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Abstract: The escalating demand for high quality video streaming poses a major challenge for 1

communication networks today. Catering to these bandwidth hungry video streaming services 2

puts a huge burden on the limited spectral resources of communication networks, limiting the 3

resources available for other services as well. Large volumes of video traffic can lead to severe 4

network congestion particularly during live streaming events which require sending the same 5

content to a large number of users simultaneously. For such applications, multicast transmission 6

can effectively combat network congestion while meeting the demands of all the users by serving 7

groups of users requesting the same content over shared spectral resources. Streaming services 8

can further benefit from multi-connectivity that allows users to receive content from multiple base 9

stations simultaneously. Integrating multi-connectivity within multicast streaming can improve the 10

system resource utilization while also providing seamless connectivity to multicast users. Towards 11

this end, this work studies the impact of using multi-connectivity (MC) alongside wireless multicast 12

for meeting the resource requirements of video streaming. Our findings show that MC substantially 13

enhances the performance of multicast streaming, particularly benefiting the cell edge users who 14

often experience poor channel conditions. We particularly consider the number of users that can 15

be simultaneously served by multi-connected multicast systems. It is observed that, about 60% of 16

the users that are left unserved under single-connectivity multicast, are successfully served within 17

the same resources by employing multi-connectivity in multicast transmissions. We prove that the 18

optimal resource allocation problem for MC multicast is NP-hard. As a solution, we present a greedy 19

approximation algorithm with an approximation factor of (1− 1/e). Furthermore, we establish 20

that no other polynomial-time algorithm can offer a superior approximation. To generate realistic 21

video traffic patterns in our simulations, we make use of traces from actual videos. Our results 22

clearly demonstrate that multi-connectivity leads to significant enhancements in the performance of 23

multicast streaming. 24

Keywords: Multicast; Multi-connectivity; Video streaming; MBMS; 5G. 25

1. Introduction 26

Rapid growth of video streaming applications has been the primary driver of inno- 27

vation in cellular networks. As of 2023, video traffic constituted over 80% of all mobile 28

data traffic [1]. While revolutionizing the way media is consumed online, video streaming 29

has also created several challenges for telecommunication networks. Video streams are 30

resource intensive services that require a significant amount of bandwidth. As a result, the 31

exponential increase in demands for video streaming can quickly overload the network in- 32

frastructure leading to network congestion which leads to slower speeds, network outages, 33

and degraded quality of service. 34
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A large portion of video traffic is made up of live streaming from social media and 35

streaming platforms with millions of users watching the same content simultaneously. 36

These live streams pose additional challenges for the network due to their high data 37

rate, low latency, and overall quality of service requirements [2]. Using traditional one- 38

to-one or unicast communications for such applications involves transmitting the same 39

content separately to each user, thus consuming a large portion of the available bandwidth. 40

Multicast transmissions are an efficient means of catering to such services by serving 41

users that need the same content simultaneously [3,4]. Multi-connectivity allows users 42

to receive content from multiple base stations simultaneously. Therefore, when a video 43

is being streamed by several base stations, allowing multi-connectivity within multicast 44

transmissions can further improve the performance of multicast streaming services. We use 45

the term Multi-Connectivity (MC) multicast to refer to such a system where multi-connectivity 46

is used alongside multicast transmissions. In this MC multicast system, users are capable of 47

multi-connectivity and can, therefore, receive multicast content from multiple base stations 48

simultaneously. 49

This paper proposes the use of MC multicast for catering to simultaneous demands 50

for bandwidth hungry video streams. Integrating MC with multicast transmission not 51

only boosts cell capacity but also diminishes the reliance of multicast performance on the 52

weakest users in the system. While MC has received considerable attention for its impact on 53

throughput and handover improvements [5–8], its unexplored integration with multicast 54

transmissions presents a promising avenue for further research. 55

MC multicast allows users to potentially connect to and receive content from multiple 56

base stations and over various Radio Access Technologies (RATs) simultaneously. It can 57

address the demanding requirements of 5G, including high data rates, ultra-reliable low 58

latency, and high mobility [9]. By enabling users to receive content from multiple base 59

stations concurrently, it serves a larger user base and enhances the performance of the cell 60

edge users. The procedures for establishing multi-connectivity within the Third Generation 61

Partnership Project (3GPP) multicast architecture and the associated control signaling 62

requirements have been defined in [10]. 63

1.1. Contributions 64

This work studies the integration of multi-connectivity in multicast transmissions for 65

meeting the bandwidth demands of video streaming services. We address the problem 66

of resource allocation in a multi-connected multicast system with the aim of maximizing 67

the number of users that can be simultaneously served using multicast transmissions. 68

The analyses, discussions, and simulations in this work provide conclusive evidence that 69

multi-connectivity significantly improves the performance of multicast streaming systems. 70

The main contributions of this paper are summarized below. 71

• We propose a multi-connected multicast system specifically designed for video stream- 72

ing. This system utilizes the existing 3GPP Multimedia Broadcast Multicast Services 73

(MBMS) framework, enabling multicast users to receive streaming content from multi- 74

ple base stations seamlessly and with minimal signaling overhead. The resulting MC 75

multicast system serves as a low-overhead alternative to the MBMS Single Frequency 76

Network (MBSFN) operations within 3GPP multicast systems. 77

• We formulate the resource allocation problem in the MC multicast system with the 78

aim of maximizing the number of multicast users served simultaneously. Since the 79

MC multicast system is tailored for handling concurrent demands for bandwidth- 80

intensive video streams within limited resources, we employ the metric of number of 81

users simultaneously served to measure its performance. 82

• We prove that the resource allocation problem in MC multicast systems is NP-hard, 83

which means that there are no polynomial time algorithms to find the optimal solu- 84

tion. Therefore, we propose a centralized greedy approximation algorithm with an 85

approximation factor of (1− 1/e). We establish that this algorithm offers the most 86

accurate approximation achievable for the problem. 87
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• The centralized algorithm necessitates a central server to dictate resource allocation 88

across all base stations within a region. Such a coordination may become impractical 89

with increasing number of base stations. Therefore, we also propose a distributed re- 90

source allocation algorithm for MC multicast, allowing base stations to autonomously 91

make resource allocation decisions. 92

• Extensive simulations clearly demonstrate the performance enhancements attained by 93

incorporating MC in wireless multicast, particularly for video streaming applications. 94

