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Abstract—When scheduling to minimize the sojourn time tail,
the goals of optimality and robustness are seemingly at odds. Over
the last decade, results have emerged which show that scheduling
disciplines that are near-optimal under light (exponential) tailed
workload distributions do not perform well under heavy (power)
tailed workload distributions, and vice-versa. Very recently, it has
been shown that this conflict between optimality and robustness is
fundamental, i.e., no policy that does not learn information about
the workload can be optimal across both light-tailed and heavy-
tailed workloads. In this paper we show that one can exploit
very limited workload information (the system load) in order
to design a scheduler that provides robust performance across
heavy-tailed and light-tailed workloads.

I. INTRODUCTION

In the analysis of scheduling policies, the conventional
performance metric has been the mean sojourn time (a.k.a.
response time, flow time). In this context, it is well known
that SRPT (Shortest Remaining Processing Time) scheduling
minimizes the mean response time [1], regardless of the inter-
arrival time and job size distributions.

However, guaranteeing good average case performance is
typically insufficient. Motivated by quality of service con-
siderations, we would also like to minimize the occurrence
of very large sojourn times. Consequently, there has been
considerable research interest in characterizing and optimizing
the tail of the sojourn time distribution. Interestingly, this
work highlights the following dichotomy: when the job size
distribution is light-tailed, First Come First Served (FCFS)
scheduling minimizes the sojourn time tail, whereas if the job
size distribution is heavy-tailed, then scheduling policies like
SRPT, Processor Sharing (PS), and Pre-emptive Last Come
First Served (PLCFS) minimize the sojourn time tail.

Unlike in the case of optimizing the mean sojourn time, no
scheduling policy is known to be optimal for the sojourn time
tail across heavy-tailed and light-tailed job size distributions.
Recently, Wierman & Zwart established that no such policy
exists [2]. Specifically, they proved that no scheduling policy
that does not learn information about the workload can be
optimal for the sojourn time tail across heavy-tailed and light-
tailed job size distributions; see Section III. Moreover, all
scheduling policies that are known to be tail-optimal under
heavy-tailed job sizes actually produce the worst possible tail
behavior under light-tailed job sizes, and vice-versa.

To summarize, the literature understands how to design a
scheduling policy that is optimal for the sojourn time tail
for a given workload, but cannot design one that is robust,
even minimally so, across heavy-tailed and light-tailed job size
distributions.

In this paper, we show how to use partial workload informa-
tion, specifically, the system load, to design a scheduler that is
guarantees better than worst case sojourn time tail performance
over a large class of heavy-tailed and light-tailed workloads.
Additionally, the scheduler is optimal for the sojourn time tail
over large subclasses of these workloads. We point out here
that learning the load involves learning expectations, which is
much easier than learning the tail of the job size distribution.
Moreover, as we will see, our designs are robust to estimation
errors in the load.

This paper is organized as follows. In Section II, we present
a brief survey of the literature pertaining to sojourn time
tail asymptotics in a GI/GI/1 setting, with an emphasis on
the known optimality results. In Section III, we describe the
recent result by Wierman & Zwart [2], which establishes the
impossibility of non-learning scheduling policies that provide
robustly optimal sojourn time tail performance across heavy-
tailed and light-tailed job size distributions. We then describe
our tail-robust scheduler design in Section III; for details, we
refer the reader to [3]. Finally, we present a preliminary study
of the performance of our tail-robust scheduler design with
respect to expected sojourn time via simulations in Section V.
In the remainder of this section, we introduce our model and
notation.

For any non-negative random variable X, FX(·) denotes the
distribution function (d.f.) of X, i.e., FX(x) = P (X ≤ x) ;
ΦX(·) denotes the moment generating function of X , i.e.,
ΦX(s) = E

[
esX

]
. For functions ϕ(x) and ξ(x), the notation

ϕ(x) ∼ ξ(x) means limx→∞
ϕ(x)
ξ(x) = 1.

