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On High Spatial Reuse Link Scheduling in STDMA
Wireless Ad Hoc Networks

Ashutosh Deepak Gore, Srikanth Jagabathula and Abhay Karandikar

Abstract— Graph-based algorithms for point-to-point link
scheduling in Spatial reuse Time Division Multiple Access
(STDMA) wireless ad hoc networks often result in a significant
number of transmissions having low Signal to Interference and
Noise density Ratio (SINR) at intended receivers, leading to
low throughput. To overcome this problem, we propose a new
algorithm for STDMA link scheduling based on a graph model
of the network as well as SINR computations. The performance
of our algorithm is evaluated in terms of spatial reuse and com-
putational complexity. Simulation results demonstrate that our
algorithm achieves better performance than existing algorithms.

Index Terms— Wireless Ad hoc Networks, Spatial Time Di-
vision Multiple Access, Link Scheduling, Physical Interference
Model, Spatial Reuse.

I. I NTRODUCTION

A wireless ad hoc network consists of a finite number
of radio units (nodes) that are geographically distributed

in a terrain without any preplanned or fixed infrastructure.
They communicate with each other via the untethered and
broadcast wireless medium. In order to use the scarce and
expensive wireless spectrum efficiently, we need to exploit
channel spatial reuse, i.e., allow concurrent communication
between source-destination pairs which are “reasonably” far
from each other using either the same time slot or frequency
band.

A commonly used scheme for channel reuse is Spatial
Time Division Multiple Access (STDMA), in which time is
divided into fixed-length slots that are organized cyclically. An
STDMA schedule describes the transmission rights for each
time slot in such a way that communicating pairs assigned to
the same slot do not collide. STDMA scheduling algorithms
can be categorized into link scheduling and broadcast/node
scheduling algorithms [1]. In a wireless ad hoc network, a link
is an ordered pair of nodes(t, r), wheret is a transmitter andr
is a receiver. In link scheduling, the transmission right inevery
slot is assigned to certain links. On the other hand, in broadcast
scheduling, the transmission right in every slot is assigned to
certain nodes. Thus, there is no apriori binding of transmitter
and receiver and the packet transmitted can be received by
every neighbor. Link scheduling is suitable for unicast traffic,
while broadcast scheduling is suitable for broadcast traffic.
In this paper, we will concentrate on link scheduling for
STDMA networks. Specifically, we consider centralized link
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scheduling, i.e., the link transmission schedule is computed
by a central entity. Centralized scheduling is applicable for
scenarios where the time scale of topology change is much
larger than the duration of the schedule.

A. Related Work

The concept of STDMA for multihop wireless ad hoc
networks was formalized in [2]. Centralized algorithms [3][4]
as well as distributed algorithms [5] [6] have been proposed
for generating reuse schedules. The problem of determining
an optimal minimum-length STDMA schedule for a general
multihop ad hoc network is NP-complete for both link and
broadcast scheduling [1]. In fact, this is closely related to the
problem of determining the minimum number of colors to
color all the edges (or vertices) of a graph under certain ad-
jacency constraints. However, most wireless ad hoc networks
can be modeled by planar or close-to-planar graphs and thus
near-optimal edge coloring algorithms can be developed for
these restricted classes of graphs.

A significant work in STDMA link scheduling is reported
in [1], in which the authors show that tree networks can be
scheduled optimally, oriented graphs can be scheduled near-
optimally and arbitrary networks can be scheduled such that
the schedule is bounded by a length proportional to the graph
thickness1 times the optimum number of colors.

A probabilistic analysis of the throughput performance of
graph-based scheduling algorithms under the physical inter-
ference model is derived in [7]. The authors determine the
optimal number of simultaneous transmissions by maximizing
a lower bound on the physical throughput and subsequently
propose a truncated graph-based scheduling algorithm that
provides probabilistic guarantees for network throughput.

In [8], the authors present an analytical framework to
investigate co-channel spatial reuse in dense wireless ad
hoc networks based on path loss and log-normal shadowing
models for a 1-D infinite regular chain topology and a 2-
D infinite hexagonally-tessellated topology. They derive the
minimum ratio of inter-transmitter distance to transmitter-
receiver distance, while still maintaining desirable Signal to
Interference and Noise density Ratio (SINR) at the receivers.
Their results demonstrate that increasing transmission power
improves spatial reuse in ambient noise dominated environ-
ments. However, in co-channel interference limited scenarios,
increasing transmission power has little effect on spatialreuse.

1The thickness of a graph is the minimum number of planar graphs into
which the given graph can be partitioned.
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The performance of centralized graph-based and
interference-based STDMA scheduling via simulations
is evaluated and compared in [9]. To generate a graph-based
conflict-free schedule, the authors use a two-level graph
model with certain SINR threshold values chosen based on
heuristics and examples. To generate an interference-based
conflict-free schedule, the authors employ a method suggested
in [10] which describes heuristics based on two path loss
models, namely terrain-data based ground wave propagation
model and Vogler’s five knife-edge model.

In [11], the authors investigate throughput improvement in
an 802.11-like wireless mesh network with Carrier Sense Mul-
tiple Access with Collision Avoidance (CSMA/CA) channel
access scheme replaced by STDMA. For a successful packet
transmission, they mandate that two-way communication be
successful. Under this ‘extended physical interference model’,
they present a greedy algorithm which computes the transmis-
sion schedule in a centralized manner. Assuming a uniform
random node distribution and using results from occupancy
theory, they derive an approximation factor for the length of
this schedule relative to the shortest schedule.

