
Manufacturing Consent∗
(Invited Paper)

Vivek S Borkar1, Jayakrishnan Nair2, and Nalli Sanketh3

1School of Technology and Computer Engineering, Tata Institute of Fundamental Research, India
2Department of Electrical Engineering, California Institute of Technology, USA

3Department of Information Technology, National Institute of Technology Karnataka, India

Abstract—A scheme for consensus formation is considered
wherein the value of a certain variable associated with the nodes
of a network is fixed a priori for a prescribed set of K nodes,
and allowed to propagate throughout the network through an
averaging process that mimics a gossip algorithm. The objective
is to find the best choice of these K nodes that will achieve the
fastest convergence to consensus. This objective is captured by
the Perron-Frobenius eigenvalue of the resultant sub-stochastic
matrix, which then is the quantity one seeks to minimize. We
propose an algorithm for this optimization problem, as well as a
greedy scheme with some performance guarantees for a variant
of the problem that seeks to minimize a simpler objective. Some
other related formulations are also considered.

I. INTRODUCTION

‘Gossip algorithms’, which lead to a consensus value of an
estimated quantity through local averaging over neighboring
nodes of a graph, have been a topic of extensive research
in recent years because of applications to sensor networks
and social networks. See [1] for an excellent account of
the state of the art. An important issue here is the rate of
convergence, which is dictated by the second largest (in
modulus) eigenvalue of the stochastic matrix with respect
to which the averaging is performed. This has lead to some
natural optimization issues concerning the minimization of
this quantity, an account of which can be found in [2]. In
this article we consider a related problem that has an element
of control, leading to what one may call ‘controlled gossip’.
The idea is to partly or fully influence the opinion / estimate
at a few, say K nodes, so that the consensus yields a targeted
value. This corresponds to a spread of intended information
across a network. The problem then is to find the optimal
choice of these K nodes.

As we argue below, this amounts to the minimization of
the top, or Perron-Frobenius eigenvalue of a sub-stochastic
matrix obtainable from a stochastic matrix by deleting K
rows and columns of the latter. The optimization is then
over the possible choices of these rows and columns. This
is a hard discrete optimization problem. We embed it into
an optimization problem over continuous-valued variables
and propose a projected gradient scheme for the same. This
involves deriving an explicit expression for this gradient and
combining the associated gradient descent with the ‘successive

∗with apologies to Noam Chomsky

projections’ algorithm of Boyle, Dykstra and Han [3], [4]. As
the objective function is not necessarily convex, we can expect
convergence only to a local minimum. Hence we consider a
greedy algorithm for a related objective function which, unlike
the original, is supermodular. The supermodularity property
allows us to provide (loose) performance guarantees for a
greedy heuristic algorithm. We also discuss some variants of
the basic theme: first the problem of choosing the above K
nodes in presence of an adversary, then the problem of optimal
placement of new edges, and finally a dynamic version of the
above optimization problem, where the K nodes need to be
prodded again and again over time to prevent ‘forgetting’.

II. THE OPTIMIZATION PROBLEM

Consider an irreducible directed graph G with node set
S = {1, 2, · · · , N} and edge set E , equipped with a com-
patible stochastic matrix P = [[p(i, j)]]1≤i,j≤N . The ‘net-
work’ represented by G computes recursively a vector x̂n =
[x̂n(1), · · · , x̂n(N)]T according to the ‘gossip’ scheme

x̂n+1 = Px̂n, n ≥ 0.

Consider a scenario where K out of N nodes comprising a
subset A ⊂ S fix their value of the corresponding components
of x̂n for good, at a fixed value c. Let PA denote the principal
submatrix of P corresponding to nodes in Ac and P̄A the
submatrix with row indices corresponding to Ac and column
indices corresponding to A. Let I and 1 denote respectively
the identity matrix and the vector of all 1’s (with appropriate
dimension depending on the context). Then the subvector xn
of x̂n corresponding to nodes in Ac evolves according to

xn+1 = PAxn + cP̄A1, n ≥ 0. (1)