We employ traces from actual video streams sourced from [11] and [12] to generate 95

realistic video traffic patterns in our simulations. 96

In the following section, we provide an overview of the current research across various 97

facets of multi-connectivity and multicast in cellular mobile networks. 98

1.2. Related Literature 99

Multicast has been recognized as an effective means of catering to bandwidth hun- 100

gry video transmissions [3] in cellular mobile networks. Resource allocation algorithms 101

designed for multicast streaming have been shown to serve significantly more users while 102

minimizing the impact of multicast streaming on other services [4,13]. Further improve- 103

ments in the performance of multicast video streaming have been achieved by exploiting 104

the inherent loss-tolerant nature of video streams [14]. 105

The use of MC has been studied for mitigating radio link failures in ultra-dense 106

intra-frequency 5G network deployments [15], demonstrating a substantial reduction in 107

failures and throughput improvements for cell-edge users. Additionally, proportional 108

fair allocation policies have been designed [16] tailored for multi-connected ultra-dense 109

networks, prioritizing users based on load balancing and signal characteristics. MC has also 110

been shown to enhance network availability for ultra-reliable low latency communication 111

(URLLC) applications in 5G [17] where network availability is crucial. MC also optimizes 112

the system resource utilization in URLLC through load-aware cell selection [18]. 113

Numerous architectures have been proposed for implementing MC in 5G [19]. Com- 114

parative evaluations in [20] assess throughput performance in distributed and cloud-based 115

heterogeneous network architectures, favoring cloud-based networks for superior through- 116

put. In [21], an architecture for 5G integrating multiple RATs is proposed, facilitating 117

seamless inter-RAT MC with LTE and Wireless Local Area Network (WLAN). A control 118

and user plane split architecture for MC in 5G NR was introduced in [22], bypassing macro 119

cells for user plane transmissions of multi-connected users. It has been shown in [23] 120

that MC exhibits significant reductions in transmit power compared to single-connected 121

systems, resulting in improved outage probability and spectral efficiency. MC has also been 122

examined as a means of optimizing power consumption, particularly for 5G heterogeneous 123

cloud radio access networks [24]. Furthermore, beyond cellular networks, MC also finds 124

applications in vehicle-to-anything (V2X) services, playing a pivotal role in meeting Quality 125

of Service (QoS) requirements [25]. 126

MC combined with guard bands has also been shown to provide substantial improve- 127

ment in millimeter-wave (mmWave) session continuity [26]. Methodologies in [27] evaluate 128

MC’s impact on ultra-dense urban mmWave networks, showcasing enhancements in de- 129

nial of service and session drop probabilities. The trade-offs between system complexity 130

and performance enhancement in multi-connected mmWave systems are explored in [28]. 131

In [29], a network throughput optimizing algorithm approaching the global optimum 132

solution was proposed for addressing the link scheduling problem in multi-connected 133

mmWave networks. Uplink MC frameworks presented in [30] efficiently monitor channel 134

dynamics and link directions in mmWave transmissions, leading to efficient scheduling 135

and session management. By mitigating radio link failures due to mobility, MC also ensures 136

seamless connectivity for mobile users [15]. Combination of MC and network coding is 137

studied in [31] to enable the transmission of high-quality video streaming services over 138

mmWave networks. 139
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Despite the wide-ranging applications of MC, its use in multicast streaming has not yet 140

been explored in the existing literature. This work is the first to leverage MC for this crucial 141

application and establish the improvements in system performance that are achieved by 142

using MC multicast for video streaming. We also address the problem of resource allocation 143

in the proposed system. The rest of this paper is organized as follows. An overview of the 144

existing 3GPP standards for multicast and MC is provided in Section 2. This is followed by 145

a discussion of how these two techniques can be used together within the current and future 146

generations of wireless mobile networks in Section 2.1. The MC multicast system model 147

and the associated resource allocation problem are discussed in Section 3. In Section 4, we 148

prove NP-hardness of the resource allocation problem and then provide an approximation 149

algorithm for it in Section 5. We then examine the use of distributed resource allocation 150

for MC multicast in Section 6. Finally, we present the simulation results in Section 7 and 151

conclude in Section 8. 152

Notation 153

The set of natural numbers is denoted by N. The cardinality of a set A is denoted by 154

|A|. The set of integers up to n is denoted as [n] = {1, 2, . . . , n}. An overview of the most 155

commonly used variable notations can be found in Table 1.

Table 1. Notation of the most commonly used variables

Symbol Explanation

M Number of UEs in the system
C Number of cells/base stations in the system
N Number of PRBs available for allocation in each cell
R Rate of transmission of the multicast content
rc

jk[t] The maximum rate that UE k can decode on PRB j of cell c at time t

K⋆ The MC multicast resource allocation problem

156

2. Multi-connectivity in MBMS 157

Multicast services were first standardized as part of the release 9 [32] of the 3GPP 158

standards as MBMS [33] and later as evolved-MBMS (eMBMS) [34], which is also a part of 159

the Fifth Generation (5G) New Radio (NR) [35] standards. Within MBMS, two modes of 160

multicast operation are defined, namely, Single Cell Point-To-Multipoint (SC-PTM) and 161

MBSFN. SC-PTM refers to the multicast mode where content is multicast to users within 162

a single cell. In the MBSFNs mode of operation, all the base stations within a designated 163

MBSFN area [36] transmit the same content in strict synchronization [33]. MBSFN transmis- 164

sions necessitate precise synchronization between all base stations in the MBSFN area and 165

extended cyclic prefixes. This is crucial to enhance service quality for cell-edge receivers, 166

as it enables the combination of signals from various base stations, resulting in improved 167

user experience. However, the extended cyclic prefix reduces system throughput, and 168

the requirement for tight synchronization results in significant control overheads. MC 169

multicast overcomes these limitations with a considerably simpler framework than MBSFN 170

and lower transmission overheads. We discuss this in greater detail in Section 2.2. 171

The supporting architecture for MBMS with 5G NR is shown in Figure 1. The net- 172

work elements that support MBMS services are the Broadcast Multicast Service Centre 173

(BM-SC), the MBMS GateWay (MBMS-GW) and the Multicell/Multicast Coordination 174

Entity (MCE) [33]. The BM-SC serves as an interface between the core network and the 175

multicast/broadcast content providers. It is responsible for transporting MBMS data into 176

the core network, managing group memberships and subscriptions and charging for MBMS 177

sessions [32]. The MCE is responsible for allocating radio resources to the base stations for 178

MBSFN operations. The MBMS-GW uses IP multicast to forward the MBMS session data 179
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to the base stations. The base stations can then transmit the data to the User Equipments 180

(UEs) via wireless multicast/broadcast. 181

Content
Provider

BM-SC

MBMS
GatewayMME

MCE

PDN Gateway

M1M1

M2

M3

M2

eNB1eNB2

Figure 1. MBMS architecture

In the following section, we discuss the features of MBMS that enable the use of the 182

proposed MC multicast operations. 183

2.1. Enabling Multi-connectivity in Multicast Transmissions 184

The MBMS user plane protocol architecture defines a Synchronization (SYNC) protocol 185

layer on the transport network layer for content synchronization [37]. This layer carries 186

information needed for identifying transmission times and detecting packet loss. The SYNC 187

protocol is terminated in the BM-SC and the base stations. As a result, the MBMS content 188

sent to the base stations associated with the same BM-SC are synchronized. Consequently, 189