We will focus on the GI/GI/1 queue. Jobs arrive according
to a renewal process; let A denote a generic inter-arrival time.
Each job has an independent, identically distributed service
requirement (size); let B denote a generic job size. The
tuple (A,B) characterizes the workload. We will say that the
workload is heavy-tailed (respectively, light-tailed) if the cor-
responding job size distribution is heavy-tailed (respectively,
light-tailed). Without loss of generality, the server speed is
taken to be unity. We make the following standard assumptions



throughout: (i) load ρ := E[B]
E[A] ∈ (0, 1), (ii) P (B > A) > 0

(otherwise there would be no queueing). The sojourn time
(response time) of a job refers to the time between its arrival
and its departure. Vπ denotes a random variable distributed as
per the stationary sojourn time in a GI/GI/1 queue operating
under scheduling discipline (policy) π.

Let Π denote the class of work-conserving, non-anticipative,
and non-learning scheduling policies. By ‘non-anticipative’,
we mean that the scheduling decision at time t cannot depend
on arrival events after time t. By ‘non-learning’, we mean
the scheduler cannot learn any distributional properties of the
inter-arrival time or job size d.f.

II. OPTIMALITY

There is a vast body of literature analyzing the tail asymp-
totics of the stationary sojourn time distribution in a single
server queue. The survey by Boxma & Zwart [4] provides an
excellent overview. In this section, we present a brief review of
the results with the specific goal of highlighting the optimality
properties of common policies in the literature. Specifically,
we focus on the following classic scheduling policies: FCFS,
PLCFS, PS, and SRPT.

There are a number of different notions of optimality
that have been considered in the literature, e.g., [4], [2].
Three of particular interest are the following. Note that the
workload, specified by the distributions of A and B defines
the probability measure P.

Definition 1. For a class P of workloads, policy π∗ ∈ Π is
1) weakly tail-optimal if

lim sup
x→∞

P (Vπ∗ > x)1+ε

P (Vπ > x)
<∞

for all ε > 0, P ∈ P and π ∈ Π,
2) tail-optimal if

lim sup
x→∞

P (Vπ∗ > x)

P (Vπ > x)
<∞

for all P ∈ P and π ∈ Π,
3) strongly tail-optimal if

lim sup
x→∞

P (Vπ∗ > x)

P (Vπ > x)
≤ 1

for all P ∈ P and π ∈ Π.

It is easy to check that strong tail-optimality implies tail-
optimality, which implies weak tail-optimality.

In the remainder of the section, we consider separately the
cases of heavy-tailed and light-tailed job sizes, since the results
tend to be qualitatively different across these two settings.

First, note that for any work conserving scheduling policy
π, Vπ may be stochastically bounded as follows:

B ≤st Vπ ≤st Z
∗, 1

where Z∗ denotes the total time to emptiness of the queue in
steady state, just after an arrival.

1For non-negative random variables X and Y, X ≤st Y if P (X >
x) ≤ P (Y > x) for all x ≥ 0.

A. Tail asymptotics under heavy-tailed job sizes

Heavy-tailed job sizes have received significant interest
over the past decade due to the fact that they are commonly
observed in computer applications. A non-negative random
variable X (or its d.f. FX ) is defined to be heavy-tailed if
ΦX(s) = ∞ for all s > 0. Unfortunately, the class of all
heavy-tailed distributions tends to be too broad to handle
analytically, and so a majority of the literature focuses on
a particular subclass of heavy-tailed distributions: regularly
varying distributions. A random variable X (or its d.f. FX )
is said to be regularly varying with index θ > 1 (denoted
X ∈ RV(θ)) if P (X > x) = x−θL(x), where L(x) is a
slowly varying function, i.e., L(x) satisfies limx→∞

L(xy)
L(x) =

1 ∀ y > 0. Regularly varying distributions are a generalization
of the class of Pareto/Ziph/power-law/scale-free distributions
and constitute an important and analytically tractable subclass
of the set of heavy-tailed distributions.

For the GI/GI/1 queue with regularly varying job sizes, i.e.,
B ∈ RV(θ), the sojourn time tail asymptotics of nearly all
common policies are understood. In particular, it is known
that

P (VPS > x) ∼ P (VSRPT > x) ∼ P (B > x(1− ρ)),
P (VPLCFS > x) ∼ E [N ]P (B > x(1− ρ)),
P (VFCFS > x) ∼ ρ

1−ρ
1
θ−1xP (B > x),

(1)
where N denotes the number of jobs seen by the system in a
busy period. See the survey by Boxma & Zwart [4] for details
on the derivation of these results.

