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Abstract— To overcome the curses of dimensionality and mod-
eling of Dynamic Programming (DP) methods to solve Markov
Decision Process (MDP) problems, Reinforcement Learning (RL)
methods are adopted in practice. Contrary to traditional RL al-
gorithms which do not consider the structural properties of the
optimal policy, we propose a structure-aware learning algorithm to
exploit the ordered multi-threshold structure of the optimal policy,
if any. We prove the asymptotic convergence of the proposed
algorithm to the optimal policy. Due to the reduction in the policy
space, the proposed algorithm provides remarkable improvements
in storage and computational complexities over classical RL algo-
rithms. Simulation results establish that the proposed algorithm
converges faster than other RL algorithms.

Index Terms— Markov Decision Process, Stochastic Ap-
proximation Algorithms, Reinforcement Learning, Stochas-
tic Control, Online Learning of Threshold Policies.

I. INTRODUCTION

Markov Decision Process (MDP) [2] is a framework which is
widely used for the optimization of stochastic systems (e.g., queue
[3], inventory and production management) to make optimal temporal
decisions. Dynamic Programming (DP) methods [2] to compute the
optimal policy suffer from the curse of dimensionality [4, Chap-
ter 4.1], [5] in many practical applications as they are computationally
inconvenient due to extremely high dimension of the iterates. Further-
more, they suffer from the curse of modeling since the knowledge
of the underlying transition probabilities (which often depend on the
statistics of unknown system parameters) required by DP methods,
may not be available beforehand. RL techniques [6] address the curse
of modeling by learning the optimal policy iteratively. RL algorithms
do not require any prior knowledge regarding the transition proba-
bilities of the underlying model. RL being sampling based, updates
only one component at a time, reducing per iterate computation at the
expense of speed. Examples are: Q-learning [7] iteratively evaluates
the Q-function of every state-action pair using a combination of
exploration and exploitation. In [8]–[10], upper confidence bound
based exploration improves the convergence speed over classical ε-
greedy exploration. PDS learning algorithm [4], [11] removes the
requirement of action exploration and results in faster convergence
than Q-learning. Virtual Experience (VE) learning algorithm in [12]
updates multiple PDSs at a time. Faster convergence is achieved at
the cost of increased computational complexity.

However, popular RL techniques [4], [6], [7], [11], [13], [14] do
not exploit the known structural properties of the optimal policy
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if any, and consider the set of all policies as the policy search
space. However, in operations research and communications liter-
ature, various structural properties of the optimal policy including
threshold structure, transience of certain states and index rules [15],
[16] are often established using monotonicity, convexity/concavity
and sub-modularity/super-modularity properties of value functions
of states. If one can exploit these structural properties to reduce
the search space while learning, then faster convergence can be
achieved with a reduction in the computational complexity. A few
works in the literature [17]–[20] focus on the exploitation of the
structural properties [16] while learning the optimal policy. Q-
learning based approaches in [17], [19], in every iteration, project
the value functions to guarantee the monotonicity in system state.
Although improved convergence speed is obtained, the per-iteration
computational complexity does not improve over Q-learning. In [18],
a scheme based on piecewise linear approximation of the value
function, is proposed. However, as the approximation becomes better,
the complexity increases. In [21], a Stochastic Approximation (SA)
[22] approach based on simultaneous perturbation is proposed to
compute the optimal thresholds. It uses a combination of ideas from
renewal theory and Monte Carlo simulation. The low complexity Q-
learning algorithm proposed in [23] exploits the threshold nature of
the optimal policy. The proposed algorithm estimates the optimal
policy for a subset of sets, and then policy interpolation is performed
for the unvisited states. The performance of policy interpolation is
further improved by a policy refinement. However, the proposed
algorithm provides a near-optimal policy after a finite number of
visits to a set of state-action pairs.

We consider a scenario where the optimal policy has a multi-
threshold structure, and the thresholds for different events are ordered.
Therefore, learning the optimal policy is equivalent to learning the
value of threshold for each event. Motivated by this, we propose
a Structure-Aware Learning for MUltiple Thresholds (SALMUT)
algorithm which considers only the set of ordered threshold policies.
We consider a two timescale approach where the value functions
of the states and threshold parameters are updated in faster and
slower timescale, respectively. Threshold parameters are updated
based on the gradients of the average reward w.r.t the threshold. The
proposed scheme results in reductions in storage and computational
complexities (by amortizing the computation, and hence the com-
plexity of the original problem, over several iterations) compared
to traditional RL schemes. We prove that the proposed algorithm
converges to the optimal policy asymptotically. Simulation results
exhibit that SALMUT converges faster than classical RL schemes
due to reduction in policy search space. The techniques in this paper
can be employed to learn the optimal policy in problems involving
optimality of threshold policies [15], [24]–[27]. We illustrate this
using an example of a finite buffer multi-server queue with multiple
customer classes (similar to [3], [28]).