As PA is substochastic with spectral radius < 1, this will
converge to x∗ := c(I −PA)−1P̄A1. This has the well known
stochastic representation

x∗(i) = E[h(xτ)|X0 = i], i ∈ Ac, (2)

for a Markov chain {Xn} with transition matrix P , τ :=
min{n ≥ 0 : Xn ∈ A}, and h(·) ≡ c on A. Thus x∗ = c1,
i.e., there is asymptotic consensus on the value c as desired.
The rate of convergence to the consensus will be dictated by
the Perron-Frobenius eigenvalue λ(PA) of PA, which then is

the objective function we seek to minimize. Formally, we are
interested in the following optimization problem.

min
A⊂S,|A|=K

λ(PA) (3)

The minimizing set A will therefore correspond to the K most
important nodes to influence from the point of view of rapid
opinion dissemination. This is a distinct notion of rating nodes
as compared to rating schemes such as Google’s PageRank
[5] or the ‘hub and authority’ model of Kleinberg [6], or
the various centrality measures proposed in social network
research [7].

Our discrete optimization problem (3) appears hard to solve
exactly. In the following section, we consider a continuous
relaxation of (3), which is more tractable.

III. CONTINUOUS RELAXATION

We now consider a relaxation of (3) to an optimization
problem over reals as follows. Let P ′(θ) := PΘ where Θ
is a diagonal matrix with entries θ1, · · · , θN ∈ [0, 1] on its
diagonal. Let θ := [θ1, · · · , θN]T . We impose the constraint∑
i θi = N −K. Our relaxation of (3) is the following.

min
θ∈C1∩C2

λ(θ), (4)

where λ(θ) = λ(P ′(θ)) denotes the the Perron-Frobenius
eigenvalue of P ′(θ), C1 := [0, 1]N , and

C2 := {x = [x1, · · · , xN]T ∈ RN :
∑
i

xi = N −K}.

Note that a {0, 1}-valued θ will correspond to exactly K ones
and N−K zeros, thereby recovering our original formulation.
Let π, V ∈ RN denote respectively the Perron-Frobenius
left- and right- eigenvectors of P ′(θ), i.e., the eigenvectors
corresponding to the eigenvalue λ(θ), where we suppress the
θ-dependence of π, V for simplicity. That is, for j ∈ S,

λ(θ)V (j) =
∑
k

p(j, k)θkV (k), (5)

λ(θ)π(j) =
∑
k

p(k, j)θjπ(k). (6)

Differentiating (5) w.r.t. θi, 1 ≤ i ≤ N , we have

∂λ(θ)

∂θi
V (j)+λ(θ)

∂V (j)

∂θi
= p(j, i)V (i)+

∑
k

p(j, k)θk
∂V (k)

∂θi
.

Multiplying by the above equation by π(j), summing over j,
and using (6), we get

∂λ(θ)

∂θi
=
V (i)πT p(·, i)

πTV
,

which gives an explicit expression for the gradient of λ(θ)
w.r.t. θ. This suggests the following projected gradient scheme.
Let η > 0 denote a prescribed step size. Then

θn+1 = Γ

(
θn − η

diag(V)PTπ)

πTV

)
, (7)

where Γ(·) denotes the projection operator onto the set C1 ∩
C2, i.e.,

Γ(x) = arg min
y∈C1∩C2

‖x− y‖.

The following ‘successive projections’ algorithm due to Boyle,
Dykstra and Han [3], [4] can be used to compute Γ(x).

• Set N -dimensional vectors y01 , y
0
2 , x

0
1 equal to the zero

vector and x02 = x.
• At kth iteration (k ≥ 1), do:

z = xk−12 + yk−11 .

For 1 ≤ i ≤ N,
0 ≤ z(i) ≤ 1 =⇒ xk1(i) = z(i),

z(i) > 1 =⇒ xk1(i) = 1,

z(i) < 0 =⇒ xk1(i) = 0.

yk1 = z − xk1 .
w = xk1 + yk−12 .

xk2 = w +

N −K
N

− 1

N

∑
j

w(j)

 1

yk2 = w − xk2 .

It can be proved that Γ(x) = limk→∞ xk2 [3], [4]. An
alternative algorithm for computing Γ(x) that exploits the
structure of the sets C1 and C2 can be found in [8].

The objective function of (4) is not in general convex and
hence we can only expect the gradient projection scheme (7)
to converge to a local minimum. This suggests resorting to
multi-start, simulated annealing, etc. to improve performance.
From a candidate solution θ∗ to (4), we may obtain a candidate
solution to (3) by picking the nodes corresponding to the
smallest K components of θ∗.