Link scheduling for power-controlled STDMA networks
under the physical interference model is analyzed in [12].
The authors define the scheduling complexity as the minimum
number of time slots required for strong connectivity of the
network. They develop an algorithm employing non-linear
power assignment and show that its scheduling complexity
is polylogarithmic in the number of nodes.

In a related work [13], the authors investigate the time
complexity of scheduling a set of communication requests in
an arbitrary network. They consider a ‘generalized physical
model’ wherein the actual received power of a signal can de-
viate from the theoretically received power by a multiplicative
factor. Their algorithm successfully schedules all links in time
proportional to the squared logarithm of the number of nodes
times the static interference measure [14].

In [15], the authors investigate the tradeoff between the
average number of concurrent transmissions (spatial reuse) and
sustained data rate per node for an 802.11 wireless network.
Assuming that the channel data rate is given by the Shannon
capacity, they show that spatial reuse depends only on the
ratio of transmit power to carrier sense threshold. Keepingthe
carrier sense threshold fixed, they propose a distributed power
and rate control algorithm based on interference measurement
and evaluate its performance via simulations.

In [16], the authors investigate mitigation of inter-flow inter-
ference in an 802.11e wireless mesh network from a temporal-
spatial diversity perspective. Measurements of received signal
strengths are used to construct a virtual coordinate system
to identify concurrent transmissions with minimum inter-flow
interference. Based on this new coordinate system, the gateway
node determines the scheduling order for downlink frames of
different connections. Through extensive simulation withreal-
life measurement traces, the authors demonstrate throughput
improvement with their algorithms.

In [17], the authors consider wireless mesh networks with
half duplex and full duplex orthogonal channels, wherein
each node can transmit to at most one node and/or receive

from at mostk nodes (k > 1) during any time slot. They
investigate the joint problem of routing flows and scheduling
link transmissions to analyze the achievability of a given rate
vector between multiple source-destination pairs. The schedul-
ing problem is solved as an edge-coloring problem on a multi-
graph and the necessary conditions from scheduling problem
lead to constraints on the routing problem, which is then
formulated as a linear optimization problem. Correspondingly,
the authors present a greedy coloring algorithm to obtain a
2-approximate solution to the chromatic index problem and
describe a polynomial time approximation algorithm to obtain
an ǫ-optimal solution of the routing problem using the primal
dual approach. Finally, they evaluate the performance of their
algorithms via simulations.

B. Contributions of our Work

In most STDMA algorithms, a link schedule is usually
determined from a graph model of the network [1] [7] [9].
However, graph-based scheduling algorithms assume a limited
knowledge of the interference and result in low network
throughput. On the other hand, SINR-based scheduling al-
gorithms [11] [12] [13] [15] require a complete knowledge
of the interference and lead to higher throughput. Existing
literature on SINR-based STDMA link scheduling consider
system models which are different from our system model.
For example, [11] [15] consider a variant of 802.11 wireless
networks, [16] [17] consider wireless mesh networks and [12]
[13] assume non-uniform transmit power at all nodes.

In this paper, we consider an STDMA wireless ad hoc
network with uniform transmit power at all nodes and propose
a link scheduling algorithm based on the graph model as
well as SINR computations. We introduce spatial reuse as
an important performance metric and argue that a high value
of spatial reuse directly translates to high long-term network
throughput. We show that the proposed algorithm has low
computational complexity and high spatial reuse compared to
existing algorithms.

The rest of the paper is organized as follows. In Section
II, we describe our system model along with the physical and
protocol interference models, discuss the limitations of graph-
based scheduling algorithms, formulate the problem and sum-
marize the differences between our work and existing work in
SINR-based scheduling algorithms. Section III describes the
proposed link scheduling algorithm. The performance of our
algorithm is evaluated in Section IV and its computational
complexity is derived in Section V. We conclude and suggest
directions for future work in Section VI.

II. SYSTEM MODEL

Consider an STDMA wireless ad hoc network withN static
nodes (wireless routers) in a two-dimensional plane. During a
time slot, a node can either transmit, receive or remain idle.
We assume homogeneous and backlogged nodes. Let:
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(xj , yj) = Cartesian coordinates ofjth node =: rj

P = transmission power of every node

N0 = thermal noise density

D(j, k) = Euclidean distance between nodesj andk

We do not consider fading and shadowing effects. The
received signal power at a distanceD from the transmitter
is given by P

Dα , whereα is the path loss factor.
A link schedule effectively assigns sets of links to time

slots. Specifically, a link schedule for the STDMA network is
denoted byΨ(C,S1, · · · ,SC), where

C = number of slots in the link schedule

Si = set of transmitter-receiver pairs which can

communicate concurrently in theith slot

:= {ti,1 → ri,1, · · · , ti,Mi
→ ri,Mi

}
whereti,j → ri,j denotes a packet transmission from nodeti,j
to noderi,j in the ith slot2. Note thatti,j , ri,j ∈ {1, . . . , N}
andMi = |Si|. The SINR at receiverri,j is given by

SINRri,j
=

P
Dα(ti,j ,ri,j)

N0 +
∑Mi

k=1

k 6=j

P
Dα(ti,k,ri,j)

(1)

We define the signal to noise ratio (SNR) at receiverri,j by

SNRri,j
=

P

N0Dα(ti,j , ri,j)
(2)

A. Physical and Protocol Interference Models

According to thephysical interference model[18], ti,j →
ri,j is successful if and only if (iff) the SINR at receiverri,j

is greater than or equal to a certain thresholdγc, termed as
the communication threshold.

