
Performance Evaluation 00 (2010) 1–22

Performance
Evaluation

Tail-robust Scheduling via Limited Processor Sharing

Jayakrishnan Naira, Adam Wiermanb, Bert Zwartc

aDepartment of Electrical Engineering, California Institute of Technology
bComputing and Mathematical Sciences Department, California Institute of Technology

cCWI Amsterdam, VU University Amsterdam, Eurandom & Georgia Tech

Abstract

From a rare events perspective, scheduling disciplines that work well under light (exponen-
tial) tailed workload distributions do not perform well under heavy (power) tailed workload
distributions, and vice-versa, leading to fundamental problems in designing schedulers that are
robust to distributional assumptions on the job sizes. This paper shows how to exploit par-
tial workload information (system load) to design a scheduler that provides robust performance
across heavy-tailed and light-tailed workloads. Specifically, we derive new asymptotics for the
tail of the stationary sojourn time under Limited Processor Sharing (LPS) scheduling for both
heavy-tailed and light-tailed job size distributions, and show that LPS can be robust to the tail
of the job size distribution if the multiprogramming level is chosen carefully as a function of the
load.

Keywords: GI/GI/1 queue, scheduling, limited processor sharing, large deviations, tail
asymptotics, heavy-tailed job size, light-tailed job size, tail-robustness

1. Introduction
In the study of scheduling policies, much of the focus has traditionally been on designing

policies that have good performance in expectation. For example, in order to minimize the
expected sojourn time (a.k.a. response time, flow time) in a single server queue it is well known
that the scheduler should give priority to jobs with small remaining sizes via Shortest Remaining
Processing Time (SRPT) [1], which is optimal regardless of the job size distribution and arrival
process.

However, providing good performance in expectation is not sufficient. It is also important
for a scheduler to provide good distributional performance. For example, quality of service
guarantees in web applications often rely on specifying guarantees about the tail of the sojourn
time distribution, e.g., that 95% of requests will have sojourn time < s seconds.

Resultantly, there has been a substantial amount of work in recent years studying the sojourn
time distribution, P (V > x) of scheduling policies in a GI/GI/1 setting. Due to the difficulty of
an exact distributional analysis, much of this work focuses on understanding the sojourn time tail
asymptotics, i.e., the behavior of P (V > x) as x → ∞, which provides a characterization of the



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 2

likelihood of large delays. From this work, which we survey briefly in Section 2, has emerged
an understanding of how to optimally schedule for the sojourn time tail. Interestingly, unlike
when optimally scheduling for the expected sojourn time, prior work shows that there are two
distinct regimes: when the job size distribution is light-tailed, First Come First Served (FCFS)
scheduling minimizes the sojourn time tail [2], while if the job size distribution is heavy-tailed,
SRPT, Processor Sharing (PS), and many other policies (e.g. all SMART policies [3]) minimize
(up to a constant) the sojourn time tail [4].

Interestingly, among the prior work, there are no policies that are optimal across both light-
tailed and heavy-tailed job size distributions. In fact, Wierman & Zwart have recently proved
an impossibility result [5], which states that no work-conserving policy that is non-learning (i.e.,
does not learn information about the workload) can optimize the sojourn time tail across both
light-tailed and heavy-tailed job size distributions. Further, among the prior work, the policies
that produce the best possible sojourn time tail behavior under heavy-tailed job size distributions
produce the worst possible sojourn time tail behavior under light-tailed job size distributions, and
vice-versa. Indeed, there are no policies that have been shown to maintain even better than worst-
case sojourn time tail performance across both light-tailed and heavy-tailed job size distributions.

So, at this stage, the literature understands how to design a scheduling policy to be optimal
for the sojourn time tail given a particular workload, but cannot design a scheduling policy that
is robust, even minimally so, across both light-tailed and heavy-tailed job size distributions. This
is in stark contrast to the case of scheduling for expected sojourn time, where SRPT is optimal
and robust.

The lack of robustness when scheduling for the sojourn time tail is relevant from a practi-
cal perspective because determining whether a particular real-world workload is light-tailed or
heavy-tailed is a difficult task. For example, there is an unending debate over whether to model
web file sizes as an unbounded heavy-tailed distribution or as a bounded distribution with a
power-law body. Ideally, a scheduler design should be robust to such assumptions. The goal of
this paper is to present a scheduling policy that is ‘tail-robust’, i.e., provides robust performance
(in terms of the sojourn time tail) across both heavy-tailed and light-tailed job size distributions.

The main contribution of this work is to prove that Limited Processor Sharing (LPS-c) can
be designed to be tail-robust. Under LPS-c, there is a limited multiprogramming level c, which
determines the maximum number of jobs that the service rate is shared among. Specifically,
jobs are queued according to the order of arrival and if there are n jobs in the system then the
min(n, c) jobs which arrived earliest each receive a service rate of 1/min(n, c). LPS-c is a natural
candidate for our goal because, as c grows from 1 to ∞, LPS-c transitions from FCFS, which is
optimal under light-tailed job sizes, to PS, which is optimal under heavy-tailed job sizes. Our
goal will be to determine how to choose an intermediate c such that LPS-c is tail-robust. It turns
out that to achieve tail-robustness, the choice of c must incorporate some information about the
workload. We will prove that this c can be chosen in such a way that only information about the
system load ρ is necessary, which is not an unreasonable assumption as this information is also
necessary to achieve system stability.

It is important to point out that LPS-c is not a policy that we artificially constructed to fit
the goals of this paper. LPS-c is a practical policy that is actually a more realistic version of
both FCFS and PS in the case of many computer systems, where it is unrealistic to share the
server among unboundedly many jobs or to devote the server entirely to a single job. Given
its practical importance, there have been a number of prior studies of LPS-c: Avi-Itzhak &
Halfin [6] propose an approximation for the mean response time assuming Poisson arrivals. A
computational analysis based on matrix geometric methods is performed in Zhang & Lipsky



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 3

[7, 8]. Some stochastic ordering results are derived in Nuyens & van der Weij [9]. Zhang,
Dai & Zwart [10, 11, 12] develop fluid, diffusion and heavy traffic approximations. Finally,
Gupta & Harchol-Balter [13] consider approximation methods and Markov decision techniques
to determine the optimal level c when the system is not work-conserving. However, none of the
prior work has focused on the sojourn time tail of LPS-c.

In order to understand how to design LPS-c so that it is tail-robust, we first need to analyze
the sojourn time tail asymptotics in both the case of heavy-tailed and light-tailed job size distri-
butions. We do this in Sections 3 and 4 respectively. In both cases our analysis reveals interesting
insights. For example, for heavy-tailed job sizes we find that the behavior of LPS-c is similar
to that of the analogous GI/GI/c queue, where each server works at rate 1/c. However, this is
not the case for light tails, where quite a few qualitatively different scenarios may lead to large
sojourn times. In particular, a large sojourn time may occur through a combined effect of a large
backlog in the system upon arrival, a large service time, and a higher than usual input during the
sojourn of the customer under consideration. Interestingly, this is in contrast to policies that have
been analyzed up to this point, under which one of these phenomena typically dominates.

The sojourn time tail asymptotics of LPS-c that we derive in Sections 3 and 4 also highlight a
tension that must be resolved when attempting to design LPS-c robustly. In particular, when the
job size distribution is light-tailed, reducing c lightens the sojourn time tail; however, when the
job size distribution is heavy-tailed, increasing c lightens the sojourn time tail. This highlights
the tradeoff necessary between optimality and robustness.

In Section 5, we show that despite the conflicting demands on c placed by the light-tailed and
heavy-tailed regimes, it is indeed possible to choose c so that LPS-c is tail robust. In particular,
we prove that with c = b1/(1 − ρ)c + 1, the sojourn time tail under LPS-c is better than worst-
case across a large class of heavy-tailed (regularly varying) job size distributions and light-tailed
(phase-type) job size distributions. Further, this choice of c ensures that for large subclasses of
heavy-tailed and light-tailed job size distributions the sojourn time tail is optimal (see Corollary
1). Additionally, this design is robust to estimation errors in ρ – as long as the estimate of ρ that
is used is an upper bound on the true ρ, this c will still be tail-robust.

Importantly, there is some freedom among the class of tail-robust designs possible using
LPS-c. In particular, Corollary 2 presents a parameterized design for c that allows the designer
to vary the importance placed on optimality in the heavy-tailed and light-tailed regimes while still
guaranteeing tail-robustness. However, in order to ensure that LPS-c is tail robust, it is necessary
to maintain c ≥ b1/(1 − ρ)c + 1 to handle heavy-tailed job size distributions.

The remainder of the paper is organized as follows. In Section 2, we introduce the model
and notation for the paper, and discuss prior work studying the sojourn time asymptotics of
scheduling policies. In Sections 3 and 4 we present our new results characterizing the sojourn
time asymptotics of LPS-c. Then, in Section 5 we present the main results of the paper showing
how to design the multiprogramming level c for LPS-c to ensure tail-robust performance. Finally,
we conclude in Section 6.

2. Preliminaries
2.1. Model and Notation

Throughout this paper, our focus will be on the GI/GI/1 queue. Jobs arrive according to a
renewal process; let A denote a generic interarrival time. Each job has an independent, identically
distributed service requirement (size); let B denote a generic job size. The server speed is taken
to be unity. We make the following standard assumptions: (i) load ρ := E[B]

E[A] ∈ (0, 1), (ii)
P (B > A) > 0 (otherwise there would be no queueing).



