Challenges for Broadband Deployment in India

Abhay Karandikar

Department of Electrical Engineering
Indian Institute of Technology-Bombay

Mumbai 400076- India

Abhay Karandikar

Outline

- Broadband deployment scenario in India
- Next Generation Access Technologies
- Optimal Access Architecture

Challenges to bridge Digital (Information!) Divide

Affordability

- Access devices.
- Connectivity.
- Human Capital (Digital skills and capacity)
 - → General cognitive sense and skills necessary to make sense of online information.
 - Basic reading and writing skills required
 - Most web information available only in text form.
 - Need audio/video interface.
 - Access Interface
 - Needs to be more intuitive, simple.

Language Skills

Need for multi-lingual information access

Affordability

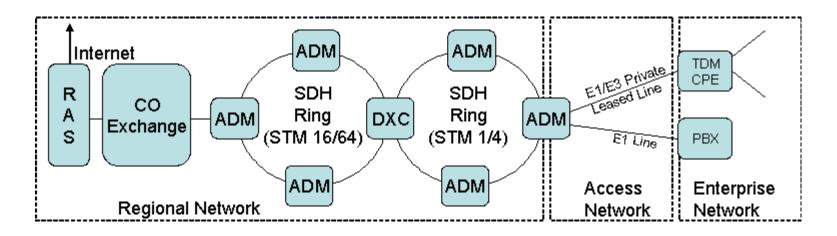
- In US, service provider can earn revenues to the extent of US\$ 360 per year per household for 90% household.
- In India, 90% households may not afford more than US\$ 100.
- In India, minimum data rate of 256 Kbps is considered as broadband.

Broadband Scenario in India and other Asian countries

Number of Household

- → Korea- 14.3 M
- → China-333M
- → India-192 M
- Broadband Connections (Year 2005 end)
 - → Korea- 11M
 - China- 64.3 M
 - → India- 0.9 M
- Indian Target
 - → 9M (2006)
 - → 30M (2007)
 - → 50 M (2010)

Problems for Service Providers


Challenges

- Poor Infrastructure
- Diverse demographics
- → High Capital costs

Technologies in use

- → TDM Model
- DSLAM Model
- Cable TV and Local Service Provider Model

Enterprise TDM Model

RAS: Remote Access Server

CO: Central Office

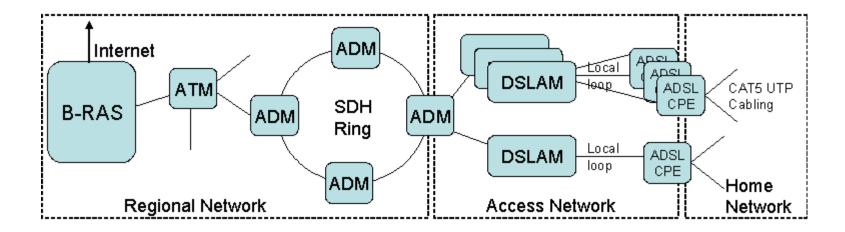
ADM: Add-Drop Multiplexer

SDH: Synchronous Digital Hierarchy

DXC: Digital Cross Connect

TDM: Time Domain Multiplexing CPE: Customer Premises Equipment PBX: Private Branch Exchange STM: Synchronous Transport Mode

Issues


Advantages

- → Offers Guaranteed Quality of Service
- Fast protection and restoration
- → Reliability

Bottlenecks

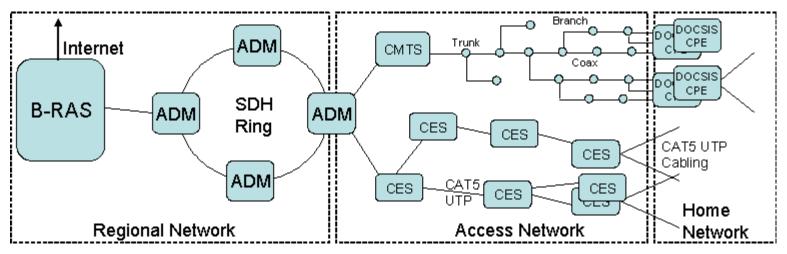
- No flexibility to scale with the needs of the customer
- → High cost of installation and slow provisioning
- Bandwidth does not grow linearly with customer demands
- Low bandwidth

