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ABSTRACT
The intermittency and unpredictability of solar andwind generation

remains a key challenge as we attempt to transition to a predomi-

nantly renewables-powered electricity grid. Two key mechanisms

will play a key role in addressing this challenge: dynamic operation

of large-scale energy storage, and demand response. In this paper,

we analyse the joint management of storage and demand response

from the standpoint of a utility. Specifically, we consider a contract-

based demand response (DR) model, whereby the utility is allowed

curtail the electricity consumption of participating customers (in-

dustrial or retail) by at most a certain prescribed amount, subject to

a further constraint on how often this curtailment can be applied.

Under these constraints, we consider a storage management mech-

anism, which triggers DR when the charge level on the battery

drops below a certain threshold. We derive large buffer asymptotics

for this model, which provides tractable approximations of the loss

of load probability and the frequency of demand curtailment, as a

function of the battery size and the DR parameters.

CCS CONCEPTS
• Hardware → Smart grid; • Mathematics of computing →
Queueing theory; • Networks→ Network performance analysis; •
Theory of computation → Random walks and Markov chains.
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1 INTRODUCTION
Our power grid has been designed, over the past century, to oper-

ate with small supply side uncertainty (conventional generation

being extremely reliable), and small demand side uncertainty (at

a reasonable level of aggregation, demand can be predicted quite

accurately ahead of time). This enables us to match supply and

demand at all times via small control interventions in real time.

However, as the world transitions to a power grid that is powered

predominantly by renewables, the inherent intermittency of solar

and wind generation, the predominant drivers of this transition,

will result in a considerable surge in the supply side uncertainty.
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Effective and economical management of this supply side uncer-

tainty is the key challenge, as we seek to increase the penetration

of renewable generation worldwide.

The two predominant mechanisms that are available to address

the supply side uncertainty induced by renewable generation are:

(i) dynamic operation of large scale battery storage, and (ii) demand

response. The former allows us store energy in times of excess

renewable generation, which can be later be utilized at times of

deficit. On the other hand, demand response enables electricity

consumption to adapt to the state of the grid, so that part of the

demand can be curtailed, or deferred, at times when the grid is

supply constrained.

In this paper, we analyse the joint operation of battery storage

and demand response from the standpoint of a utility. Specifically,

we consider a utility that operates a grid-scale battery, which can

be charged/discharged dynamically based on the state of renew-

able generation. Additionally, the utility has demand response (DR)

contracts with some of its retail/industrial customers, that allow

the utility to curtail their demand by at most a certain prescribed

amount, subject to a constraint on how often such curtailment can

be applied. (In return, the utility compensates the customers who

participate in the DR program via a suitable financial incentive.)

DR arrangements of this form have been implemented by several

utilities, including at conEdison, where various programs for load

curtailment are available for stay-at-home consumers [10]. Alterna-

tively, the responsibility of demand curtailment can be outsourced

to third party aggregators, as is also common practice in several

jurisdictions.

Our goal is to propose and analyse a mathematical model for

joint operation of storage and DR by the utility, to guide both oper-

ational aspects (i.e., the scheduling of battery charging/discharging,

and demand curtailment) as well as planning aspects (the sizing of

the battery, and the number of customers to enter into DR contracts

with) of the utility’s decision making. The idea behind the model is

that the state of charge of the battery storage is modulated by the

instantaneous surplus/deficit in generation, with demand curtail-

ment kicking in once the state of charge drops below a threshold.

To the best of our knowledge, a tractable mathematical model that

captures these dynamics is missing in the literature.

We model supply and demand uncertainty via a Markovian

model. Specifically, we model the instantaneous net generation

(supply minus demand) as a function of a background Markov

chain, the state of which includes all those factors that influence

generation and demand. The battery level is then modulated by the

state of the background Markov process. Further, once the battery

level drops below a threshold, demand curtailment kicks in (in one

shot, or in a phased manner), which decreases the rate at which

the battery drains. In summary, we model the evolution of the state
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of charge of the battery as a Markov modulated fluid queue (see

[1, 14]), with state dependent drift to account for the demand re-

sponse (see [3]). We further analyse the large buffer asymptotics

for this system, which provides tractable approximations of perfor-

mance metrics of interest, including the long run fraction of time

demand curtailment is applied, the loss of load probability (the long

run fraction of time the utility needs to procure additional power

in real time to meet its demand), and the loss of load rate (the rate

of real time energy procurement).

Related Literature
Our work is related to two strands of the literature, (i) on demand

response, and (ii) on the sizing/operation of battery storage in the

smart power grid.