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 4

Denote α := E [A] , β := E [B] . Let Be denote a random variable distributed as the ex-
cess/residual lifetime of B, i.e., P (Be > x) = 1

β

∫ ∞
x F̄B(t)dt for x ≥ 0. For functions ϕ(x) and ξ(x),

the notation ϕ(x) ∼ ξ(x) means limx→∞
ϕ(x)
ξ(x) = 1, ϕ(x) & ξ(x) means lim infx→∞

ϕ(x)
ξ(x) ≥ 1.

The sojourn time (response time) of a job refers to the time between its arrival and its depar-
ture. The waiting time (delay) of a job refers to the time between its arrival and the instant it first
receives service. Vπ and Dπ denote respectively random variables distributed as per the sojourn
time and waiting time of a job in the stationary GI/GI/1 queue operating under scheduling dis-
cipline (policy) π. In this paper, our interest is centered around the asymptotic behavior of the
sojourn time tail, i.e., the behavior of P (Vπ > x) as x→ ∞.

In our analysis of the tail behavior of the stationary sojourn time, we focus on the sojourn time
of a ‘tagged’ job, assumed to arrive into the stationary queue at time 0, with size B0. W denotes
the total work (backlog) in the system just before the arrival of the tagged job. Bi denotes the
size of the i-th arrival after time 0. For i ≥ 1, Ai denotes the time between the (i − 1)-st and i-th
arrival. For x > 0, N(x) := max{n ∈ N :

∑n
i=1 Ai ≤ x} is the number of arrivals into the system in

time interval (0, x]. A(x) :=
∑N(x)

i=1 Bi is the total work entering the system in the interval (0, x].
2.2. Heavy-tailed and light-tailed distributions

For any non-negative random variable X, FX(·) denotes the distribution function (d.f.) of
X, i.e., FX(x) = P (X ≤ x) ; ΦX(·) denotes the moment generating function of X, i.e., ΦX(s) =

E
[
esX

]
. X (or its d.f. FX) is defined to be heavy-tailed if ΦX(s) = ∞ for all s > 0. X (or its d.f.

FX) is defined to be light-tailed if it is not heavy-tailed, i.e., if ΦX(s) < ∞ for some s > 0.
The following subsets of the class of heavy-tailed distributions will be of interest to us. X

(or its d.f. FX) is said to be long-tailed (denoted X ∈ L) if limx→∞
P(X>x+y)
P(X>x) = 1 for all y > 0.

The class of long-tailed distributions includes most of the common heavy-tailed distributions,
including the Pareto, the Lognormal and the heavy-tailed Weibull distribution [14]. X (or its d.f.
FX) is said to be regularly varying with index θ > 1 (denoted X ∈ RV(θ)) if P (X > x) = x−θL(x),
where L(x) is a slowly varying function, i.e., L(x) satisfies limx→∞

L(xy)
L(x) = 1 ∀ y > 0. Note that

all Pareto distributions are included in this class. The class of regularly varying distributions is a
strict subset of the class of long-tailed distributions, which in turn is a strict subset of the class of
heavy-tailed distributions [14].

We describe the (logarithmic) asymptotic tail behavior of heavy-tailed X, using its tail index,
defined as Γ(X) := limx→∞ −

logP(X>x)
log(x) , when the limit exists. Note that if Γ(X) ∈ (0,∞), then for

arbitrarily small ε > 0, x−(Γ(X)+ε) ≤ P (X > x) ≤ x−(Γ(X)−ε) for large enough x. This means the tail
index is useful for describing the asymptotic tail behavior of distributions that exhibit a roughly
‘power-law’ tail. Note that a smaller value of tail index implies a ‘heavier’ tail. Section 3 is
devoted to the analysis of Γ(VLPS−c) when B ∈ RV(θ).

Similarly, we describe the (logarithmic) asymptotic tail behavior of light-tailed X, using its
decay rate, defined as γ(X) := limx→∞ −

logP(X>x)
x , when the limit exists. If γ(X) ∈ (0,∞), then

for arbitrarily small ε > 0, e−(Γ(X)+ε)x ≤ P (X > x) ≤ e−(Γ(X)−ε)x for large enough x. This means the
decay rate is useful for describing the asymptotic tail behavior of distributions that have a roughly
‘exponential’ tail. Again, note that a smaller value of γ(X) implies a ‘heavier’ tail. It is easy to
prove that (i) ΦX(s) < ∞ for all s < γ(X), (ii) if γ(X) < ∞, then ΦX(s) = ∞ for all s > γ(X).
This implies that if we assume that the decay rate of X exists, then X is light-tailed if and only if
γ(X) ∈ (0,∞]. Section 4 is devoted to the analysis of γ(VLPS−c) for the case γ(B) ∈ (0,∞].
2.3. Related literature

We now review the sojourn time tail asymptotics for the following well known scheduling
policies: First Come First Served (FCFS), Preemptive Last Come First Served (PLCFS), Proces-



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 5

sor Sharing (PS), and Shortest Remaining Processing Time (SRPT). Note first, that for any work
conserving scheduling policy π, Vπ may be stochastically bounded as follows. B ≤st Vπ ≤st Z∗,
where Z∗ denotes the total time to emptyness of the queue in steady state, just after an arrival.
We consider separately the case of heavy-tailed and light-tailed job sizes.
Heavy-tailed job sizes: For the GI/GI/1 queue with regularly varying job sizes, it is known that

Γ(VPS ) = Γ(VS RPT ) = Γ(VPLCFS ) = Γ(B) = θ,

Γ(VFCFS ) = Γ(Z∗) = θ − 1.
See the survey by Boxma & Zwart [4] for details. Based on the bounds on Vπ described above,

it is clear that PS, SRPT and PLCFS produce the optimal sojourn time tail index. The sojourn
time tail under FCFS is one degree heavier; moreover, FCFS produces the worst possible sojourn
time tail index. In fact, it turns out that all non-preemptive scheduling policies produce this worst
possible sojourn time tail index (see the paper by Anantharam [15]).
Light-tailed job sizes: In describing the sojourn time asymptotics under light-tailed job sizes,
the following function plays a key role. For s ≥ 0, Ψ(s) := −Φ−1

A

(
1

ΦB(s)

)
. The following lemma

gives an interpretation to this function.

Lemma 1 (Mandjes-Zwart [16]). For s ≥ 0, limx→∞
logE[esA(x)]

x = Ψ(s). Further, Ψ(s) is strictly
convex and lower semi-continuous.

For the GI/GI/1 queue with light-tailed job sizes,
γ(VFCFS ) = γF := sup{s ≥ 0 : Ψ(s) − s ≤ 0},
γ(VPLCFS ) = γL := sup

s≥0
{s − Ψ(s)};

see Nuyens & Zwart [17]. From the strict concavity of s − Ψ(s), and since Ψ′(0) = ρ, it is easy
to show that γL < (1− ρ)γF . This implies the stationary sojourn time tail under FCFS is ‘lighter’
than that under PLCFS. It has been proved by Ramanan and Stolyar [2] that the sojourn time
decay rate under FCFS is actually optimal. Moreover, it has been proved by Nuyens et al. [3]
that γ(Z∗) = γL, implying that PLCFS produces the worst possible sojourn time decay rate under
light-tailed job sizes. Under mild regularity conditions, we additionally have

γ(VPS ) = γ(VS RPT ) = γL.

The above discussion highlights the dichotomy described before; the policies that produce
the best possible sojourn time tail behavior under heavy-tailed job size distributions produce the
worst possible sojourn time tail behavior under light-tailed job size distributions, and vice-versa.
2.4. Busy period decay rate as a function of server speed

We conclude this section with a brief discussion on the dependence of the busy period decay
rate of a GI/GI/1 queue on the server speed. This discussion will play a role in our analysis of
the sojourn time decay rate under LPS-c in Section 4.

Define, for r ≥ 0, g(r) := sups≥0[rs − Ψ(s)]. g(r) is the busy period decay rate, if the server
speed equals r. It is easy to see that g(·) is convex increasing; g(r) = 0 for r ≤ ρ, g(1) = γL. Sup-
pose that γ(B) ∈ (0,∞). In this case, for all s > γ(B),ΦB(s) = ∞, implying Ψ(s) = ∞. This means
g(r) = sups∈[0,γ(B)][rs − Ψ(s)]. Now, since Ψ(·) is strictly convex and lower semi-continuous, the
supremum in the definition of g(·) is uniquely achieved; define ŝ(r) = arg maxs≥0[rs − Ψ(s)].

Lemma 2. If γ(B) ∈ (0,∞), then g(r) is continuously differentiable over r ≥ 0. Moreover,
g′(r) = ŝ(r).



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 6

Proof. That g′(r) = ŝ(r) follows by invoking an envelope theorem like Danskin’s theorem; see
Proposition B.25 in [18]. Since g(·) is convex and differentiable, its derivative must be continu-
ous; see Theorem 25.5 in [19].

3. Tail asymptotics under heavy-tailed job sizes
We start our analysis by focusing on heavy-tailed job size distributions. In this section, we

describe tail asymptotics for the sojourn time under LPS-c for the case of regularly varying job
sizes. As we discussed in Section 2, there is a significant amount of prior work deriving the
sojourn time tail asymptotics for scheduling policies in the heavy-tailed regime. This prior work
has shown that: (i) non-preemptive policies (e.g., FCFS) have a sojourn time tail that is one
degree heavier than the job size distribution, which is (up to a constant) as bad as possible; and
(ii) many preemptive policies (e.g., SRPT, PS) have sojourn time tails that are proportional to
the tail of the job size distribution, which is optimal (up to a constant). Interestingly, almost
all policies that have been studied have a sojourn time tail that falls into either case (i) or case
(ii). Only recently was a policy constructed that has an intermediate sojourn time tail [20]. Our
analysis shows that, in many settings, LPS-c also has an intermediate sojourn time tail.