UEs can receive and combine multiple copies of the same content received from these base 190

stations without the need to exchange any additional control signaling. The proposed 191

multi-connectivity multicast leverages this inherent synchronization in MBMS systems, 192

enabling UEs to obtain multicast content from multiple sources without requiring additional 193

synchronization. Furthermore, since MBMS operates as an idle mode procedure, UEs can 194

use MC multicast without establishing a Radio Resource Control (RRC) connection to a 195

base station. The signaling procedures for enabling MC in MBMS have been proposed 196

in [10]. 197

For enabling multi-connectivity in MBMS, we redefine the dynamic between the pri- 198

mary and secondary base stations of a multi-connected UE compared to what is traditionally 199

defined for unicast transmissions [38]. Specifically, we propose the following: 200

• Connectivity: Firstly, depending on its capability, a UE can connect to any number of 201

base stations and receive multicast content from all of them. A UE can also remain in 202

the RRC idle mode if it is not connected to any base station and still receive content 203

from any number of base stations [10]. 204

• Primary and Secondary Base Stations: For a UE using MC multicast in RRC idle mode, 205

the primary base station refers to the base station that it is camped on. For a UE in 206

RRC connected mode, the primary base station refers to the one it is connected to. All 207

other base stations from which the UEs may receive content are termed as secondary 208

base stations. Furthermore, the primary and secondary base stations of a UE do 209

not operate in a traditional master-slave configuration in MC multicast. Secondary 210

base stations are not dictated by the primary base station in their interaction with 211

the UE [10]. A multicast UE can receive relevant control information and multicast 212

data from multiple base stations independently. Thus, there is no real distinction 213

between primary and secondary base stations for a UE. Each base station that serves 214
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the UE under MC multicast is equivalent from the perspective of the MC multicast 215

transmissions. 216

2.2. MC multicast versus MBSFN 217

5G NR uses MBSFN to enhance system efficiency by simultaneously transmitting 218

identical content over the same radio resources within neighboring cells grouped in an 219

MBSFN area. By leveraging the use of multi-connectivity, MC multicast can provide 220

the same advantages as MBSFN transmissions while employing a significantly simpler 221

framework with reduced transmission overheads. Similar to MBSFNs, a UE can receive 222

multicast content from multiple base stations, leading to an enhanced Signal-to-Noise 223

Ratio (SNR), particularly for cell-edge users. However, unlike MBSFN operations, base 224

stations in MC multicast are not obligated to use the same Physical Resource Blocks (PRBs) 225

for streaming multicast content. In MC multicast, identical MBMS services are streamed 226

through multiple base stations, and each base station independently allocates PRBs to the 227

multicast streams. Consequently, each base station can optimize resource allocation for 228

various services within its cell, resulting in significant frequency diversity that improves 229

the probability of reliably receiving MBMS content. A multicast UE has the flexibility to 230

decode any of the multiple copies of the content it receives. As demonstrated in Section 7, 231

this diversity leads to substantial performance improvements in terms of the number of 232

UEs served and the number of packets successfully delivered. 233

In the following section, we discuss the resource allocation problem in the MC multi- 234

cast system. 235

3. Resource Allocation in MC Multicast 236

Consider a system of C cells, each with one base station serving it. There are M multi- 237

connected multicast UEs in the system that can receive multicast content from any subset 238

of the C base stations. The set [C] = {1, 2, . . . , C} denotes the set of all cells/ base stations 239

and the set of all users is denoted by [M] = {1, 2, . . . , M}. Resource allocations decisions 240

are taken at every time slot t. In each time slot, there are N PRBs available for allocation 241

in each cell. The set of all PRBs is denoted by [N] = {1, 2, . . . , N}. We assume that there 242

is multicast content available in all the cells that is being streamed by all the UEs. The 243

multicast content is streamed at a rate of R bits per second. The UEs can potentially receive 244

the multicast streaming content from any number of neighboring base stations in addition 245

to their respective primary base stations. The multicast stream is allocated one PRB in each 246

cell, in each time slot. Resource allocation decisions are either taken independently by each 247

base station or by a central entity such as the MCE that manages the base stations within a 248

region. 249

The channel states of UEs vary as a function of time t as well as the PRB j ∈ [N]. On 250

PRB j of cell c at time t, UE k can decode a maximum rate of rc
jk[t] bits per second which is a 251

function of the channel state of the UE. That is, the better the channel experienced by UE k, 252

the higher will be the rate rc
jk[t]. Since the multicast content is transmitted at rate R bits per 253

second, a UE may not successfully receive the multicast content from the base station that 254

it is connected to. For instance, consider that the PRB j is allocated to the multicast stream 255

in cell c at time t. UE k will be able to decode the content sent by c only if R ≤ rc
jk[t]. On the 256

other hand, if R > rc
jk[t], UE k will not be able to successfully decode the content sent from 257

cell c. Thus, in the absence of multi-connectivity, a UE can successfully receive data only if 258

it can decode the content from its primary cell whereas, a multi-connected UE successfully 259

receives data if it can decode the content from any one of the base stations that it receives 260

the content from. 261

Remark. Note that, even though we assume a constant bit rate R, video streaming traffic 262

typically uses a variable bit rate (VBR) encoding, which means that the amount of data to 263

be transmitted for the video varies over time. We employ a constant rate model for the 264

sake of simplicity in defining the resource allocation problem. However, our problem, as 265

well as the proposed resource allocation policies can be easily adapted to the VBR model 266
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by considering the proposed setup as a snapshot of a longer VBR video stream. More 267

specifically, to adapt to the VBR model, the transmission rate R can be made a function of 268

time t (denote by R(t)). Then, the system model discussed above essentially represents a 269

small enough block of time during which the rate R(t) is constant. Similarly, the resource 270

allocation problem can be defined with the time dependent rate R(t). As we will see in the 271

following sections, the proposed policies take allocation decisions in every time slot. Thus, 272

the proposed policies can be used as is with the relevant rate R(t) in each time slot. 273

In the following, we define the resource allocation problem for this system. 274

3.1. Problem Definition 275

The resource allocation problem within the MC multicast system aims to maximize 276

the number of UEs served in each time slot. We choose the number of UEs served as 277

the optimization metric for this problem to capture the unique requirements of the MC 278

multicast problem. The primary objective of the MC multicast system is to ensure that the 279

multicast video stream is delivered to a large audience without causing network congestion. 280

Note that our system model construction ensures that only one resource is allocated to the 281

multicast stream in each time slot, which prevents overloading the system while serving 282

several video streams. Therefore, we use the number of users served to illustrate the 283

effectiveness of the resource allocation algorithms in meeting the video streaming demands 284

of users within the limited resources. 285

In the system under consideration, since a UE can receive the same content from 286

several base stations, its performance is impacted by the resource allocation decisions 287

across multiple cells. Therefore, the resource allocation needs to be optimized over all the 288