Observe that, since P (B > x(1 − ρ)) ∼ (1 − ρ)−θP (B >
x), (1) implies that under PS, SRPT, and PLCFS, the sojourn
time tail is asymptotically a constant times the tail of the job
size distribution. Therefore, over the class of workloads with
regularly varying job sizes, PS, SRPT and PLCFS are tail-
optimal.

On the other hand, the tail of VFCFS is asymptotically one
degree heavier than the tail of the job size distribution. In fact,
all non-preemptive policies have the same tail asymptotics, up
to a constant factor [5]. However, this is the worst possible
tail behavior possible among work-conserving policies, since
the random variable Z∗ has a tail of the same degree [4].

As is typical of tail-asymptotics, the results summarized in
(1) have a useful heuristic explanation: Under PS and SRPT, a
tagged job has a very large sojourn time most likely because its
own size B is very large. Such a tagged job receives service
at average rate 1 − ρ, which makes its sojourn time V ≈
B/(1 − ρ). Under PLCFS, the sojourn time of a tagged job
equals the busy period started by it, which in turn is very large
most likely because one job with a very large size arrived
within that busy period. In contrast, under FCFS, a tagged
job has a very large sojourn time most likely because of the
presence of a job with a very large size in the queue ahead
of it. This causes the sojourn time tail to be asymptotically
proportional to the tail of the residual lifetime of the job size
d.f., which is one degree heavier.



B. Tail asymptotics under light-tailed job sizes

Though heavy-tailed distributions have dominated the lit-
erature in the last decade, there are many situations that are
naturally modeled by light-tailed distributions, e.g., in many
manufacturing systems. A non-negative random variable X
(or its d.f. FX ) is defined to be light-tailed if it is not heavy-
tailed, i.e., if ΦX(s) <∞ for some s > 0. When the job size
distribution is light-tailed, the sojourn time d.f. is also typically
light-tailed. We will describe the (logarithmic) asymptotic tail
behavior of the sojourn time d.f. by its decay rate, defined as

γ(V ) := lim
x→∞

− logP (V > x)

x
,

when the limit exists.
In describing the sojourn time asymptotics with light-tailed

job sizes, the following function plays a key role. For s ≥
0, Ψ(s) := −Φ−1

A

(
1

ΦB(s)

)
. Let A(x) denote the total work

entering the system in the interval (0, x], assuming an arrival
at time 0. The following lemma gives an interpretation to the
function Ψ(·).

Lemma 1 (Mandjes & Zwart [6]). For s ≥ 0,

limx→∞
log E[esA(x)]

x = Ψ(s). Further, Ψ(s) is strictly convex
and lower semi-continuous.

For the GI/GI/1 queue with light-tailed job sizes,

γ(VFCFS) = γF := sup{s ≥ 0 : Ψ(s)− s ≤ 0},
γ(VPLCFS) = γL := sup

s≥0
{s−Ψ(s)};

see Nuyens & Zwart [7]. From the strict concavity of s−Ψ(s),
and since Ψ′(0) = ρ, it is easy to show that γL < (1− ρ)γF .
This implies the stationary sojourn time tail under FCFS is
‘lighter’ than that under PLCFS. In fact, it has been proved
by Ramanan & Stolyar [8] that FCFS is weakly tail-optimal
over the class of workloads with light-tailed job sizes.

Moreover, it has been proved by Nuyens et al. [9] that
γ(Z∗) = γL, implying that PLCFS produces the worst
possible sojourn time decay rate under light-tailed job sizes.
Under mild regularity conditions, we additionally have

γ(VPS) = γ(VSRPT ) = γL.

As in the heavy-tailed case, there are useful heuristic expla-
nations of the asymptotic results in this setting. In particular,
across all the policies discussed, a tagged job experiences a
large sojourn time due to a combination of one or more of the
following effects:

(i) there is a large backlog in the system when the tagged
job arrives,

(ii) the tagged job has a large size,
(iii) a large amount of work enters the system after the arrival

of the tagged job.
Under FCFS, very large sojourn times are most likely caused
by effect (i), whereas under PS, SRPT, and PLCFS, very large
sojourn times are most likely caused by a combination of
effects (ii) and (iii).

The above discussion highlights the dichotomy described
in the introduction; the policies that produce the best possible
sojourn time tail behavior under heavy-tailed job size distri-
butions produce the worst possible sojourn time tail behavior
under light-tailed job size distributions, and vice-versa.