For technical reasons, we must make the following assumption in our analysis.

Assumption 1. cρ is not an integer, i.e., bcρc < cρ.

Under this assumption, we can state the sojourn time asymptotics of LPS-c as follows.

Theorem 1. Consider the GI/GI/1 queue. Under Assumption 1, if B ∈ RV(θ) for θ > 1, then

Γ(DLPS−c) = lim
x→∞
−

logP (DLPS−c > x)
log(x)

= (θ − 1)(c − bcρc), (1)

Γ(VLPS−c) = lim
x→∞
−

logP (VLPS−c > x)
log(x)

= min {θ, (θ − 1)(c − bcρc)} . (2)

One natural way to view an LPS-c queue is as a work-conserving version of a GI/GI/c queue,
where each server has speed 1/c. In this view, this theorem can be interpreted as stating that
LPS-c has the same sojourn time tail as the GI/GI/c queue in the heavy-tailed regime. In fact,
the proof relies on the parallels between these two queues. We prove an upper bound on the
tail of delay in Appendix A.1, a lower bound on the tail of delay in Appendix A.2, and then
combine them to complete the proof of Theorem 1 in Appendix A.3. The upper bound follows
immediately from bounding the LPS-c queue by the GI/GI/c queue, while the lower bound proof
uses a probabilistic argument that offer insight into how large waiting times occur.

The parallel between the GI/GI/c and LPS-c also motivates us to define k = kc := c − bcρc .
We refer to k as the number of ‘spare slots’. The name ‘spare slots’ refers to the fact that k is
the minimum number of infinite-sized jobs that must be added to the LPS-c queue before the it
becomes unstable. This definition of k parallels the notion of ‘spare servers’ which is used in the
context of the GI/GI/c queue. In the GI/GI/c setting, the number of spare servers, k, has been
shown to determine the moment conditions for delay (see Appendix A.1) [21], thus it is perhaps
not surprising that k determines the weight of the sojourn time tail in the LPS-c queue. However,
we will see that the parallel between the LPS-c queue and the GI/GI/c queue does not hold in
light-tailed regime (Section 4).

Another natural view of LPS-c is as a hybrid version of FCFS (c = 1) and PS (c→ ∞). In this
view, Theorem 1 highlights that the sojourn time tail transitions between the sojourn time tails
of FCFS and PS as c increases. Specifically, recall that the sojourn time tail index for any work-
conserving scheduling policy (if it exists) lies between Γ(VFCFS ) = θ− 1 and Γ(VPS ) = Γ(B) = θ.



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 7

When c = 1 we have Γ(VLPS−1) = Γ(VFCFS ), which is the heaviest possible tail index. However,
the weight of the sojourn time tail lightens monotonically as c increases and, as c → ∞, the
sojourn time tail index matches that of the job size distribution, which is optimal. Specifically,
for all c large enough that kc > θ/(θ − 1) we have that Γ(VLPS−c) = Γ(VPS ) = θ. Thus, in the
heavy-tailed setting, LPS-c should be designed with ‘large enough’ c.

Unfortunately, we will see the that the opposite is true in the light-tailed regime – when job
sizes are light-tailed, LPS-c should be designed so that c is ‘small enough’. This highlights the
tension of designing LPS-c so that it is tail-robust. Understanding this tension is the goal of
Section 5.

4. Tail asymptotics under light-tailed job sizes
We now move to the light-tailed regime and again analyze the sojourn time asymptotics of

the LPS-c queue. As we discussed in Section 2, there is a significant amount of prior work
devoted to the sojourn time asymptotics of scheduling policies in the light-tailed regime. From
this prior work has evolved an understanding of what ‘bad’ events lead to large delays under most
common scheduling policies. In particular, a long delay will occur because of one (or more) of
the following three effects:
(i) a large backlog is at the server when the tagged job arrives,
(ii) the tagged job has a large size,
(iii) a large number of jobs enter the system during the tagged job’s sojourn.
Prior work has provided an understanding of which combination of these three effects is most
likely to lead to a large delay under most common scheduling policies. For example, under
FCFS a long delay is most likely caused by (i), while under SRPT and PS, a long delay is most
likely caused by the combination of (ii) and (iii). As discussed in Section 2, FCFS produces
the optimal (largest possible) sojourn time decay rate whereas SRPT and PS produce the worst
(smallest) possible sojourn time decay rate.

As in the heavy-tailed setting, there is a dichotomy in the previous analyses: all policies that
have been analyzed (to the best of our knowledge) have sojourn time tail asymptotics that fall
into two categories: long delays are most likely caused by either (i) or a combination of (ii)
and (iii). Like in the heavy-tailed setting, in some cases, LPS turns out to have intermediate
tail-asymptotics where the most likely way a ‘bad’ event can occur is a (workload-dependent)
combination of (i), (ii), and (iii).

Let us now state the main result for this section. Throughout, we will assume that the decay
rate of the job size distribution exists.

Theorem 2. Consider the GI/GI/1 queue. If γ(B) ∈ (0,∞),

γ(VLPS−c) = lim
x→∞
−

logP (VLPS−c > x)
x

= min
a∈[0,1]

fc(a), (3)

where fc(a) := aγF +
(1 − a)γ(B)

c
+ sup

s≥0

[
(1 − a)s

(
1 −

1
c

)
− Ψ(s)

]
. (4)

Otherwise, if γ(B) = ∞, then γ(VLPS−c) = γ(VFCFS ).

We prove (3) by providing matching asymptotic lower and upper bounds on the tail of VLPS−c.
The lower bound is proved in Appendix B.1, the upper bound is proved in Appendix B.2. We
then prove the result for the case of γ(B) = ∞ in Appendix B.3. 1

1The condition γ(B) = ∞ characterizes very light-tailed job-size distributions (that have a tail that decays faster than
exponentially) and includes all distributions with bounded support.



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 8

Given the complexity of the decay rate in Theorem 2, it is important to provide some inter-
pretation of the theorem. To begin, note that, unlike in the heavy-tailed regime, the decay rate of
LPS-c does not parallel the decay rate of the GI/GI/c queue where servers have speed 1/c (see
[22] for a derivation of the decay rate for the GI/GI/c queue). However, the decay rate does still
highlight the fact that LPS-c can be viewed as a hybrid of FCFS and PS. In particular, in the case
of γ(B) ∈ (0,∞), which includes all phase-type distributions, the tail asymptotics of LPS-c can
vary between the asymptotics of FCFS for small enough c, which is optimal, and the asymptotics
of PS as c → ∞, which is pessimal. But, the complexity of (3) hides much of the behavior
of the decay rate; thus we spend some time in the following sections interpreting and deriving
important properties of the decay rate.
4.1. Interpreting the decay rate under LPS-c

To build an understanding of (3) it is useful to begin by interpreting it in the context of effects
(i), (ii), and (iii) described above that could lead to a long delay. Intuitively, effects (i), (ii) and (iii)
correspond respectively to the first, second and third term in (4). Further, the variable a ∈ [0, 1]
captures the relative contribution of these effects to a large sojourn time. If a is close to 1, then
effect (i) dominates; if a is close to 0, then to effects (ii) and (iii) dominate; and intermediate
values of a represent different combinations of all three effects. The minimization operation in
(3) indicates that the most dominant combination of effects (i), (ii) and (iii) determines the decay
rate, and which combination is dominant depends on c, A, and B. Thus, one should interpret
the value of a∗c := arg mina∈[0,1] fc(a) as providing a description of how large sojourn times are
caused. Informally, for large x, if the tagged job experiences a sojourn time V > x, it is most
likely due to (a) a backlog of the order of a∗c x being present in the system when the job arrives, (b)
the tagged job having a size of the order of (1−a∗c)x

c , and (c) work of the order of (1 − a∗c)
(
1 − 1

c

)
x

entering the queue in the interval (0, x).
4.2. Properties of the decay rate under LPS-c

In this section, we focus on the case γ(B) ∈ (0,∞), and try to provide insight into two
questions: How does the decay rate of LPS-c vary with c? Can we provide a more explicit
characterization of a∗c and, thus, γ(VLPS−c)? Additionally, we present some numeric examples to
illustrate the points in our discussion.

We start by studying the behavior of γ(VLPS−c) as a function of c. Given the view that LPS-c is
a hybrid of FCFS and PS, one expects that the decay rate of LPS-c will transition monotonically
between γ(VFCFS ), the optimal decay rate, and γ(VPS ), the pessimal decay rate, as c grows from
1 to ∞. This is indeed what happens; the following lemma establishes the monotonicity of the
sojourn time decay rate with respect to c.

Lemma 3. Consider the GI/GI/1 queue. Assuming γ(B) ∈ (0,∞), γ(VLPS−c) is monotonically
decreasing in c. Moreover, limc→∞ γ(VLPS−c) = γ(VPS ) = γL.

Lemma 3 implies that for light-tailed job sizes, the sojourn time tail under LPC-c gets ‘heav-
ier’ with increasing c. In contrast, for heavy-tailed job sizes, we proved in Section 3 that the
sojourn time tail gets ‘lighter’ with increasing c. We prove Lemma 3 in Appendix B.4.

Next, we provide a more explicit characterization of a∗c, and thus γ(VLPS−c). To accomplish
this, we must consider two classes of light-tailed workloads separately: γF < γ(B) and γF =

γ(B). Recall the background provided in Section 2.4 on the decay rate of the busy period. In
light of that discussion, we may rewrite fc(·) as follows.

fc(a) = aγF +
(1 − a)γ(B)

c
+ g

(
(1 − a)(1 −

1
c

)
)
.