P
Dα(ti,j ,ri,j)

N0 +
∑Mi

k=1

k 6=j

P
Dα(ti,k,ri,j)

> γc (3)

According to theprotocol interference model[18], ti,j → ri,j

is successful if:
1) the SNR at receiverri,j is no less than the communica-

tion thresholdγc. From (2), this translates to

D(ti,j , ri,j) 6

(

P

N0γc

)
1

α

=: Rc (4)

whereRc is termed as communication range.
2) the signal from any unintended transmitterti,k is re-

ceived atri,j with an SNR less than a certain threshold
γi, termed as the interference threshold. This translates
to

D(ti,k, ri,j) >

(

P

N0γi

)
1

α

=: Ri

∀ k = 1, . . . , Mi, k 6= j (5)

2A node is generically denoted byj, j = 1, . . . , N . However, we have
used the notationti,j to denote a nodetransmitting in the ith slot. Similarly,
a nodereceiving in the ith slot is denoted byri,j .

whereRi is termed as interference range. Note that0 <

γi < γc, thusRi > Rc.

The physical model of our system is denoted by
Φ(N, (r1, . . . , rN ), P, γc, γi, α, N0).

A scheduleΨ(·) is feasibleif it satisfies the following:

1) Operational constraint: A node must not perform multi-
ple operations in a single time slot.

{ti,j, ri,j} ∩ {ti,k, ri,k} = φ ∀ i = 1, . . . , C

∀ 1 6 j < k 6 Mi (6)

2) Communication range constraint: Every receiver is
within the communication range of its intended trans-
mitter.

D(ti,j , ri,j) 6 Rc ∀i = 1, . . . , C ∀j = 1, . . . , Mi (7)

A scheduleΨ(·) is exhaustiveif it satisfies the following:

D(j, k) 6 Rc ⇒ j → k ∈
C
⋃

i=1

Si and k → j ∈
C
⋃

i=1

Si

∀ 1 6 j < k 6 N (8)

A scheduleΨ(·) is conflict-free in terms of SINR, if the
SINR at every intended receiver does not drop below the
communication threshold.

SINRri,j
> γc ∀ i = 1, . . . , C, ∀ j = 1, . . . , Mi (9)

B. Graph-Based Scheduling

The traditional approach in designing reuse schedules is to
use a graph model of the network and study the set of edges [7]
[9]. The STDMA networkΦ(·) is modeled by a directed graph
G(V , E), whereV is the set of vertices andE is the set of edges.
Let V = {v1, v2, . . . , vN}, where vertexvj represents thejth

node inΦ(·). In general,E = Ec ·∪ Ei, whereEc andEi denote
the set of communication and interference edges respectively.
If nodek is within nodej’s communication range, then there
is a communication edge fromvj to vk, denoted byvj

c→ vk.
If nodek is outside nodej’s communication range but within
its interference range, then there is an interference edge from
vj to vk, denoted byvj

i→ vk. Thus, the mapping fromΦ(·)
to G(·) can be described as follows:

D(j, k) 6 Rc ⇒ vj
c→ vk ∈ Ec and vk

c→ vj ∈ Ec
Rc < D(j, k) 6 Ri ⇒ vj

i→ vk ∈ Ei and vk
i→ vj ∈ Ei

A communication or an interference edge fromvj to vk will
be denoted byvj → vk. The subgraphGc(V , Ec) consisting of
communication edges only is termed as thecommunication
graph.

The scheduleΨ(·) is then designed from the graphG(·).
Specifically, an STDMA link scheduling algorithm is equiva-
lent to assigning a unique color to every communication edge
in the graph, such that source-destination pairs corresponding
to communication edges with the same color transmit simul-
taneously in a particular time slot. The traditional method
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for link assignment requires that two communication edges
vi

c→ vj andvk
c→ vl can be colored the same iff:

i) verticesvi, vj , vk, vl are all mutually distinct, i.e., there
is no primary edge conflict,and

ii) vi → vl 6∈ G(·) and vk → vj 6∈ G(·), i.e, there is no
secondary edge conflict.

The first criterion is based on the operational constraint. The
second criterion states that a node cannot receive a packet
while neighboring nodes are transmitting.

Graph-Based scheduling algorithms utilize various graph
coloring methodologies to obtain a non-conflicting schedule,
i.e., a schedule devoid of primary and secondary edge conflicts.
To maximize the throughput of an STDMA network, graph-
based scheduling algorithms seek to minimize the total number
of colors used to color all the communication edges ofG(·).

C. Limitations of Graph-Based Scheduling Algorithms

Observe that Criteria i) and ii) are not sufficient to guarantee
that the resulting scheduleΨ(·) is conflict-free. The link
assignments that fulfill the above criteria do not necessarily
satisfy the SINR condition (9).

