price of anarchy (POA). Figure 2 illustrates

how POA varies across the θ1 × θ2 space for the logarithmic usage

function. We note that the POA becomes unbounded and grows

to∞ as one approaches the unit square [0, 1] × [0, 1] from outside.

Also, observe that the POA is maximum when θ1 ≈ θ2, i.e., when

the CPs are of comparable size. This is because in this case, only

one of the CPs ends up contributing towards capacity expansion

under any Nash equilibrium, whereas both CPs make comparable

contributions under the cooperative regime. It is also worth noting

that the POA decreases as the CP sizes get more asymmetric. This

is to be expected, since even the cooperative regime would involve

the larger CP making the dominant contribution in this case.

Next, we consider the benefit of bargaining (BOB), which cap-

tures the relative improvement in capacity expansion under bargaining-

based peering compared with the cooperative setting. Figure 3

shows how the BOB varies across the θ1 × θ2 space, again for the

logarithmic usage functions. Note that the tessellation in the image

is a result of the numerical resolution at which µB was computed.

Moreover, we are unable to sweep all the way upto the θ1 + θ2 = 1

line because of the computational constraints created due to µB

being infinitesimally small close to this line. We observe that the

BOB is modest when the CPs are of comparable size, i.e., θ1 ≈ θ2.

On the other hand, the benefit of bargaining grows as the CP sizes

are highly asymmetric. Interestingly, this implies that the capacity

expansion under bargaining-based peering is always substantial rel-

ative to that under non-cooperative peering:When θ1 ≈ θ2,we have

a large POA but BOB≈ 1,whereas whenmax(θ1,θ2) ≫ min(θ1,θ2),

we have POA ≈ 1 but a large BOB.

Finally, we compare the aggregate CP surplus under the bar-

gaining and non-cooperative models. Figure 4 shows the difference

between the total revenues generated at NBS and NE. We observe

an intersting dichotomy here. Surprisingly, when the CP sizes are

highly asymmetric, it turns out that the aggregate CP surplus is actu-

ally greater under non-cooperative peering than under bargaining-

based peering. In other words, compared to the non-cooperative

setting, the configuration resulting from the bargaining framework

leaves the CPs worse off, and the user base better off. On the other

hand, when the CP sizes are comparable, the bargaining framework

generates a higher surplus for the CPs than the non-cooperative

setting.

Policy Implications
In this paper, we propose network neutral capacity expansion

funded by voluntary peering charges paid by CPs. The results of

Sections 3 and the present section show that this is indeed feasible.

Moreover, the observation that bargaining based peering results in

the highest capacity expansion suggests that policy makers should

set up a transparent platform for CPs to make commitments for

internet infrastructure expansion. In contrast, the present practice

of confidential and bilateral peering arragements between CPs and

ISPs leads not only to potentially lower infrastructure investments,

but also to non-neutral internet access for users.

Figure 2: Price of anarchy (POA) over the θ1 ×θ2 space under
the model xi = ai log(1 + µ)

Figure 3: Benefit of bargaining (BOB) over the θ1 × θ2 space
under the model xi = ai log(1 + µ)

5 DISCUSSION AND CONCLUSION
An immediate extension of the model is to consider the case when

the users pay an internet access fee that is proportional to usage.

From a peering standpoint, it turns out that this case is identical

to the case of flat user pricing in Section 3, and all our previous

conclusions apply to this case. To see that this is identical to the

case when the users pay flat fee, we observe that the CP surplus

functions remain unchanged from the flat access price case. Thus, if

µ = Q1 +Q2, then the analysis and conclusions of Section 3 apply.

Another variation is to let the ISP be strategic, i.e., µ(Q1,Q2) ,
Q1+Q2 but is determined to maximise its profit. It is easy to see that

when the q-charges are flat, considering the ISP as being strategic

is not a well posed model. To see this note that the ISP surplus is
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Figure 4: Difference between net CP surplus under bargain-
ing and non-cooperative models, for xi = ai log(1 + µ)

given by p(x1(µ) + x2(µ)) +Q1 +Q2 − µ . Thus, given any (Q1,Q2),

the optimal response of the ISP is independent of (Q1,Q2).

A third extension that is possible, is to assume that the CPs pay

a volume based q−charge, i.e., they pay per byte. This makes the

problem mathemtically messier because of loss of convexity and we

will not pursue it here. However, with significant simplifications

includingx(µ) being linear, and some additional tweaks to themodel

(e.g., cost of capacity expansion is not linear but some power of the

investment), closed form expressions for many of the quantities

of interest can be obtained. The qualitative conclusion though is

similar to what we have obtained in the previous two sections.

We conclude by reiterating that modeling the interconnection

market is critical to developing a comprehensive understanding

of the economics of the emerging internet. With the increasing

concentration of traffic among a few CPs such models may be an

even more crucial input for policy experts.
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