IV. A GREEDY ALGORITHM

Let {Xn} be a Markov chain with transition matrix P . The
logarithm of the Perron-Frobenius eigenvalue λ of PA has the
interpretation of being the asymptotic rate of exit from Ac,
i.e., the ‘rate of exponential decay’ of the tail probability of
τ :

log(λ(PA)) = lim
t↑∞

logP (τ > t)

t

for τ := min{n ≥ 0 : Xn ∈ A}. This suggests looking at a
related, more amenable performance measure, the mean exit
time E[τ]. Assuming uniform initial distribution over Ac, we
have the cost criterion

E[τ] =
1

N −K
1T (I − PA)−11 =

1

N −K
1T
(∞∑
n=0

PA
n

)
1.

We now state our optimization objective formally. For A ⊆
S, define f(A) := 1T (

∑∞
n=0 PA

n) 1. Note that f(∅) = ∞,
and f(A) < ∞ for all non-empty A ⊆ S. We seek to solve
the following optimization problem:

min
A⊆S,|A|=K

f(A) (8)

Another interpretation of the problem (8) is obtained as
follows. In (1), fixing x0 = 0 and c > 0, xn evolves as
(c1− xn) = cPA

n1, implying ‖c1− xn‖1 = c1TPAn1. This
means the optimization objective of (8) can be rewritten as
1
c

∑∞
n=1 ‖c1− xn‖1. Thus, (8) corresponds to minimizing an

infinite horizon cost, the cost at each step n being the l1
difference between xn and the vector it will converge to.

(8) appears to be a hard problem to solve exactly. However,
it can be shown that f is supermodular. This motivates a
greedy heuristic algorithm [9].

Proposition 1. f is supermodular, i.e., for A,B ⊆ S,

f(A) + f(B) ≤ f(A ∪B) + f(A ∩B).

Proof: For A ⊆ S, define f (n)(A) = 1TPnA1. We will
prove that f (n)(·) is supermodular. It is easy to see that this
implies supermodularity of f. Define g : [0, 1]N → R as
g(θ) = 1T (diag(θ) P diag(θ))

n 1. Define

θ̂(A) := (I{i/∈A}, i = 1, 2, · · · , N),

where I{z} equals 1 if z is true and 0 otherwise. Note that
f (n)(A) = g(θ̂(A)).

It is easy to see that ∂2g(θ)
∂θi∂θj

≥ 0 for all i 6= j. This implies
that g is supermodular [10, Theorem 10.4], i.e., g satisfies
g(θ) + g(θ̃) ≤ g(θ ∨ θ̃) + g(θ ∧ θ̃) for all θ, θ̃ ∈ [0, 1]N . For
A,B ⊆ S,

f (n)(A) + f (n)(B) = g(θ̂(A)) + g(θ̂(B))

≤ g(θ̂(A) ∨ θ̂(B)) + g(θ̂(A) ∧ θ̂(B))

= g(θ̂(A ∩B)) + g(θ̂(A ∪B))

= f (n)(A ∩B) + f (n)(A ∪B).

This proves that f (n)(·) is supermodular.

Greedy Algorithm:
The supermodularity of f (equivalently, the submodularity
of −f) motivates the following simple greedy heuristic to
compute an approximate solution AG to (8) (see [9]).

1) Set A0 = ∅.
2) For i = 1, 2, · · · ,K do

j∗i = arg min
j∈AC

i−1

f(Ai−1 ∪ {j}),

Ai = Ai−1 ∪ {j∗i }.

3) Set AG = AK .

Note that the objective function f is monotone non-increasing,
i.e., f(A) ≥ f(B) whenever A ⊆ B. The algorithm constructs
the set AG in K stages. In each stage, the node that produces
the greatest marginal decrease in the objective function is
added to the set.

The greedy algorithm described above involves several
evaluations of the function f. For non-empty A ⊂ S, the
computation of f(A) involves the inversion of the typi-
cally ‘large’ matrix (I − PA). However, these inversions can
be greatly simplified using the Sherman-Morrison-Woodbury

(SMW) formula (see [11, Section 2.1.3]). For example, in
Stage i ≥ 2 of the algorithm, the SMW formula can be used
to compute (I−PAi−1∪{j})

−1 efficiently from (I−PAi−1)−1.

