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Abstract—We consider a variant of the gossip algorithm
wherein a controller can influence the values at a subset of
nodes as well as the averaging weights. This leads to three
optimization problems: (i) Optimal choice of nodes: a combina-
torial optimization problem for which we propose a nonlinear
programming relaxation as well as a greedy heuristic; (ii)
Parametric optimization of weights: a non-convex optimization for
which we propose an effective heuristic for a special case; (iii)
Dynamic adjustment of weights: an optimal control problem. For
the dynamic case, we note some empirically observed interesting
critical phenomena for the uncontrolled case.

Index Terms—Opinion dynamics, Gossip algorithms, Optimal
node placement, Optimal control

I. INTRODUCTION

QUESTIONS such as how individuals form opinions,
when does consensus occur, why is there a polarization

in opinions, and so on, have interested sociologists for past
4-5 decades. It was recognized early on that the process of
opinion formation is a complex process where interpersonal
influences play a critical role. Realistic modeling of these
influences and their impact on opinion changes turns out
to be a major challenge. Beginning with French [4] and
followed by DeGroot [5] and Friedkin and Johnsen [6], one
line of thinking has matured into what is now referred to
as the social influence network theory. Representing opinions
by real numbers, it postulates that individuals revise their
opinions through weighted averaging of influences on them.
Thus opinions evolve from a simple deterministic recursive
process as follows.

x̂n+1(i) = (1− a)x̂n(i) + a
∑
j

p(i, j)x̂n(j). (1)

Here xn(i) denotes the opinion of individual i in time period
n, and p(i, j), the (i, j)th element of a stochastic matrix P, is
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the weight individual i assigns to the opinion of individual j.
Finally, 0 < a < 1 is a learning parameter that captures
each individual’s susceptibility to interpersonal influence. In
this model, if the social network is strongly connected (i.e.,
matrix P = [[p(i, j)]]1≤i,j≤N is irreducible), a standard result
from Markov chain theory implies that opinions converge to
a consensus.

In this paper, we take as a starting point that opinions of
individuals / estimates of sensors change as per a recursive
process. Specifically, we consider a stochastic variant of (1)
wherein p(i, j) represent polling probabilities by agent i.
That is, at each time n, agent i randomly polls one of her
neighbors ξn(i), with neighbor j being picked with probabil-
ity p(i, j), and updates her opinion as

x̂n+1(i) = (1− a)x̂n(i) + ax̂n(ξn(i)). (2)

We may view (2) as a distributed, asynchronous, variant of (1).
This is clearly more realistic in decentralized settings such as
social networks / sensor networks. Note that (1) describes the
evolution of the mean values of the iterates generated via (2).

Our interest is in understanding how a controller can maxi-
mize the collective value of the opinions/estimates by forcing
some of them to prescribed values and influencing the overall
interaction of the rest, under some resource constraints. While
there is a substantial body of work on convergence issues in
opinion dynamics and gossip algorithms, this work on their
control is the first of its kind to our knowledge. Specifically,
our contributions are as follows. The foregoing suggests two
distinct, albeit related, optimization problems:

1) The problem of optimal choice of a subset of individuals
whose values are to be frozen: Here, we seek to identify
the optimal subset of individuals in order to maximize
the rate of convergence to consensus. This turns out
to be a hard combinatorial problem. We provide (i)
a nonlinear programming relaxation and (ii) a greedy
heuristic for a related simpler problem. Via simulations,
we demonstrate that the optimal set of individuals can
be quite different from the set of top-ranked individuals
according to standard centrality measures. Our simu-
lations highlight that a good node selection scheme
must capture the (non-trivial) joint influence of sets of
individuals on the gossip dynamics of the network.

2) Optimization of weights with which the agents average
their peers’ opinions: We consider two scenarios, both
addressing optimization of related objective functions,
but over different ‘action sets’, the first favoring lower
complexity over a stronger notion of optimality.

a) Parametric optimization of (probability) weights:
Here the tunable parameter(s) affecting the weights
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are to be chosen off-line once for all. This is a
non-convex optimization in general, for which we
provide an expression of the gradient. We then
present a practically relevant special case of the
model corresponding to targeted advertising in a
social network. For this special case, we establish
coordinatewise convexity of the objective, which
suggests heuristic coordinate descent methods. Our
simulations highlight that it is beneficial to focus
advertising effort on a set of influential individuals
in the network. As before, the selection of the
influential individuals must account for their joint
influence on the gossip dynamics of the network.

b) Dynamic optimization of weights: Here the weights
are to be adapted dynamically with a view to
optimize a prescribed performance measure. This
makes it an optimal control problem. The paramet-
ric optimization of (a) would then correspond to
constant controls. For a non-linear variant of (2),
we provide a characterization of optimal control
via a Hamilton-Jacobi equation and the associ-
ated verification theorem. In addition, we record
some interesting computational experiments for the
uncontrolled scenario as the weight assigned to
peer pressure is varied. These exhibit a slew of
interesting critical phenomena. We also consider an
adversarial situation leading to a differential game.

Note that whereas the opinion dynamics is ‘distributed’ insofar
as the agents update their opinions through local interactions
alone as specified by the graph, our controller sits outside
of this community (think of a ‘social planner’) and controls
certain aspects of this dynamics with a view to maximize the
overall opinion or rating of the community for whatever is
being opined about. Thus the control is centralized in control
theoretic parlance.

A more formal statement of these problems requires setting
up some notation, hence is delegated to Section III below after
reviewing a small sample of the enormous amount of related
literature in Section II. The first problem, that of determining
the subset of individuals whose opinions are to be fixed, is
discussed in Section IV. In Section V we take up the problem
of parametric optimization of opinion values and transition
probabilities. A non-linear version of DeGroot’s model and
its optimal control are discussed in Section VI. We conclude
in Section VII.

We conclude this section with some important remarks.

1) There is some empirical work to validate the social in-
fluence network theory, e.g., [6], [7] report experimental
results for small groups. The linear model ignores the
phenomenon of ‘confirmation bias’ whereby peer opin-
ions are weighed according to their proximity with one’s
own. To our knowledge the first models which account
for this are so called bounded confidence models; see
[8]. In these models, the network topology essentially
changes with opinions (one only communicates with
those who have similar opinions). This could be one way
to introduce confirmation bias in our nonlinear model.

The linear model, however, does exhibit the ‘persuasion
bias’ [9], [10], also of interest for gossip algorithms
for engineering systems. A linear model also fails to
capture effects such as herd behavior which involve
‘phase transitions’. The nonlinear model we consider
later does so.

2) Our analysis presupposes prior knowledge of the model
parameters, which is not usually the case. This calls for
data driven ‘learning’ schemes. We briefly mention this
fact at the appropriate juncture, but once again this is a
nontrivial research direction for the future.

II. RELATED WORK

Various models of opinion dynamics have been proposed
in the literature; see, e.g., social impact [11], bounded confi-
dence [8], Bayesian learning [12]. Convergence under repeated
averaging has also been addressed in many papers: [13] in-
vestigates consensus, [14], [9] investigate whether individuals
will learn the true value of a state of nature using (1) if they
have noisy versions of it to start with. ‘Gossip’ algorithms that
arise in the context of estimation over a network of sensors
and have a similar flavor, have been studied extensively in
[15]. Local repeated averaging also appears in other contexts,
e.g., see [16] for bird flocking.

While we consider a continuum of opinions, there are
situations where the opinions are discrete valued. This has
led to interacting particle system models, see, e.g., [17]. Our
model can be viewed as a continuum approximation of discrete
valued opinions. While it is an interesting problem to justify
this rigorously, we do not pursue it here. Cooperative o.d.e.s
leading to monotone dynamics play a key role in our analysis.
A parallel development for discrete time random models using,
e.g., the developments of [18] may be possible. We do not,
however, pursue this here. There have also been other models
of ‘influential nodes’, e.g., [19] which considers similar issues
in the classical framework of epidemic models.