We begin with a brief survey of the DR literature. Prior work on

DR can be broadly classified into two groups: the analysis being

focused on the customer’s viewpoint, or the utility/ISO viewpoint.

Some representative papers in the former category are [12, 17];

the typical model for DR in this line of work is that the utility

employs dynamic real time pricing to modulate customer demand.

The present paper is more closely related to the latter cluster of

the DR literature, where the focus is on the utility/ISO side; see, for

example, [4–6, 8, 9, 15].

Turning to storage sizing, the primary approach in the literature

is to formulate an optimization problem, whose solution balances

the cost of provisioning battery storage with associated reliability

improvement; see, for example, [7, 11]. On the other hand, the liter-

ature on the scheduling of energy storage typically uses a Markov

decision process (MDP) framework; see, for example, [18, 19]. In

these papers, structural properties of the optimal policy of the MDP

are established, which are exploited to compute the optimal policy

more efficiently, or to develop heuristic algorithms.

There is also recent literature on unit commitment (at the ISO

level) in the presence of renewables, storage, and/or demand re-

sponse; see, for example, [13, 16]. These papers focus the formula-

tion and numerical solution of the unit commitment problem.

In contrast to the above literature, the approach in the present

paper is to develop a realistic, but also analytically tractable, model

for battery storage and DR from the standpoint of a utility, that

informs both operational and planning aspects.

2 MODEL AND PRELIMINARIES
Model for supply and demand uncertainty: Consider an elec-

tric utility company, which faces uncertain supply and demand

processes. While demand uncertainty stems from unpredictable

swings in electricity consumption by customers (modest, in prac-

tice), supply uncertainty stems from the renewable generation that

is linked to the utility. The renewable resources might be oper-

ated directly by the utility, or owned by retail/industrial customers

whose electricity consumption gets offset by their own renewable

generation. We model the overall supply and demand uncertainty

via the following Markovian model.

The utility is associatedwith an electricity generation process𝑔(𝑡)
that is a sum total of its procurements from long term contracts and

the day ahead market, plus the renewable generation linked to the

utility. Further, we denote the aggregate electricity demand seen by

the utility by 𝑑 (𝑡). We model the net generation 𝑟 (𝑡) = 𝑔(𝑡) − 𝑑 (𝑡)

(i.e., the difference between the generation and the demand pro-

cesses) as a function of a background Markov chain {𝑋 (𝑡)}𝑡 ≥0 .
Formally, this chain is assumed to be an irreducible, time-reversible,

Continuous-Time Markov Chain (CTMC) over a finite state space 𝑆 .

With every state 𝑖 ∈ 𝑆, we associate a net generation 𝑟𝑖 = 𝑔𝑖 − 𝑑𝑖 ,

where 𝑔𝑖 and 𝑑𝑖 denote the generation and demand associated with

state 𝑖, respectively. Thus, the net generation at time 𝑡 is given by

𝑟 (𝑡) = 𝑟𝑋 (𝑡 ) = 𝑔𝑋 (𝑡 ) − 𝑑𝑋 (𝑡 ) . For technical reasons, we make the

assumption that 𝑟𝑖 ≠ 0 for all 𝑖 ∈ 𝑆.

The background Markov chain {𝑋 (𝑡)}𝑡 ≥0 thus captures, within
its state, all those factors that influence supply and demand from

the standpoint of the utility. This might include past and present

weather conditions, seasonal aspects, the time of the day, and also

past values of supply and demand. Note that this model can capture

arbitrary dependencies between generation and demand.

Dynamics of battery storage in the absence of DR:We assume

that the utility operates a grid-scale battery having capacity 𝑏max .

We begin by describing the baseline model for the evolution of

the state of charge 𝑏 (𝑡) of this battery in the absence of demand

response. 𝑏 (𝑡) is modulated by the net generation process 𝑟 (𝑡),
subject to boundary conditions:

𝑑

𝑑𝑡
𝑏 (𝑡) =


0 𝑏 (𝑡) = 0 𝑎𝑛𝑑 𝑟 (𝑡) < 0

0 𝑏 (𝑡) = 𝑏max 𝑎𝑛𝑑 𝑟 (𝑡) > 0

𝑟 (𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1)

Note that the battery is charged when the net generation is pos-

itive (i.e., generation exceeds demand), and discharged when the

net generation is negative (i.e., generation is less than demand).

The boundary conditions enforce that battery cannot be drained if

empty, or charged if full. Note that constraints on charge/discharge

rates of the battery can also be incorporated by appropriately re-

stricting the set of values (𝑟𝑖 , 𝑖 ∈ 𝑆) can take.

Mathematically, the battery evolution model (1) corresponds to

a finite buffer Markov modulated fluid queue, a well studied object

in the queueing/networking literature (see, for example, [1, 14]).