C cells in the system. Throughout this paper, we assume that the users are static and do not 289

change positions for the entire duration of the multicast transmissions. 290

For the mathematical formulation of the resource allocation problem, we first define
the following sets. Assuming that every UE is trying to receive the multicast content from
the base station of cell c, denote by Ujc ⊆ [M] the set of users that would successfully
receive the multicast content if PRB j is allocated to the multicast service in cell c, i.e., for all
c ∈ [C] and all j ∈ [N], the set Ujc is given by

Ujc = {k ∈ [M] : R ≤ rc
jk[t]}. (1)

The collection of all such sets corresponding to cell c is given by

Uc = {U1c, U2c, . . . , UNc}. (2)

Let U be the collection of sets U = {U1, . . . ,UC}. Using these definitions, the resource 291

allocation problem for the MC multicast system can now be stated as follows: 292

Definition 1 (Resource allocation problem K⋆). Given the universal set of all the users [M] and
the collection of sets U = {U1, . . . ,UC}, determine U ′ ⊆ U such that |⋃Ujc∈U ′ Ujc| is maximized
subject to:

|U ′| = C, and (3)

|U ′ ∩ Uc| = 1, for all c ∈ [C]. (4)

Then, in each cell c ∈ [C], the PRB assigned to the multicast stream is given by j ∈ [N] such that 293

Ujc ∈ U ′. 294

The objective of the of the resource allocation problem K⋆ in Definition 1 is to maximize 295

the cardinality of the union of sets
⋃

Ujc∈U ′ Ujc, which is the set of users successfully served. 296

The solution U ′ of K⋆ is subject to the following constraints: 297
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1. For all c ∈ [C], |U ′ ∩ Uc| = 1: This constraint ensures that there is precisely one set 298

Ujc in U ′ corresponding to each cell c ∈ [C]. That is, only one PRB is assigned to the 299

multicast stream in each cell, as required by the problem formulation. 300

2. |U ′| = C: This constraint ensures that there are precisely C of the Ujc sets in the 301

solution set U ′. Together with the constraint in 1, this guarantees that a set Ujc is 302

chosen for every cell c, i.e., a PRB is allocated for multicast streaming in every cell. 303

The resource allocation decisions are a function of: a) the channel states of UEs in each of 304

the N PRBs, b) the number of UEs streaming the multicast content, and c) the location of 305

the UEs with respect to each base station. 306

4. Computational Complexity 307

We show that the resource allocation problem K⋆ is NP-hard problem and therefore, 308

no polynomial time algorithms exist for solving it. We prove this by reduction from the 309

Maximum Coverage Problem (MCP) [39], which is a known NP-hard problem defined as 310

follows. 311

Definition 2 (Maximum Coverage Problem (MCP)). Consider a universal set S , a number 312

k ∈ N and a collection of sets T = {T1, T2, . . . , Tm} where, for all j ∈ [m], Tj ⊆ S . The objective 313

of the MCP is to determine a sub-collection T ′ ⊆ T such that T ′ ∈ arg max|T ′ |≤k |
⋃

Tj∈T ′ Tj|. 314

That is, given a collection T of m subsets of a universal set S , the objective of the MCP 315

is to find the sub-collection of at most k subsets from T that cover the maximum number of 316

elements from the universal set S . 317

Theorem 1. The MC multicast resource allocation problem K⋆ is NP-hard. 318

Proof. The proof of NP-hardness of K⋆ can be accomplished in the following steps: 319

1. First, we show that an instance of a known NP-hard problem (MCP in this case) can 320

be reduced to an instance of K⋆ in polynomial time. This means that, we can design a 321

polynomial time algorithm which takes MCP as the input and results in an instance 322

of K⋆. 323

2. Next, we show that a solution of K⋆ can be mapped to a corresponding solution for 324

the MCP in polynomial time. 325

3. Finally, using 1 and 2, we prove that no-polynomial time algorithm exists for solving 326

K⋆ because such an algorithm would also provide a polynomial time solution for the 327

MCP which is known to be NP-hard. 328

We begin by defining an algorithm to reduce an instance of MCP to an instance of K⋆
329

in polynomial time. An instance of MCP can be reduced to an instance of K⋆ as follows. 330

• Given an instance of the MCP in Definition 2 with the universal set S , the collection of 331

m sets T = {T1, T2, . . . , Tm} with Tj ⊆ S and some k ∈ N. 332

• Define a MC multicast system with the set of UEs [M] = S , number of cells C = k, the 333

number of PRBs in each cell N = m, and for all c ∈ [C], the set Ujc = Tj. 334

• This defines a resource allocation problem of the form of K⋆ in Definition 1. This 335

reduction can be accomplished in constant time (O(C)). 336

The pseudo-code of the algorithm for accomplishing this reduction is given in Algo- 337

rithm 1. 338
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Algorithm 1: Pseudo-code for reducing MCP to K⋆

Input: MCP with collection of sets T = {T1, T2, . . . , Tm} with Tj ⊆ S and a
number, k ∈ N

Output: An instance of K⋆ with
1 [M]← S
2 C ← k
3 N ← m
4 for j← 1 to m do
5 for c← 1 to C do
6 Ujc ← Tj

7 end
8 end

339

This gives a one-to-one correspondence between an instance of MCP and an instance 340

of K⋆ which completes the first step of the proof. We now proceed to show that a solution 341

of the resulting instance of K⋆ can be mapped to a solution of MCP in polynomial time. 342

Let us assume that there exists a polynomial time algorithm for solving the instance of 343

K⋆ resulting from Algorithm 1 that provides a solution U ′. Then, the following hold true 344

by the definition of K⋆: 345

• |U ′| = k, 346

• For all c ∈ [k], |U ′ ∩ Uc| = 1, 347

• U ′ maximizes |⋃Ujc∈U ′ Ujc|. 348

This solution can be mapped to a solution of MCP as follows. Given the MCP in Definition 2, 349

construct the solution set T ′ = {T1, T2, . . . , Tm} such that, if Ujc ∈ U ′, then Tj ∈ T ′. Since 350

|U ′| = k, it holds that |T ′| ≤ k. Therefore, by Definition 2, the constructed set T ′ is a 351

feasible solution of MCP. The pseudo-code for this mapping is given in Algorithm 2. 352

Algorithm 2: Pseudo-code for mapping a solution of K⋆ to a solution of MCP

Input: Solution of K⋆ U ′ ⊆ U such that |U ′| = C and |U ′ ∩ Uc| = 1, ∀ c
Output: Solution of MCP T ′