The proposed SALMUT algorithm can be adopted for single
threshold case in [1], without any modification. In [29], a structure-
aware learning algorithm learns a single parameterized threshold
where the thresholds for different parameter values are indepen-
dent of each other. However, in this paper, the thresholds have to
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satisfy certain ordering constraints and hence, are not independent.
Therefore, the threshold update scheme in the slower timescale and
corresponding convergence behavior differs significantly from [29].
To the best of our knowledge, contrary to other works [17]–[20], we
for the first time consider the threshold vector as a parameter while
learning to reduce a non-linear iteration (involving maximization over
a set of actions) into a linear iteration for a quasi-static value of
threshold and thereby, achieve a significant reduction in the per-
iteration computational complexity.

II. SYSTEM MODEL & PROBLEM FORMULATION

Consider a continuous time MDP problem where we aim to obtain
the optimal control policy in a multi-event scenario. Let the system
state in the state space (S×I, say) be (s, i) where s ∈ {0, 1, . . . ,W},
and i ∈ {0, 1, . . . , N} denotes the event type. Since we have a finite-
state regular Markov chain [30], it is sufficient to observe the system
state only at the decision epochs [31]. Let the action space A consists
of two actions, viz., A1, and A2. The transition probability from
state (s, i) to (s′, i′) under action a (p((s, i), (s′, i′), a), say) can be
factored into two parts, viz., the deterministic and the probabilistic
transitions due to the chosen action (p(s, s′, a), say) and the next
event, respectively. Let the mean transition rate from state (s, i)
be denoted by v(s). Let the arrival times of events in state s be
independent exponentially distributed with means λi(s) respectively,
so that the next event is i with probability λi(s)∑N

j=0 λj(s)
.

Now, v(s) =
∑N
i=0 λi(s). Hence,

p((s, i), (s′, i′), a) = p(s, s′, a)
λi′(s

′)
v(s′)

.

Let the non-negative reward rate (r((s, i), a), say) obtained by
choosing action A2 for event i be Ri, where Ri > Rj for i < j.
Therefore, r((s, i), a) = Ri1{a=A2}. Let the non-negative cost rate
in state (s, i) be h(s) (independent of i).

Let Q be the set of stationary policies, Since the zero state is
reachable from any state with positive probability, the underlying
Markov chain is unichain and hence, a unique stationary distribution
exists. Let the infinite horizon average reward (independent of the
initial state) under policy Q ∈ Q be ρQ. We aim to maximize ρQ =
limt→∞

1
tEQ[R(t)], where R(t) is the total reward till time t. The

DP equation describing the necessary condition for optimality in a
semi-Markov decision process (∀{(s, i), (s′, i′)} ∈ S × I) is

V̄ (s, i) = max
a∈A

[r((s, i), a) +
∑
s′,i′

p((s, i), (s′, i′), a)V̄ (s′, i′)

− ρβ̄((s, i), a)]− h(s),

where V̄ (s, i), ρ and β̄((s, i), a) denote the value function of state
(s, i), the optimal average reward and the mean transition time from
state (s, i) upon choosing action a, respectively. We rewrite the DP
equation after substituting the values of r((s, i), a) and transition
probabilities as

V̄ (s, i) = max
a∈A

[
Ri1{a=A2} +

∑
s′,i′

p(s, s′, a)
λi′(s

′)
v(s′)

V̄ (s′, i′)

− ρβ̄((s, i), a)
]
− h(s).

We define V (s) :=
∑N
i=0

λi(s)
v(s)

V̄ (s, i). Therefore, the following
relations hold.