III. PROBLEM FORMULATION

Consider a social network with N nodes (agents) S =
{1, 2, · · · , N}, with an associated controlled transition prob-
ability matrix Pu = [[p(j|i, u(i))]]1≤i,j≤N , assumed to be
irreducible for each fixed u. Here u(i) ∈ Ui is a tunable
parameter for each i (Ui being a compact metric space) and
u := [u(1), · · · , u(N)]. At each time instant n, each agent
i samples one of the other agents, say j, with probability
p(j|i, u(i)). Let ξn(i) denote the (random) identity of the agent
polled. Agent i then replaces her current estimate x̂n(i) by

x̂n+1(i) := (1− a)x̂n(i) + ax̂n(ξn(i)), (2)

where a > 0 is a small ‘learning parameter’. Let x̂n =
[x̂n(1), · · · , x̂n(N)]T . We are interested in the case when a
‘controller’ fixes the values of x̂n(i) at some of the nodes
(say, {m+ 1, · · · , N} for some m ≤ N ) at some fixed values
ν(i),m < i ≤ N , as well as the control parameters {u(i)}.
The dynamics (2) can then be re-cast as

xn+1 := (1− a)xn + a (Pu1 xn + Pu2 ν +Mn+1) , (3)
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where,

• xn ∈ Rm is the vector of the first m components of x̂n,
• Pu1 := the submatrix formed by the first m rows and

columns of Pu,
• Pu2 := the submatrix formed by the first m rows and the

last N −m columns of Pu,
• ν = [ν(m+ 1), · · · , ν(N)]T ,
• Mn+1 := [x̂n(ξn(1)), · · · , x̂n(ξn(m))]T−(Pu1 xn+Pu2 ν)

is a martingale difference sequence.

The idea is that the controller is trying to maximize the
collective value of the estimates of the agents under some
resource constraints that we shall soon specify. There are three
sets of parameters she can optimize over:

1) The subset A of nodes whose values are to be fixed (e.g.,
influential people in a social network from the standpoint
of an advertiser).

2) The actual numbers {ν(i)} at which these are fixed (e.g.,
budget for sponsored websites, celebrity endorsements,
etc.).

3) The transition probabilities which depend on the tunable
parameters u(i) (e.g., the amount the advertising effort
directed on an individual).1

There is some cost associated with any of these choices,
making it a legitimate optimization problem that captures a
trade-off between cost and payoff. The first of these problems,
viz., optimization over subsets A of a fixed cardinality, turns
out to be a hard combinatorial optimization problem, so a
nonlinear programming relaxation and a greedy heuristic for
a simplified version of the problem with provable guarantees
are presented. Next we consider the subset A as given and
address the second problem, with two different formulations
that differ in our handling of the variables u(i). The first
considers them as parameters that are chosen once for all,
thereby making it a parametric optimization problem. The
second allows for dynamic state-dependent choices, i.e., an
optimal control problem, which we study for a more general
nonlinear variant.

Consider fixed u, ν. Note that (3) can be viewed as a
constant stepsize stochastic approximation (see [20, Chapter
9]) which tracks the asymptotic behavior of the o.d.e.

ẋ(t) = Pu1 x(t)− x(t) + Pu2 ν (4)

in the following sense. Since Pu1 is substochastic with its
Perron-Frobenius eigenvalue < 1 under our hypotheses, this
o.d.e. has a unique asymptotically stable equilibrium

x∗ = (I − Pu1 )−1Pu2 ν. (5)

Then
lim sup
n↑∞

E
[
‖xn − x∗‖2

]
= O(a). (6)

(See Theorem 3, p. 106, [20].) What (6) says is that the iter-
ates (3) asymptotically concentrate to an O(a) neighborhood

1Our model allows for a general functional dependence of the transition
probabilities on the control parameters u(i). In Section V, we consider a
special case of this dependence that applies to targeted advertising.

around x∗ with high probability.2 In Sections IV and V, we
shall refer to x∗ loosely as the equilibrium corresponding to
our iterates (3).

IV. CHOICE OF NODES

Consider a scenario where K out of the N nodes, com-
prising a subset A ⊂ S, fix their value of the corresponding
components of x̂n for good. Let PA denote the principal
submatrix of P corresponding to nodes in Ac and P̄A the
submatrix with row indices corresponding to Ac and column
indices corresponding to A. These are precisely the Pu1 , P

u
2

above, tagged by the set A so as to make their dependence on
it explicit, and sans the control parameter u which does not
play any role in the developments of this section. Let I and
1 denote respectively the identity matrix and the vector of all
1’s (with appropriate dimensions depending on the context).

Note that the equilibrium x∗ = (I − PA)−1P̄Aν. In the
special case ν(·) ≡ c, x∗ = c1, i.e., there is asymptotic
consensus on the value c. To see this, note that x∗ has the
well known representation ( [21], Ch. IV)

x∗(i) = E[ν(Xτ )|X0 = i], i ∈ Ac, (7)

for a Markov chain {Xn} with transition matrix P and τ :=
min{n ≥ 0 : Xn ∈ A}.3

The rate of convergence of the iterates xn to (a neighbor-
hood of) x∗ is dictated by the Perron-Frobenius eigenvalue
λ(PA) of PA. Indeed, defining en := xn − x∗, (3) can be
rewritten as

en = (aPA + (1− a)I)en−1 + aMn

= (aPA + (1− a)I)ne0 + a

n∑
i=1

(aPA + (1− a)I)n−iMi

= T1 + T2.

The term T1 above is Θ((aλ(PA) + (1 − a))n). Since
λ(PA) < 1, aλ(PA) + (1− a) < 1, implying that T1 vanishes
exponentially fast. The term T2, which captures the ‘persistent’
noise, has mean zero, and satisfies E[‖T2‖2] = O(a) (see (6)).
Thus, the iterates converge ‘with high probability’ to an O(a)
neighborhood of x∗ exponentially fast, at rate aλ(PA)+(1−a).
Thus, minimizing λ(PA) corresponds to maximizing the rate
of convergence of the iterates to (a neighborhood of) the
equilibrium x∗. This is the focus of the present section.

Formally, we are interested in the following optimization
problem.

min
A⊂S,|A|=K

λ(PA) (8)

2This is because in this so called ‘constant stepsize’ scenario (i.e., a is a
constant independent of n, as opposed to a slowly vanishing sequence), the
noise perturbation is persistent and any kind of convergence to an equilibrium
is untenable. Thus the best we can hope for is a concentration of asymptotic
probabilities near the equilibrium. This is plausible if the noise is ‘small’,
which translates into a being small. The aforementioned estimate quantifies
this fact. See ibid., Chapter 9 for details.

3Suppose that we obtain a reward when the Markov chain {Xn} first hits
the set A, the reward being ν(j) if the hitting state is j ∈ A. Then for
i ∈ Ac, r(i) := E[ν(Xτ )|X0 = i] is the average reward obtained starting
at state i. The Markov property implies that the vector r = (r(i), i ∈ Ac)
satisfies the recursion r = PAr + P̄Aν, which implies that r = x∗.
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The minimizing set A will therefore correspond to the K most
important nodes to influence from the point of view of rapid
opinion dissemination. This is a distinct notion of rating nodes
as compared to rating schemes such as Google’s PageRank
[22] or the ‘hub and authority’ model of Kleinberg [23], or
the various centrality measures proposed in social network
research [24].

Our discrete optimization problem (8) is a hard combi-
natorial problem to solve exactly. In the following section,
we consider a continuous relaxation of (8), which is more
tractable.

A. Continuous relaxation

We now consider a relaxation of (8) to an optimization
problem over reals. Let P ′(θ) := PΘ where Θ is a diagonal
matrix with entries θ1, · · · , θN ∈ [0, 1] on its diagonal. Let
θ := [θ1, · · · , θN ]T . We impose the constraint

∑
i θi = N−K.