III. ROBUSTNESS VERSUS OPTIMALITY

As we discussed in Section I, SRPT scheduling minimizes
the mean sojourn time regardless of assumptions about the
inter-arrival time and job size distributions. In other words,
SRPT is optimal and robust for the mean. In this paper, we
are interested in the problem of designing a scheduler that
provides similar robustly optimal performance in minimizing
the sojourn time tail. Stated formally, we seek a scheduling
policy satisfies the following strong tail-robustness criterion:

Definition 2. A policy π∗ ∈ Π is strongly tail-robust, if it
is weakly tail-optimal over the class of all workloads with
heavy-tailed as well as light-tailed job size distributions.

As was discussed in Section II, none of the scheduling poli-
cies that have been analyzed in the literature is strongly tail-
robust. In fact, the policies that are known to be tail-optimal
under heavy-tailed (specifically, regularly varying) job sizes
actually produce the worst possible sojourn time tail behavior
under light-tailed job sizes, and vice-versa. Therefore, whether
or not there even exists a strongly tail-robust scheduling policy
has been a long-standing open question. This question was
recently resolved in the negative by Wierman & Zwart [2].
They proved that there is a fundamental limit on the sojourn
time tail performance of non-learning scheduling policies:

Theorem 2. There does not exist a work-conserving, non-
anticipative, and non-learning scheduling policy that is
strongly tail-robust.

In order to prove Theorem 2, [2] first proves a necessary
condition for a policy π ∈ Π to be tail-optimal over heavy-
tailed workloads. The condition is based on the following
intuition: to be tail-optimal over heavy-tailed workloads, a
scheduling policy should be able to maintain queue stability on
the introduction of an infinite sized job, which was suggested
in a number of prior papers [10], [4], [9]. To formalize this
intuition, assume that a job of size B0 enters an empty system
at time 0. For t ≥ 0, let R(t) denote the total service allocated
in the interval [0, t] to jobs arriving after time 0. Then, the
following is a necessary condition for a policy π ∈ Π to be
tail-optimal over workloads with heavy-tailed workloads [2]:

lim
x→∞

P (R(x) > (ρ− δ)x|B0>(1− ρ)yx) = 1

∀ δ > 0, y > 1. (2)

The reader may verify that all the scheduling policies that
are known to be tail-optimal over heavy-tailed workloads
satisfy this condition.

The proof of Theorem 2 is completed by showing that (2)
is incompatible with optimality over light-tailed workloads.



Specifically, a probability measure with light-tailed job sizes
is constructed using an exponential change of measure starting
with a measure corresponding to a suitably defined heavy-
tailed workload. It is then shown that condition (2) on the
probability measure with heavy-tailed job sizes implies non-
competitiveness for the constructed probability measure with
light-tailed job sizes. See [2] for the details.

To summarize, Theorem 2 implies that it is impossible for
a non-learning scheduling policy to be strongly tail-robust
across all light-tailed and heavy-tailed workloads. Moreover,
among the scheduling policies that have been analyzed in the
literature, those that produce optimal sojourn time tail behav-
ior under heavy-tailed workloads produce the worst possible
sojourn time tail behavior under light-tailed workloads, and
vice-versa.

This state of the art raises several questions about the funda-
mental limits of tail-robust scheduling: What tradeoffs between
optimality and robustness are achievable? Is it possible for a
non-learning scheduler to provide ‘close to optimal’ sojourn
time tail performance over large subsets of heavy-tailed and
light-tailed workloads? Can partial workload information, e.g.,
system load, be used to be achieve tail-robustness?

Most of the above questions are still open, however, in
the following section, we describe recent work that takes a
step towards answering the last question above. In particular,
we describe a scheduler that uses limited processor sharing
(LPS) to guarantee a weak form of tail-robustness over large
subclasses of heavy-tailed and light-tailed workloads using
only an estimate of the system load.

IV. TAIL-ROBUST SCHEDULING VIA LIMITED PROCESSOR
SHARING

In this section, we describe how a tail-robust scheduler can
be designed using Limited Processor Sharing (LPS-c). The
results reported in this section appear in [3].

Under LPS-c, there is a limited multiprogramming level
c, which determines the maximum number of jobs that may
simultaneously receive service. Specifically, if there are n jobs
in the system, then the server capacity is shared equally among
the min(n, c) jobs which arrived earliest.