Suboptimality bound: Since f(∅) = ∞, one cannot bound
the suboptimality of f(AG) relative to the optimum value f∗

of (8) directly, as in Theorem 4.2 of [9]. We can, however
make the following weaker statement. Suppose that we restrict
the optimization in (8) to sets A containing a special node
m; let f∗m denote the optimum value of this relaxed problem.
Consider the following modification to the greedy algorithm
above: start with A1 = {m}, and run the iterations for i =
2, · · · ,K to obtain the set AG(m). Then

f(m)− f(AG(m)) ≥
(

1− 1

e

)
(f(m)− f∗m),

where e denotes the base of the natural logarithm.

V. EXPERIMENTS

In this section, we present simulation results for the al-
gorithms presented in the preceding sections on two small
real-world network datasets. Each dataset provides us with
an undirected network graph, represented by its adjacency
matrix R. From R, we generate the stochastic matrix P (that
determines the dynamics of opinion propagation) as follows.

Pij =

{
α for i = j
1−α
deg(i)Rij for i 6= j

.

Here, deg(i) denotes the degree of node i. In our experiments,
we set α = 0.7. We compute the set A of K ‘key’ nodes in the
network and λ(PA) (which determines the rate of convergence
to consensus) using the following algorithms.

1) grad desc: This refers to the projected gradient descent
algorithm described in Section III. The step size η was
set by trial and error. We ran the algorithm five times,
with random initializations of θ; the result corresponding
to the best of these runs is reported.

2) greedy alg: This refers to the greedy algorithm pre-
sented in Section IV.

3) pagerank: This refers to the well known PageRank
algorithm [5]. We compute the stationary distribution of
the Markov chain with transition matrix P. The set A
is composed of the K nodes (states) having the largest
stationary probabilities.

4) HITS: The set A consists of the K nodes that have the
highest rating as hubs/authorities according to the well
known HITS algorithm [6]. Since the adjacency matrix
R in our examples is symmetric, the hub and authority
ratings for a node are equal; the vector of hub/authority
ratings of the nodes is the Perron-Frobenius eigenvector
of R2.

We use the following two datasets.
1) Zachary Karate club: This is a well known network rep-

resenting friendships between 34 members of a Karate
club over a period of two years [12]. We take K = 5.

TABLE I
RESULTS: EACH TABLE ENTRY GIVES THE PERRON-FROBENIUS

EIGENVALUE OF PA

grad desc greedy alg pagerank HITS
Zachary Karate Club 0.930 0.908 0.930 0.930
Net. Sci. coauthorships 0.995 0.989 0.996 0.999

2) Coauthorships in Network Science: A dataset describing
a collaboration network of scientists working in network
theory and experiments has been prepared by Newman
[13]. In this network graph, nodes are scientists and two
scientists are connected by an (undirected) edge if they
have co-authored a paper. For our experiment, we use
the largest connected component of this graph, which
contains 379 nodes. We take K = 20.

Our results are presented in Table I. The greedy algorithm
produces the lowest value of λ(PA), followed by the projected
gradient descent algorithm. These results suggest that our
notion of ranking (subsets of) nodes from the point of view
of rapid opinion dissemination is indeed distinct from other
popular centrality notions in the literature.

VI. VARIATIONS

In this section we describe some related problems.
1) Adversarial action:

Consider the following variant of our basic model. Let
A = A1 ∪ A2, where A1, A2 are disjoint with K1,K2

nodes respectively. The values at the K1 nodes in A1

have been frozen at a given number c1 by an adversary.
We freeze the values at the K2 nodes in A2 at a fixed
number c2 > c1. Then the vector xn corresponding
to the nodes in Ac will converge to x∗, given by the
representation (2) with h(i) = c1 on A1 and c2 on A2.
For j = 1, 2, let τj denote the first hitting time of Aj
for the Markov chain {Xn} with transition matrix P .
(2) implies that for i ∈ Ac,

x∗(i)=c1P (τ1 < τ2|X0 = i) + c2P (τ2 < τ1|X0 = i)

=c1 + (c2 − c1)P (τ2 < τ1|X0 = i).

Note that x∗ in general depends on our choice of the
set A2. We consider the problem of choosing the set
A2 ⊂ Ac1, such that |A2| = K2, so as to maximize∑
i∈Ac x∗(i). Define, for i ∈ S,

y(i) := P (τ2 < τ1|X0 = i).