Our relaxation of (8) is

min
θ∈C1∩C2

λ(θ), (9)

where λ(θ) = λ(P ′(θ)) denotes the the Perron-Frobenius
eigenvalue of P ′(θ), C1 := [0, 1]N , and C2 := {x =
[x1, · · · , xN ]T ∈ RN :

∑
i xi = N − K}. Note that

a {0, 1}-valued θ will correspond to exactly K zeros and
N − K ones, thereby recovering our original formulation.
Let π, V ∈ RN denote respectively the Perron-Frobenius
left- and right- eigenvectors of P ′(θ), i.e., the eigenvectors
corresponding to the eigenvalue λ(θ), where we suppress the
θ-dependence of π, V for simplicity. That is, for j ∈ S,

λ(θ)V (j) =
∑
k

p(j, k)θkV (k), (10)

λ(θ)π(j) =
∑
k

p(k, j)θjπ(k). (11)

Differentiating (10) w.r.t. θi, 1 ≤ i ≤ N , we have

∂λ(θ)

∂θi
V (j)+λ(θ)

∂V (j)

∂θi
= p(j, i)V (i)+

∑
k

p(j, k)θk
∂V (k)

∂θi
.

Multiplying the above equation by π(j), summing over j, and
using (11), we get

∂λ(θ)

∂θi
=
V (i)πT p(·, i)

πTV
=
λ(θ)V (i)π(i)

θi(πTV )
,

which gives an explicit expression for the gradient of λ(θ)
w.r.t. θ. The rightmost expression gives some qualitative
insight into parametric dependence of λ(·). It suggests that
λ(·) increases exponentially with respect to the normalized
product of left and right eigenvectors at each state i for a
given value of θ. This suggests a measure of sensitivity of
λ(·) vis-a-vis the states. We consider the following projected
gradient scheme. Let η > 0 denote a prescribed step size.
Then

θn+1 = Γ

(
θn − η

diag(V )PTπ

πTV

)
, (12)

where Γ(·) is the projection operator onto the set C1 ∩ C2:
Γ(x) = argminy∈C1∩C2

‖x− y‖. The projection Γ(x) may be

computed using the ‘successive projections’ algorithm due to
Boyle, Dykstra and Han [25], [26]. An alternative algorithm
for computing Γ(x) that exploits the structure of the sets C1

and C2 can be found in [27].
The objective function of (9) is not in general convex and

hence we can only expect the gradient projection scheme (12)
to converge to a local minimum. This suggests resorting to
multi-start, simulated annealing, etc. to improve performance.
From a candidate solution θ∗ to (9), we may obtain a candidate
solution to (8) by picking the nodes corresponding to the
smallest K components of θ∗. There may be local minima
that are not global minima, either in the interior or on the
boundary.

B. A greedy algorithm
In view of these difficulties, we consider an alternative for-

mulation. Let {Xn} be a Markov chain with transition matrix
P . Then log(λ(PA)) has the interpretation of being the asymp-
totic rate of exit from Ac, i.e., the ‘rate of exponential decay’
of the tail probability of τ : log(λ(PA)) = limt↑∞

logP (τ>t)
t

for τ := min{n ≥ 0 : Xn ∈ A}. This suggests looking
at a related, more amenable performance measure, the mean
exit time E[τ ]. Recall that E[τ ] =

∑
t P (τ ≥ t), whereas in

light of the above, P (τ > t) ≈ λ(PA)t. Thus we expect the
minimization of λ(PA) and E[τ ] to be ‘similar’. Assuming
uniform initial distribution over Ac, we have the cost criterion

E[τ ] =
1

N −K
1T (I − PA)−11 =

1

N −K
1T
( ∞∑
n=0

PA
n

)
1.

We now state our optimization objective formally. For A ⊆
S, define f(A) := 1T (

∑∞
n=0 PA

n) 1. Note that f(∅) = ∞,
and f(A) < ∞ for all non-empty A ⊆ S. We seek to solve
the following optimization problem:

min
A⊆S,|A|=K

f(A) (13)

Problem (13) is still a hard problem to solve exactly.
However, the following result facilitates a greedy heuristic
[28].

Theorem 1: f is supermodular, i.e., for A,B ⊆ S,
f(A) + f(B) ≤ f(A ∪B) + f(A ∩B).

Proof: For A ⊆ S, define f (n)(A) = 1TPnA1. We will
prove that f (n)(·) is supermodular. It is easy to see that this
implies supermodularity of f.

Define g : [0, 1]N → R as g(θ) =
1T (diag(θ) P diag(θ))

n 1. Define

θ̂(A) := (I{i/∈A}, i = 1, 2, · · · , N),

where I{z} equals 1 if z is true and 0 otherwise. Note that
f (n)(A) = g(θ̂(A)). It is easy to see that ∂2g(θ)

∂θi∂θj
≥ 0 for

all i 6= j. This implies that g is supermodular [29, Theorem
10.4], i.e., g satisfies g(θ) + g(θ̃) ≤ g(θ∨ θ̃) + g(θ∧ θ̃) for all
θ, θ̃ ∈ [0, 1]N . For A,B ⊆ S,
f (n)(A) + f (n)(B) = g(θ̂(A)) + g(θ̂(B))

≤ g(θ̂(A) ∨ θ̂(B)) + g(θ̂(A) ∧ θ̂(B))

= g(θ̂(A ∩B)) + g(θ̂(A ∪B))

= f (n)(A ∩B) + f (n)(A ∪B).
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This proves that f (n)(·) is supermodular.
Note that the specific choice of initial distribution (uniform

in this case) is not crucial here.
1) Greedy Algorithm: Note that the objective function f is

monotone non-increasing, i.e., f(A) ≥ f(B) whenever A ⊆
B. The supermodularity and monotonicity of f (equivalently,
the submodularity and monotonicity of −f ) motivates the
following simple greedy heuristic to compute an approximate
solution AG to (13) (see [28]).

1) Set A0 = ∅.
2) For i = 1, 2, · · · ,K do

j∗i = argminj∈ACi−1
f(Ai−1 ∪ {j}),

Ai = Ai−1 ∪ {j∗i }.

3) Set AG = AK .

The algorithm constructs the set AG in K stages. In each
stage, the node that produces the greatest marginal decrease
in the objective function is added to the set.

The greedy algorithm described above involves several
evaluations of the function f. For non-empty A ⊂ S, the
computation of f(A) involves the inversion of the typi-
cally ‘large’ matrix (I − PA). However, these inversions can
be greatly simplified using the Sherman-Morrison-Woodbury
(SMW) formula (see [30, Section 2.1.3]). In Stage i ≥ 2
of the algorithm, the SMW formula can be used to compute
(I − PAi−1∪{j})

−1 efficiently from (I − PAi−1)−1.
2) Suboptimality bound: Since f(∅) = ∞, one cannot

bound the suboptimality of f(AG) relative to the optimum
value f∗ of (13) directly, as in Theorem 4.2 of [28]. We can,
however make the following weaker statement. Suppose that
we restrict the optimization in (13) to sets A containing a
special node i0; the ‘initial node’. Note that the choice of i0
is also a part of the decision and we assume that it has been
arrived at by a suitable heuristic, e.g., one of the standard
centrality measures. Let f∗i0 denote the optimum value of this
relaxed problem. Consider the following modification to the
greedy algorithm above: start with A1 = {i0}, and run the
iterations for i = 2, · · · ,K to obtain the set AG(i0). Then

f({i0})− f(AG(i0)) ≥
(

1− 1

e

)
(f({i0})− f∗i0),

where e denotes the base of the natural logarithm (see Theorem
4.2 of [28]).

C. Experiments

In this section, we evaluate the algorithms proposed in the
preceding sections numerically. We illustrate the value of these
algorithms by comparing their performance against naive node
selection schemes based on two popular centrality notions in
the literature.