LPS-c is a natural candidate for our goal of tail-robust
scheduling because, as c grows from 1 to∞, LPS-c transitions
from FCFS, which is optimal under light-tailed job sizes, to
PS, which is optimal under heavy-tailed job sizes. We seek
to design an intermediate value of c that is tail-robust. To
achieve tail-robustness, it turns out that the choice of c must
incorporate some workload information. We show that a tail-
robust c can be designed as a function of only the system
load ρ. We believe this is not a serious limitation, since
estimating the load is also important to guarantee system
stability. Moreover, as we shall see, our design is robust to
estimation errors in ρ.

Before we state our main results, we define the following
weak notion of tail-robustness.

Definition 3. For a class P of workloads, policy π∗ is weakly

tail-robust if there exists a policy π ∈ Π such that

lim
x→∞

P (Vπ∗ > x)

P (Vπ > x)
=∞

for all P ∈ P.

Thus, a policy π∗ is weakly tail-robust if it produces ‘better-
than-worst-case’ sojourn time tail performance over the class
of workloads under consideration. The schedulers we describe
in this section are weakly tail-robust over a large class of
heavy-tailed as well as light-tailed workloads.

A. Main result

We now state our main result concerning the tail-robust
choice of c.

Proposition 3 ([3]). Consider the GI/GI/1 queue. Let Θ ∈
(1, 2]. LPS-c with c =

⌊
d Θ

Θ−1e−1

1−ρ

⌋
+ 1 is

(a) weakly tail-robust over the class of workloads where
the job size distribution is regularly varying with index
θ > 1,

(b) weakly tail-robust over the class of workloads where the
job size distribution is phase-type,

(c) weakly tail-optimal over the class of workloads where
the job size distribution is regularly varying with index
θ ≥ Θ,

(d) weakly tail-optimal over the class of light-tailed work-
loads satisfying

γ(B)

γ(VFCFS)
≥


⌈

Θ
Θ−1

⌉
− 1

1− ρ

+ 1

or γ(B) =∞.

Note that our scheduler has a design parameter Θ ∈ (1, 2].
Irrespective of the value of Θ, the scheduler guarantees better
than worst case sojourn time tail performance over workloads
with regularly varying job sizes as well as phase-type dis-
tributed job sizes. Moreover, the scheduler guarantees optimal
tail performance over a large subset of these workloads. The
parameter Θ allows one to tradeoff between the optimality
regions in the light-tailed and heavy-tailed regimes. Specifi-
cally, increasing Θ decreases the set of heavy-tailed workloads
over which the scheduler guarantees optimal sojourn time tail
performance, while increasing the corresponding set among
the light-tailed workloads.

The case Θ = 2 is of special interest. Note that this
is the most ‘light-tailed centric’ choice of Θ. In this case,
c =

⌊
1

1−ρ

⌋
+ 1. The optimality region among heavy-tailed

workloads includes those with regularly varying job sizes with
finite variance. The optimality region among the light-tailed
workloads includes those that satisfy γ(B)

γ(VFCFS) ≥
⌊

1
1−ρ

⌋
+ 1.

It is interesting to note that the M/M workloads (inter-arrival
times as well as job sizes are exponentially distributed) are
on the boundary of this region, since, for the M/M/1 queue,
γ(B)/γ(VFCFS) = 1

1−ρ .



A practical remark about our tail-robust scheduler design is
that, although it requires learning the system load ρ, it is robust
to estimation errors. Specifically, so long as the estimate used
is an upper bound on the true load, the weak tail-robustness
guarantees given by statements (a) and (b) of Proposition 3
still hold. Only the optimality regions among the heavy-tailed
and light-tailed workloads change.

The proof of Proposition 3 depends on an analysis of the
sojourn time tail asymptotics under in an LPS-c queue with
both heavy-tailed and light-tailed job sizes. We describe next
the relevant results from these analyses.

B. Tail asymptotics under heavy-tailed job sizes

In this section, we consider the case of regularly varying
job sizes. We will describe the (logarithmic) asymptotics of
the sojourn time tail using its tail-index, defined as

Γ(V ) := lim
x→∞

− logP (V > x)

log(x)
,

when the limit exists. Note that a greater tail index implies
a lighter tail. For technical reasons, we make the following
assumption in our analysis.