Importantly, graph-based scheduling algorithms do not max-
imize the throughput of an STDMA network because:

1) Due to hard-thresholding based on communication and
interference radii, graph-based scheduling algorithms
can lead to high cumulative interference at a receiver
[7] [9]. This is because the SINR at receiverri,j de-
creases with an increase in the number of concurrent
transmissionsMi, while Rc and Ri have been defined
for a single transmission only. For example, consider

t i,1 t i,2
t i,3r i,1 r i,2 r i,3

Ri

Rc X12 34 5 6

Fig. 1. Graph-Based algorithms can lead to high cumulative interference.

Figure 1 with six labeled nodes whose coordinates are
1 ≡ (−360, 0), 2 ≡ (−450, 0), 3 ≡ (90, 0), 4 ≡ (0, 0),
5 ≡ (360, 0) and 6 ≡ (450, 0). The system parameters
are P = 10 mW, α = 4, N0 = −90 dBm, γc = 20
dB and γi = 10 dB, which yieldsRc = 100 m and
Ri = 177.8 m. A graph-based scheduling algorithm will
typically schedule the transmissions1→ 2, 3 → 4 and
5→ 6 in the same time slot, say theith time slot, since
the resulting graph coloring is devoid of primary and
secondary edge conflicts. However, our computations
show that the SINRs at receiversri,1, ri,2 and ri,3 are
21.26 dB, 18.42 dB and19.74 dB respectively. From the
physical interference model, transmissionti,1 → ri,1 is
successful, while transmissionsti,2 → ri,2 and ti,3 →
ri,3 are unsuccessful. This leads to low throughput.

2) On the other hand, graph-based scheduling algorithms
can be extremely conservative and result in a higher

Ri

Ri

Rc

Rcr i,1 t i,2
r i,2t i,1

21 4 3
X

Fig. 2. Graph-Based algorithms can lead to higher number of colors.

number of colors [19]. For example, with the same
system parameters as in 1), consider Figure 2 with
four labeled nodes whose coordinates are1 ≡ (0, 0),
2 ≡ (50, 0), 3 ≡ (220, 0) and 4 ≡ (170, 0). Assume
there are two transmission requests:1 → 2 and3 → 4.
If both the transmissions are scheduled in the same
slot, say theith time slot, our computations show that
the SINRs at receiversri,1 and ri,2 are both equal to
20.91 dB. From the physical interference model, both
transmissionsti,1 → ri,1 andti,2 → ri,2 are successful,
since signals levels are so high at the receivers that
strong interferences can be tolerated. However, due to
secondary edge conflicts, a graph-based scheduling algo-
rithm will schedule the above transmissions in different
slots, thus decreasing the throughput.

3) Graph-based scheduling algorithms are not geography-
aware, i.e., they determine a schedule without being
cognizant of the exact positions of the transmitters and
receivers.

D. Problem Formulation

In STDMA, we construct a graph modelG(V , Ec ·∪ Ei)
of the physical networkΦ(·). The communication graph
Gc(V , Ec) is an approximation ofΦ(·), while the two-tier
graphG(V , Ec ·∪ Ei) is a better approximation ofΦ(·). From
Φ(·) andGc(·), one can exhaustively determine the STDMA
schedule which yields the highest throughput according to the
physical interference model. However, this is a combinatorial
optimization problem of prohibitive complexity(O(|Ec||Ec|))
and is thus computationally infeasible.

To overcome these problems, we propose a new suboptimal
algorithm for STDMA link scheduling based on a more
realistic physical interference model. Our algorithm is based
on the communication graph modelGc(V , Ec) as well as SINR
computations.

To evaluate the performance of our algorithm and compare it
with existing suboptimal STDMA link scheduling algorithms,
we define the following metric: spatial reuse. Consider the
STDMA link scheduleΨ(·) for the networkΦ(·). Under the
physical interference model, the transmissionti,j → ri,j is
successful iff (3) is satisfied. Thespatial reuseof the schedule
Ψ(·) is defined as the average number of successfully received
packets per time slot in the STDMA schedule. Thus

Spatial Reuse= σ =

∑C

i=1

∑Mi

j=1 I(SINRri,j
> γc)

C
(10)
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where I(A) denote the indicator function for eventA, i.e.,
I(A) = 1 if event A occurs,I(A) = 0 if event A does not
occur.

The essence of STDMA is to have a reasonably large
number of concurrent and successful transmissions. For an
STDMA network which is operational for a long period of
time, sayL slots, the total number of successfully received
packets isLσ. Thus, a high value of spatial reuse3 directly
translates to higher long-term total network throughput and the
number of colorsC is relatively unimportant. Hence, spatial
reuse turns out to be a crucial metric for the comparison of
different STDMA algorithms.

We seek low complexity conflict-free STDMA link schedul-
ing algorithms with high spatial reuse. We only consider
STDMA schedules which are feasible and exhaustive. Thus,
our schedules satisfy (6), (7), (8) and (9).

E. Comparison with SINR-Based Scheduling Algorithms

In cognizance of our system model and performance metric,
our work is reasonably different from existing SINR-based
STDMA link scheduling algorithms.