We consider both synthetic as well as real world datasets.
In each case, the network data provides us with an undi-
rected graph, represented by its adjacency matrix R =
[[r(i, j)]]1≤i,j≤N . From R, we generate the stochastic matrix
P by setting p(i, j) = r(i,j)

deg(i) , where deg(i) denotes the degree
of node i. We compare our node selection algorithms with the
following simple selection rules: rank the nodes according to

either the PageRank algorithm4 [22] or the HITS algorithm5

[23], and pick the K highest ranked nodes. Recall that our
performance metric is λ(PA), which determines the rate of
convergence to consensus, once the subset A of nodes freezes
its value.

Fig. 1. Toy example with 8 nodes

To provide intuition, we start with the toy network depicted
in Fig. 1 with 8 nodes. We set K = 2. In this case, the
greedy algorithm presented in Section IV-B obtains the optimal
solution {1, 6}, with λ(P{1,6}) = 0.873. On the other hand,
both the naive approaches described above pick the subset
{1, 2}, with λ(P{1,2}) = 0.974. Now it is intuitively clear that
Node 1 is the most central node in our example. Our naive
schemes pick Node 2 as the second node (its ranking under
PageRank/HITS is second highest, due in part to its proximity
to Node 1). Indeed, it turns out that λ(P{2}) < λ(P{6}),
which suggests that on a stand-alone basis, Node 2 is actually
more influential than Node 6. However, the naive schemes fail
to take into account the joint influence of groups of nodes.
Indeed, the node pair {1, 6} is actually more influential than
the pair {1, 2}. Intuitively, this is because the convergence to
consensus throughout the network is aided by spreading out
the nodes with frozen values in the network.

Next, we now move on to bigger networks. We consider the
following three examples.

1) Zachary Karate Club: This is a well known network
representing friendships between 34 members of a karate
club over a period of two years [31]. Here, we take
K = 5.

2) Coauthorships in Network Science: A data set describing
a collaboration network of scientists working in network
theory and experiments has been prepared by Newman
[32]. In this network graph, nodes are scientists and two
scientists are connected by an (undirected) edge if they
have co-authored a paper. For our experiment, we use
the largest connected component of this graph, which
contains 379 nodes. Here, we take K = 20.

3) Synthetic network generated via preferential attachment:
We generate a 1000 node network using the well known
preferential attachment scheme [33]. Specifically, the
graph is generated by adding nodes one at a time, each
incoming node attaching itself through an undirected

4This corresponds to computing the stationary distribution corresponding
to the Markov chain with transition matrix P. The nodes (states) are ranked
in decreasing order of their stationary probabilites.

5Since the adjacency matrix R in our examples is symmetric, the hub and
authority ratings for a node are equal; the vector of hub/authority ratings of
the nodes is the Perron-Frobenius eigenvector of R2.
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Greedy algorithm Gradient descent PageRank HITS
Zachary Karate Club 0.908 0.930 0.930 0.930
Net. Sci. coauthorships 0.989 0.995 0.996 0.999
Preferential attachment network 0.987 - 0.995 0.999

TABLE I
EACH TABLE ENTRY GIVES THE PERRON-FROBENIUS EIGENVALUE OF PA

edge to an already existing node in the network. With
probability 1/2, this neighbor node is picked uniformly at
random, and with probability 1/2, the neighbor is picked
proportionally to the degree of the existing nodes. For
this network, we take K = 80.

In Table I, we record the value of λ(PA) obtained for
the above networks by selecting the subset A according to
the greedy algorithm presented in Section IV-B, the gradient
descent algorithm described in Section IV-A6, and the two
naive schemes based on PageRank and HITS. Note that
the greedy algorithm produces the lowest value of λ(PA),
followed by the projected gradient descent algorithm (except
in the 1000 node preferential attachment network; in this case,
the gradient descent algorithm takes a prohibitively long time
to converge).

In conclusion, we see that our algorithms, particularly the
greedy algorithm, consistently outperform naive node selection
methods. Moreover, our experiments confirm that our notion
of ranking (subsets of) nodes from the point of view of
rapid opinion dissemination is very distinct from other popular
centrality notions in the literature.

V. PARAMETRIC OPTIMIZATION

We now consider the parametric optimization problem of
determining (i) the values at which the opinions of N − m
nodes are to be fixed ({ν(i)}, m < i ≤ N ) and (ii)
parameters u(i), 1 ≤ i ≤ m on which the transition
probabilities depend. The payoff – cost structure we con-
sider is the following. At each instant n, we incur a pay-
off of

∑
i xn(i), i.e., the net interest level. For each com-

ponent i, a cost of gi(u(i)) is incurred if the parameter
u(i) is chosen, where gi ∈ C(Ui;R). In addition, a cost
of hj(ν(j)), hj ∈ C(R+;R+) is incurred for freezing the
opinion of node j. Let g(u) := [g1(u(1)), · · · , gm(u(m))]T

and h(ν) := [hm+1(ν(m+ 1)), · · · , hN (ν(N))]T . This leads
to the optimization problem:

Maximize ψ(u, ν) := 1Tx− (1T g(u) + 1Th(ν))
over (u, ν), subject to (5).

(†)

Note that the term in parentheses is the cost associated with
parameters u and ν, paid once for all in the beginning when
these parameters are frozen, whereas the reward in the first
term is a time average.

A. Gradient based schemes

Suppose u(i) take values in some compact subset(s) of
a Euclidean space. Assuming continuous differentiability of

6The step size η was set by trial and error. We ran the algorithm five times,
with random initializations of θ; the result corresponding to the best of these
runs is reported.

gi(·), p(j|i, ·), hj(·), one can use, say, the gradient projection
method for maximization over u, ν.

We derive an expression for the gradient for the simple
case of u(i) ∈ [0, 1], the general case being similar albeit
notationally messy. From (5), we have:

∂x

∂u(i)
= Pu1

∂x

∂u(i)
+

∂Pu1
∂u(i)

x+
∂Pu2
∂u(i)

ν.

Therefore,

∂x

∂u(i)
= (I − Pu1 )−1[0, · · · , 0,

m∑
j=1

∂p(j|i, u(i))

∂u(i)
x(j)

+

N∑
j=m+1

∂p(j|i, u(i))

∂u(i)
ν(j), 0, · · · , 0]T ,

where on the right hand side the summation is in the ith place.
The ith component of the overall gradient then is

∂ψ

∂u(i)
=

m∑
j=1

∂x(j)

∂u(i)
− ∂

∂u(i)
gi(u(i))

The gradient with respect to ν is also easy to derive:

∂ψ

∂ν(j)
= 1T (I − Pu1 )−1Pu2 e(j−m) − h′j(ν(j)),

where e(j−m) is a column vector with 1 as its (j−m)th entry
and zero elsewhere.

While this allows us to apply the usual optimization
schemes such as projected gradient descent, one is in general
not guaranteed to obtain the global optimum. Even in the
simple case of p(·|i, u(i)) being affine in u(i), x(j) for
1 ≤ j ≤ m will be a rational function of u(i), being the
solution of a linear system. Thus typically it will be non-
convex with multiple local maxima. One might therefore have
to resort to multi-start, simulated annealing, etc.

In the following, we consider a special case of the above
abstract model, in which the structure of Pu confers co-
ordinatewise convexity of the objective, allowing for more
effective algorithms.

B. A special case of the model

In this section, we consider a special case of our parametric
optimization model, which corresponds to targeted advertising
in a social network. The purpose of this presentation is
twofold. Firstly, we demonstrate a practically relevant appli-
cation of the abstract model presented above. Secondly, we
exploit the special structure of the controlled transition matrix
Pu for this case to propose effective algorithms.

Consider a social network with m nodes {1, 2, · · · ,m},
represented by an undirected, irreducible graph G. Opinion
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about a product evolves among the nodes of this graph as per
a gossip algorithm of the form (3). To define the dynamics of
this evolution, we first describe the uncontrolled scenario.