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 9

Moreover, fc(·) is continuously differentiable and convex. Let f ∗c := mina∈[0,1] fc(a).
Case 1: γF < γ(B).

Note that this case includes most common light-tailed job size distributions, e.g., all phase-
type distributions. 2 To get a more explicit representation of a∗c, begin by noting that

fc(0) =
γ(B)

c
+ g

(
1 −

1
c

)
, fc(1) = γF .

Next, Lemma 2 allows us to capture the derivative of fc(a) with respect to a.

f ′c (a) = γF −
γ(B)

c
−

(
1 −

1
c

)
ŝ
(
(1 −

1
c

)(1 − a)
)

⇒ f ′c (0) = γF −
γ(B)

c
−

(
1 −

1
c

)
ŝ
(
1 −

1
c

)
, f ′c (1) = γF −

γ(B)
c

.

So, for c ≤ γ(B)
γF
, f ′c (1) ≤ 0, implying a∗c = 1 (recall that fc(·) is convex) and γ(VLPS−c) = γF .

Therefore, for small enough c (specifically, c ≤ γ(B)
γF

), the decay rate of LPC-c matches that of
FCFS. Moreover, long delays are most likely caused by effect (i).

Consider now the case c > γ(B)
γF
. In this case, the function fc(a) is increasing in a for a ≥

1. This means γ(VLPS−c) = mina≥0 fc(a). This observation allows us to express the decay rate
differently:

γ(VLPS−c) = min
a∈[0,1]

[
aγF +

(1 − a)γ(B)
c

+ max
s≥0

[
(1 − a)s

(
1 −

1
c

)
− Ψ(s)

]]
= min

a≥0
max
s≥0

[
aγF +

(1 − a)γ(B)
c

+ (1 − a)s
(
1 −

1
c

)
− Ψ(s)

]
=

γ(B)
c

+ min
a≥0

max
s≥0

[
s
(
1 −

1
c

)
− Ψ(s) − a

(
s
(
1 −

1
c

)
−

(
γF −

γ(B)
c

))]
.

We may interpret the second term above to be the dual of the convex optimization problem

max
s∈[0,κc]

[
s
(
1 −

1
c

)
− Ψ(s)

]
,

where κc := γF−
γ(B)

c

1− 1
c

= γF −
γ(B)−γF

c−1 . Since this optimization problem has zero duality gap (see
Prop. 5.2.1 in [18]), we can rewrite the sojourn time decay rate as follows.

γ(VLPS−c) =
γ(B)

c
+ max

s∈[0,κc]

[
s
(
1 −

1
c

)
− Ψ(s)

]
. (5)

Note that the above form for the decay rate is more computationally convenient than that in
the statement of Theorem 2. Additionally, it allows us to characterize the value of a∗c; this is
summarized in the following lemma.

Lemma 4. Consider the GI/GI/1 queue. If γF < γ(B), then for c > γ(B)
γF
, a∗c is monotonically

decreasing in c. Moreover, there exists ĉ > γ(B)
γF

such that for c > ĉ,

(i) a∗c = 0, (ii) γ(VLPS−c) =
γ(B)

c + g
(
1 − 1

c

)
> γ(VPS ).

From the standpoint of tail-robust scheduling using LPS, which is the focus of Section 5, the
above lemma has the following important implication: For the class of workload distributions

2If B is phase-type, then γ(B) ∈ (0,∞) and lims↑γ(B) ΦB(s) = ∞. This implies that lims↑γ(B) Ψ(s) = ∞, which is
sufficient to guarantee that γF < γ(B).



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 10

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

c

γ(
V

LP
S

−
c)

γ(B)
γ
F

γ
L

γ
F

(a)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

c

a* c

γ(B)
γ
F

(b)
Figure 1: M/M/1 example: B ∼ Exp(1), ρ = 0.9

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

c

γ(
V

LP
S

−
c)

γ(B)
γ
F

γ
F

γ
L

(a)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

c

a* c

γ(B)
γ
F

(b)
Figure 2: M/Erlang-2/1 example

that satisfy γF < γ(B), for all c, the sojourn time decay rate under LPS-c is strictly better than
worst-case (recall that PS has the smallest possible decay rate). The monotonicity of a∗c with
respect to c implies that as c increases, the contribution of effects (ii) and (iii) to a large sojourn
time increases relative to (i). Moreover, for large enough c, large sojourn times are most likely
caused by effects (ii) and (iii). Interestingly, for intermediate values of c, it is possible that
a∗c ∈ (0, 1). In this case, the ‘bad’ event is a combination of all three effects (i)-(iii); see Example
2 below. We give the proof of Lemma 4 in Appendix B.5.

To illustrate the properties described above, we consider a couple of examples.
Example 1: Consider first the M/M/1 case; A ∼ Exp(λ), B ∼ Exp(µ). 3 In this case, γ(B)

γF
= 1

1−ρ .

Interestingly, it can be proved that for c > γ(B)
γF
, a∗c = 0. Figure 1 shows γ(VLPS−c) and a∗c as a

function c for the case µ = 1, ρ = 0.9.
Example 2: Next, we consider an M/GI/1 example, where A ∼ Exp(λ), and B has an Erlang-2
distribution, i.e., ΦB(s) =

(
µ
µ−s

)2
. Figure 2 shows γ(VLPS−c) and a∗c as a function c for the case

µ = 1, ρ = 0.9. Note that for some intermediate values of c, a∗c ∈ (0, 1).
Case 2: γF = γ(B).

This case behaves fundamentally differently than Case 1 above, however it is easier to char-
acterize. For c = 1, it is obvious that γ(VLPS−c) = γF and a∗c = 1. On the other hand, for c > 1,
f ′c (0) =

(
1 − 1

c

) (
γ(B) − ŝ

(
1 − 1

c

))
≥ 0. This means a∗c = 0 and

γ(VLPS−c) = fc(0) =
γ(B)

c
+ g

(
1 −

1
c

)
.

Therefore, if γF = γ(B), for c > 1, a large sojourn time is most likely caused by a combination
of effects (ii) and (iii).

3A ∼ Exp(λ) means A is exponentially distributed with mean 1/λ.



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 11

5. Designing LPS robustly
Now that we have derived the sojourn time asymptotics in both the light-tailed and heavy-

tailed regimes, we can return to the question of designing a scheduling policy that has robust
performance across both heavy-tailed and light-tailed job size distributions.

Recall from our discussion in Section 2 that there is a dichotomy in prior results showing that
scheduling policies that perform optimally in the heavy-tailed regime (e.g., SRPT and PS) have
the worst-case sojourn time tail in the light-tailed regime and policies that perform optimally
in the light-tailed regime (e.g., FCFS) have the worst-case sojourn time tails in the heavy-tailed
regime. In fact, a recent result by Wierman and Zwart [5] shows that this is a fundamental limit
on all work-conserving policies that do not learn the job size distribution. Specifically, no work-
conserving, non-learning policy can be optimal in under heavy-tailed (light-tailed) job sizes and
better than worst-case under light-tailed (heavy-tailed) job sizes.

Further, prior work provides no schedulers that are ‘tail-robust’, i.e., provide robust perfor-
mance (even a better than worst-case sojourn time tail) across both light-tailed and heavy-tailed
job size distributions. This is problematic because determining whether a workload is heavy-
tailed or light-tailed is extremely difficult (if not impossible) and thus designing such an assump-
tion into a scheduler is undesirable. Ideally, a scheduler should provide performance that is
robust to such an assumption, and designing such a scheduler is the goal of this section.

We show in this section that by choosing the multiprogramming level c carefully, it is pos-
sible to design LPS-c so that it provides ‘tail-robust’ performance. Our results in Section 3 and
4 highlight the tension in designing LPS-c robustly. Recall that as c grows the sojourn time tail
gets heavier in the light-tailed regime while the sojourn time tail gets lighter in the heavy-tailed
regime. Thus, an intermediate value of c must be carefully chosen to provide robustness. Note
that c cannot be chosen to be workload-independent; indeed, Theorem 1 implies that with regu-
larly varying job sizes, for any fixed c, the sojourn time tail index matches that under FCFS (the
worst-case) as load ρ approaches 1. Our designs choose c as a function of ρ. Thus, these policies
must learn some information about the workload, but it only needs to learn expectations, which
can be accomplished quickly and is certainly much easier than learning the tail.

In this section we propose two possible choices for c that both provide tail-robust perfor-
mance, but balance differently performance in the heavy-tailed and light-tailed regimes.
Design 1. Our first proposed design guarantees better than worst-case performance for a broad
class of light-tailed distribution (phase type distributions) and heavy-tailed distributions (reg-
ularly varying distributions). Further, it guarantees optimality under large subclasses of both
heavy-tailed and light-tailed distributions.

Corollary 1. Consider the GI/GI/1 queue. Using LPS-c with c =
⌊

1
1−ρ

⌋
+ 1 ensures that the

(logarithmic) asymptotic tail behavior of the stationary sojourn time is
(i) better than worst-case when the job size distribution is regularly varying with index θ > 1,

i.e., Γ(VLPS−c) > Γ(VFCFS ).
(ii) better than worst-case when the job size distribution is phase-type, i.e., γ(VLPS−c) > γ(VPS ).

4

(iii) optimal when the job size distribution is regularly varying with index θ ≥ 2, i.e., Γ(VLPS−c) =

Γ(VPS ).
(iv) optimal when the job size distribution is light-tailed and satisfies γ(B)

γF
≥

⌊
1

1−ρ

⌋
+ 1 or γ(B) =

∞, i.e., γ(VLPS−c) = γ(VFCFS ).