1 for j← 1 to m do
2 if Ujc ∈ U ′ for some c then
3 Tj ∈ T ′
4 end
5 end

To complete the proof, what is left to prove is that the constructed solution T ′ is indeed 353

the optimal solution of MCP. We prove this by contradiction as follows. 354

Let us assume that T ′ is not the optimal solution of MCP. This implies that, there exists
a set T ′′ ⊆ T such that |T ′′| ≤ k ∣∣∣∣∣∣ ⋃

Tj∈T ′′
Tj

∣∣∣∣∣∣ >
∣∣∣∣∣∣ ⋃
Tj∈T ′

Tj

∣∣∣∣∣∣. (5)

If (5) is true, then we can construct another solution to K⋆, U ′′ using T ′′ as follows. Say
T ′′ = {Tj1 , . . . , Tjℓ} with ℓ ≤ k and say j1 < j2 < . . . < jℓ. We construct the set U ′′ as
follows

U ′′ = {Uj11, Uj22, . . . , Ujℓℓ, U1(ℓ+1), . . . , U1C}. (6)

Then, by Definition 1, the following hold true: 355

• |U ′′| = C, 356

• For all c ∈ [C], |U ′′ ∩ Uc| = 1, and 357
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• |⋃Ujc∈U ′′ Ujc| > |
⋃

Ujc∈U ′ Ujc|, 358

which contradicts our assumption that U ′ is the optimal solution of K⋆. This implies that, 359

there does not exist any set T ′′ such that |T ′′| ≤ k and |⋃Tj∈T ′′ Tj| > |
⋃

Tj∈T ′ Tj|. Therefore, 360

T ′ is indeed the optimal solution of MCP. 361

Algorithm 2 maps a solution of K⋆ to a solution of MCP in constant time (O(C) 362

assignments). Thus, a polynomial time solution for K⋆ also provides a polynomial time 363

solution for MCP. This is not possible unless P = NP. This implies that no polynomial time 364

algorithm exists for solving K⋆ and therefore, K⋆ is an NP-hard problem. 365

Since the MC multicast resource allocation problem is NP-hard, we cannot construct a 366

polynomial time algorithm to determine its optimal solution. Therefore, in the following 367

section, we construct approximation algorithms that provide some performance guaran- 368

tees. 369

5. Centralized Greedy Approximation Algorithm 370

We propose a greedy approximation algorithm for solving the resource allocation 371

problem K⋆. The Centralized Greedy Approximation (CGA) works iteratively by maxi- 372

mizing the number of additional users served in each iteration. In the first iteration, CGA 373

chooses the set Ujc of the form in (1) from U that has the largest number of elements. In the 374

subsequent steps, it picks Ujc’s that serves the maximum number of as yet unserved users. 375

In each step, the set chosen is from a different sub-collection Uc i.e., c in the subscript of the 376

chosen sets is different for each set picked by the algorithm. The collection of sets chosen 377

after C iterations UG, is the output of the algorithm. 378

The steps involved in the decision making of the CGA policy are explained below. To 379

begin, we have an empty solution set UG. 380

1. In the first step of CGA, the algorithm finds the largest set Uj⋆c⋆ ∈ U , i.e., (j⋆, c⋆) ∈ 381

arg maxj∈[N],c∈[C]{Ujc}. 382

2. The solution set UG is updated to UG
⋃{Uj⋆c⋆}. This implies that the PRB j⋆ is allocated 383

to the multicast stream in cell c⋆. 384

3. Next, for all j ∈ [N], the sets Ujc⋆ are removed from the set U . This step ensures that 385

the algorithm finds a feasible solution that satisfies the constraint (4) in Definition 1. 386

4. In the next step, CGA picks the set Uj⋆c⋆ ∈ U that contains the maximum number of 387

UEs that were not present in any set Ujc picked in the previous iterations and assigns 388

PRB j⋆ to the multicast stream in cell c⋆. Following this, steps 2, 3, and 4 are repeated 389

(C− 1) times to determine the solution. 390

At the end of C iterations of CGA, the output set UG contains exactly C sets of the 391

form Ujc. The PRB assigned to the multicast stream in cell c is given by j ∈ [N] such that 392

Ujc ∈ UG. 393

The pseudo-code for this algorithm is given in Algorithm 3.

Algorithm 3: Centralized Greedy Approximation Algorithm for K⋆

Input: Universe [M], U = {U1, . . . ,UC}, C
1 Initialize: UG = ϕ
2 for n = 1 : C do
3 Pick Uj⋆c⋆ ∈ U that covers the maximum number of elements from

[M] \⋃Ujc∈UG
Ujc

4 UG ← UG
⋃{Uj⋆c⋆}

5 U ← U \ Uc⋆

6 end

394

In the following theorem, we prove that the solution to K⋆ given by CGA has an 395

approximation factor of
(

1− 1
e

)
. This means that the solution provided by this approximation 396
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algorithm serves at least
(

1− 1
e

)
of the number of users that would be served by the optimal 397

algorithm. 398

To state this result, we first define the following notation. Let OPT denote the optimal
solution to the resource allocation problem K⋆, i.e., the optimal algorithm would serve
OPT number of UEs in the system. Denote by mn the number of UEs served up to the nth

iteration by the CGA algorithm. The gap between the optimal solution and the intermediate
solution of the CGA algorithm after the nth iteration is given by

bn = OPT −mn. (7)

Therefore, m0 = 0, b0 = OPT and the total number of UEs served by CGA algorithm at the 399

end of C iterations is given by mC. Using these notations, the following theorem gives the 400

approximation factor for the CGA algorithm. 401

Theorem 2. The CGA algorithm (Algorithm 3) is a
(

1− 1
e

)
approximation for the resource

allocation problem K⋆. That is,

mC ≥
(

1− 1
e

)
OPT. (8)

In fact, no other algorithm can achieve a better approximation unless P = NP. 402

To prove Theorem 2, we first prove the following two results. First, in Lemma 1, 403

we determine the lower bound on the incremental improvements in solution achieved in 404

the intermediate steps of the CGA algorithm. This result will quantify the rate at which 405

the CGA algorithm approaches the optimal solution. Then, in Lemma 2, we provide an 406

upper bound on bn which quantifies the gap between the optimal solution OPT and the 407

intermediate solution of the CGA algorithm at the n-th iteration, mn. Finally, using these 408

two results, we can prove that solution of the CGA algorithm is at least within
(

1− 1
e

)
of 409

the optimal solution. 410

Lemma 1. Under the CGA algorithm, the number of additional UEs served from iteration n to
n + 1 is lower bounded by bn

C . That is, for all n ≥ 0, it holds that,

mn+1 −mn ≥
bn

C
, (9)

where C is the total number of cells in the system and bn is in (7). 411

Proof. Let UOPT = {U⋆
1 , . . . , U⋆

C} be the optimal solution of the resource allocation problem
K⋆ where, for all c ∈ [C], the set U⋆

c is the set of UEs served by the base station of cell
c. Denote by Mn, the set of users served at the end of the nth iteration of CGA and
MC

n = [M] \ {Mn} is the set of users not yet covered at the end of the nth iteration. Then, it
holds that:

C

∑
c=1

∣∣∣U⋆
c
⋂

MC
n

∣∣∣ ≥ ∣∣∣∣∣ C⋃
c=1

(
U⋆

c
⋂

MC
n

)∣∣∣∣∣ (10)

≥ OPT −mn = bn. (11)

Due to multi-connectivity, the sets U⋆
1 , . . . , U⋆

C are not disjoint which implies the inequality 412

in (10). The quantity
∣∣∣⋃C

c=1
(
U⋆

c
⋂

MC
n
)∣∣∣ on the right hand side of (10) gives the number of 413

unserved UEs after n iterations that would be served by the optimal solution UOPT . To 414

arrive at the inequality in (11), note that, the UEs served by the CGA algorithm may not 415
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be the same UEs that the optimal algorithm serves. Therefore,
∣∣∣⋃C

c=1
(
U⋆

c
⋂

MC
n
)∣∣∣ is at least 416

equal to OPT −mn. 417

From (10) and (11), it follows that

max
c∈[C]

∣∣∣U⋆
c
⋂

MC
n

∣∣∣ ≥ (OPT −mn)

C
(12)

=
bn

C
. (13)

Since CGA picks the set that serves the maximum possible number of yet unserved users
in each iteration, we have:

mn+1 −mn ≥ max
c∈[C]

∣∣∣U⋆
c
⋂

MC
n

∣∣∣. (14)

From (13) and (14), it follows that

mn+1 −mn ≥
bn

C
, (15)

which completes the proof. 418

Lemma 2. The difference between the number of UEs served in the optimal solution and the number
of users served by the at the end of n + 1 iterations of the CGA algorithm is upper bounded as
follows.

bn+1 = OPT −mn+1 ≤
(

1− 1
C

)n+1
OPT, (16)

where mn+1 denotes the total number of UEs served by CGA up to and including the (n + 1)th
419

iteration. 420

Proof. We prove this result by induction. For n = 0, if

b1 = OPT −m1 ≤
(

1− 1
C

)
OPT, (17)

it implies that,

m1 ≥
OPT

C
=

b0

C
, (18)

which is true due to Lemma 1. Thus, the result holds for n = 0. 421

Now we assume that

bn ≤
(

1− 1
C

)n
OPT, (19)

and prove the corresponding inequality for bn+1. 422

From the definition of bn, it follows that:

bn+1 = OPT −mn+1 (20)

= (bn −mn)−mn+1 (21)

= bn − (mn+1 −mn), (22)

≤ bn −
bn

C
= bn

(
1− 1

C

)
, (23)

≤
(

1− 1
C

)n+1
OPT, (24)
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where, the inequality in (23) follows due to Lemma 1 and (24) follows from (23) due 423

to (19). Therefore, by mathematical induction, the result holds for all n. This completes the 424

proof. 425

Using these results, we can now prove Theorem 2 as follows. 426

Proof. From Lemma 2, it follows that

bC = OPT −mC ≤
(

1− 1
C

)C
OPT. (25)

In the limit as C → ∞, from (25), it follow that

OPT −mC ≤
OPT

e
, (26)

which implies that

mC ≥
(

1− 1
e

)
OPT. (27)

That is, CGA provides a
(

1− 1
e

)
approximation for K⋆. 427

To complete the proof of Theorem 2, it only remains to show that this is the best 428

possible approximation for K⋆. This can be easily seen using the following arguments. Let’s 429

assume that there is an algorithm that could provide a better approximation for K⋆. Then, 430

this algorithm would also provide a better approximation for MCP because, as we proved 431

in Theorem 1, a solution for K⋆ can be mapped to a solution of MCP in polynomial time 432

using Algorithm 2. This is a contradiction since the greedy algorithm is known to be the 433

best possible approximation for MCP unless P = NP [40]. Therefore, no other algorithm can 434

provide a better approximation for K⋆ than the CGA algorithm. 435

This completes the proof. 436

5.1. Comparison with optimal solutions 437

In this section, we evaluate the performance guarantees of the proposed CGA algo- 438

rithm by comparing its solution with the optimal solution obtained for a smaller sized 439

problem of the form in Definition 1. For the purposes of this comparison, we use a 3 440

cell MC multicast system with 5 PRBs in each cell. To obtain the optimal solution, we 441

employ a brute force algorithm that works as follows. The brute force algorithm first lists 442

out all the possible PRB allocations for the 3 cell system. For instance, for a system with 443

2 cells and 2 PRBs denoted by p1 and p2 in each cell, the possible allocations would be 444

(p1, p1), (p1, p2), (p2, p1), (p2, p2). Following this, the algorithm finds the total number of 445

UEs that would be served under each of these possible allocations. Finally, the output of 446

the algorithm is the allocation that serves the maximum number of UEs. 447

In Figures 2(a) and 2(b), we plot the number of UEs left unserved under the CGA 448

algorithm and the corresponding optimal value obtained using the brute force algorithm. 449

We refer to the plot corresponding to the brute force algorithm as ‘Optimal’ in the figures. 450

Figure 2(a) shows the number of UEs left unserved under the two algorithms as a function 451

of increasing number of UEs in the system. We observe that the solution of CGA matches 452

the optimal solution for upto 30 UEs in the system. As the number of UEs increases, up 453

to 3 additional UEs are left unserved while using the CGA algorithm as compared to 454

the optimal solution. Figure 2(b) shows the number of UEs left unserved under the two 455

algorithms as a function of increasing cell sizes. We observe that CGA serves just as many 456

UEs as the optimal solution for smaller cell sizes. As the cell sizes increase, one additional 457

UE is left unserved under the CGA algorithm as compared to the optimal solution. 458
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These plots show that the CGA algorithm provides optimal solutions for smaller 459

systems. However, as the scale of the system increases, the solution provided by the CGA 460

algorithm becomes sub-optimal. 461
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Figure 2. A comparison of the average number of users left unserved under CGA and the optimal
resource allocation as a function of, a) increasing number of users, and b) increasing cell radii (number
of users = 10).