In addition to listening to their neighbors, the nodes also
adapt their opinion based on an online product review forum.
We model the influence of this review forum by appending
a node labeled m + 1 to our graph G, and adding edges to
node m+1 from all other nodes. Let us suppose that over the
timescale under consideration, this review forum (represented
by node m + 1) projects a constant opinion ν(m + 1) of the
product. Node i, 1 ≤ i ≤ m, adapts its opinion as per (2), by
picking ξn(i) uniformly at random from among its neighbors
(which includes the product review forum). Note that as per
the above dynamics, the opinions of nodes 1 through m would
tend to concentrate around the opinion of the review board,
i.e., ν(m+ 1).

Now, the seller wishes to ‘control’ the above opinion
dynamics using advertisements. We model the advertisements
via a Node m + 2, which projects a fixed, high opinion
ν(m+2) > ν(m+1) of the product. The control u(i) ∈ [0, 1]
for node i operates as follows. At each time step, with
probability u(i), ξn(i) = m+ 2, i.e., Node i is influenced by
the advertisement. With probability 1 − u(i), ξn(i) is picked
as per the uncontrolled dynamics.

The above defines a special case of our abstract model
presented earlier, with N = m + 2. The entries of first m
rows of the controlled transition matrix Pu in this case are as
follows. For 1 ≤ i ≤ m,

p(j|i, u(i)) =

{
(1− u(i)) ι(i,j)deg(i) for 1 ≤ j ≤ m+ 1

u(i) for j = m+ 2
,

where ι(i, j) equals 1 if there is an edge between i and j in
G and zero otherwise, and deg(i) denotes the degree of node
i.

Now, the seller experiences a cost gi(u(i)) for exerting
control u(i), and a cost h(ν(m + 2)) for creating the adver-
tisement. She seeks to maximize the objective

ψ(u, ν(m+ 2)) := 1Tx−
n∑
i=1

gi(u(i))− h(ν(m+ 2)),

where x = (I − Pu1 )−1Pu2 ν is the equilibrium vector that
the opinions in the network would concentrate around. Note
that the above formulation allows for targeted advertising, i.e.,
the seller may tune her advertising effort on a certain node
depending on its influence on other nodes in the network.
In particular, the seller may selectively focus her advertising
efforts on certain ‘influential’ nodes to maximize her payoff.
Indeed, our numerical experiments below seek to demonstrate
the benefit of such targeted advertising.

While ψ is in general not concave, the following lemma
establishes that ψ is coordinatewise concave, if the functions
gi(·), 1 ≤ i ≤ m and h(·) are convex. This suggests that a
local maximum of ψ may be obtained via coordinate descent
algorithms that cyclically optimize with respect to each coordi-
nate (see [34, Sec. 2.7]). Each of the coordinate optimizations,
being convex programs, can be solved efficiently.

Lemma 2: For 1 ≤ i ≤ m, if gi(·) is convex, then ψ is a
concave function of u(i). Also, if h(·) is convex, then ψ is a
concave function of ν(m+ 2).

Proof: Suppose that gi(·) is convex. To show that ψ is
concave with respect to u(i), it suffices to show that for any j,
x(j) is concave with respect to u(i). To show this, we utilize
the following interpretation of x(j) as the average terminal
reward of an absorbing Markov chain. Specifically, consider a
Markov chain {Xn} with transition matrix Pu, and absorbing
states m+ 1 and m+ 2. Let τ := min{n ≥ 0 | Xn ∈ {m+
1,m+2}} denote the absorption time. As we have seen before,

x(j) = E[ν(Xτ ) | X0 = j]

= P (Xτ = m+ 1) ν(m+ 1)

+ (1− P (Xτ = m+ 1))ν(m+ 2)

= ν(m+ 2)− (ν(m+ 2)− ν(m+ 1))P (Xτ = m+ 1) .

Thus, to prove that x(j) is concave with respect to u(i), it
suffices to prove that P (Xτ = m+ 1) is convex with respect
to u(i). We do this as follows.

The ‘controlled’ dynamics Pu of our Markov chain can
be related to the ‘uncontrolled’ dynamics P̃ := P 0 as
follows. Under the uncontrolled dynamics P̃ , the Markov
chain makes a random walk along the nodes 1, · · · ,m before
being absorbed into the state m+ 1 with probability 1. Under
the controlled dynamics Pu, at each time step n, the chain
gets absorbed into state m + 2 with probability u(Xn), and
with probability 1 − u(Xn), makes a transition as per P̃ .
Thus, P (Xτ = m+ 1) can be calculated by conditioning with
respect to paths of the uncontrolled dynamics. Specifically, let
P denote the set of all paths under the uncontrolled dynamics
starting at node j and ending at node m+ 1. Then under the
controlled dynamics,

P (Xτ = m+ 1) =
∑
p∈P

P (p)
∏
l∈p

(1− u(l)).

Note that P (p) in the above expression is computed ac-
cording to the uncontrolled dynamics. Now, for any path
p,
∏
l∈p(1 − u(l)) is of the form c(1 − u(i))d, where c is

independent of u(i) and d ∈ N. It therefore follows easily
that

∏
l∈p(1 − u(l)) is convex with respect to u(i). It then

follows that P (Xτ = m+ 1) is convex with respect to u(i),
since limits of of convex functions are convex.

Finally, concavity with respect to ν(m + 2) is immediate
once we note that

1Tx = 1T (I − Pu1 )−1Pu2 ν

is a linear function of ν(m+ 2).
A straightforward deduction from the above proof argument

is the following. Suppose that all the u(i) are constrained to
be equal to ū. This corresponds to a scenario in which the
seller is unable to customize the advertising effort on each
node in the social network. In this case, assuming that gi
are identical and convex, it follows using an argument similar
to that in the above proof that ψ(ū1, ν(m + 2)) is convex
with respect to ū. In our numerical experiments below, we
demonstrate the benefit of targeted advertising in a social
network by comparing the seller’s payoff to that under such
‘uniform’ advertising.



8

Numerical experiments: We now present some simple nu-
merics for the model presented in this section. Our objective
here is to demonstrate via a toy example that the optimal
targeted advertising policy could be much more beneficial to
the seller than the best ‘uniform’ advertising strategy.

We consider once again the network shown in Fig. 1. Thus,
in this experiment, m = 8. To focus on the contrast between
targeted and uniform advertising, we ignore the optimization
of ν(10). We fix ν(10) = 10, ν(9) = 5. The control u(i) is
constrained to the set [0, 0.2]. Finally, we set gi(u) = c · u
for all 1 ≤ i ≤ 8, where c is a positive scalar whose value
is varied. We compute a (potentially sub-optimal) targeted
advertising strategy via cyclic coordinate descent, and also
the optimal uniform advertising strategy. (Note that the latter
optimization is convex, based on the discussion above.) Our
results are recorded in Table II.

c Targeted control Uniform control
u OBJ ū OBJ

5 [0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2] 49.74 0.2 49.74
10 [0.2 0.2 0 0 0 0.2 0 0] 44.48 0.12 42.58
15 [0.2 0 0 0 0 0.2 0 0] 41.48 0.02 40.08
20 [0.2 0 0 0 0 0 0 0] 40.46 0 40

TABLE II
COMPARING TARGETED AND UNIFORM ADVERTISING

As expected, when the cost of advertising is sufficiently
small, both strategies simply apply the maximum allowed
control on all nodes. However, as the cost of control increases,
the targeted advertising strategy outperforms the uniform
strategy by focusing the advertising effort on a (progressively
diminishing) set of ‘key’ nodes. Interestingly, these sets of
‘key’ nodes happen to be the same ones picked by our greedy
algorithm in our numerical experiments in Section IV.