The works in [11] [12] focus on minimizing the schedule
length, which does not necessarily translate to high network
throughput. On the other hand, spatial reuse directly corre-
sponds to network throughput capacity [18]. Power-controlled
algorithms can lead to excessively high transmit power (for
example, Line 16 in Algorithm 1 [12]), which is impracti-
cal since all wireless routers have constraints on maximum
transmit power. So, similar to [17], we consider uniform
transmit power at all wireless routers. Existing works on
SINR-based link scheduling, which are usually in the context
of 802.11 wireless networks [11] [15] and wireless mesh
networks [16] [17], consider many practical aspects of the
underlying communication protocol and network architecture.
Consequently, their system models are quite different fromour
pure STDMA network model.

To the best of our knowledge, this is the first attempt to
develop a centralized algorithm for SINR-based link schedul-
ing in a pure STDMA wireless ad hoc network with uniform
power assignment. Also, this work is different from previous
works due to the focus on spatial reuse.

Hence, we compare the performance of our algorithm with
existing graph-based algorithms only.

III. SINR-BASED L INK SCHEDULING ALGORITHM

A. Structure

We first describe the essential features of STDMA link
scheduling algorithms. The core of every link scheduling
algorithm consists of the following modules:

1) An order in which communication edges are considered
for coloring.

2) A function which determines the set of all existing colors
which can be assigned to the edge under consideration
without violating the problem constraints.

3Note that spatial reuse in our system model is analogous to spectral
efficiency in digital communication systems.

3) A BestColorrule to determine which conflict-free color
to assign to the edge under consideration.

The second module considers only operational and com-
munication range constraints in graph-based scheduling algo-
rithms. However, in the SINR-based link scheduling algorithm
that we propose, SINR constraints are also taken into account.
Note that this function is completely described by the problem
definition and does not vary from algorithm to algorithm. The
ordering of edges for coloring and the BestColor rule play a
significant role in determining the performance and computa-
tional complexity of an STDMA scheduling algorithm.

B. Motivation

Recall that graph-based models are inadequate to design
efficient link schedules under the physical interference model
and brute-force computation of an optimal link schedule that
maximizes spatial reuse is prohibitively complex (see Sections
II-C and II-D). Motivated by techniques from matroid theory
[20], we develop a computationally feasible algorithm with
demonstrably high spatial reuse. The essence of our algorithm
is to partition the set of communication edges into subsets
(forests) and color the edges in each subset sequentially. The
edges in each forest are considered in a random order for col-
oring, since randomized algorithms are known to outperform
deterministic algorithms, esp. when the characteristics of the
input are not known apriori [21].

A similar matroid-based network partitioning technique is
used in [22] to generate high capacity subnetworks for a
distributed throughput maximization problem in wireless mesh
networks. Techniques from matroid theory have also been
employed to develop efficient heuristics for NP-hard combi-
natorial optimization problems in fields such as distributed
computer systems [23] and linear network theory [24].

C. ConflictFreeLinkSchedule Algorithm

Our proposed SINR-based link scheduling algorithm is Con-
flictFreeLinkSchedule, which considers the communication
graphGc(V , Ec) and is described in Algorithm 1.

In Phase 1 (Line 3), we label all the vertices randomly.
Specifically, if Gc(·) has v vertices, we perform a random
permutation of the sequence(1, 2, . . . , v) and assign these
labels to vertices with indices1, 2, . . . , v respectively.

In Phase 2 (Line 4), the communication graphGc(·) is de-
composed into what are called as out-oriented and in-oriented
graphsT1, T2, . . . , Tk [1]. EachTi is a forest and every edge
of Gc(·) is in exactly one of theTi’s. This decomposition is
achieved by partitioning graphGc(·), the undirected equivalent
of Gc(·), into undirected forests. The number of forests can
be minimized by using techniques from Matroid theory (k-
forest problem, [25]). However, this optimal decomposition
requires extensive computation. Hence, we adopt the speedier
albeit non-optimal approach of using successive breadth first
searches to decomposeGc(·) into undirected forests. Each
undirected forest is further mapped to two directed forests. In
one forest, the edges in every connected component point away
from the root and every vertex has at most one incoming edge,
thus producing an out-oriented graph. In the other forest, the
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edges in every connected component point toward the root and
every vertex has at most one outgoing edge, thus producing
an in-oriented graph4.

In Phase 3 (Lines 5-14), the oriented graphs are considered
sequentially. For each oriented graph, vertices are considered
in increasing order by label5 and the unique edge associated
with each vertex is colored using the FirstConflictFreeColor
function.

Algorithm 1 ConflictFreeLinkSchedule

1: input: Physical networkΦ(·), communication graphGc(·)
2: output: A coloring C : Ec → {1, 2, . . .}
3: label the vertices ofGc randomly
4: use successive breadth first searches to partitionGc into

oriented graphsTi, 1 6 i 6 k

5: for i← 1 to k do
6: for j ← 1 to n do
7: if Ti is out-orientedthen
8: let x = (s, d) be such thatL(d) = j

9: else
10: let x = (s, d) be such thatL(s) = j

11: end if
12: C(x)← FirstConflictFreeColor(x)
13: end for
14: end for

The FirstConflictFreeColor function is explained in Algo-
rithm 2. For the edge under considerationx, it discards any
color that has an edge with a primary conflict withx. Now,
we consider the residual set of conflict-free colors sequentially.
We choose the first conflict-free color such that the resulting
SINRs at the receiver ofx and the receivers of all co-colored
edges exceed the communication thresholdγc. If no such color
is found, we assign a new color tox. Thus, this function
guarantees that the ensuing schedule is conflict-free in terms of
SINR. Since we choose the first SINR-compliant color and not
the ‘best’ SINR-compliant color according to some BestColor
rule, the computational complexity of this function is lower
than that of any other function which checks the SINRs at the
receivers of all co-colored edges.