Specifically, the literature characterized the stationary distribution

of {(𝑏 (𝑡), 𝑋 (𝑡))}, which is a Markov process that evolves over the

state space [0, 𝑏max] × 𝑆 .

Demand Response model: We now describe our model for de-

mand response (DR) on part of the utility. DR is captured by the

ability to curtail demand to a certain extent when the state of charge

of the battery drops below a threshold. This in turn decreases the

discharge date of the battery, making loss of load less likely. For-

mally, we model the DR-adjusted demand process
ˆ𝑑𝑖 , when the

background chain 𝑋 (𝑡) = 𝑖, as follows:

ˆ𝑑𝑖 (𝑏) =
{
𝑑𝑖 −

⌈
𝑛
𝑏min−𝑏
𝑏min

⌉
𝛼𝑖
𝑛 𝑏 ∈ [0, 𝑏min)

𝑑𝑖 𝑏 ∈ [𝑏min, 𝑏max]
(2)

Here, 𝑏min is the DR-threshold, i.e., DR is activated only then the

battery level drops below the level 𝑏min . The parameter 𝛼𝑖 is the

peak demand curtailment when the background process is in state 𝑖,

and 𝑛 ∈ N represents the number of phases the demand curtailment

is rolled out over. If𝑛 = 1, the utility performs themaximum feasible

demand curtailment as soon as the battery level drops below 𝑏min .

On the other hand, when 𝑛 > 1, the curtailment increases in 𝑛

phases as the battery level drops progressively lower. (To provide a
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compact representation of demand curtailment, we have assumed

that the demand curtailment increases uniformly as the battery

occupancy drops below 𝑛 uniformly spaced levels between 0 and

𝑏min . Our results generalize naturally to a non-uniform, piecewise

constant variation of demand curtailment with battery level.)

Thus, the DR-adjusted net generation rate 𝑟𝑖 (𝑏), is given by

𝑟𝑖 (𝑏) =
{
𝑔𝑖 − 𝑑𝑖 +

⌈
𝑛
𝑏min−𝑏
𝑏min

⌉
𝛼𝑖
𝑛 𝑏 ∈ (0, 𝑏min)

𝑔𝑖 − 𝑑𝑖 𝑏 ∈ [𝑏min, 𝑏max) .
(3)

Thus, in the presence of DR, our battery evolution is given by:

𝑑

𝑑𝑡
𝑏 (𝑡) =


0 𝑏 (𝑡) = 0 𝑎𝑛𝑑 𝑟𝑋 (𝑡 ) (𝑏 (𝑡)) < 0

0 𝑏 (𝑡) = 𝑏max 𝑎𝑛𝑑 𝑟𝑋 (𝑡 ) (𝑏 (𝑡)) > 0

𝑟𝑋 (𝑡 ) (𝑏 (𝑡)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

We note here that mathematically, the model (4) is equivalent to a

fluid model for random early dropping (RED) in the networking

literature (see [3]). Under our DR model, note that (𝑏 (𝑡), 𝑋 (𝑡))
remains a Markov process over the state space [0, 𝑏max] × 𝑆. In

Section 3, we characterize some steady state properties of this

Markov process in the asymptotic regime as 𝑏max → ∞.

Finally, for simplicity, we make the following assumption on the

peak demand curtailment:

𝑟𝑖 (𝑟𝑖 + 𝛼𝑖 ) > 0 ∀ 𝑖 ∈ 𝑆. (5)

This assumption, which is referred to as the absence of a “confluence

of drifts” in [3], ensures that the sign or 𝑟𝑖 matches that of 𝑟𝑖 + 𝛼𝑖
for all 𝑖 . Specifically, this condition implies that for those states 𝑖

where 𝑟𝑖 < 0 (i.e., demand exceeds generation), the net generation

remains negative even under the maximum demand curtailment. If

this condition does not hold, then the drift of the battery level would

switch sign at 𝑏min if𝑋 (𝑡) = 𝑖, leading to atoms at that battery level

in the stationary distribution. This makes our asymptotic analysis

cumbersome. In practice, a confluence of drifts would result in

rapidly oscillating ON/OFF switching of demand curtailment, which

is undesirable from an engineering perspective.

Performance metrics and preliminary results:We define the

Loss of Load Probability (LOLP) as the steady state probability

that the battery is empty and the net generation rate is negative.