DSLAM Model

ATM: Asynchronous Transfer Mode

ADM: Add-Drop Multiplexer

SDH: Synchronous Digital Hierarchy B-RAS: Broadband Remote Access Server ADSL: Asymmetric Digital Subscriber Line CPE: Customer Premises Equipment


DSLAM: DSL Access Multiplexer

CAT5 UTP: Category 5 Unshielded Twisted Pair

Bottlenecks

- Of 40 Million copper lines owned by state-owned Telco in India, only about 7 millions are technically fit for carrying DSL signals.
- Local loop unbundling has hardly happened.
- High cost of network elements in SDH and ATM backhaul network.

Cable TV and Local Service Provider Model

ADM: Add-Drop Multiplexer

SDH: Synchronous Digital Hierarchy

B-RAS: Broadband Remote Access Server

CMTS: Cable Modern Termination System

DOCSIS: Data Over Cable Service Interface Specification

CPE: Customer Premises Equipment Coax: Television grade Coaxial Cable CES: Consumer grade Ethernet Switch

CAT5 UTP: Category 5 Unshielded Twisted Pair

Bottlenecks

- Deployment and maintenance operationally challenging
- Cable infrastructure in most cities does not have bi-directional support
- In local service provider model, enterprise grade switch is used
 - → No security or user isolation.
 - No proactive network management
 - No traffic policing or rate shaping
 - → No Quality of Service Guarantees
 - → No built-in-redundancy

Next Generation Access Technologies

Next Generation SDH

Optical Ethernet or Ethernet over Fiber

Comments on Next Gen SDH

- Very popular in those carriers who already have installed base of SDH rings.
- Good choice of deployment when the predominant traffic is circuit switched.
- May be inefficient if the predominant traffic is bursty packet switched data.
 - Ethernet over Fiber and Copper is the solution.

Ethernet in Access

Reduces the cost of per user provisioning

- Relative technical simplicity
- → Due to large installed base

Efficient and Flexible transport

Can offer a wide range of speeds from 128 Kbps to 10 Gbps.

Ease of Interworking

Plug and play feature

Ubiquitous adoption

→ Ethernet is the dominant technology of choice in enterprise and campus LAN

Ethernet Deployment in Access

- Hub and Spoke Configuration
 - → Dedicated fiber/wavelength/copper is used for connectivity.
- Gigabit Ethernet Ring
- Fully meshed architecture

But what are the limitations with native mode Ethernet?

- How to identify different customers?
 - Notion of Ethernet virtual circuit like ATM VC that connects two or more UNI.
- How to enforce QoS?
 - Guaranteed SLA and QoS Attributes
 - Committed Information Rate (CIR)
 - Committed Burst Size (CBS)
 - ▶ Peak Information Rate (PIR)
 - Maximum Burst Size (MBS)
- Protection Mechanism
- In-service performance monitoring
- How to scale the number of customers?

Ethernet as Transport Mechanism in native mode

VLAN Tagging

→ Point to point VLAN can be used to establish virtual circuit

VLAN Stacking

- An already tagged frame can be tagged again to create a hierarchy.
- → 802.1Q in 802.1Q (Q-in-Q)

Protection and Restoration

→ Spanning Tree and Rapid Spanning Tree protocol (IEEE 802.1s)