Assumption 1. cρ is not an integer, i.e., bcρc < cρ.

The following theorem describes the sojourn time tail index
under LPS-c; see [3] for the proof.

Theorem 4. Consider the GI/GI/1 queue. Under Assumption
1, if B ∈ RV(θ) for θ > 1, then

Γ(VLPS−c) = min {θ, (θ − 1)(c− bcρc)} . (3)

It is natural to view the GI/GI/1 LPS-c queue as a work-
conserving version of a GI/GI/c FCFS queue, where each
server has speed 1/c. Theorem 4 implies the (logarithmic)
sojourn time tail asymptotics in these two queues are identical.
In fact, our proof of Theorem 4 relies on the parallels between
these two queues. Define k = kc := c−bcρc . We refer to k as
the number of ‘spare slots,’ since k is the minimum number
of infinite sized jobs that must be introduced into the LPS-c
queue to make it unstable. This definition parallels the notion
of ‘spare servers’ which is used in the context of the GI/GI/c
FCFS queue and has been shown to determine the moment
conditions for the waiting time (delay) in that system [11]. In
fact, in both the GI/GI/1 LPS-c queue and the GI/GI/c FCFS
queue, a tagged job faces a very long waiting time most likely
because of k very large jobs in queue ahead of it.

Let us now interpret (3). For regularly varying job sizes, (1)
implies that

1) Γ(VFCFS) = θ− 1 (this is the worst possible tail index
among policies in Π),

2) Γ(VPS) = θ (this is the optimal tail index among
policies in Π).

Now, (3) implies that
1) for c = 1, Γ(VLPS−c) = θ − 1,
2) with increasing c, Γ(VLPS−c) increases, i.e., the sojourn

time tail gets lighter,

3) for c large enough that kc > θ/(θ − 1) we have that
Γ(VLPS−c) = θ.

Therefore, as c increases, the sojourn time tail behavior under
LPS-c transitions from that under FCFS (worst case) to that
under PS (optimal). This is consistent with our view of LPS-c
as a hybrid version of FCFS and PS. Also, with heavy-tailed
job sizes, LPS-c should be designed with ‘large enough’ c.

Finally, we sketch how Theorem 4 is used to prove state-
ments (a) and (c) of Proposition 3. (3) implies that LPS-c is
weakly tail-robust over regularly varying workloads if and only
if kc ≥ 2, which can be shown to hold for c ≥

⌊
1

1−ρ

⌋
+1. It is

easy to see that our tail-robust designs satisfy this condition.

Also, it can be shown that setting c =

⌊
d Θ

Θ−1e−1

1−ρ

⌋
+1 implies

that for workloads with regularly varying job sizes with index
θ ≥ Θ, Γ(VLPS−c) = Γ(VPS) = θ, which is sufficient to
guarantee weak tail-optimality over this class.

C. Tail asymptotics under light-tailed job sizes

In this section, we consider the case of light-tailed job
sizes. As in Section II-B, we will describe the (logarithmic)
tail asymptotics of the sojourn time using its decay rate
γ(V ). Note that a larger decay rate implies a lighter tail. The
following theorem describes the sojourn time decay rate under
LPS-c; see [3] for the proof.

Theorem 5. Consider the GI/GI/1 queue. If γ(B) ∈ (0,∞),

γ(VLPS−c) = min
a∈[0,1]

fc(a), (4)

where fc(a) := aγ(VFCFS) +
(1− a)γ(B)

c

+sup
s≥0

[
(1− a)s

(
1− 1

c

)
−Ψ(s)

]
. (5)

Otherwise, if γ(B) =∞, then γ(VLPS−c) = γ(VFCFS).

To build an understanding of (4), it is useful to begin
by interpreting it in the context of effects (i), (ii), and (iii)
described in Section II-B that could lead to a long sojourn
time. Intuitively, the effects (i), (ii) and (iii) contribute re-
spectively to the first, second, and third term in (5). The
variable a captures the relative contribution of these effects
to a large sojourn time. If a is close to 1, then effect (i)
dominates, whereas if a is close to 0, then effects (ii) and (iii)
dominate. The minimization operation in (4) implies that the
most dominant combination of these effects determines the
sojourn time decay rate. Therefore, one should interpret the
value of a∗c := arg mina∈[0,1] fc(a) as providing a description
of how large sojourn times are caused.