Formally, LOLP :=
∑
𝑖∈𝑆 𝐹𝑖 (0) =

∑
𝑖∈𝑆− 𝐹𝑖 (0) . The LOLP is the

long run fraction of time that the utility is unable to meet its cus-

tomer demand using the electricity procured ahead of time, and

the energy stored in the battery. When this happens, the utility

must buy (typically more expensive) power in the real time market

to meet its deficit. Analogously, we define the Loss of Load Rate

(LOLR) as defined as the long run time average rate of lost load,

i.e, LOLR
(𝑎)
:= lim𝑡→∞

∫ 𝑡

0
[𝑟 (𝑡 ) ]−1{𝑏 (𝑡 )=0}

𝑡 =
∑
𝑖∈𝑆− |𝑟𝑖 |𝐹𝑖 (0). Here,

[𝑧]− := max(−𝑧, 0) and the limit in (𝑎) is to be interpreted in an

almost sure sense.

We conclude by stating a result from [2] that captures the as-

ymptotic behavior of the LOLP and the LOLR in the absence of DR

(i.e., 𝛼𝑖 = 0 for all 𝑖) as 𝑏max → ∞. To state this result, we need to

define a few quantities. Let 𝑄 denote rate matrix corresponding

to the DTMC {𝑋 (𝑡)}, and let 𝑅 := 𝑑𝑖𝑎𝑔(𝑟𝑖 , 𝑖 ∈ 𝑆). The drift Δ is

defined as the long run average net generation in the absence of DR,

i.e., Δ :=
∑
𝑖∈𝑆 𝜋𝑖𝑟𝑖 , where (𝜋𝑖 , 𝑖 ∈ 𝑆) is the stationary distribution

corresponding to the background CTMC {𝑋 (𝑡)}.

Theorem 2.1 (Theorem 2 in [2]). Suppose that Δ > 0, i.e., the av-
erage steady state generation exceeds the average steady state demand.
Then

lim

𝑏max→∞
𝑙𝑜𝑔 LOLP
𝑏max

= lim

𝑏max→∞
𝑙𝑜𝑔 LOLR
𝑏max

= −𝜆𝑐 ,

where 𝜆𝑐 is the smallest positive eigenvalue of 𝑅−1𝑄𝑇 .

Theorem 2.1 states that if Δ > 0, then the LOLP and the LOLR
decay exponentially with battery size 𝑏max with decay rate 𝜆𝑐 ,

implying that these quantities can be made arbitrarily small by pro-

visioning a large enough battery.
1
Indeed, Theorem 2.1 motivates

the following approximations for the LOLP and 𝐿𝑂𝐿𝑃 when the

battery size is large:

LOLP ≈ 𝐶𝑒−𝜆𝑐𝑏max , LOLR ≈ 𝐶 ′𝑒−𝜆𝑐𝑏max , (6)

where 𝐶, 𝐶 ′
are positive constants. These approximations can in

fact be used to perform battery sizing in practice, as is shown in [2].

3 LARGE BUFFER ASYMPTOTICS
In this section, we present the main technical results of this paper.

Specifically, we characterize the asymptotic behavior of the long

run fraction of time that DR is active, and the LOLP, as the battery

size 𝑏max scales to infinity. These quantities are shown to decay

exponentially with the battery size, with decay rates that depend

on the parameters of our DR model. These decay rates characteriza-

tions highlight the impact of DR, and also guide the configuration

of the DR parameters, via crisp approximations of performance

measures of interest.

We begin by analysing the asymptotic behavior of the LOLP as

𝑏max scales to infinity, under the proposed DR model. For this, we

suppose that

𝑏min = 𝛽𝑏max,

where 𝛽 ∈ [0, 1], where 𝛽 is held fixed as 𝑏max is scaled. Note that

𝛽 = 0 corresponds to a baseline scenario with no DR.

The asymptotic behavior of the LOLP is defined in terms of the

following matrix.

𝑅−1𝐷𝑅 := 𝑑𝑖𝑎𝑔

(
𝛽

𝑛

𝑛∑︁
𝑚=1

1

𝑔𝑖 − 𝑑𝑖 + 𝛼𝑖
𝑚
𝑛

+ 1 − 𝛽

𝑔𝑖 − 𝑑𝑖

)
. (7)

Note that if 𝛽 = 0, 𝑅−1
𝐷𝑅

matches the matrix 𝑅−1 .

Theorem 3.1. Suppose that Δ > 0, i.e., the average steady state
generation exceeds the average steady state demand. Under the DR
model proposed in Section 2,

lim

𝑏max→∞
𝑙𝑜𝑔(LOLP)

𝑏max

= lim

𝑏max→∞
𝑙𝑜𝑔(LOLR)

𝑏max

= −𝜆𝑐,𝐷𝑅,

where 𝜆𝑐,𝐷𝑅 is the smallest positive eigenvalue of 𝑅−1
𝐷𝑅

𝑄𝑇 . Moreover,
for 𝛽 > 0, 𝜆𝑐,𝐷𝑅 > 𝜆𝑐 .