IV. PERFORMANCERESULTS

A. Simulation Model

In our simulation experiments, the location of every node
is generated randomly, using a uniform distribution for its
X and Y coordinates, in the deployment area. For a fair
comparison of our algorithm with the Truncated Graph-Based
Scheduling Algorithm [7], we assume that the deployment
region is a circular region of radiusR. Thus, if (Xj , Yj) are
the Cartesian coordinates of thejth node,j = 1, . . . , N , then
Xj ∼ U [−R, R] andYj ∼ U [−R, R] subject toX2

j + Y 2
j 6

R2. Equivalently, if (Rj , Θj) are the polar coordinates of
the jth node, thenR2

j ∼ U [0, R2] and Θj ∼ U [0, 2π].

4An in-oriented graph is also constructed by Algorithm 1 in [12] to
determine a link schedule in a power-controlled STDMA network.

5In essence, the edges are scanned in a random order, since labeling is
random.

Algorithm 2 integer FirstConflictFreeColor(x)

1: input: Physical networkΦ(·), communication graphGc(·)
2: output: A conflict-free color
3: C ← set of existing colors
4: Cc ← {C(h) : h ∈ Ec, h is colored,x and h have a

primary edge conflict}
5: Ccf = C \ Cc
6: for i← 1 to |Ccf | do
7: r ← ith color in Ccf

8: Er ← {h : h ∈ Ec, C(h) = r}
9: C(x)← r

10: if SINR at all receivers ofEr ∪ {x} exceedγc then
11: returnr

12: end if
13: end for
14: return |C|+ 1

After generating random positions forN nodes, we have
complete information ofΦ(·). Using (4) and (5), we compute
the communication and interference radii, and then map the
network Φ(·) to the two-tier graphG(V , Ec ·∪ Ei). Once the
link schedule is computed by every algorithm, the spatial
reuse is computed using (10). We use two sets of values for
system parametersP , γc, γi, α, N0, N and R, which are
prototypical values of system parameters in wireless networks
[15] and describe them in Section IV-B. For a given set of
system parameters, we calculate the spatial reuse by averaging
this quantity over one thousand randomly generated networks.
Keeping all other parameters fixed, we observe the effect of
increasing the number of nodesN on the spatial reuseσ.

In our experiments, we compare the performance of the
following algorithms:

1) ArboricalLinkSchedule [1] (ALS)
2) Truncated Graph-Based Scheduling Algorithm6 [7]

(TGSA)
3) ConflictFreeLinkSchedule (CFLS)

B. Performance Comparison

In our first set of experiments (Experiment 1), we assume
that R = 500 m, P = 10 mW, α = 4, N0 = −90 dBm, γc =
20 dB andγi = 10 dB. Thus,Rc = 100 m andRi = 177.8
m. We vary the number of nodes from 30 to 110 in steps of
5. Figure 3 plots the spatial reuse vs. number of nodes for all
the algorithms.

In our second set of experiments (Experiment 2), we assume
that R = 700 m, P = 15 mW, α = 4, N0 = −85 dBm, γc =
15 dB andγi = 7 dB. Thus,Rc = 110.7 m andRi = 175.4
m. We vary the number of nodes from 70 to 150 in steps of

6In Truncated Graph-Based Scheduling Algorithm, for the computation of
optimal number of transmissionsM∗, we follow the exact method described
in [7]. Since 0 < ξ <

N0

P
, we assume thatξ = 0.9999N0

P
and

compute successive Edmundson-Madansky (EM) upper bounds [26] [27] till
the difference between successive EM bounds is less than0.3%. We have
experimentally verified that only high values ofξ lead to reasonable values
for M∗, whereas low values ofξ, say ξ = 0.1N0

P
, lead to the extremely

conservative value ofM∗ = 1 in most cases.
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Fig. 3. Spatial reuse vs. number of nodes for Experiment 1.

5. Figure 4 plots the spatial reuse vs. number of nodes for all
the algorithms.
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Fig. 4. Spatial reuse vs. number of nodes for Experiment 2.

For the ALS algorithm, we observe that spatial reuse
increases very slowly with increasing number of nodes.

For the TGSA algorithm, we observe that spatial reuse is18-
27% lower than that of ALS. A plausible explanation for this
behavior is as follows. The basis for TGSA is the computation
of M∗, the optimal number of transmissions in every slot.M∗

is determined by maximizing a lower bound on the expected
number of successful transmissions in a time slot. Since the
partitioning of a maximal independent set of communication
arcs into subsets of cardinality at mostM∗ is arbitrary and
not geography-based, there could be scenarios where the
transmissions scheduled in a subset are in the vicinity of each
other, resulting in moderate to high interference. In essence,
maximizing this lower bound does not necessarily translateto
maximizing the number of successful transmissions in a time
slot. Also, due to its design, the TGSA algorithm yields higher

number of colors compared to ALS.
For our CFLS algorithm, we observe that spatial reuse

increases steadily with increasing number of nodes and is
consistently25-50% higher than the spatial reuse of ALS and
TGSA.