We now sketch how Theorem 5 is used to complete the
proof of Proposition 3. To prove statements (b) and (d) of
Proposition 3, we need to deduce the following properties of
the LPS-c decay rate characterization (4).



Lemma 6. Consider the GI/GI/1 queue. Assuming γ(B) ∈
(0,∞), γ(VLPS−c) is monotonically decreasing in c. More-
over,

lim
c→∞

γ(VLPS−c) = γ(VPS).

If γ(VFCFS) < γ(B), then
1) for c ≤ γ(B)

γ(VFCFS) , γ(VLPS−c) = γ(VFCFS),

2) for c > γ(B)
γ(VFCFS) , γ(VLPS−c) is strictly decreasing in

c.

The statements of the above lemma are proved in [3].
Lemma 6 implies that for light-tailed workloads satisfying
γ(VFCFS) < γ(B), γ(VLPS−c) > γ(VPS) for all c. This
implies that LPS-c is weakly tail-robust over this class of
workloads, which includes the set of workloads with phase-
type distributed job sizes. Also, whenever the condition c ≤

γ(B)
γ(VFCFS) holds, γ(VLPS−c) = γ(VFCFS). This implies that
LPS-c is weakly tail-optimal over the class of workloads that
satisfy this condition.

V. TAIL-ROBUST DESIGN: PERFORMANCE IN EXPECTED
SOJOURN TIME

In the preceding sections, we restricted our focus on the
design of scheduling policies that provide good sojourn time
tail performance. In practice however, we would like a sched-
uler to guarantee good performance not just with respect to the
tail of the sojourn time distribution, but also its mean. In other
words we would like to minimize the occurrence of very large
sojourn times, as well as minimize the average sojourn times.
In addition, we would also like the scheduler to be robust
to the modeling of the workload. The design of scheduling
policies that satisfy all these criteria remains a hard and open
problem.

In this section, we investigate the performance of our
proposed tail-robust scheduler designs with respect to mean
sojourn time. Unfortunately, there is no known analysis for
the mean sojourn time in an LPS-c queue even in the M/GI/1
setting. Therefore, we resort to simulations.

Consider the M/GI/1 system. Let

C2(B) :=
E
[
B2
]

E [B]
2 − 1

denote the squared coefficient of variation of the job size
distribution. It is well known that for the mean sojourn time,
FCFS outperforms PS when the job size d.f. is less variable
than the exponential d.f. (specifically, when C2(B) < 1),
whereas PS outperforms FCFS when the job size d.f. is
more variable than the exponential d.f. (specifically, when
C2(B) > 1).

Since LPS-c can be viewed as a hybrid of PS and FCFS,
we might expect our tail-robust design to provide intermediate
(robust) expected sojourn time performance across these two
regimes. Indeed, it is easy to prove that when the failure
rate (a.k.a. hazard rate) of the job size d.f. is monotone, the
expected sojourn time under LPS-c is intermediate between
that under FCFS and PS, as stated by the following lemma.

Lemma 7. Consider the GI/GI/1 queue. For all c ∈ N,
1) if the job size d.f. has a non-increasing failure rate, then

E [VPS ] ≤ E
[
VLPS−(c+1)

]
≤ E [VLPS−c] ≤ E [VFCFS ] ,

2) if the job size d.f. has a non-decreasing failure rate, then

E [VFCFS ] ≤ E [VLPS−c] ≤ E
[
VLPS−(c+1)

]
≤ E [VPS ] .

This lemma is proved by invoking a stochastic ordering
result for the LPS-c queue by Nuyens and van der Weij [12].
We prove Lemma 7 in the appendix.

In our first experiment, we fix the values of ρ and E [B] ,

and set c =
⌊

1
1−ρ

⌋
+ 1. We study the variation of E [V ]

versus C2(B) under FCFS, LPS-c, and PS. For each value of
C2(B), we model the job size d.f. by a phase-type distribution
by matching the first the second moment using the method
suggested by Sauer & Chandy [13]: for C2(B) < 1, the
d.f. is modeled by a Generalized Erlang distribution, and
for C2(B) > 1, the d.f. is modeled by a Hyper-exponential
distribution.