Although the CGA algorithm provides provable approximation guarantees, it does so 462

while requiring the presence of a central controller that can make allocation decisions for 463

all base stations, based on the global view of the system. As the number of cells C increases, 464

such a centralized setup may lead to large communication overheads and increased delays. 465

In this case, a decentralized approach where base stations make allocation decisions in- 466

dependently might be more feasible, albeit at the cost of losing on the performance of the 467

MC multicast streaming. In the following, we discuss the performance trade-offs between 468

the centralized and distributed allocation for MC multicast and propose a distributed 469

approximation algorithm for K⋆. 470

6. Distributed Resource Allocation 471

In the absence of a centralized controller, allocation decisions are made by each 472

base station independently based only on the knowledge of its own cell. This type of 473

allocation does not fully reap the benefits of multi-connectivity. We illustrate this with 474

the following example. Consider a 2 cell system containing cells c1 and c2. There are two 475

PRBs available for allocation in each cell. We denote these as P1 and P2. Cell c1 has four 476

users, {u1, u2, u3, u4} and cell c2 has two users {u5, u6}. All users are streaming the same 477

multicast content. Assume that user u1 has a good channel only in P1 and can successfully 478

receive content only on P1. Users u3, u4, u5 and u6 have a good channel only in P2 and can, 479

therefore, successfully receive content only on P2. User u2 has a good channel in both the 480

PRBs and would be served on either of them. Users u1, u3, u4 are connected to both the 481

cells and can receive content from either of them. 482

Let us now look at the allocations that will be done by a distributed policy that 483

maximizes the number of users served in each cell independently. Cell c1 considers the 484

users connected to its base station and allocates PRB P2 to the stream because it serves the 485

maximum number of users, namely u2, u3 and u4. Cell c2 also optimizes independently 486

and allocates PRB P2 to the stream to serve users u3, u4, u5 and u6. Under this allocation, 487

user u1 remains unserved even though it was multi-connected, since it could only receive 488

the content over PRB P1. On the other hand, users u3 and u4 receive content from both 489

the cells. In contrast, a centralized policy would take the users of both the cells under 490

consideration and allocate PRB P2 to the multicast stream in c2 and PRB P1 to the stream in 491

c1 and successfully serve all the users in the system. 492
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Any centralized allocation policy, even if it is sub-optimal, will always do better in 493

terms of the number of users successfully served than a policy which allocates resources 494

in a distributed manner. A centralized policy does not necessarily mean that the policy is 495

optimizing over the entire system. Any form of centralization that looks beyond just the 496

individual cell will reap better performance than a completely uncoordinated allocation. In 497

the following, we propose a distributed resource allocation algorithm for the MC multicast 498

system that can be used even in the absence of a central controller. 499

6.1. Distributed Greedy Allocation 500

In the Distributed Greedy Allocation (DGA) policy, each base station allocates re- 501

sources to the multicast streams by only optimizing over their individual cells. Although 502

allocating resources in a distributed manner will result in sub-optimal resource allocation 503

decisions as discussed above, a distributed policy allows base stations to make allocation 504

decisions independently. Therefore, such a policy can be used for enabling MC multicast 505

even in the absence of a central entity that can control all the base stations in a region. 506

Furthermore, in case of content that is highly delay sensitive, the signaling delays due 507

to the communication between the base stations and the central controller might not be 508

tolerable. For such applications, the DGA policy can be used to sacrifice optimality in favor 509

of lower delays. 510

The DGA policy solves the resource allocation problem K⋆
D for each cell independently. 511

The distributed resource allocation problem K⋆
D is defined as follows. As in Section 3, 512

Ujc ⊆ [M] denotes the set of users that would successfully receive the multicast content 513

if PRB j is allocated to the multicast service in cell c. Set Uc = {U1c, U2c, . . . , UNc} is the 514

collection of such sets for cell c. The distributed resource allocation problem within each 515

cell c can now be stated as follows: 516

Definition 3 (Distributed resource allocation problem K⋆
D). For all c ∈ [C], given the collection 517

of sets Uc = {U1c, U2c, . . . , UNc}, determine j⋆ ∈ [N] such that j⋆ ∈ arg maxj∈[N] |Ujc|. 518

To solve the distributed resource allocation problem K⋆
D, the DGA policy at each base 519

station allocates a PRB to the multicast stream to maximize the number of users served by 520

it. That is, PRB j⋆ is assigned to the multicast stream in cell c if j⋆ ∈ arg maxj |Ujc|. 521

The pseudo-code for this algorithm is given in Algorithm 4. The variable xjc in 522

Algorithm 4 is an indicator random variable which is equal to 1 only when PRB j is 523

allocated to the multicast stream in cell c. 524

Algorithm 4: Distributed Greedy Allocation algorithm

Input: Sets Uc = {U1c, . . . , UNc} for all c ∈ [C]
1 Initialize: xjc = 0 for every j, c
2 for c = 1 : C do
3 Assign j⋆ = arg maxj |Ujc|
4 xj⋆c ← 1
5 end

7. Simulations 525

We study the performance of the proposed MC multicast in an MBMS system con- 526

sisting of seven urban macro cells [41]. A base station is located at the center of each cell 527

and UEs are distributed uniformly at random in the cells. To create 5G-specific physical 528

layer conditions, we create channels using the models recommended by 3GPP [42]. SNR 529

to rate mapping has also been done according to 3GPP specifications [42]. Other relevant 530

simulation parameters are given in Table 2. The cell edge users in the system are multi- 531

connected to all the base stations in the system. In all the cells, one PRB is allocated to the 532

multicast stream in each time slot. Multi-connected users successfully receive a packet if 533
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Table 2. System Simulation Parameters [42]

Parameters Values

System bandwidth 20 MHz
Cell radius 250 m
Path loss model L = 128.1 + 37.6 log 10(d), d in kilometers
Lognormal shadowing Log Normal Fading with 10 dB standard deviation
White noise power density −174 dBm/Hz
Noise figure 5 dB
Transmit power 46 dBm
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Figure 3. Average number of packets successfully delivered using MC multicast as a function of
increasing number of users under centralized (Algorithm 3) and distributed (Algorithm 4) resource
allocation algorithms.

they can decode the content from at least one of the base stations. Other users only receive 534

the multicast content from their primary base stations. 535

The number of packets delivered successfully and the number of UEs successfully 536

served are used as the performance metrics in these simulations. In Figure 3, we plot the 537

average number of packets successfully received by UEs under the CGA and the DGA 538

resource allocation algorithms. One packet is transmitted in every sub-frame (1 ms) and 539

we plot the average number of packets successfully received by all the UEs in the system 540

over a period of 10 second interval (10000 packets). As expected from the discussions in 541

Section 6, we observe that the centralized policy performs better than the distributed policy. 542

However, despite its distributed nature, the packet loss under the DGA algorithm is at most 543

0.3% greater than that under the CGA algorithm. Therefore, in the absence of centralized 544

control, the DGA algorithm can provide performance close to the centralized policy. 545

In Figures 4 to 6, we compare the performance of MC multicast with that of the 546

conventional Single-Connectivity (SC) multicast transmission. For resource allocation in 547

SC multicast, we use the DGA algorithm from Section 6 and the CGA algorithm is used in 548

resource allocation for MC multicast. Note that, since users are connected to a single base 549

station in SC multicast, the DGA algorithm provides the optimal solution for maximizing 550

the number of users served. For the plots in Figures 4 and 5, data is transmitted at a fixed 551

rate in each sub-frame. The points in these plots are obtained by averaging over 10000 552

sub-frames. 553

Figure 4(a) illustrates the number of packets successfully delivered under MC and SC 554

multicast as the number of users increases. We observe a decline in the number of packets 555

successfully delivered as the number of UEs increases. However, the number of packets 556

successfully delivered under MC multicast is much larger than that under SC multicast. 557