C. Performance Comparison under Realistic Channel Condi-
tions

In a realistic wireless environment, channel impairments like
multipath fading and shadowing affect the received SINR at a
receiver [28]. In this section, we compare the performance of
the ALS, TGSA and CFLS algorithms in a wireless channel
which experiences Rayleigh fading and lognormal shadowing.

In the absence of fading and shadowing, the SINR at
receiverri,j is given by (1). We assume that every algorithm
(ALS, TGSA and CFLS) considers only path loss in the
channel prior to constructing the two-tier graphG(V , Ec ·∪ Ei)
and computing the link schedule. However, when evaluating
the performance of each algorithm, we take into account the
fading and shadowing channel gains between every pair of
nodes. Specifically, for computing the spatial reuse using (10),
we assume that the (actual) SINR at receiverri,j is given by

SINRri,j
=

P
Dα(ti,j ,ri,j)

V (ti,j , ri,j)10W (ti,j,ri,j)

N0 +
∑Mi

k=1

k 6=j

P
Dα(ti,k,ri,j)

V (ti,k, ri,j)10W (ti,k,ri,j)

where random variablesV (·) and W (·) correspond to chan-
nel gains due to Rayleigh fading and lognormal shadowing
respectively. We assume that{V (k, l)|1 6 k, l 6 N, k 6=
l} are independent and identically distributed (i.i.d.) random
variables with probability density function7 (pdf) [29]

fV (v) =
1

σ2
V

e
−v

σ2

V u(v)

and {W (k, l)|1 6 k, l 6 N, k 6= l} are i.i.d. zero mean
Gaussian random variables with pdf [30]

fW (w) =
1√

2πσW

e
−w2

2σ2

W

Random variablesV (·) and W (·) are independent of each
other and also independent of the node locations.

Our simulation model and experiments are exactly as de-
scribed in Sections IV-A and IV-B. In our simulations, we
assumeσ2

V = σ2
W = 1. For Experiment 1, Figure 5 plots the

spatial reuse vs. number of nodes for all the algorithms. For
Experiment 2, Figure 6 plots spatial reuse vs. number of nodes
for all the algorithms.

From Figures 3, 4, 5 and 6, we observe that spatial reuse
decreases by20-40% in a channel experiencing multipath
fading and shadowing effects. A plausible explanation for this
observation is as follows. Since the channel gains between ev-
ery pair of nodes are independent of each other, it is reasonable
to assume that the interference power at a typical receiver
remains almost the same as in the non-fading case. This is
because, even if the power received from few unintended

7u(·) is the unit step function.
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Fig. 5. Spatial reuse vs. number of nodes for Experiment 1 under multipath
fading and shadowing channel conditions.
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Fig. 6. Spatial reuse vs. number of nodes for Experiment 2 under multipath
fading and shadowing channel conditions.

transmitters is low, the power received from other unintended
transmitters will be high (on an average); thus the interference
power remains constant. Consequently, the change in SINR
is determined by the change in received signal power only.
If the received signal power is higher compared to the non-
fading case, the transmission is anyway successful and spatial
reuse remains unchanged (see (10)). However, if the received
signal power is lower, the transmission is now unsuccessful
and spatial reuse decreases. Hence, on an average, the spatial
reuse decreases.

Finally, from Figures 5 and 6, we observe that our CFLS
algorithm achieves5-17% higher spatial reuse than the ALS
algorithm and40-80% higher spatial reuse than the TGSA
algorithm, under realistic channel conditions.

V. A NALYTICAL RESULTS

In this section, we derive upper bounds on the running
time complexity (computational complexity) of the Conflict-
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Fig. 7. Comparison of thickness and number of edges with number of
vertices.

FreeLinkSchedule algorithm. We will use the following nota-
tion with respect to the communication graphGc(V , Ec):

e = number of communication edges

v = number of vertices

θ = thickness of the graph

:= minimum number of graphs into which the

undirected equivalent ofGc(·) can be partitioned

Before we prove our results, it is instructive to observe
Figure 7, which shows the variation ofθ ande with v for the
two experiments described in Section IV-B. Since determining
the thickness of a graph is NP-hard [31], each value ofθ in
Figure 7 is an upper bound on the actual thickness based on the
number of forests into which the undirected equivalent of the
communication graph has been decomposed using successive
breadth first searches. We observe that the graph thickness
increases very slowly with the number of vertices, while the
number of edges increases super-linearly with the number of
vertices.
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Lemma 1:An oriented graphT can be colored using no
more thanO(v) colors using ConflictFreeLinkSchedule.

Proof: Since an oriented graph withv vertices has at
mostv edges, the edges ofT can be colored with at mostv
colors.

Remark 1:The number of colors obtained by our algorithm
depends not only on the graph representation of the STDMA
network, but also on the positions of the nodes and the values
of P , γc, γi, α and N0. Since our algorithm is both graph-
based and SINR-based (hybrid), it is not possible to obtain a
tighter upper bound in Lemma 1.

