
Optimal Job Fragmentation

[Extended Abstract]

Jayakrishnan Nair
Electrical Engineering

California Institute of Technology

ujk@caltech.edu

Steven H. Low
Computer Science and Electrical Engineering

California Institute of Technology

slow@caltech.edu

1. INTRODUCTION
It has been recently discovered that on an unreliable server,

the job completion time distribution function (df) can be
heavy-tailed (HT) even when job size df is light-tailed (LT)
[1, 5]. 1 A key to this phenomenon is the RESTART feature
where if a job is interrupted in the middle of its processing,
the entire job needs to restart from the beginning, i.e., the
work that is partially completed is lost.

A standard mechanism for reducing the job completion
time in an unreliable service environment is checkpointing
[3, 4, 6]. We view checkpointing as a job fragmentation op-
eration, where the server processes one fragment of the job
at a time. If the server becomes unavailable, say due to fail-
ure, then only the work corresponding to the fragment being
processed at the time of failure is lost. In this paper, we are
motivated by the question: Can fragmentation ‘lighten’ the
tail df of the completion time? In Section 3, we provide suf-
ficient conditions on the fragmentation policy that gives rise
to LT completion time so long as the job size df is LT. We
then characterize the optimal fragmentation policy seeking
to minimize the expected job completion time. This policy
requires a priori knowledge of the job size. We then describe
a sub-optimal fragmentation policy that is blind to the job
size and is provably very close to optimal. We also describe
the asymptotic tail behavior of the job completion time df
under both policies. Assuming the server unavailability pe-
riods are LT, both policies produce LT completion times
when the job size df is LT. For the case of regularly varying
job size df, the job completion time under both policies is
regularly varying with the same degree - this is the lightest
possible asymptotic tail behavior (in the degree sense). 2

2. MODEL

2.1 Problem formulation
Our model is adapted from that of [1, 5]; we will elaborate

in Section 2.2 below.
We are given a job of possibly random total size L > 0.

1A non-negative random variable X is heavy-tailed if
limt→∞ e

�tP (X > t) = ∞ for all � > 0. Conversely,
X is light-tailed if there exists � > 0 such that
limt→∞ e

�tP (X > t) = 0.
2A df F is regularly varying with index/degree � > 0 (de-

noted F ∈ ℛV(�)) if F (x) = x−��(x) where �(x) is a slowly

varying function, i.e., �(x) satisfies limx→∞
�(xy)
�(x)

= 1 ∀ y >
0 [2]. We will abuse notation and say a random variable
L ∈ ℛV(�) to mean that its df FL ∈ ℛV(�).

We will fragment the job into smaller chunks and submit
them successively to a server for processing. The server
alternates between states of availability and unavailability.
Without loss of generality, we assume the server has a unit
service rate when available. Let n index the submission of
job fragments, and (xn, n ≥ 1) denote the size of the frag-
ment for the nth submission. To each fragment is added a
fixed fragmentation overhead � so that the total size (pro-
cessing time) of the nth submission is xn + �. The nth job
fragment is submitted immediately after the previous sub-
mission completes successfully, provided the server remains
available. After the nth job is submitted, it either completes
successfully after xn +� amount of time or fails after a ran-
dom amount An < xn+� of time. The former happens with
probability Prob(An ≥ xn + �) and the latter with proba-
bility Prob(An < xn + �). As soon as the nth job fragment
fails after An amount of time (server becomes unavailable in
the middle of processing the nth job fragment), the system
idles for Un amount of time after which the server becomes
available again. The n+1st job fragment with size xn+1 +�
is then immediately submitted, and the cycle repeats. Note
that xn+1 may be equal to xn (e.g., if the same job fragment
is submitted again) or not (e.g., if a different fragmentation
is chosen).

The time between the nth and n + 1st submission is the
cost at the nth stage: if the nth submission is successful, the
cost is the job completion time xn + �; otherwise, it is the
time An + Un from the nth submission time to the begin-
ning of the next availability period. We make the following
assumptions.

1. The random variables (An, n ≥ 1) are iid and expo-
nentially distributed with mean 1/�.

2. The random variables (Un, n ≥ 1) are iid.

3. L, (An, n ≥ 1) and (Un, n ≥ 1) are mutually indepen-
dent.

As we will see below, however, Un only enters our model on
the event {An < xn + �}.

We are interested in understanding the impact of the frag-
mentation policy on the job completion time. To model the
completion time precisely, let x = (xn, n ≥ 1) denote the
control (fragmentation) policy. Let the state be ln, the
remaining job size right before the nth submission, that
evolves according to, for n = 1, 2, . . . ,

ln+1 = ln − xn 1 (An ≥ xn + �) . (1)

Note that l1 = L. Let the cost for the nth submission be �n,
the time between the nth and n + 1st submission under x,

that is defined by

�n+1 = ((xn + �)1 (An ≥ xn + �)

+ (An + Un)1 (An < xn + �)) 1(ln > 0). (2)

We emphasize that the state sequence (ln, n ≥ 1) and the
cost sequence (�n, n ≥ 1) depend on the control policy (xn, n ≥
1), although this is not explicit in the notation. The job
completion time T is given by

T =

∞∑
n=1

�n. (3)

In Section 3, we present our results regarding the impact of
the fragmentation policy on T.