V̄ (s, i) = max
a∈A

[
Ri1{a=A2} +

∑
s′
p(s, s′, a)V (s′)

− ρβ̄((s, i), a)
]
− h(s),

and (since λi(s)
v(s)

is independent of a)

V (s) = max
a∈A

[∑
i

λi(s)

v(s)
Ri1{a=A2} +

∑
s′
p(s, s′, a)V (s′)

− ρβ̄(s, a)
]
− h(s),

(1)

where β̄(s, a) =
∑
i

λi(s)
v(s)

β̄((s, i), a). Using (1), instead of consid-

ering (s, i) ∈ S × I, we can consider the system state as s ∈ S
with value function V (s) and transition probability p(s, s′, a), and
the analysis remains unaffected. However, in this model, the reward
rate is the weighted average of original reward rates. The sojourn
times being exponentially distributed, following [2], we obtain

V (s) = max
a∈A

[
∑
i

λi(s)

v(s)
Ri1{a=A2} +

∑
s′
p(s, s′, a)V (s′)]

− h(s)− ρ,
(2)

where p(s, s, a) = 1 −
∑
s′ 6=s p(s, s

′, a). (2) is the DP equation
for an equivalent discrete time MDP having controlled transition
probabilities p(s, s′, a) which is used throughout the rest of the paper.
This problem can be solved using Relative Value Iteration Algorithm
(RVIA) as follows.

Vn+1(s) = max
a∈A

[
∑
i

λi(s)

v(s)
Ri1{a=A2} +

∑
s′
p(s, s′, a)Vn(s′)]

− Vn(s∗)− h(s),
(3)

where s∗ ∈ S is a fixed state and Vn(s) is the estimate of value
function of state s at nth iteration.

III. EXPLOITATION OF STRUCTURAL PROPERTIES IN RL
We assume that the optimal policy is of threshold-type where it is

optimal to choose action A2 only upto a threshold τ(i) ∈ S which
is a non-increasing function of i. In this section, we propose an RL
algorithm which exploits the knowledge regarding the existence of a
threshold-based optimal policy.

Given that the optimal policy is threshold in nature where the
optimal action changes from A2 to A1 at τ(i) for ith event, the
knowledge of τ(0), . . . , τ(N) uniquely characterizes the optimal
policy. However, computation of these threshold parameters requires
the knowledge of the event probabilities in state s (governed by
λi(s)). When the λi(.)s are unknown, then we can learn these ordered
thresholds instead of learning the optimal policy from the set of all
policies including the non-threshold policies. We devise an iterative
update rule for a threshold vector of dimensionality (N + 1) so that
the threshold vector iterate converges to the optimal threshold vector.

We consider the set of threshold policies where the thresholds
for different events are ordered (τ(i) ≥ τ(j) for i < j) and
represent them as policies parameterized by the threshold vector
τ = [τ(0), τ(1), . . . , τ(N)]T where τ(0) ≥ τ(1) ≥ . . . ≥ τ(N). In
this context, we redefine the notations associated with the MDP to
reflect their dependence on τ . We intend to compute the gradient of
the average reward w.r.t τ and improve the policy by updating τ in
the direction of the gradient. Let the transition probability from state s
to state s′ corresponding to the threshold vector τ be Pss′(τ ). Hence,
Pss′(τ ) = P (Xn+1 = s′|Xn = s, τ ). Let the value function of
state s, the average reward of the Markov chain and the stationary
probability of state s parameterized by τ be denoted by V (s, τ ),
σ(τ ) and π(s, τ ), respectively.

The optimal policy can be computed using (3) if we know the
state transition probabilities and λi(s)s. When these parameters are
unknown, theory of SA [22] enables us to replace the expectation
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operation in (3) by averaging over time and still converge to the
optimal policy. Let a(n) be a positive step-size sequence satisfying∑∞
n=1 a(n) = ∞;

∑∞
n=1(a(n))2 < ∞. Let b(n) be another

step-size sequence which apart from the above properties satisfies
lim
n→∞

b(n)
a(n)

= 0. We update the value function of the system state
(based on the type of event) at any given iteration and keep the value
functions of other states unchanged. Let Sn be the state of the system
at nth iteration. Let γ(s, n) =

∑n
x=1 1{Sx=s}. For a fixed threshold

vector τ (i.e., a fixed policy), max operator in (2) goes away, and
the resulting system becomes a linear system. Therefore we have

V (s) =
∑
i

λi(s)

v(s)
Ri1{l(s,τ(i))=A2} +

∑
s′
p(s, s′, a)V (s′)

− h(s)− ρ,

where l(s, τ(i)) = A2 if s < τ(i), l(s, τ(i)) = A1 else.
The update of value function of state s (corresponding to the ith

event) is done using the following scheme:

Vn+1(s, τ ) =(1− a(γ(s, n)))Vn(s, τ ) + a(γ(s, n))[−h(s)+

Ri1{l(s,τ(i))=A2} + Vn(s′, τ )− Vn(s∗, τ )],

Vn+1(s̃, τ ) = Vn(s̃, τ ), ∀s̃ 6= s,

(4)

where Vn(s, τ ) denotes the value function of state s at nth iteration
provided the threshold vector is τ . This is known as the primal RVIA
which is performed in the faster timescale. The scheme (4) works for
a fixed value of threshold vector. To obtain the optimal value of τ , the
threshold vector needs to be iterated in a slower timescale b(.). The
idea is to learn the optimal threshold vector by computing ∇σ(τ )
and update the value of threshold in the direction of the gradient.
This scheme is similar to stochastic gradient routine:

τn+1 = τn + b(n)∇σ(τn), (5)

where τn is the threshold vector at nth iteration. Conditions on
step sizes ensure that the value function and threshold vector iterates
are updated in different timescales. From the slower timescale, the
value functions seem to be quasi-equilibrated, whereas form the faster
timescale, the threshold vector appears to be quasi-static (known as
the “leader-follower” behavior).

Given a threshold vector τ , it is assumed that the transition from
state s for ith event is driven by the rule P1(s′|s) if s < τ(i) and by
the rule P0(s′|s) otherwise. Under rule P1(s′|s), the system moves
from state s to state s′ = s + 1 following action A2 if s < τ(i).
On the other hand, rule P0(s′|s) dictates that the system remains in
state s following action A1. For a fixed τ , (4) is updated using the
above rule. Let gs(τ(i)) = Ri1{l(s,τ(i))=A2}−h(s). The following
assumption is made on Pss′(τ ) and gs(τ ) to embed the discrete
parameter τ into a continuous domain later.

Assumption 1. Pss′(τ ) and gs(τ ) are bounded and twice differen-
tiable functions of τ . It has bounded first and second derivatives.

For a given event, the threshold policy chooses the rule P1(.|.)
upto a threshold and follows the rule P0(.|.), thereafter. Therefore
the threshold policy is defined at discrete points and does not satisfy
Assumption 1 as the derivative is undefined. To address this issue,
we propose an approximation (≈ interpolation to continuous domain)
of the threshold policy, which resembles a step function, so that
the derivative exists at every point. This results in a randomized
policy which in state s, chooses policies P0(s′|s) and P1(s′|s) with
probabilities f(s, τ ) and 1− f(s, τ ), respectively. In other words,

Pss′(τ ) ≈ P0(s′|s)f(s, τ ) + P1(s′|s)(1− f(s, τ )). (6)

Intuitively, f(s, τ ) should allocate similar probabilities to P0(s′|s)
and P1(s′|s) near the threshold. As we move away towards the

left (right) direction, the probability of choosing P0(s′|s) (P1(s′|s))
should decrease. The following function is chosen as a convenient
approximation as it is continuously differentiable and the derivative
is non-zero at every point.

f(s, τ(i)) =
e(s−τ(i)−0.5)

1 + e(s−τ(i)−0.5)
. (7)

Similar to (6), we approximate gs(τ ) as

gs(τ(i)) ≈ −f(s, τ(i))h(s) + (1− f(s, τ(i)))(Ri − h(s)).

Remark 1. Note that although the state space is discrete, individual
threshold vector component iterates may take values in the continuous
domain. However, only an ordinal comparison dictates which action
needs to be chosen in the current state.

Remark 2. Instead of the sigmoid function in (7), the function
f(s, τ(i)) = 1.1{s≥τ(i)+1}+ (s− τ(i))1{s<τ(i)<s+1} which uses
approximation only when s < τ(i) < s + 1, could have been
chosen. This function suffers lesser approximation error than that
of (7). However, it may lead to slow convergence since the derivative
of the function and hence the gradient becomes zero outside s <
τ(i) < s + 1. Although the derivative of sigmoid function decays
exponentially fast too, we observe in simulations that the convergence
behavior with (7) is better.

Under Assumption 1, the following proposition [32, Proposition 1]
provides a closed form expression for the gradient of σ(τ ). The
proposition stated next is extended to policy gradient theorem in [33].

Proposition 1.