Fig. 1 shows the results for the low-load case: ρ = 0.6,
E [B] = 1. Fig. 1(a) is a plot of E [V ] versus C2(B). Note
that E [VLPS−c] appears to grow linearly with C2(B), with
a slope that is intermediate between that for PS (slope = 0)
and FCFS (slope = E[B]

2

(
1 + ρ

1−ρ

)
). In Fig 1(b), we plot the

relative suboptimality in expected sojourn time under LPS-c
relative to PS and FCFS. Specifically, we plot

E [VLPS−c]−min(E [VPS ] ,E [VFCFS ])

max(E [VPS ] ,E [VFCFS ])−min(E [VPS ] ,E [VFCFS ])

versus C2(B). The plot is almost constant over the regimes
C2(B) < 1 and C2(B) > 1, as is also suggested by the almost
linear plot of E [VLPS−c] versus C2(B) in Fig. 1(a). Further,
we see that our particular tail-robust choice of c seems to
provide relatively better performance for expected sojourn time
in the C2(B) > 1 (high variability) regime. Fig 2 shows the
corresponding plots in the high-load case: ρ = 0.9, E [B] = 1.
Note that the plots are qualitatively similar to the low-load
case.

In our second experiment, we choose 3 different job size
distributions, and study the variation of E [V ] with the load
(which we scale by scaling the arrival rate). We compare
FCFS, PS, and LPS-c (with c =

⌊
1

1−ρ

⌋
+1). Fig. 3 summarizes

our results. For parts (a) and (b), we model the job size d.f.
as a phase-type d.f. by matching the first two moments, as in
[13]. As before, we observe that:

1) The expected sojourn time under LPS-c is intermediate
between that under FCFS and PS.

2) With our particular tail-robust choice of c, E [VLPS−c]
is closer to E [VPS ] than E [VFCFS ] . This means the
‘relative suboptimality’, as defined above under LPS-
c is smaller for high-variability job size distributions
(C2(B) > 1).
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Fig. 1. ρ = 0.6, E [B] = 1
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Fig. 2. ρ = 0.9, E [B] = 1
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Fig. 3. E[V ] versus ρ

APPENDIX
PROOF OF LEMMA 7

The proof Lemma 7 follows easily from the following two
lemmas.

Lemma 8. Consider the GI/GI/1 queue. If the job size d.f. has
a non-increasing failure rate, then E [VLPS−c] is monotoni-
cally decreasing in c. If the job size d.f. has a non-decreasing
failure rate, then E [VLPS−c] is monotonically increasing in
c.

This lemma is proved in [12].

Lemma 9. In the GI/GI/1 queue,

VLPS−c
c↑∞−→ VPS in distribution.

Proof: We wish to prove that for all x ≥ 0,

lim
c→∞

P (VLPS−c > x) = P (VPS > x) . (6)

Let N denote the number of jobs entering the system during
a busy period. For a scheduling policy π ∈ Π, Let Nπ(x)
denote the number of jobs that experience a sojourn time >
x during a busy period under policy π. It is well known that

P (Vπ > x) =
E [Nπ(x)]

E [N ]
. (7)

Since N is almost surely finite,

E [NPS(x)]= lim
c→∞

E [NPS(x) | N < c]P (N < c)

= lim
c→∞

E [NLPS−c(x)|N < c]P (N < c) . (8)



The last step above uses the fact that conditioned on the event
N < c, all jobs in the busy period experience the same sojourn
time under PS and LPS-c.

We now note that

E [NLPS−c]≥E [NLPS−c|N < c]P (N < c)

⇒ lim inf
c→∞

E [NLPS−c]≥ lim
c→∞

E [NLPS−c|N < c]P (N < c)

=E [NPS(x)] . (9)

The last step above uses (8). Also,

E [NLPS−c] = E [NLPS−c|N < c]P (N < c)

+E [NLPS−c|N > c]P (N > c)

≤ E [NLPS−c|N < c]P (N < c)

+E [N |N > c]P (N > c)

Since limc→∞ E [N |N > c]P (N > c) = 0, using (8), we get

lim sup
c→∞

E [NLPS−c] ≤ E [NPS(x)] . (10)

(9) and (10) imply that

lim
c→∞

E [NLPS−c] = E [NPS(x)] ,

which, invoking (7), implies (6). This completes the proof.
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