2.2 Model interpretation and motivation
As mentioned above, our model is an adaptation of the

following model in [1, 5] where a server alternates between
states of availability and unavailability as per a semi-Markov
process. This can model, for example, a server that is prone
to failure: the unavailability period corresponding to the
server downtime after a failure. The server availability (un-
availability) periods are distributed as A (U) respectively. A
job of random size L, independent of the server availability
process is to be processed by the server. If the server be-
comes unavailable when the job is still being processed, we
assume that the job needs to be restarted from the begin-
ning, i.e., the work that is partially completed is lost. This
is the RESTART model in queueing literature (see [1]). Re-
cently, the following result has been proved about the job
completion time under RESTART [5, 1].

Theorem 1 ([5, 1]). Under RESTART, if distribution
of the job size L has unbounded support, then the job com-
pletion time is HT.

This means completion times may be HT even for very LT
workloads. Intuitively, the reason we get HT completion
times is that large jobs get restarted many times before they
complete and therefore have very large completion times.

Checkpointing is a standard mechanism for reducing the
completion time of a job on an unreliable server [3, 4, 6]. It
involves intermittently saving the state of the job to a reli-
able storage; the points at which the state is saved are called
checkpoints or rollback points. If the job is interrupted by
server unavailability, processing can resume from the last
saved checkpoint once the server becomes available again.

Our model in Section 2.1 captures the processing of a job
with checkpointing, assuming the server availability periods
are exponentially distributed (with parameter �). Submit-
ting a fragment of size xn to the server may be interpreted
as a decision to establish the next checkpoint after time xn
of processing. � may be interpreted as the time required
to establish the checkpoint. The checkpoint is established
successfully if the server remains available for a time xn+�.
When a fragment completes successfully (i.e., a checkpoint is
established successfully), we allow immediate submission of
the next fragment. Since we make the assumption that the
server availability periods are exponentially distributed, the
memoryless property of exponential distribution means that
when a job fragment finishes and the next fragment is sub-
mitted, the remaining time to server unavailability is again
exponentially distributed with the same parameter. The
random variables (Un, n ≥ 1) are distributed as the server

unavailability period U . Note that we make no assumptions
regarding the distribution of U. Once the server becomes
available after a period of unavailability, there is typically a
recovery period associated with reloading the saved job state
before useful processing can resume. This recovery time can
conveniently be incorporated into the unavailability period
U. Note that the model can easily capture interruptions dur-
ing the recovery process, by appropriate redefinition of the
unavailability period df [6].

We now briefly describe some applications that motivate
the model.

1. Servers that fail: The server could be unreliable and
might fail from time to time. Job fragments are sub-
mitted successively as soon as the previous fragment
completes successfully provided the server remains avail-
able. In this scenario, Un denotes the down-time after
the server failed in the middle of the nth submission.

2. Priority queue: Consider a queue that serves jobs of
two priority levels. Low priority (LP) jobs use the
server when there are no high priority (HP) jobs in
the system. If an HP job arrives when the server is
processing an LP job, the LP job is pre-empted and
needs to be restarted. In this scenario, Un denotes
the busy period induced by HP jobs that arrived in
the middle of the nth LP job. We are interested in
the problem of how the LP jobs should be fragmented.
The time to the start of the next HP busy period will
be exponential if HP jobs arrive according to a Poisson
process.

3. File fragmentation in cognitive radio setting: Consider
a secondary user who is allowed to use a wireless chan-
nel to transfer her file of size L whenever primary (high
priority) users are not using it. The secondary user
must abort her transmission whenever primary users
want to use the channel. We are interested in the prob-
lem of how the secondary user should size her packets.
The availability period for the secondary user will be
exponentially distributed if the primary users initiate
transfers according to a Poisson process.

3. RESULTS
In this section, we present our results on the job fragmen-

tation model. The following theorem gives sufficient con-
ditions on the fragmentation policy for LT L to imply LT
completion time.

Theorem 2. Assume that L,U are LT. If the fragmen-
tation policy satisfies either of the two following conditions,
then T is LT:

1. Independent fragments: {Xj}j≥1 is an iid sequence
of random variables independent of L and the server
availability process satisfying P (Xj > 0) > 0 and xj =
min{Xj , lj}.

2. Bounded fragments: There exist constants a, b where
0 < a < b such that the fragmentation policy satisfies

min{a, lj} ≤ xj ≤ min{b, lj}.