The above results suggest that a good advertising strategy
on a social network would be to focus the advertising effort
on a set of influential nodes. Moreover, as was noted before,
these influential nodes should not be chosen independently,
since it is important to take into account the joint influence
of nodes on gossip dynamics in the network. This observation
also has algorithmic consequences. Indeed, in a large network,
a reasonable strategy might be to short-list a set of candi-
date influential nodes (perhaps using the algorithms of the
preceding section), and then solving the (lower dimensional)
optimization of advertising effort over these candidate nodes.
While beyond the scope of the present paper, our results
motivate larger scale numerical experiments on real world
networks with realistic models of advertising costs.

So far, we have considered parametric optimization of the
gossip dynamics (3). In these ‘static’ optimizations, all control
parameters are fixed off-line once for all. In the following
section, we consider the problem of controlling a non-linear
variant of the (3) in the framework of dynamic control.

VI. A NONLINEAR MODEL

Consider a variation of (2) in which an individual agent
takes into account what the peers say, but also pursues her
own inclination. Specifically, the agent in question, say the ith

out of N , holds an opinion xk(i) ∈ R at time instant k and
polls a peer j with probability p(i, j), this being the (i, j)th
element of an irreducible stochastic matrix P . Let ξk(i) denote
the (random) identity of the peer who has been polled. She
then updates her opinion incrementally according to

xk+1(i) = xk(i) + γ[αi(
∑
j I{ξk(i) = j}xk(j)− xk(i))

+(1− αi)fi(xk(i))].
(14)

Here 0 < αi < 1 is the weight she attaches to ‘peer pressure’
while attaching weight (1 − αi) to her own ‘inclination’
fi(xk(i)), where the fis are bounded Lipschitz. As an example
of the latter, consider, e.g., fi := ∂g

∂x where g represents a
common ‘payoff landscape’ the agents share. Here γ > 0
is a stepsize ensuring the incremental nature of the learning
process. We consider the case fi = f, αi = α, ∀i. Let
F (x1, · · · , xN ) := [f(x1), · · · , f(xN )]T . Then one can view
(14) as a constant stepsize stochastic approximation algorithm
with the o.d.e. limit

ẋ(t) = α(P − I)x(t) + (1− α)F (x(t)). (15)

This is similar to the models of synchronization in natural
systems [35]. Using the Hirsch theorem for cooperative o.d.e.s
[36]7, one can show that (15) converges for generic initial data.
We consider the case where the scalar o.d.e.

ż(t) = f(z(t)) (16)

converges to one of finitely many equilibria for any initial
condition. If x∗ ∈ R is one such equilibrium, then x̂∗ :=
[x∗, · · · , x∗]T is an equilibrium for (15). We shall call this
a homogeneous equilibrium of (15). What’s more, if x∗ is a
stable equilibrium for (16), then x̂∗ is a stable equilibrium
for (15) – this is a special case of the results of [38],
[39]. The o.d.e. (15), however, can also have other, ‘mixed’
equilibria x̂′ := [x′1, · · · , x′N ]T where not all x′i are identical.
We investigate the role of α in bringing about consensus or
disagreement of opinions, i.e., convergence to homogeneous
or mixed equilibria, resp.

Our interest here is in the case of ‘opinion manipulation’
where some, say agents {m + 1, · · · , N}, fix their opinions
to some prescribed equilibrium x∗ of (16) for all k. Let x̃k
denote the opinions of the remaining agents. They track the
o.d.e.

˙̃x(t) = α(P1 − I)x̃(t) + αP2(x∗1) + (1− α)F̃ (x̃(t)), (17)

where F̃ (x) := [f(x1), · · · , f(xm)]T , in the following sense.
We assume that P1 above is irreducible. If B denotes the union
of stable equilibria of (17) and Bε an ε-neighborhood thereof
for some ε > 0, then

lim sup
n↑∞

E

[
inf
y∈Bε

‖xn − y‖2
]

= O(γ).

See Theorem 3, p. 106, and Bullet (ii), p. 109, of [20].
Thus the following result captures the essence of almost sure
asymptotic behavior of (14).

7Recall that an o.d.e. ẋ(t) = f(x(t)) is cooperative if ∂fi
∂xj
≥ 0 for i 6= j

( [37], p. 33-34).
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Theorem 3: Consider the o.d.e. (17).
(i) A solution x̃(t) as t ↑ ∞ cannot converge to [x′, · · · , x′]T

for some equilibrium x′ of (16) other than x∗.
(ii) If α is close enough to 1 (i.e., everyone succumbs to peer

pressure), x∗1 is the only equilibrium, i.e., a consensus
on the desired opinion is obtained.

(iii) Suppose (16) has a continuously differentiable Liapunov
function associated with it. Consider x̃(0) ∈ BR := {x :
‖x‖ ≤ R}. If α ≈ 0 (i.e., everyone trusts her own
judgement better), then for all initial conditions outside a
set of small Lebesgue measure, x̃(t) converges to a small
neighborhood of some x̂′ = [x′1, · · · , x′m]T , where x′i are
equilibria of (16).
Proof: By (17), it follows that if x̃(t) converges to x =

[x1, · · · , xm]T where the xis are equilibria of (16), then x =
x∗(I − P1)−1P21. It then follows easily from the discussion
of Section IV that x = x∗1, implying (i).

Rewrite the equilibrium condition α(P1 − I)x + (1 −
α)F̃ (x) + αP2(x∗1) = 0 as x = G(x) for G(y) := (P1y −
1−α
α F̃ (y)) + x∗P21. Under our hypotheses, λ(P1) ∈ (0, 1).

Let w = [w1, · · · , wm]T denote the corresponding eigenvector.
Then wi > 0 ∀i and P1 is a strict contraction w.r.t. the norm
‖x‖w,∞ := maxi | xiwi |. Then G is a contraction w.r.t. ‖ · ‖w,∞
for 1−α

α < 1−λ
L for L := the Lipschitz constant for f , so (ii)

holds.
Suppose (16) has a continuously differentiable Liapunov

function Ψ associated with it. Then Ψ̃(x) :=
∑
i Ψ(xi) serves

as a Liapunov function for the o.d.e.

ẋ(t) = F̃ (x(t)). (18)

If α ≈ 0, (17) is a regular perturbation of (18). By Theorem
1 of [40], for initial conditions in BR outside a small neigh-
borhood of unstable equilibria and their stable manifolds, x̃(t)
will converge to a small neighborhood of a stable equilibrium
of (18), implying (iii).

The situation is more complex if we replace the scalar
valued f by a vector valued function. In fact, in this case
generic convergence to the set of equilibria is not assured in
general unless (16) itself is also cooperative.

A. Experiments

We consider three types of graphs for creating the under-
lying network of nodes- complete graph, random graphs and
planted multi-section [41] graphs. In each case, we pick a
particular instance of the above graphs and consider opinion
dynamics on it. We do not investigate the impact of the graph
type on opinion dynamics. This is an interesting problem in
its own right and will be taken up in future research.

The ‘cost function’ assumed in the experiments is shown
in Figure 2. It has two minima 0.746058 and 1.751667, with
the latter being the global minimum. The results for a 500
node network generated by sampling a random graph (edge
probability 0.6) were reported in [3]. Interestingly the results
suggested that there is an optimal range of peer pressure
(parameter α) in which the population achieves the global
optimum. Above this range there is consensus but at a sub-
optimal solution, whereas below it there is no consensus.

Fig. 2. Convergence for opinions for various values of α (initial condition
equals 1).

Here we report results of our experiments on a 500 node
planted multi-section graph with two classes (say, A and B),
p = 0.8 and q = 0.5. We consider two initial conditions. In
the first, class A nodes have initial opinions less than 1.21
(essentially in the basin of 0.746058) and the remaining have
values between 1.21 and 2.5 (thus, in the basin of 1.751667).
The initial values are generated uniformly randomly between
[0, 1.21] and [1.21, 2.5] for class A and class B respectively.
The second choice of initial condition is the same as the first
except that 10% nodes of class A have their initial opinions
sampled uniformly randomly in [1.21, 2.5], and 10% nodes
of class B have their initial opinions generated uniformly
randomly in [0, 1.21]. The opinions are updated iteratively till
the norm of the difference between two successive opinion
vectors becomes less than 10−4. We set γ = 0.01.