4Note that the sojourn time tail is actually better than worst-case for a larger class of light-tailed workloads, including
workloads satisfying γF < γ(B).



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 12

This corollary follows immediately from the discussion in Sections 3 and 4 and Lemma 14
(see Appendix C).

One important point about Design 1 is that it is ‘light-tailed centric’, by which we mean
that the c is chosen as the smallest possible c that guarantees better than worst-case performance
under regularly varying job size distributions. Thus, sojourn time tail is the lightest possible in
the light-tailed regime while still maintaining tail-robust performance.

Additionally, a practical remark about Design 1 is that, though it requires learning the ρ, it
does not actually require the exact ρ to be learned. If an upper bound on ρ is learned, then points
(i) and (ii) remain true, and only the optimality regions change. Thus, providing tail-robustness
is possible even with quite inexact estimates of the load.

Finally, it is worth discussing the subclasses of job size distributions where Design 1 provides
the optimal sojourn time tail. In the heavy-tailed regime, the sub-class includes all regularly vary-
ing distributions with finite variance. In the light-tailed regime, it is more difficult to explicitly
describe the subclass. However, it is important to note that the exponential distribution is on the
boundary. In particular, for the M/M/1 queue, γ(B)/γF = 1

1−ρ . Thus, it is impossible for LPS-c to
be designed with an optimal sojourn time tail for exponential job size distributions and a better
than worst-case sojourn time tail for all regularly varying job size distributions.
Design 2. Our second proposed design for c provides a contrast to Design 1 in that it is ‘heavy-
tailed centric’ instead of ‘light-tailed centric’. Specifically, compared to Design 1, Design 2
allows the class of heavy-tailed job size distributions where the sojourn time tail index of LPS-c
is optimal to be enlarged, while still maintaining better than worst-case performance under light-
tailed job size distributions but shrinking the class of light-tailed distributions where the sojourn
time tail index is optimal.

Corollary 2. Consider the GI/GI/1 queue. Let Θ ∈ (1, 2]. Using LPS-c with c =

⌊
d Θ

Θ−1 e−1
1−ρ

⌋
+ 1

ensures that the (logarithmic) asymptotic tail behavior of the stationary sojourn time is
(i) better than worst-case when the job size distribution is regularly varying with index θ > 1,

i.e., Γ(VLPS−c) > Γ(VFCFS ).
(ii) better than worst-case when the job size distribution is phase-type, i.e., γ(VLPS−c) > γ(VPS ).

4

(iii) optimal when the job size distribution is regularly varying with index θ ≥ Θ > 1, i.e.,
Γ(VLPS−c) = Γ(VPS ).

(iv) optimal when the job size distribution is light-tailed and satisfies γ(B)
γF
≥

⌊
d Θ

Θ−1 e−1
1−ρ

⌋
+ 1 or

γ(B) = ∞, i.e., γ(VLPS−c) = γ(VFCFS ).

This corollary follows immediately from the discussion in Sections 3 and 4 and Lemma 14
(see Appendix C).

Design 2 provides a parameter, Θ, that allows the scheduling designer to tradeoff between the
optimality guarantees in the light-tailed and heavy-tailed regimes, while at all times guaranteeing
tail-robustness. Additionally, note that like Design 1, Design 2 is also robust against inexact
estimates of ρ: as long as an upper bound on ρ is used Design 2 still guarantees properties (i)
and (ii), though the subclasses of distributions defined in (iii) and (iv) change depending on the
estimation accuracy.

6. Concluding remarks
The contributions in this paper can be viewed along two axes. Firstly, we have derived

GI/GI/1 sojourn time tail asymptotics for the LPS-c queue for both heavy-tailed and light-tailed



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 13

job size distributions. These are the first results characterizing the tail asymptotics of LPS-c,
which is an important and practical policy that has received increasing attention in recent years.
Secondly, the results about LPS-c illustrate that it is possible to design LPS-c so that it is ‘tail-
robust’, i.e., so that it provides a sojourn time tail that is robust across heavy-tailed and light-tailed
job size distributions. Prior to this work, there were no known policies that had better than worst-
case sojourn time tails under both heavy-tailed and light-tailed job size distributions. Our results
show that by choosing c = b1/(1 − ρ)c + 1, LPS-c is better than worst-case across large classes
of heavy-tailed and light-tailed job size distributions and even is optimal across large subclasses
of both heavy-tailed and light-tailed job size distributions.

There are many interesting further research questions that this work motivates along both of
the directions described above. First, with respect to the analysis of LPS-c, it would be interesting
to extend the asymptotic results presented to non-work-conserving case where the service rate is
a function of the number of jobs in service, as studied in [13]. This case is important because
computer systems have overheads that vary as a function of the multiprogramming level, usually
in a unimodal fashion, and these variations can have a significant impact in the design of c. We
believe the analysis in the current paper should extend to this case naturally, but there is not
room in this paper to describe the details. Second, it would be quite interesting to study the
performance of the suggested tail-robust designs for c with respect to other performance metrics,
e.g., the expected sojourn time. Finally, with respect to the design of tail-robust schedulers, it
should be noted that our results provide the first example of a tail-robust policy, and it would
be interesting to understand if there are alternative designs that achieve even better tradeoffs
between robustness and optimality.

Appendix A. Proofs for results in Section 3
The goal of this appendix is to prove Theorem 1, which describes the logarithmic tail asymp-

totics of VLPS−c with regularly varying job sizes. We prove Theorem 1 by proving matching
(asymptotic) lower and upper bound on the tail of DLPS−c. The upper bound is established in Ap-
pendix A.1, and the lower bound is established in Appendix A.2. Finally, we use these bounds
to complete the proof of Theorem 1 in Appendix A.3.
Appendix A.1. Upper bound

The upper bound follows immediately from comparing LPS-c with a FCFS GI/GI/c queue,
where each server has speed 1/c. Specifically, let DGI/GI/c denote the stationary delay in the
GI/GI/c system. It is easy to see that

DLPS−c ≤st DGI/GI/c. (A.1)
Therefore, we can obtain an asymptotic upper bound on the tail of DLPS−c from moment condi-

tions for DGI/GI/c, derived in [21]. The following lemma follows directly from (A.1) and Theorem
2.1 in [21].

Lemma 5. Under Assumption 1, for η > 1, E [Bη] < ∞ ⇒ E
[
Dkc(η−1)

LPS−c

]
< ∞.

Appendix A.2. Lower bound
We now prove our asymptotic lower bound on the waiting time tail in a GI/GI/1 LPS-c queue.

Theorem 3. Under Assumption 1, if Be ∈ L
5and E [Bη] < ∞ for some η > 1, then

P (DLPS−c > x) & τ1P (Be > τ2 x)k

for positive constants τ1 and τ2.

5B ∈ L ⇒ Be ∈ L, but the converse is not true; see Section 3 of [14].



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 14

To prove Theorem 3, we construct a ‘bad’ event in which a tagged job experiences a large
waiting time. Intuitively, the ‘bad’ event corresponds to k spare slots being filled by ‘large’ jobs,
which causes the queue to become overloaded and build a large backlog before the tagged job
arrives.

Assume the tagged job enters the system at time 0. Let D denote the waiting time of the
tagged job and let S −i, B−i denote respectively the arrival instant and size of the ith job to enter
the system before the tagged job. Before beginning the proof we need a bit of notation. For z > 0,
denote B(z) = B1(B ≤ z), β(z) = E

[
B(z)

]
, ρ(z) =

β(z)

α
. Since ρ > bcρc

c , we can find a large enough
y > 0 and small enough ε ∈ (0, β(y)) such that

ρ > ρ(y) =
β(y)

α
>
β(y) − ε

α + ε
>
bcρc

c
.

Further, define, for x > 0,

n(x) =


bcρc

c x + y(bcρ − 1c)

(β(y) − ε) − (α + ε) bcρcc

 := dν1x + ν2e .

Finally, define the following subsets of Nk. For m ∈ N,
N1(m) =

{
n = (n1, n2, · · · , nk) ∈ Nk : m < n1 < n2 < · · · < nk

}
,

N2(m) =
{
n = (n1, n2, · · · , nk) ∈ Nk : m ≤ n1 ≤ n2 ≤ · · · ≤ nk

}
.

Now, we are ready to build up the components of the ‘bad’ event described above. First, define

G(x) =

(
S −n(x) > −n(x)(α + ε)

)⋂(n(x)∑
i=1

B(y)
−i > n(x)(β(y) − ε)

)
:= G1(x)

⋂
G2(x),

where B(y)
−i = B−i1(B−i ≤ y). Next, for n ∈ N1(n(x)), define the event Hn(x) as follows.

Hn(x) =

(
S −ni ∈ (−ni(α + ε),−ni(α − ε)), i = 1, 2, · · · , k

)⋂
(
B−ni > x + ni(α + ε), i = 1, 2, · · · , k

)⋂
(
B−p ≤ x + p(α + ε) ∀p ∈ {n(x) + 1, n(x) + 2, · · · } \ {n1, n2, · · · , nk}

)
:= Hn,1(x)

⋂
Hn,2(x)

⋂
Hn,3(x).

Note that Hn(x) corresponds to k ‘large’ jobs entering the system before the tagged job, with
indices −ni, i = 1, 2, · · · , k. The job with index −ni arrives in the interval (−ni(α+ ε),−ni(α− ε))
and has size that exceeds x + ni(α + ε). This implies that this job must remain in the system till
time x. Hn(x) also implies that no other ‘large’ arrivals occur; this means for n1, n2 ∈ N1(n(x)),
the events Hn1 and Hn2 are mutually exclusive.