The optimization described above is equivalent to the
following.

max
A2⊂Ac

1, |A2|=K2

h(A2), (9)

where h : 2A
c
1 → R is defined by h(A2) :=

∑
i∈Ac

1
y(i).

We have

y(i) =
∑
j

p(i, j)y(j), i ∈ Ac,

y(i) = 0, i ∈ A1,

y(i) = 1, i ∈ A2.

Let y = (y(i), i ∈ Ac). The above equations can be
written in the form

y = PAy + P̌1,

where PA is defined as before and P̌ is the submatrix
of P with row indices corresponding to Ac and column
indices corresponding to A2 (the dependence of P̌ on
A1 and A2 is supressed for simplicity). Therefore, y =
(I − PA)−1P̌1, implying

h(A2) = |A2|+ 1T (I − PA)−1P̌1.

As we prove next, h is non-decreasing and submodular,
implying that a simple greedy heuristic algorithm for
solving (9) with bounded suboptimality can be devised
[9].
Proposition 2. h is non-decreasing and submodular.

Proof: Assuming X0 is distributed uniformly over
Ac1, it is easy to see that

h(A2) = (N −K1)P (τ2 < τ1).

From the above representation, it is clear that h is a
non-decreasing set function.
Let P̃ denote the submatrix of P with row indices cor-
responding to Ac and column indices corresponding to
A1, and P̄A denote the submatrix of P with row indices
corresponding to Ac and column indices corresponding
to A. Then P̌1 = P̄A1− P̃1. Therefore, we may write

h(A2)=|A2|+ 1T (I − PA)−1P̌1
=|A2|+ 1T (I − PA)−1P̄A1− 1T (I − PA)−1P̃1

=|A2|+ (N −K1 − |A2|)− 1T
(∞∑
n=0

PA
n

)
P̃1

=N −K1 − 1T
(∞∑
n=0

PA
n

)
P̃1

The step before last above uses the fact that
(I−PA)−1P̄A1 = 1; this follows easily from Section II.
Define h̃(n)(A2) := 1TPAnP̃1. We will prove that h̃(n)

is supermodular. This in turn implies supermodularity of
1T (

∑∞
n=0 PA

n) P̃1, which in turn implies submodular-
ity of h.
To prove that h̃(n) is supermodular, we use the same
technique as in the proof of Proposition 1. Define the
N dimensional column vector d to be the sum of the K1

columns of P corresponding to A1. Define g : [0, 1]N →
R as

g(θ) = 1T (diag(θ) P diag(θ))
n

(θ ◦ d).

Here, a◦b denotes the elementwise product of the vectors
a and b. Define

θ̂(A2) := (I{i/∈A}, i = 1, 2, · · · , N).

Note that h̃(n)(A2) = g(θ̂(A2)).

As before, it is easy to see that ∂2g(θ)
∂θi∂θj

≥ 0 for all i 6= j.
This implies that g is supermodular [10, Theorem 10.4],
which in turn implies submodularity of h̃(n), following
the steps in the proof of Proposition 1.

2) Adding of new edges:
Let P be a substochastic matrix, e.g., PA above. Con-
sider the problem of adding K new directed edges
between pairs that did not have an edge in P . For
simplicity, consider adding an edge from node i to node
i′, where p(i, i′) = 0. Suppose we assign a probability
of θ ∈ [0, β], 0 < β < 1, to this new edge and
reduce the existing transition probabilities out of i by a
multiplicative factor of (1− θ). Let P̌ (θ) = [[pθ(j, j

′)]]
denote the resultant matrix and consider the problem of
minimizing its Perron-Frobenius eigenvalue Λ(θ) over
θ ∈ [0, β]. This turns out to be a special case of the ‘risk-
sensitive’ control problem with the associated dynamic
programming equation

V (j) =
minθ∈[0,β]

∑
k pθ(j, k)V (k)

Λ
, j ∈ S, (10)

which specifies Λ > 0 as the optimal Perron-Frobenius
eigenvalue and specifies the ‘value function’ V, which is
a positive vector unique modulo a multiplicative factor
[14]. This extends to K edges in a straightforward
manner. Value and policy iteration algorithms to solve
(10) are available [14]. Note that the expression being
minimized on the right hand side is linear in θ and
therefore the minimum will be at either 0 or 1 or
everywhere in [0, 1], indicating that the edge must be
added with full weight, or should not be added at all, or
either. There is never the case that a weight in (0, β) is
the only option.
If one imposes a ‘resource constraint’

∑
i θi = N −K

as in the preceding sections, dynamic programming does
not work and one has to resort to a projected gradient
scheme along the lines of Section III.