Shown in Figure 2 are the opinion trajectories for various
values of α when the first initial condition is employed. The
following are some qualitative observations.
• At α = 0 the population remains divided in terms of

opinions.
• It remains so till α exceeds a certain threshold. For the

first initial condition, the threshold is approximately 0.32
whereas for the second it is approximately 0.28. Thus, a
consensus cannot be reached unless sufficient attention is
paid to the peers.

• For values of α greater than the above threshold, there is
not only consensus but the population achieves the global
optimum 1.751667 (if at all a consensus is reached, it is
necessarily at one of the minima).

• At α = 1 there is consensus at 1.16. This is the worst
case.

Robustness of these results was established by experi-
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Fig. 3. Convergence for opinions for various values of α in the presence of inflexible agents (opinion manipulation).

menting with other initial conditions (e.g., Uniform [0, 2.5];
randomly chosen from {0, 1.21, 2.5} with equal probability to
extremists and centrists) and two samples of the graph. We
omit these results here for lack of space.

For the case of ‘opinion manipulation’, the set-up is as
before: the network an undirected planted multi-section graph
of size n = 500, p = 0.8 and q = 0.5, the cost function as
before. The initial opinions are generated uniformly randomly
in [0, 2.5]. Then 10%, i.e., 50 agents are chosen uniformly
randomly and their opinions are fixed to 0.746058. The
opinions are updated iteratively till the norm of the difference
between two successive opinion vectors became less than
10−4. Parameter γ is set to 0.01, with αi same for all i.
Our observations are as follows (see Figure 3 for opinion
trajectories for various values of α).
• Till α exceeds 0.31 there is disagreement on opinions.

Thus, unless individuals pay sufficient attention to their
peers, stubborn individuals cannot force consensus to
their opinion.

• For α > 0.31 there is consensus at 0.746058, the opinion
held by stubborn individuals.

• If opinions are not manipulated, the threshold is approxi-
mately 0.22. For α > 0.22 there is consensus at 1.751667.

Thus if individuals have sufficient pressure from their peers,
stubborn individuals can drive the population to agree on a
sub-optimal solution.

B. Optimal Control

Consider now a parametrized family Pu = [[p(j|i, u(i))]]
as in the preceding sections with u(i) ∈ a common compact
metric space U , and replace (17) correspondingly by

˙̃x(t) = α(P
u(t)
1 − I)x̃(t) + αP

u(t)
2 (x∗1) + (1− α)F̃ (x̃(t)),

(19)

where u(·) := [u1(·), · · · , um(·)]T is now a control process,
i.e., a function of time. (This is distinct from the preceding
sections, where we considered parametric optimization where
the parameter is chosen once for all and kept fixed.) Assume
that the mappings u 7→ Pu1 and u 7→ Pu2 are continuous. We
first prove a stability result. Let x̌∗ := x∗1.

Lemma 4: For R > 0, ‖x̃(t)‖ is uniformly bounded for
‖x̃(0)‖ ≤ R.

Proof: Note that for β(t) := αP
u(t)
2 (x∗1) + (1 −

α)F̃ (x̃(t)),

x̃(t) = Ψ(t, 0)x̃(0) +

∫ t

0

Ψ(t, s)β(s)ds,

where Ψ is the transition matrix for the linear system ż(t) =

α(P
u(t)
1 − I)z(t). View α(P

u(t)
1 − I) as the transition rate

matrix for an absorbing continuous time Markov chain {Xt}
on {1, · · · ,m} with absorbing boundary {m + 1, · · · , N}.
Then zj(t) = E[zXt(0)I{τ > t}|X0 = j], where τ is the time
of absorption. Under our irreducibility hypothesis, P (τ > t)
has exponential decay, hence so do z(·) and Ψ(·, 0). Since β(·)
is uniformly bounded, the claim follows.

Assume that f is continuously differentiable with bounded
derivatives. Consider the infinite horizon discounted cost

J(u(·), x) :=

∫ ∞
0

e−βt
m∑
i=1

|x̃i(t)− x∗|2dt, (20)

where x̃(0) = x := [x1, · · · , xm]T . We assume that β >
(1−α) supx |f ′(x)|. Note that there is no cost on the control
choice. This will be introduced later. Define the value function

V (x) := inf
u(·)

J(u(·), x).

Lemma 5: The function x 7→ V (x) is locally Lipschitz, a.e.
differentiable, has a minimum at x̌∗ and satisfies: for all x at
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which V is differentiable, ∂
∂xi

V (x) ≥ 0 if xi > x∗ and < 0
if xi < x∗, 1 ≤ i ≤ m.

Proof: Fix u(·) and let X(x, t), t ≥ 0, denote the solution
to (19) with X(x, 0) = x. Then by standard arguments [42],
x = [x1, · · · , xm]T 7→ X(x, t) is continuously differentiable
and DX(t) := [[ ∂

∂xj
Xi(x, t)]] satisfies the equation of varia-

tion

d

dt
DX(x, t) = (α(P

u(t)
1 − I) + (1− α)DF (x̃(t)))DX(x, t),

where DF (x) := diag( d
dx1

f(x1), · · · , d
dxm

f(xm)). Noting
that DX(x, 0) = I, we get

DX(x, t) = I +

∫ t

0

(1− α)Ψ(t, s)DF (x̃(s))DX(x, s)ds,

where Ψ is the transition matrix for the linear system ż(t) =

α(P
u(t)
1 −I)z(t). Taking, on both sides of the above equation,

the matrix norm induced by the maximum norm over Rm, and
then using the Gronwall inequality, we get, for some c > 0,

‖DX(x, t)‖∞ ≤ c exp(−(1− α)t sup
x
‖DF (x)‖∞)

= c exp(−(1− α)t sup
x
|f ′(x)|).

Now, from Lemma 4, the above bound on ‖DX(x, t)‖∞ and
the assumption β > (1−α) supx |f ′(x)|, Lipschitz continuity
of x 7→ J(u(·), x) on compact sets, uniformly in u(·),
follows. The Lipschitz continuity of V is immediate from this,
from which its a.e. differentiability follows by Rademacher’s
theorem. Since V (x) ≥ 0 and = 0 only at x̌∗, x̌∗ is a
minimizer. For the last claim, recall that cooperative o.d.e.s
lead to monotone flows [36], [37]. Thus y ≥ x implies that
X(y, t) ≥ X(x, t) ∀ t ≥ 0 w.r.t. the usual partial order. It
follows that J(u(·), x) must be increasing in xi for xi > x∗

and decreasing otherwise when all other components are kept
fixed. Since pointwise infimum of a family of increasing
functions is increasing, the same then must hold for V . The
third claim follows.

Our result below has a simple structure due to the absence
of any explicit control cost.

Theorem 6: The optimal control u∗(·) is characterized by:
For 1 ≤ i ≤ m, if xj(t) < x∗,

u∗i (t) ∈ Argmax

 m∑
j=1

p(j|i, ·)xj(t) + x∗
N∑

j=m+1

p(j|i, ·)

 ,

(21)
and if xj(t) > x∗,

u∗i (t) ∈ Argmin

 m∑
j=1

p(j|i, ·)xj(t) + x∗
N∑

j=m+1

p(j|i, ·)

 .