Finally, our ‘bad’ event is defined as follows: I(x) = G(x)
⋂(⋃

n∈N1(n(x)) Hn(x)
)
. The follow-

ing lemma shows that the ‘bad’ event does indeed cause the tagged job to experience a large
delay.

Lemma 6. I(x)⇒ D > x.

Proof. Since I(x)⇒ Hn(x) for some n ∈ N1(n(x)), I(x) implies k large jobs with indices strictly
less than −n(x) remain in the system till time x. This means the n(x) arrivals before the tagged
job can receive service at a rate no greater than bcρc

c till time x. This means that at time x, the



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 15

work remaining in the system corresponding to the n(x) arrivals before the tagged job having an
original service requirement bounded above by y strictly exceeds

n(x)(β(y) − ε) −
bcρc

c
(x + n(x)(α + ε)) = n(x)

(
(β(y) − ε) −

bcρc
c

(α + ε)
)
− x
bcρc

c
≥ y(bcρc − 1).

This in turn implies the tagged job can receive no service until time x.

All that remains is to bound P (I(x)), and thus P (D > x):

P (D > x) ≥ P (I(x)) = P

G(x)
⋂ ⋃

n∈N1(n(x))

Hn(x)




= P

 ⋃
n∈N1(n(x))

(
G(x)

⋂
Hn(x)

) =
∑

n∈N1(n(x))

P
(
G(x)

⋂
Hn(x)

)
=

∑
n∈N1(n(x))

P
(
G1(x) ∩G2(x) ∩ Hn,1(x)

)
P

(
Hn,2(x)

)
P

(
Hn,3(x)

)
≥

∑
n∈N1(n(x))

P
(
G1(x) ∩G2(x) ∩ Hn,1(x)

)
P

(
Hn,2(x)

)
P

(
B−p ≤ x + p(α + ε) ∀ p ∈ N

)
Using the weak law of large numbers, we see that the the probability of the events G1(x),G2(x),

and Hn,1(x) approaches 1 as x ↑ ∞. Therefore, fixing δ ∈ (0, 1), for large enough x,

P
(
G1(x) ∩G2(x) ∩ Hn,1(x)

)
≥ 1 − δ.

Also, invoking Lemma 7 (stated and proved below), P
(
B−p ≤ x + p(α + ε) ∀ p ∈ N

)
≥ α > 0 for

large enough x. Therefore, for large enough x,

P (D > x) ≥ α(1 − δ)
∑

n∈N1(n(x))

k∏
i=1

P (B > x + ni(α + ε)) . (A.2)

Define the bijection ξ : N1(n(x))→ N2(n(x) + k) as follows.

ξ((n1, n2, · · · , nk)) = (n1 + k − 1, n2 + k − 2, · · · , nk).

From (A.2),

P(D > x) ≥ α(1 − δ)
∑

n∈N2(n(x)+k)

k∏
i=1

P (B > x + ni(α + ε))

≥
α(1 − δ)

k!

∑
n∈Nk :ni≥n(x)+k

k∏
i=1

P (B > x + ni(α + ε)) =
α(1 − δ)

k!

 ∑
n1≥n(x)+k

P (B > x + n1(α + ε))

k

≥
α(1 − δ)βk

(α + ε)kk!
(P (Be > x + (α + ε)(n(x) + k)))k

The last inequality above uses the fact that for α̃, x > 0, α̃
β

∑∞
i=0 P (B > x + iα̃) ≥ P (Be > x) .

Finally, since Be ∈ L, it is easy to see that
P (Be > x + (α + ε)(n(x) + k)) ∼ P (Be > (1 + ν1(α + ε))x) .

⇒ P (D > x) & α(1−δ)βk

(α+ε)kk! (P (Be > (1 + ν1(α + ε))x))k .

This completes the proof.



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 16

Lemma 7. Assume B is a non-negative random variable satisfying E
[
B1+δ

]
< ∞ for some δ > 0.

Then, for b̃ > 0 satisfying FB(b̃) > 0 and ã > 0,
∞∏

i=1

FB(b̃ + iã) = α(b̃, ã) > 0.

Proof. Define B̃ = max{ B−b̃
ã , 0}. Clearly, E

[
B̃1+δ

]
< ∞ and for x > 0, FB̃(x) = FB(b̃ + xã).

Pick δ1 ∈ (0, δ), ε > 0. Since E
[
B̃1+δ

]
< ∞, for large enough x,

FB̃(x) ≥ 1 −
1

x1+δ1
≥ exp

{
−

(1 + ε)
x1+δ1

}
The last inequality holds since, for small enough y > 0, 1−y ≥ e−(1+ε)y. Let us say this inequality
holds for x ≥ x0.

∞∏
i=1

FB(b̃ + iã) =

∞∏
i=1

FB̃(i) ≥
∏

i<dx0e

FB̃(i)exp

−(1 + ε)
∞∑

i=dx0e

1
i1+δ1

 > 0.

Appendix A.3. Proof of Theorem 1
We can now complete the proof of Theorem 1 by combining the upper and lower bounds

derived in the preceding sections. Assume that B ∈ RV(θ), θ > 1. Fix δ ∈ (0, 1). Invoking
Theorem 3, for large enough x,

P (DLPS−c > x) ≥ (1 − δ)τ1P (Be > τ2x)k

⇒ lim sup
x→∞

−
logP (DLPS−c > x)

log(x)
≤ k lim

x→∞
−

logP (Be > τ2x)
log(x)

= k(θ − 1). (A.3)

For η ∈ (1, θ), E [Bη] < ∞. Invoking Lemma 5, we conclude that E
[
Dk(η−1)

LPS−c

]
< ∞. Therefore,

for large enough x,

P (DLPS−c > x) ≤ x−k(η−1) ⇒ lim inf
x→∞

−
logP (DLPS−c > x)

log(x)
≥ k(η − 1).

Letting η ↑ θ, we get

lim inf
x→∞

−
logP (DLPS−c > x)

log(x)
≥ k(θ − 1). (A.4)

Finally, we complete the proof of Theorem 1 by noting that (i) (1) follows from (A.3) and (A.4),
and (ii) (2) follows from (1) easily since

DLPS−c + B ≤st VLPS−c ≤st DLPS−c + Bc,

where DLPS−c and B are independent. We omit the details due to space limitations.

Appendix B. Proofs for results in Section 4
In this appendix, we prove the results stated in Section 3. The first three sections are devoted

to proving Theorem 2, which describes the decay rate VLPS−c with light-tailed job sizes. The
proof for the case γ(B) ∈ (0,∞) is completed by establishing matching (asymptotic) lower and
upper bounds on the tail of γ(VLPS−c); this is done in Appendix B.1 and Appendix B.2 respec-
tively. The proof for the case γ(B) = ∞ is given in Appendix B.3. In Appendix B.4, we prove
Lemma 3, which establishes the monotonicity of γ(VLPS−c) with respect to c. Finally, we give the
proof of Lemma 4 (which describes properties of γ(VLPS−c)) in Appendix B.5.



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 17

Appendix B.1. Proof of Theorem 2: Lower bound for the case γ(B) ∈ (0,∞)
In this section, we prove the following (asymptotic) lower bound on the tail of VLPS−c.

Lemma 8. Assuming γ(B) ∈ (0,∞), lim infx→∞
1
x logP (VLPS−c > x) ≥ −mina∈[0,1] fc(a).

To begin the proof, note that since fc(·) is continuous over [0, 1], it suffices to prove that, for
a ∈ (0, 1), lim infx→∞

1
x logP (VLPS−c > x) ≥ − fc(a). Fix a ∈ (0, 1). Intuitively, to prove the above

statement, we construct a ‘bad’ event where the waiting time of a ‘tagged’ job exceeds ax and its
residence time exceeds (1 − a)x. Recall that we assume the tagged job has size B0 and enters the
(stationary) system at time 0. We denote the sojourn time of the tagged job by V.

We use a truncation-based argument. For z > 0, define B(z) = B1(B ≤ z). Pick y > 0 large
enough so that P

(
B(y) > A

)
> 0. Consider a ‘truncated’ system, in which (except for the tagged

job,) only jobs with size less than or equal to y are allowed to enter the system. Denote the total
backlog in this ‘truncated’ system just before the arrival of the tagged job by W (y). The total work
entering the ‘truncated’ system in the time interval (0, u] is denoted by A(y)(u), i.e.,

A(y)(u) =

N(u)∑
i=1

Bi1(Bi ≤ y).

For large x, small ε > 0, consider the following event.

I(x):=
(
W (y) > ax + (c − 1)y

)
∩ (A1 ≤ α) ∩

(
A(y)(u) > (1 − a)(1 −

1
c

)(1 + ε)(u − A1) ∀ u ∈ (A1, x)
)

:=I1(x) ∩ I2 ∩ I3(x).
At the instant the tagged job begins service, the maximum work remaining in the system cor-

responding to arrivals before time 0 is (c − 1)y. Therefore, the event W (y) > ax + (c − 1)y (and
therefore event I(x)) implies the tagged job and subsequent arrivals wait for at least time ax be-
fore beginning service. Moreover, at any time instant u ∈ (ax, x), under I(x), the remaining work
in the system corresponding to arrivals after time 0 exceeds

(1 − a)
(

c − 1
c

)
(1 + ε)(u − α) − (u − ax)

(
c − 1

c

)
>(1 − a)

(
c − 1

c

)
(1 + ε)(u − α) − (u − au)

(
c − 1

c

)
= ε(1 − a)

(
c − 1

c

)
u − α(1 − a)

(
c − 1

c

)
(1 + ε)

>ε(1 − a)
(

c − 1
c

)
ax − α(1 − a)

(
c − 1

c

)
(1 + ε) := ν1x − ν2.