3) A dynamic optimization problem:
Fix A ⊂ S of cardinality K. We now introduce a
‘forgetting factor’ α ∈ (0, 1) and consider the dynamics

xn+1 = αPAxn + cP̄Aνn, n ≥ 0.

The interpretation is as follows. In absence of repeated
prodding, the nodes ‘forget’ at an exponential rate. The
input process {νn} consists of {0, 1}-valued vectors
which repeatedly ‘prod’ the nodes in A, with the ob-
jective being to keep average ‘interest level’ xn as high
as possible. Let rk denote the cost of prodding node k
in A once, and r := [r1, · · · , rK]T . The objective then
is to minimize the average cost

lim sup
n↑∞

1

n
E

[
n−1∑
m=0

(rT νm − γTxm)

]
(11)

for a prescribed positive vector γ. Under stationarity,
this becomes

rT ν̄ − γT x̄, (12)

where ν̄, x̄ denote resp. the stationary averages of νn, xn.
In turn, the dynamics implies that these satisfy

x̄ = αPAx̄+ cP̄Aν̄. (13)

Thus the problem reduces to the linear program of
minimizing (12) subject to the constraints (13) and the
non-negativity constraints.
To justify restricting a priori to stationary solutions,
argue as follows. First note that if the initial condition
is taken to be from a bounded set, then the xn remain
in a bounded set. Arguments leading to Corollary 11.2
of [15] then allow us to restrict ourselves to stationary
solutions. What’s more, (12) depends solely on the
averages ν̄, x̄, of which the latter is uniquely specified by
the former. Thus an open loop, i.e., deterministic choice
of {νn} with time average ν̄ will also be optimal.

ACKOWLEDGEMENT

This work was supported in part by the project ‘Dynamics
of Decision Making on Networks: Estimation and Control’
from General Motors India Lab. The first author was also
supported by a J. C. Bose Fellowship. This work was done
when the second and the third author were visiting the School
of Technology and Computer Science at the Tata Institute
of Fundamental Research. The visit of the third author was
supported by a joint Summer Fellowship Program of the
Academies of Sciences in India.

REFERENCES

[1] D. Shah, Gossip Algorithms. Now Publishers, 2009.
[2] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a

graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, 2004.
[3] H. Boyle and R. Dykstra, “A method for finding projections onto the

intersection of convex sets in Hilbert space,” in Advances in Order
Restricted Statistical Inference, ser. Lecture Notes in Statistics. Springer
Verlag, 1985, pp. 28–47.

[4] S.-P. Han, “A successive projection method,” Mathematical Program-
ming, vol. 40, pp. 1–14, 1988.

[5] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp. 107–117,
1998.

[6] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
J. ACM, vol. 46, no. 5, pp. 604–632, 1999.

[7] M. Jackson, Social and Economic Networks. Princeton University Press,
2008.

[8] N. Maculan, C. Santiago, E. Macambira, and M. Jardim, “An O(n)
algorithm for projecting a vector on the intersection of a hyperplane
and a box in Rn,” Journal of Optimization Theory and Applications,
vol. 117, pp. 553–574, 2003.

[9] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions - I,” Mathe-
matical Programming, vol. 14, pp. 265–294, 1978.

[10] R. Sundaram, A First Course in Optimization Theory. Cambridge
University Press, 1996.

[11] G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[12] W. Zachary, “An information flow model for conflict and fission in small
groups,” Journal of Anthropological Research, vol. 33, no. 4, pp. 452–
473, 1977.

[13] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Phys. Rev. E, vol. 74, no. 3, 2006.

[14] V. Borkar and S. Meyn, “Risk-sensitive optimal control for Markov
decision processes with monotone cost,” Mathematics of Operations
Research, vol. 27, no. 1, pp. 192–209, 2002.

[15] V. Borkar, “Convex analytic methods in Markov decision processes,”
in Markov Decision Processes: Models, Methods, Directions and Open
Problems, E. Feinberg and A. Shwartz, Eds. Kluwer Academic, 2001,
pp. 347–375.