QoS

Using 802.1p priority mechanism

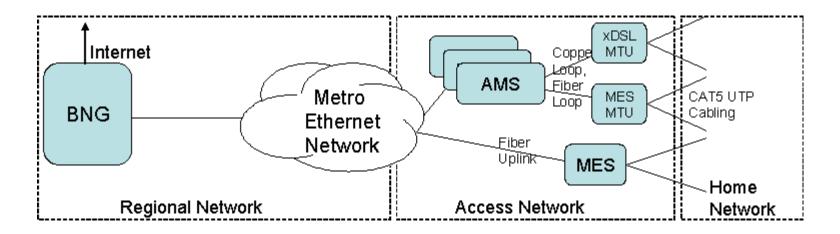
OAM

→ IEEE 802.1ag

Challenges with an All Ethernet Access

Scalability

- → Limited VLAN tag space allows only 4096 VC to be set up
- Traffic Engineering bottlenecks
 - → Spanning Tree allows only one loop free path which can result in uneven load distribution
- Service Provisioning
 - VLAN assignment and provisioning
- Limited protection and restoration available only through rapid spanning tree
 - → 50 ms resiliency not possible.
- TDM voice over Ethernet


MPLS bridges the gap

- MPLS can address the limitations of VLAN space, scaling with spanning tree, carrying VLAN information within network.
- Hybrid L2 Ethernet in access and IP/MPLS based core network is proposed for deploying Ethernet services.

MPLS as the transport mechanism in Core

- Scalability in terms of aggregation
- End to End QoS
 - Guaranteed Bandwidth LSP
- Offers circuit setup and traffic engineering capabilities
- Protection and Restoration
 - → MPLS-TE (Backup LSP/LSP Preemption, Fast Reroute Option)
- Support of TDM voice
 - Circuit emulation

Towards An Optimal Access Architecture

BNG: Broadband Network Gateway

xDSL: Any Digital Subscriber Line AMS: Access Multiplexer/Switch CPE: Customer Premises Equipment

MES: Metro Ethernet Switch MTU: Multi-Tenant Unit

CAT5 UTP: Category 5 Unshielded Twisted Pair

Optimal Access architectures

MES architecture

- MES with carrier class features and fiber uplink.
- Suffers from low port-fill rate leading to higher cost per port.
- → While fiber to every building is ultimate goal, deployment scenarios in the field are very complex.

MTU architecture

- Multi-tenant unit
 - ▶ First level of aggregation.
 - 4-8 port for optimal utilization.
 - Uplink- Fiber or VDSL
- → Access Multiplexer-Switch
 - Second level of aggregation.
 - ► Flexible Physical interfaces (VDSL, Ethernet over CAT5, Ethernet over Fiber)

Cost Comparisons

Parameter	DSLAM	LSP	MES	DSL MTU	MES MTU
Port Density	384	512	24	384	384
DSLAM Port	\$20	-	-	-	-
CPE	\$16	-	-	-	-
MTU Port	-	-	-	\$20	\$20
CES Port	-	\$2	-	-	-
MES Port	-	-	\$20	-	-
AMS Port	-	-	-	\$8	\$12
Copper Loop	\$40	-	-	\$5	-
Fiber Loop	-	-	-	-	\$8
CAT5 cabling	\$2	\$40	\$30	\$20	\$20
Fiber Uplink	\$2	\$2	\$10	\$2	\$2
Total per port	\$80	\$44	\$60	\$55	\$62

Comparisons

LSP Model

- → Least expensive
- Residential subscribers tend to overlook problems in favor of cost factor.

MES Model

- → Low-port fill rate leading to higher cost per port.
- Low device port density results in higher cost for upstream devices.

MES/MTU Model

→ Suits best for providing affordable access in countries like India.

Technology Development

- Eisodus Networks company incubated at IIT Bombay has developed solution based on MES-MTU architecture.
- www.eisodus.com

Conclusions

- Cost competitive access infrastructure key to bridge information divide.
- Discussed various technology options.
- Ethernet over Fiber with VDSL in last few hundred meters based MES-MTU architecture seems promising.
- We also need
 - Affordable computing platforms
 - Rich information environment
 - ► Content, language, interface, information retrieval