(22)
Proof: Considering initial conditions in a ball of radius

R sufficiently large, Lemma 4 allows us to consider x̃(·)
in a bounded set. Thus we may modify the ‘running cost
function’ ‖x − x̌∗‖2 outside this ball and suppose that it is
bounded Lipschitz. By standard arguments, V is then the

unique bounded viscosity solution to the Hamilton-Jacobi
equation

min
u

[
〈∇V (x), α(Pu1 − I)x+ αPu2 (x∗1) + (1− α)F (x)〉

+ ‖x− x̌∗‖2 − βV (x)
]

= 0. (23)

Since V is a.e. differentiable, the necessity part of the claim
follows from the results of [43] and the sufficiency fol-
lows from the results of [44], in view of the last part of
Lemma 5 above. (These references deal with finite horizon
cost, but then V is also the value function for the ‘finite
horizon’ control problem with cost E[

∫ T
0
e−βt‖x̃(t)−x∗‖2dt+

e−βTV (x̃(T ))].)
This theorem conforms to our intuition that the control

would push x̃(t) towards x̌∗ as much as possible. This,
however, has been possible because there was no cost on the
control choice. If we introduce the cost g(u) :=

∑
i gi(u(i))

as in the preceding section, the net cost is

J(u(·), x) :=

∫ ∞
0

e−βt
m∑
i=1

(gi(ui(t))+|x̃i(t)−x∗|2)dt, (24)

and we have the following extension of Theorem 6:
Theorem 7: The optimal control u∗(·) is characterized by:

for 1 ≤ i ≤ m,

u∗i (t) ∈ Argmin
(
∂V

∂xi
(x(t))

m∑
j=1

p(j|i, ·)xj(t)

+ x∗
N∑

j=m+1

p(j|i, ·) + gi(·)
)
,

where V is the unique locally Lipschitz viscosity solution to
the Hamilton-Jacobi equation

min
u

[
〈∇V (x), α(Pu1 − I)x+ αPu2 (x∗1) + (1− α)F (x)〉

+ ‖x− x̌∗‖2 + g(u)− βV (x)
]

= 0.

C. Extensions

For f(·) = [f1(·), · · · , fr(·)]T ∈ Cb(Rr), (19) gets replaced
by

˙̃xki (t) = α(

m∑
j=1

pk(j|i, ui(t))x̃kj (t)− x̃ki (t)

+ (

N∑
j=m+1

pk(j|i, ui(t)))x∗(k)) + (1− α)fk(x̃1i (t), · · · , x̃ri (t))

with ui(t) := [u1i (t), · · · , uri (t)] and the cost

J(u(·), x) :=

∫ ∞
0

e−βt
m∑
i=1

(gi(ui(t)) + ‖x̃i(t)− x∗‖2)dt,

where x̃j(t) = [x̃1j (t), · · · , x̃rj(t)]T and x∗ =
[x∗(1), · · · , x∗(r)]T ∈ Rr is a prescribed stable equilibrium
for

ẋ(t) = f(x(t)).
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The Hamilton-Jacobi equation is:

min
u

[ m∑
i=1

r∑
k=1

{ ∂V
∂xki

(x)
(
α(

m∑
j=1

pk(j|i, uki )xkj − xki

+(

N∑
j=m+1

p(j|i, uki ))x∗(k)) + (1− α)fk(x1i , · · · , xri )
)

+(gi(u
k
i ) + |xki − x∗(k)|2)

}]
− βV (x) = 0.

Once again, V is the unique locally bounded viscosity solution
of this equation and the optimal u(t) is a.e. given by the
minimizer above.

We can also consider an adversarial action effected through
another control v(t) = [[vki (t)]]], vki (t) ∈ a compact set U ′i ,
seeking to maximize the cost,8 whence the dynamics becomes

˙̃xki (t) =α(

m∑
j=1

pk(j|i, uki (t), vki (t))x̃kj (t)− x̃k(t)

+ (

N∑
j=m+1

pk(j|i, uki (t), vki (t))x∗(k))

+ (1− α)fk(x̃1i (t), · · · , x̃ri (t)).

We move over to the relaxed (or ‘chattering’) control frame-
work of [45]. That is, we replace the control spaces Ui by
the spaces of probability measures on them with Prohorov
topology, and p(j|i, u, v) by

∫ ∫
p(j|i, y, y′)u(dy)v(dy′) cor-

respondingly, u(·), v(·) now being probability measures on
Ui, U

′
i resp. This amounts to ‘mixed strategies’ in game the-

ory parlance. The Hamilton-Jacobi equation gets replaced by
the Hamilton-Jacobi-Isaacs equation for zero sum differential
games:

min
u

max
v

h(u, v) = max
v

min
u
h(u, v) = 0,

where h(u, v) =[ m∑
i=1

r∑
k=1

{ ∂V
∂xki

(x)
(
α
[ m∑
j=1

∫ ∫
pk(j|i, y, y′)uki (dy)vki (dy′)xkj

− xki + (

N∑
j=m+1

∫ ∫
p(j|i, y, y′)uki (dy)vki (dy′))x∗(k)

]
+ (1− α)fk(x1i , · · · , xri )

)
+ (gi(uk(i)) + |xki − x∗(k)|2)

}]
− βV (x)

Under our ‘relaxed control’ formulation, it follows from
Theorem 1.10, p. 438, and Theorem 2.6, p. 445, of [46]

8Our game formulation uses a zero sum formulation. In many applications,
this may not be accurate. For example, in case of a firm competing for the
market share for its product with other firms, it is in general a nonzero sum
game. Our formulation is tantamount to a ‘worst case’ viewpoint clubbing
all other firms into a single adversary, which is not accurate. This is because
while any market share lost is indeed that gained by the collective lot of
competitors, the same does not hold for the costs incurred. Thus the zero sum
model is perforce an approximation. It is the ‘engineer’s license’ that is being
used, because zero sum models are tractable whereas nonzero sum models
are not, except under special structures such as potential games which do not
seem realistic here.

(see also Proposition 2.9, p. 447 of [46]) that the differential
game has an Elliott-Kalton value (see [46], Chapter VIII
for background) which coincides with the unique viscosity
solution to the above Hamilton-Jacobi-Isaacs equation. (We
use the same argument as for Theorem 6 above to consider a
bounded payoff function without any loss of generality.) The
corresponding verification theorem then is given by Theorem
4.6 of [47].

Note that the controlled o.d.e.s above have been limiting
cases of an originally discrete time problem in each case. Thus
optimal controls or game strategies have to be correspondingly
interpreted as approximations for the discrete time problem.
Alternatively, one can write the Bellman equation (for control)
or Shapley equation (for games) for the discrete time problem
directly. For the scalar case, these are, resp.,

V (x) = min
u={ui}

[
g(u) + ‖x− x∗‖2 + β

∑
{i′}

∏
i

p(xi′ |xi, ui)×

V ([· · · , xi + γ (α(xi′ − xi) + (1− α)f(xi)) , · · · ]T )
]
,

and

V (x) = min
u={ui}

max
v={vi}

h(u, v) = max
v={vi}

min
u={ui}

h(u, v),

where

h(u, v) =
[
g(u) + ‖x− x∗‖2

+ β
∑
{i′}

∏
i

∫ ∫
p(i′|i, y, y′)ui(dy)vi(dy

′)×

V ([· · · , xi + γ (α(xi′ − xi) + (1− α)f(xi)) , · · · ]T )
]

While this avoids certain technical issues inherent in the
continuous time formulation, it is clumsier to work with.

VII. CONCLUSION

We have considered a model of ‘controlled gossip’ wherein
nodes of a connected network form opinions / learn the average
of a quantity by a successive averaging procedure as in the
classical gossip algorithms, except that a certain number of
nodes has its values frozen to a common value. We consider
three optimization problems associated with this model and
present algorithms to solve them. Our computational exper-
iments for the uncontrolled scenario demonstrate interesting
critical phenomena as weight on the peer pressure is varied.

This work is a first step towards control of opinion dynam-
ics and gossip algorithms, for a simple model that permits
analytical treatment to some extent. There are clearly many
more theoretical and computational issues involved, which we
hope to pursue in future works.
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