Lemma 2:For an oriented graphT , the running time of
ConflictFreeLinkSchedule isO(v2).

Proof: Assuming that an element can be chosen ran-
domly and uniformly from a finite set in unit time (Chapter
1, [21]), the running time of Phase 1 can be shown to be
O(v). Since there is only one oriented graph, Phase 2 runs in
time O(1). In Phase 3, the unique edge associated with the
vertex under consideration is assigned a color using FirstCon-
flictFreeColor. From Lemma 1, the size of the set of colors to
be examined|Cc∪Ccf | is O(v). In FirstConflictFreeColor, the
SINR is checked only once for every colored edge in the set
⋃|Ccf |

i=1 Ei and at mostv times for the edge under consideration
x. With a careful implementation, FirstConflictFreeColor runs
in time O(v). So, the running time of Phase 3 isO(v2). Thus,
the total running time isO(v2).

Theorem 1:For an arbitrary graphG, the running time of
ConflictFreeLinkSchedule isO(ev log v + evθ).

Proof: Assuming that an element can be chosen ran-
domly and uniformly from a finite set in unit time [21],
the running time of Phase 1 can be shown to beO(v). For
Phase 2, the optimal partitioning technique of [25] based on
Matroids can be used to partition the communication graph
Gc into at most6θ oriented graphs in timeO(ev log v). Thus,
k 6 6θ holds for Phase 3. From Lemma 2, it follows that
the first oriented graphT1 can be colored in timeO(v2).
However, consider the coloring of thejth oriented graph
Tj, where 2 6 j 6 k. When coloring edgex from Tj

using FirstConflictFreeColor, conflicts can occur not only with
the colored edges ofTj , but also with the edges of the
previously colored oriented graphsT1, T2, . . . , Tj−1. This fact
is exemplified in Appendix I. Hence, the worst-case size of
the set of colors to be examined|Cc ∪ Ccf | is O(e). Note
that in FirstConflictFreeColor, the SINR is checked only once
for every colored edge in the set

⋃|Ccf |
i=1 Ei and at moste

times for the edge under considerationx. With a careful
implementation, FirstConflictFreeColor runs in timeO(e).
Hence, any subsequent oriented graphTj can be colored in
time O(ev). Thus, the running time of Phase 3 isO(evθ).
Therefore, the overall running time of ConflictFreeLinkSched-
ule is O(ev log v + evθ).

VI. D ISCUSSION

In this paper, we have developed ConflictFreeLinkSched-
ule, an SINR-based link scheduling algorithm for STDMA

multihop wireless ad hoc networks under the physical inter-
ference model. The performance of our algorithm is superior
to existing link scheduling algorithms for STDMA networks
with uniform power assignment. A practical experimental
modeling shows that, on an average, our algorithm achieves
40% higher spatial reuse than the ArboricalLinkSchedule [1]
and Truncated Graph-Based Scheduling [7] algorithms. Since
schedules are constructed offline only once and then used by
the network for a long period of time, these improvements
in performance directly translate to higher long-term network
throughput.

The computational complexity of ConflictFreeLinkSchedule
is comparable to the computational complexity of Arbori-
calLinkSchedule and is much lower than the computational
complexity of Truncated Graph-Based Scheduling Algorithm.
Thus, in cognizance of spatial reuse as well as computational
complexity, ConflictFreeLinkSchedule is a good candidate for
efficient SINR-based STDMA link scheduling algorithms.

We have recently developed computationally efficient algo-
rithms for STDMA broadcast scheduling under the physical
interference model. It would be interesting to apply techniques
like simulated annealing, genetic algorithms and neural net-
works to compute high spatial reuse conflict-free STDMA link
schedules.

APPENDIX I
EXAMPLE OF PRIMARY EDGE CONFLICTS WITH

PREVIOUSLY COLORED ORIENTED GRAPHS

1 2

3

4 5

6

L(1)=6 L(2)=4

L(3)=3

L(4)=5 L(5)=2

L(6)=1

Fig. 8. A six-node STDMA wireless ad hoc network, its communication
graph and node labels.

Consider the six-node STDMA wireless ad hoc network
shown in Figure 8, along with its associated communication
graphGc(·) and node labels. Using successive breadth first
searches,Gc(·) is partitioned into four oriented graphsT1, T2,
T3 andT4, as shown in Figure 9. A conflict-free coloring of
the first oriented graphT1 is shown in Table I. Now, when we
color an edge from any other oriented graph, we must take
into account the colors of the edges inT1. For example:

1) In T2, Edge6→ 3 cannot be assigned Color2 due to a
primary edge conflict with Edge1→ 3 of T1.

2) In T3, Edge5→ 6 cannot be assigned Color1 due to a
primary edge conflict with Edge2→ 5 of T1.

3) In T4, Edge3→ 2 cannot be assigned Color3 due to a
primary edge conflict with Edge1→ 2 of T1.
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Fig. 9. Decomposition of Fig. 8 into two out-oriented graphs(T1, T3) and
two in-oriented graphs(T2, T4).

Edge ofT1 Color
3 → 6 1
2 → 5 1
1 → 3 2
1 → 2 3
2 → 4 4

TABLE I

CONFLICT-FREE COLORING OF FIRST ORIENTED GRAPHT1 .
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