Theorem 3.1, which generalizes Theorem 2.1 to our DR model,

states that both the LOLP and the LOLR decay exponentially with

the battery size 𝑏max, with decay rate 𝜆𝑐,𝐷𝑅 . The decay rate 𝜆𝑐,𝐷𝑅

can in turn be characterized in as the smallest positive eigenvalue of

1
If Δ < 0, then it is easy to show that the LOLP and LOLR are bounded away from

zero for any battery size.
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the matrix 𝑅−1
𝐷𝑅

𝑄𝑇
(that a positive eigenvalue exists for this matrix

is proved in [14]).

Importantly, since 𝜆𝑐,𝐷𝑅 > 𝜆𝑐 (when 𝛽 > 0), we conclude that

the presence of DR causes the LOLP and LOLR to decay faster
with increasing battery size. This is because demand curtailment

provides an additional ‘upward’ drift to the battery level, making

it less likely to drop to zero. Thus, the value of 𝜆𝑐,𝐷𝑅 provides a

quantification of the impact of DR from the standpoint of the utility.

Next, we focus on the long run fraction of time demand curtail-

ment is applied (i.e., DR is active). This is an important performance

metric; in practice, one might expect that the DR contract between

the utility and customers would specify an upper bound on how

often demand curtailment can occur. Under our notation, note that

the long run fraction of time demand is curtailed is 1𝑇 𝐹 (𝑏min),
where 1 is a vector of ones having dimension |𝑆 |.

Theorem 3.2. Suppose that Δ > 0, i.e., the average steady state
generation exceeds the average steady state demand. Under the DR
model proposed in Section 2, for 𝛽 ∈ (0, 1),

lim

𝑏max→∞
𝑙𝑜𝑔(1𝑇 𝐹 (𝑏min))

𝑏max

= −(1 − 𝛽)𝜆𝑐 ,

where 𝜆𝑐 is the smallest positive eigenvalue of the post-threshold
matrix 𝑅−1𝑄𝑇 .

Interestingly, the decay rate of the (steady state) probability

of demand curtailment is simply (1 − 𝛽) times the decay rate of

the LOLP in the absence of DR. Intuitively, this is because the

asymptotic behavior of both quantities is dictated by the rare event

that aMarkovmodulated randomwalk with positive drift, regulated

from above at the level 𝑏max, drops below its maximum value by

a certain large amount, say 𝑧. The probability of this rare event,

when 𝑧 is large, is approximately𝐶𝑒−𝜆𝑐𝑧 . Now, in the case of LOLP
in the absence of DR, we have 𝑧 = 𝑏max, whereas for the steady

state probability of demand curtailment, we have 𝑧 = (1 − 𝛽)𝑏max .

It follows from the above discussion that one can in fact approx-

imate the steady state probability of demand curtailment as

1𝑇 𝐹 (𝑏min) ≈ 𝐶𝑒−(1−𝛽)𝜆𝑐𝑏max , (8)

where 𝐶 > 0 is the same pre-factor that appears in (6). The ap-

proximation (8) can be used to determine the values of 𝛽 and/or

𝑏max in order to meet a prescribed threshold, say 𝛿, on the frac-

tion of time demand curtailment is performed. Specifically, if 𝑏max

is large enough, (8) implies that a suitable value for 𝛽 would be:

𝛽 ≈ 1 − log(𝐶/𝛿)
𝜆𝑐𝑏max

.

Finally, we note that 𝜆𝑐,𝐷𝑅 > 𝜆𝑐 > (1 − 𝛽)𝜆𝑐 for 𝛽 > 0. In other

words, the decay rate associated with the LOLP (in the presence of

DR) strictly exceeds that associated with the long run fraction of

time that DR is applied. This is to be expected, since loss of load is a

rarer event as compared to demand curtailment under our model.

4 CONCLUDING REMARKS
A case study demonstrating the applicability of these approxima-

tions in practice will appear in the journal version of this work. The

primary limitation of the proposed model is that it does not capture

battery inefficiency, i.e., it assumes that there are no energy losses

associated with the charging/discharing of the battery. Extending

the results presented to account for battery inefficiency presents a

promising avenue for future work.

One of the motivations behind the present work is that models

and tools developed in the networking community to deal with

bursty arrival processes, buffer overflows, and capacity provisioning

problems can be productively applied to the power grid, the primary

source of randomness being the intermittency of renewables. We

hope the present work motivates future research along these lines.
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