Therefore, the number of jobs that arrived after time 0 and are still in the system at time u
exceeds (ν1 x−ν2)

y > c − 1 for large enough x. Therefore, under event I(x), the tagged job gets no
service until time ax and gets (at most) service at rate 1/c in the interval (ax, x). Therefore,(

B0 >
(1 − a)x

c

)
∩ I(x)⇒ V (y) > x,

where V (y) denotes the sojourn time of the tagged job in the ‘truncated’ system. Since V (y) ≤st V,
for large enough x,

P (V > x) ≥ P
(
V (y) > x

)
≥ P

(
B0 >

(1 − a)x
c

∩ I(x)
)

= P
(
B0 >

(1 − a)x
c

)
P (I1(x))P (I2)P (I3(x)|I2) .



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 18

At this point, we note that P (I3(x)|I2) ≥ P
(
Z(y)

(1−a)(1− 1
c )(1+ε)

> x
)
, where Z(y)

(1−a)(1− 1
c )(1+ε)

de-

notes a busy period in a GI/GI/1 queue, with interarrival times A, job sizes B(y) and server speed

(1 − a)
(
1 − 1

c

)
(1 + ε). Define Ψ(y)(s) := −Φ−1

A

(
1

ΦB(y) (s)

)
. Noting that

lim
x→∞

logP
(
Z(y)

(1−a)(1− 1
c )(1+ε)

> x
)

x
= − sup

s≥0

[
s(1 −

1
c

)(1 − a)(1 + ε) − Ψ(y)(s)
]
,

we have

lim inf
x→∞

1
x

logP (V > x) ≥ −

γ(y)
F

a
+

(1 − a)γ(B)
c

+ sup
s≥0

[
s(1 −

1
c

)(1 − a)(1 + ε) − Ψ(y)(s)
] ,

where γ(y)
F := sup{θ : Ψ(y)(θ) − θ ≤ 0}. The proof is completed by letting y ↑ ∞, ε ↓ 0. It can be

shown that
lim
y↑∞

γ
(y)
F = γF , (B.1)

lim
ε↓0

lim
y↑∞

sup
s≥0

[
s(1 −

1
c

)(1 − a)(1 + ε) − Ψ(y)(s)
]

= sup
s≥0

[
s(1 −

1
c

)(1 − a) − Ψ(s)
]
. (B.2)

(B.1) and (B.2) can be proved by mimicking the arguments in the proofs of Propositions 2.1 and
2.2 respectively in [17]. We omit these proofs due to space constraints.
Appendix B.2. Proof of Theorem 2: Upper bound for the case γ(B) ∈ (0,∞)

The following lemma gives us a matching asymptotic upper bound on the tail of VLPS−c.

Lemma 9. Assuming γ(B) ∈ (0,∞), lim supx→∞
1
x logP (VLPS−c > x) ≤ −mina∈[0,1] fc(a).

To begin the proof, denote the sojourn time of the tagged job by V. Then, we have the follow-
ing upper bound for P (V > x) .

P (V > x) ≤ P (W + A(x) + B > x,W + Bc > x) = P (W + min{A(x) + B, Bc} > x) .
Since W is independent of min{A(x) + B, Bc}, and P (W > x) ≤ e−γF x (this was proved by King-

man [23]), we can construct a random variable W̃ independent of min{A(x) + B, Bc} satisfying (i)
W ≤a.s. W̃, (ii) W̃ ∼ Exp(γF). Pick ε ∈ (0, 1). For x > 0,

P (V > x) ≤ P
(
W̃ + min{A(x) + B, Bc} > x

)
≤ P

(
W̃ > (1 − ε)x

)
+

∫ (1−ε)x

y=0
P (min{Bc, A(x) + B} > x − y) dFW̃ (y)

≤ P
(
W̃ > (1 − ε)x

)
+ xγF

∫ 1−ε

a=0
P (min{Bc, A(x) + B} > (1 − a)x) e−aγF xda. (B.3)

To continue, we apply the following Lemma, which we prove later.

Lemma 10. Assume that γ(B) ∈ (0,∞). Given ε ∈ (0, 1), there exists x0 > 0 and a function
η(x) ∈ o(1) such that for all b ∈ [ε, 1], x ≥ x0,

1
x

logP (min{A(x) + B, Bc} > bx) ≤ −
{

bγ(B)
c

+ sup
s≥0

[
bs

(
1 −

1
c

)
− Ψ(s)

]
+ η(x)

}
.

Invoking Lemma 10, it follows that there exists x0 > 0 and a function η(x) ∈ o(1) such that

P (min{Bc, A(x) + B} > (1 − a)x) ≤ e−x
{

(1−a)γ(B)
c +sups≥0[(1−a)s(1− 1

c )−Ψ(s)]+η(x)
}
,



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 19

for all a ∈ [0, 1 − ε], x > x0. Substituting the above bound in (B.3), we conclude that for large
enough x,

P (V > x) ≤ P
(
W̃ > (1 − ε)x

)
+ xγFe−xη(x)

∫ 1−ε

a=0
e−x fc(a)da

≤ e−γF (1−ε)x + xγFe−xη(x)e−x f ∗c ,

where f ∗c = mina∈[0,1] fc(a). This implies

lim sup
x→∞

1
x

logP (V > x) ≤ −min{ f ∗c , γF(1 − ε)}.

Letting ε ↓ 0 and noting that fc(1) = γF , we obtain the desired result. To complete the proof, we
need to prove Lemma 10. The proof of Lemma 10 depends on the following lemmas.

Lemma 11. Assume that γ(B) ∈ (0,∞). For s ≥ 0 satisfying E
[
esB

]
< ∞,

lim
x→∞

1
x

logE
[
es(B−x)|B > x

]
= 0.

Proof. Pick s ≥ 0 satisfying E
[
esB

]
< ∞. Clearly, s ≤ γ(B).

E
[
esB

]
≥ P (B > x)E

[
esB|B > x

]
= e−x(γ(B)−s+o(1))E

[
es(B−x)|B > x

]
.

⇒
1
x

logE
[
esB

]
≥ −(γ(B) − s + o(1)) +

1
x

logE
[
es(B−x)|B > x

]
.

Taking limits as x → ∞, we obtain lim supx→∞
1
x logE

[
es(B−x)|B > x

]
≤ γ(B) − s. Pick s̃ ≥ s

satisfying E
[
es̃B

]
< ∞.

lim sup
x→∞

1
x

logE
[
es(B−x)|B > x

]
≤ lim sup

x→∞

1
x

logE
[
es̃(B−x)|B > x

]
≤ γ(B) − s̃.

The proof is completed by letting s̃ ↑ γ(B).

Lemma 12. Suppose that function ϕ(x) satisfies lim supx→∞ ϕ(x) = ω ∈ R. Given b0 > 0, there
exists x0 > 0 and a function η(x) ∈ o(1) such that for all b ≥ b0, x ≥ x0, ϕ(bx) ≤ ω + η(x).

This lemma is easy to prove, so the proof is omitted. We are now ready to prove Lemma 10.

Proof of Lemma 10. Recall that for r ≥ 0, ŝ(r) := arg maxs≥0 [rs − Ψ(s)] . Since ŝ(r) is increasing
in r, and b ≤ 1, we may restate the inequality stated in the lemma as follows.

1
x

logP (min{A(x) + B, Bc} > bx) ≤ −
{

bγ(B)
c

+ sup
s∈[0,ŝ(1)]

[
bs

(
1 −

1
c

)
− Ψ(s)

]
+ η(x)

}
.

We now prove that there exists x0 > 0 and a function η(x) ∈ o(1) such that for all b ∈ [ε, 1],
x ≥ x0, the above inequality holds.

logP (min{A(x) + B, Bc} > bx) = logP
(
B >

bx
c
, A(x) + B > bx

)
= logP

(
B >

bx
c

)
+ logP

(
A(x) + B > bx|B >

bx
c

)
.

For s ≥ 0, we can use the Chernoff bound to bound the second term in the expression above.

logP (min{A(x) + B, Bc} > bx) ≤ logP
(
B >

bx
c

)
+ logE

[
es(A(x)+B−bx)|B >

bx
c

]
= logP

(
B >

bx
c

)
+ logE

[
es(B− bx

c )|B >
bx
c

]
+ logE

[
esA(x)

]
− sbx

(
1 −

1
c

)
. (B.4)



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 20

We now use Lemma 12 to bound the first two terms of the expression above.
• Since limx→∞

logP(B>x)
x = −γ(B), there exists x1 > 0, and η1(x) ∈ o(1) such that for all b ≥ ε,

x ≥ x1,

logP
(
B >

bx
c

)
≤

bx
c

(−γ(B) + η1(x)) . (B.5)

• Since E
[
eŝ(1)B

]
< ∞, we know from Lemma 11 that limx→∞

1
x logE

[
eŝ(1)(B−x)|B > x

]
= 0.

Therefore, there exists x2 > 0, and η2(x) ∈ o(1) such that for all b ≥ ε, x ≥ x2,

logE
[
eŝ(1)(B− bx

c )|B >
bx
c

]
≤

bx
c
η2(x).