Figure 4(b) plots the same metric as a function of cell radius. We observe that the number 558



Version May 6, 2024 submitted to Network 17

100 150 200 250
7,500

8,000

8,500

9,000

9,500

Users per cell

N
um

be
r

of
pa

ck
et

s

SC multicast
MC multicast

(a)

200 250 300 350 400

0.6

0.8

1
·104

Cell radius (m)

N
um

be
r

of
pa

ck
et

s

SC multicast
MC multicast

(b)

Figure 4. A comparison of the average number of packets (out of 10000) successfully delivered under
SC and MC multicast. Resource allocation is done using the proposed CGA algorithm (Algorithm 3)
and the results are plotted as a function of, a) increasing number of users, and b) increasing cell radii.

of packets successfully delivered decreases as the cell sizes increase. This is because the 559

path loss of the cell edge users increases as the cells become larger. The key observation 560

here is that the performance gap between MC and SC follows an increasing trend. The 561

relative performance of MC and SC is similar to what we observe in Figure 4a.
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Figure 5. A comparison of the average number of users left unserved under SC and MC multicast.
Resource allocation is done using the proposed CGA algorithm (Algorithm 3) and the results are
plotted as a function of, a) increasing number of users, and b) increasing cell radii.

562

Figures 5(a) and 5(b) plot the average number of users left unserved in a cell per 563

sub-frame as a function of increasing number of users and cell radius respectively. The 564

number of users left unserved increases as the number of users and cell radius increases. 565

The performance gap between MC and SC multicast also increases as the number of users 566

increase. We observe that, in the absence of multi-connectivity, nearly thrice as many users 567

are left unserved. 568

In Figures 6(a) and 6(b), we compare the performance of MC and SC multicast while 569

serving a real-time video stream. To generate realistic video traffic patterns, we use traces 570

of a video of Tokyo Olympics that has 133121 packets (obtained from http://trace.eas.asu. 571

edu) [11]. For these simulations, the rate of transmission varies every sub-frame, according 572

to size of the video frame being transmitted. We run the simulations for the duration of the 573

video stream (133121 sub-frames) and then average the results over the entire duration of 574

transmission. From Figure 6(a), we observe that MC multicast delivers around 8000 more 575

packets successfully than SC multicast. From Figure 6(b), we observe that 10− 20 more 576

http://trace.eas.asu.edu
http://trace.eas.asu.edu
http://trace.eas.asu.edu
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Figure 6. Comparison of a) the average number of packets successfully delivered (out of 133121),
and b) the average number of users left unserved under SC and MC multicast while transmitting
a real-time video stream. Realistic video traffic patterns generated using traces of a video of Tokyo
Olympics [11].
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Figure 7. Comparison of a) the average number of packets successfully delivered (out of 133121), and
b) the average number of users left unserved under MC multicast and MBSFN while transmitting
a real-time video stream. Realistic video traffic patterns generated using traces of a video of Tokyo
Olympics [11].

UEs are left unserved under SC multicast than under MC multicast. The performance gap 577

between the two increases as the number of UEs in the system increases. 578

In Figures 7(a) and 7(b), we compare the performance of MC multicast with that of 579

MBSFN transmissions. Since MBSFN requires transmitting the content over the same 580

PRB in all the cells, we choose the PRB that serves the maximum number of UEs in the 581

entire system. We use traces from a real video stream (Tokyo Olympics [11]) to generate 582

realistic video traffic patterns in these simulations as well. We observe that MC multicast 583

performs remarkably better than MBSFN. It succeeds in delivering significantly greater 584

number of packets successfully and is also able to serve many more UEs than MBSFN. 585

These results validate our claims that MC multicast can provide the benefits of MBSFNs 586

while eliminating the need for strict synchronization. In fact, as observed in Figure 7, MC 587

multicast outperforms MBSFN by large margins. 588

These simulation results clearly indicate that using multi-connectivity results in sig- 589

nificant performance enhancements in multicast systems. The flexibility of potentially 590

receiving content from multiple base stations results in more users being served and in 591

reduced packet loss as well. Thus, MC multicast has tremendous potential for use in video 592
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streaming services. It can help alleviate the burden on network resources while serving a 593

larger number of users simultaneously. 594

8. Conclusions 595

In this paper, we propose leveraging multi-connectivity (MC) for multicast trans- 596

missions and prove that it results in significant performance enhancements for multicast 597

streaming services. We address the resource allocation problem in MC multicast, aiming 598

to maximize the number of concurrently served users and prove its NP-hardness. Our 599

proposed centralized greedy approximation (CGA) algorithm for MC multicast resource 600

allocation achieves an approximation ratio of (1− 1/e). For delay sensitive applications 601

where centralized resource allocation might become infeasible, we propose a distributed 602

greedy allocation (DGA) algorithm that enables MC multicasting without coordination 603

between base stations. We show that, despite its distributed nature, the DGA algorithm 604

results in just 0.3% more packet loss compared to the centralized policy. Using rigorous 605

simulations, we conclusively demonstrate that employing multi-connectivity in multicast 606

transmissions results in increased user coverage and reduced packet losses. Furthermore, 607

we evaluate the efficacy of our algorithms in real-time video streaming applications, utiliz- 608

ing traces from authentic video streams for generating realistic traffic patterns. Performance 609

comparison of the CGA algorithm with the optimal solution obtained for a smaller problem 610

size using brute force shows that it matches the optimal solution. We also demonstrate that 611

MC multicast outperforms MBSFN, eliminating the need for strict synchronization and 612

extended cyclic prefixes. 613

9. Future Research Directions 614

This work provides a proof of concept for integrating MC within multicast transmis- 615

sions but several practical questions remain open for further research. For instance, we 616

assume that the users are static for the entire duration of the multicast transmission. The 617

impact of user mobility on the proposed algorithms remains to be studied. Allowing for 618

mobility will imply that the sets of users served under a certain allocation keep changing as 619

a function of time. Therefore, new resource allocation algorithms need to be developed that 620

can take this into consideration. Since the problem of resource allocation in MC multicast 621

is shown to be NP-hard, machine learning based algorithms can also be developed for 622

optimizing the allocation decisions. Another interesting research direction would be to 623

consider a system where a number of different multicast streams can be simultaneously 624

broadcast in a multicast region. 625
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3GPP Third Generation Partnership Project
MBMS Multimedia Broadcast Multicast Services
MBSFN MBMS Single Frequency Network
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PRB Physical Resource Block
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URLLC ultra-reliable low latency communication
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