Note that the condition that L and U be LT cannot be
relaxed. It is easy to see that if either L or U are HT,

then T is necessarily HT, with or without fragmentation.
The sufficient conditions of Theorem 2 admit constant frag-
ment sizes (this corresponds to periodic checkpointing), i.e.,
xn = min{c, ln} for some positive constant c. Finally, we
note that the condition that the fragment sizes be bounded
is very reasonable. If we choose too small a fragment size,
then the fragmentation overhead starts to dominate the pro-
cessing time. If the fragment size is chosen too large, then
its probability of failure approaches 1. Theorem 2 says that
so long as we choose fragment sizes ‘reasonably,’ the com-
pletion time is LT if L,U are LT. In other words, (so long
as U is LT) HT completion time can occur only due to HT
job sizes.

We now describe the optimal fragmentation policy that
minimizes the expected completion time. We optimize within
the class of stationary Markov policies (i.e., policies where
the control decision xn in period n depends only on the state
ln and not on the discrete time index n or on past events).
We need the following definitions:

1. ℎ(x) = (E [A] + E [U])
(
e�(x+�) − 1

)
,

2. g(x) = ℎ(x)
x
,

3. a = arg minx>0 g(x).

Theorem 3. Optimal fragmentation policy x∗: The
expected job completion time is minimized by fragmenting
the job into K∗(L) fragments of equal size x∗(L) = L

K∗(L)
,

where K∗(L) is given by

K∗(L) =

⎧⎨⎩ 1 for L ≤ a
arg min

k∈{⌊La ⌋,⌈La ⌉}
g(L/k) for L > a .

Each fragment is (re)submitted to the server till it gets pro-
cessed completely. The completion time T ∗ under the opti-
mal policy has the following properties.

1. If L,U are LT, then T ∗ is LT.

2. If U is LT, L ∈ ℛV(�), then

P (T ∗ > t) ∼ P
(
L > t

g(a)

)
.

We make the following observations regarding the optimal
fragmentation policy x∗.

1. The optimal policy corresponds to checkpointing peri-
odically, with a period x∗(L) that depends on the job
size.

2. The optimal fragmentation policy does not depend on
the server unavailability period distribution U.

3. Assuming Poisson server failures, the problem of opti-
mal checkpoint placement in order to minimize the ex-
pected job completion time is considered in [3]. How-
ever, the optimal policy is derived in [3] assuming that
no server failures can occur during checkpointing and
recovery. We make no such assumption in this paper.

Finally, it is possible to fragment very close to optimally
by remaining blind to the job size. Consider the following
simple fragmentation policy.

xj = min{lj , a}

We denote this policy by a 3 and the completion time under
this policy by T a.

Theorem 4. Sub-optimal blind fragmentation pol-
icy a: The sub-optimality of policy a (in expected completion
time) is bounded as follows.

E [T a∣L = l]− E [T ∗∣L = l] ≤ ℎ(a) ∀ l > 0.

Moreover,

1. If L,U are LT, then T a is LT.

2. If U is LT, L ∈ ℛV(�), then

P (T a > t) ∼ P
(
L > t

g(a)

)
.

We make the following observations regarding the sub-optimal
blind policy a.

1. a corresponds to checkpointing periodically with pe-
riod a.

2. The sub-optimality of a is bounded above by a con-
stant for any job size.

We conclude with a remark regarding the tail behavior
of the completion time under the fragmentation policies x∗

and a. Let us assume U is LT. If L is LT, then the com-
pletion time is LT under both policies. Clearly, if L is HT,
so is the completion time, with or without fragmentation.
Theorems 4 and 3 indicate that if L is regularly varying,
then the completion time under x∗ and a is regularly vary-
ing with the same degree as L. Note that the policies x∗ and
a were derived seeking to minimize the expectation of the
completion time. Even so, they produce as good a comple-
tion time tail behavior as possible (in the degree sense) for
HT (specifically, regularly varying) L.

4. REFERENCES
[1] S. Asmussen, P. Fiorini, L. Lipsky, T. Rolski, and

R. Sheahan. Asymptotic behavior of total times for jobs
that must start over if a failure occurs. Mathematics of
Operations Research, 33(4):932–944, 2008.

[2] N. H. Bingham, C. M. Goldie, and J. L. Teugels.
Regular Variation (Encyclopedia of Mathematics and
its Applications). Cambridge University Press, 1987.

[3] A. Duda. The effects of checkpointing on program
execution time. Inf. Process. Lett., 16(5):221–229, 1983.

[4] V. Grassi, L. Donatiello, and S. Tucci. On the optimal
checkpointing of critical tasks and transaction-oriented
systems. Software Engineering, IEEE Transactions on,
18(1):72–77, Jan 1992.

[5] P. R. Jelenković and J. Tan. Can retransmissions of
superexponential documents cause subexponential
delays? In Proceedings of IEEE INFOCOM, May 2007.

[6] V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi. Effects
of checkpointing and queueing on program
performance. Stochastic Models, 6(4), 1990.

3We abuse notation and use the same symbol a to denote
both the fragment size as well as the fragmentation policy.