This in turn implies that for all s ∈ [0, ŝ(1)], b ≥ ε, x ≥ x2,

logE
[
es(B− bx

c )|B >
bx
c

]
≤

bx
c
η2(x). (B.6)

Finally, invoking Lemma 1, we note that
logE

[
esA(x)

]
= x(Ψ(x) + η3(x)), (B.7)

where η3(x) ∈ o(1). Substituting (B.5), (B.6) and (B.7) into (B.4), we obtain that for s ∈ [0, ŝ(1)],
b ≥ ε, x ≥ x0,

logP (min{A(x) + B, Bc} > bx)
x

≤ −

{
bγ(B)

c
+ bs

(
1 −

1
c

)
− Ψ(s) + η(x)

}
,

where x0 = max{x1, x2} and η(x) = −
bη1(x)

c −
bη2(x)

c − η3(x). Tightening the bound with respect to
s, we conclude that

logP (min{A(x) + B, Bc} > bx)
x

≤ −

{
bγ(B)

c
+ sup

s∈[0,ŝ(1)]

[
bs

(
1 −

1
c

)
− Ψ(s)

]
+ η(x)

}
for all b ≥ ε, x ≥ x0. This completes the proof.

This completes the proof of the asymptotic upper bound.
Appendix B.3. Proof of Theorem 2: The case of γ(B) = ∞

We now characterize the sojourn time decay rate under LPS-c for the case γ(B) = ∞.

Lemma 13. If γ(B) = ∞, then γ(VLPS−c) = γ(VFCFS ).

We prove the lemma by constructing matching upper and lower asymptotic bounds on the
sojourn time tail. Let V denote the sojourn time of our tagged job. We start with the upper
bound. Since V ≤st W + B0c, where W and B0 are independent,

lim sup
x→∞

logP (V > x)
x

≤ −γ(W + B0c) = −γ(W) = −γF .

The last step above is based on the fact that if X and Y are independent random variables with
decay rates γ(X) and γ(Y) respectively, then γ(X + Y) = min{γ(X), γ(Y)}. To obtain the lower
bound, we use the truncation argument used in Appendix B.1. Reusing the notation developed
there, the event W (y) > x + y(c − 1)⇒ V (y) > x. Therefore,

P (V > x) ≥ P
(
V (y) > x

)
≥ P

(
W (y) > x + y(c − 1)

)
⇒ lim inf

x→∞

logP (V > x)
x

≥ −γ
(y)
F ⇒ lim inf

x→∞

logP (V > x)
x

≥ −γF .

The last step uses the fact that limy→∞ γ
(y)
F = γF .



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 21

Appendix B.4. Proof of Lemma 3
Proof. To prove monotonicity, we prove that for all a ∈ [0, 1), fc(a) is monotone decreasing in
c. To do this, we replace 1

c by a continuous parameter ν ∈ (0, 1] in the definition of fc(a) and
observe that ∂ fc(a)

∂ν
≥ 0. Indeed,

∂

∂ν

[
aγF + (1 − a)νγ(B) + g ((1 − a)(1 − ν))

]
= (1 − a) (γ(B) − ŝ ((1 − a)(1 − ν))) ≥ 0.

Since f ∗c is monotonically decreasing in c, the limit f ∗ := limc→∞ f ∗c exists. f ∗c ≥ γL (since
LPC-c is work conserving); this implies f ∗ ≥ γL. To prove the reverse inequality, we note that
f ∗c ≤ fc(0) and that limc→∞ fc(0) = γL. This implies that f ∗c ≤ γL, completing the proof.

Appendix B.5. Proof of Lemma 4
Consider the expression for the LPS decay rate given by (5). Defining

s∗c = arg maxs∈[0,κc]

[
s
(
1 − 1

c

)
− Ψ(s)

]
, we see that s∗c = min{κc, ŝ

(
1 − 1

c

)
}. It is easy to see that s∗c

is monotonically increasing in c. Using KKT conditions, we get a∗c = 1 − Ψ′(s∗c)
1− 1

c
, which implies

that a∗c is monotonically decreasing with respect to c.
If γF < γ(B), then 0 < ŝ(1) < γF < γ(B). Define ĉ := γ(B)−ŝ(1)

γF−ŝ(1) . Since ŝ(1) ≥ ŝ
(
1 − 1

c

)
, it is

easy to show that

c > ĉ⇒ κc > ŝ(1)⇒ κc > ŝ
(
1 −

1
c

)
⇒ s∗c = ŝ

(
1 −

1
c

)
.

Since Ψ′
(
ŝ
(
1 − 1

c

))
= 1− 1

c ,we conclude that for c > ĉ, a∗c = 0 and γ(VLPS−c) = fc(0).Moreover,
from the proof of Lemma 3, it follows that if γ(B) > ŝ(1), then fc(0) is strictly monotonically
decreasing with respect to c. This, along with limc→∞ fc(0) = γL implies fc(0) > γL for all c.

Appendix C. Proof of Corollaries 1 and 2 in Section 5
This section states and proves Lemma 14, which is used in the proofs of Corollaries 1 and 2

in Section 5. To state Lemma 14, we need the following notation. For i > 1, define c̃(i, ρ) as the
smallest multiprogramming level c such that we have at least i ‘spare slots’ under LPS-c under
regularly varying job sizes, i.e., c̃(i, ρ) := min{c ∈ N | bcρc < cρ, kc ≥ i}.

Lemma 14.
c̃(i, ρ) =

⌊
i − 1
1 − ρ

⌋
+ 1. (C.1)

Proof. Assuming bcρc < cρ, let us first show that

kc ≥ i ⇐⇒ c >
i − 1
1 − ρ

. (C.2)

First, we see that bcρc = bc − c(1 − ρ)c = c − dc(1 − ρ)e . This means kc = dc(1 − ρ)e , which
implies (C.2). From (C.2), it is clear that

c̃(i, ρ) = min{c ∈ N | c >
i − 1
1 − ρ

, cρ is not an integer};

it is easy to verify that this condition implies (C.1).



Nair, Wierman and Zwart / Performance Evaluation 00 (2010) 1–22 22

References
[1] L. E. Schrage, A proof of the optimality of the shortest remaining processing time discipline., Operations Research

16.
[2] K. Ramanan, A. L. Stolyar, Largest weighted delay first scheduling: large deviations and optimality, Annals of

Applied Probability 11 (2001) 1–48.
[3] M. Nuyens, A. Wierman, B. Zwart, Preventing large sojourn times using SMART scheduling, Operations Research

56 (1) (2008) 88–101.
[4] O. Boxma, B. Zwart, Tails in scheduling, Performance Evaluation Review 34 (4) (2007) 13–20.
[5] A. Wierman, B. Zwart, Is tail-optimal scheduling possible?, Under submission.
[6] B. Avi-Itzhak, S. Halfin, Expected response times in a non-symmetric time sharing queue with a limited number of

service positions., in: Proceedings of the 12th International Teletraffic Congress., 1988.
[7] F. Zhang, L. Lipsky, Modelling restricted processor sharing., in: Proc. of the 2006 Int’l Conf. on Parallel and

Distributed Processing Techniques and Applications (PDPTA06), 2006.
[8] F. Zhang, L. Lipsky, An analytical model for computer systems with non-exponential service times and mem-

ory thrashing overhead., in: Proc. of the 2007 Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA07), 2007.

[9] M. Nuyens, W. van der Weij, Monotonicity in the limited processor-sharing queue, Stochastic Models 25 (3) (2009)
408–419.

[10] J. Zhang, J. Dai, B. Zwart, Diffusion limits of limited processor sharing queues., Tech. rep., Georgia Institute of
Technology (2007).
URL http://www.isye.gatech.edu/ jzhang/research/lps-ht.pdf

[11] J. Zhang, J. Dai, B. Zwart, Law of large number limits of limited processor sharing queues., Tech. rep., Georgia
Institute of Technology (2007).
URL http://www.isye.gatech.edu/ jzhang/research/ fl-lps.pdf

[12] J. Zhang, B. Zwart, Steady state approximations of limited processor sharing queues in heavy traffic, Queueing
Syst. Theory Appl. 60 (3-4).

[13] V. Gupta, M. Harchol-Balter, Self-adaptive admission control policies for resource-sharing systems, in: SIGMET-
RICS ’09: Proceedings of the eleventh international joint conference on Measurement and modeling of computer
systems, 2009.

[14] K. Sigman, Appendix: A primer on heavy-tailed distributions, Queueing Syst. Theory Appl. 33 (1-3) (1999) 261–
275.

[15] V. Anantharam, Scheduling strategies and long-range dependence, Queueing Systems Theory Appl. 33 (1-3) (1999)
73–89, Queues with heavy-tailed distributions.

[16] M. Mandjes, B. Zwart, Large deviations of sojourn times in processor sharing queues, Queueing Syst. Theory Appl.
52 (4) (2006) 237–250.

[17] M. Nuyens, B. Zwart, A large-deviations analysis of the GI/GI/1 SRPT queue, Queueing Syst. Theory Appl. 54 (2)
(2006) 85–97.

[18] D. P. Bertsekas, Nonlinear Programming, 2nd Edition, Athena Scientific, 1999.
[19] R. T. Rockafellar, Convex Analysis (Princeton Landmarks in Mathematics and Physics), Princeton University Press,

1996.
[20] O. Boxma, D. Denisov, Sojourn time tails in the single server queue with heavy-tailed service times., Tech. rep.,

EURANDOM (2009).
URL http://www.eurandom.nl/reports/2009/057-report.pdf

[21] A. Scheller-Wolf, R. Vesilo, Structural interpretation and derivation of necessary and sufficient conditions for delay
moments in FIFO multiserver queues, Queueing Syst. Theory Appl. 54 (3) (2006) 221–232.

[22] J. S. Sadowsky, The probability of large queue lengths and waiting times in a heterogeneous multiserver queue II:
Positive recurrence and logarithmic limits, Advances in Applied Probability 27 (2) (1995) 567–583.

[23] J. F. C. Kingman, A martingale inequality in the theory of queues, Mathematical Proceedings of the Cambridge
Philosophical Society 60 (02) (1964) 359–361.