∇σ(τ ) =
∑
s∈S

π(s, τ )(∇gs(τ ) +
∑
s′∈S

∇Pss′(τ )V (s′, τ )). (8)

Remark 3. The first term on the right of (8) was dropped earlier, the
reason given being that ‘the reward is independent of the parameter’.
This is incorrect because the indicator function multiplying the
reward is not so. Nevertheless, it turns out (see Fig. 1a and 1b)
that the performance is hardly affected by the omission of this term.
This is presumably because this term is significant only in a small
neighborhood of the threshold. This mistake is present in our earlier
works [1], [29] and similar remarks apply there. 1

Based on the proposed approximation (7), we set to devise an
online update rule for the threshold vector in the slower timescale
b(.), following (5). We evaluate ∇Pss′(τ ) as a representative of
∇σ(τ ) since the stationary probabilities in (8) can be replaced by
averaging over time. Using (6), we get

∇Pss′(τ ) = (P0(s′|s)− P1(s′|s))∇f(s, τ ). (9)

We incorporate a multiplying factor of 1
2 in the right hand side of

(9) since multiplication by a constant term does not alter the scheme.
The physical significance of this operation is that at every iteration,
transitions following rules P1(.|.) and P0(.|.) are adopted with equal
probabilities.∇f(s, τ ) depends on the system state and threshold
vector at any given iteration. Similar online rule can be devised for
∇gs(τ ) using an identical procedure.

Based on this, when ith event occur, the online update rule for the
ith component of the threshold vector is as follows.

τn+1(i) =Ωi[τn(i) + b(n)∇f(s, τn(i))((−1)βn ĥβn(s, i)+

(−1)αnVn(ŝ, τn(i)))],

1We thank Prof. Aditya Mahajan, McGill University for pointing out this
error.
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where αn and βn are i.i.d. random variables, each of which can take
values 0 and 1 with equal probabilities. If αn = 1, then the transition
is governed by the rule P1(.|.), else by P0(.|.). In other words,
the next state is ŝ with probability αnP1(ŝ|s) + (1 − αn)P0(ŝ|s).
Similarly, ĥβ(s, i) = −βh(s) + (1 − β)(Ri − h(s)) where the
obtained reward is −h(s) and Ri − h(s) with equal probabilities.
The projection operator Ωi ensures that τ(i) iterates remain bounded
in a specific interval, as specified later. Recall that, we have assumed
that the threshold for ith event is a non-increasing function of i.
Therefore, the ith component of the threshold vector iterates should
always be less than or equal to the (i − 1)th component. The first
component of τ is considered to be a free variable which can choose
any value in [0,W ]. The projection operator Ωi, {i > 0} ensures that
τn(i) remains bounded in [0, τn(i− 1)]. To be precise,

Ω0 : x 7→ 0 ∨ (x ∧W ) ∈ [0,W ],

Ωi : x 7→ 0 ∨ (x ∧ τ(i− 1)) ∈ [0, τ(i− 1)]. ∀i > 0.

The framework of SA enables us to obtain the effective drift in (9)
by performing averaging. Therefore the online RL scheme where the
value functions and the threshold vector are updated in the faster
and the slower timescale, respectively, is as follows. We suppress the
parametric dependence of V on τ .

Vn+1(s) =(1− a(γ(s, n)))Vn(s) + a(γ(s, n))[−h(s)+

Ri1{l(s,τ(i))=A2} + Vn(s′)− Vn(s∗)],

Vn+1(s̃) =Vn(s̃), ∀s̃ 6= s,

(10)

and

τn+1(i) =Ωi[τn(i) + b(n)∇f(s, τn(i))((−1)βn ĥβn(s, i)+

(−1)αnVn(ŝ))],

τn+1(i′) =τn(i′), ∀i′ < i,

τn+1(i′) =Ωi[τn(i′)], ∀i′ > i,

(11)

where for current state s, transition to next state s′ in (10) refers to
a single run of a simulated chain as commonly seen in RL, and ŝ in
(11) is determined separately following the probability distribution
αnP1(ŝ|s) + (1−αn)P0(ŝ|s). The immediate reward is determined
using −βnh(s) + (1−βn)(Ri−h(s)). The physical significance of
(11) is that when ith type of event occurs, then the ith component of
τ is updated. However, since the components are provably ordered,
we need to update the i′th components too where i′ > i. We no
longer need to update the components for i′ < i since the order
is already preserved while updating the ith component. Also, in
(10), the reward function is taken to be Ri1{l(s,τ(i))=A2} when ith

event occurs. The expectation operation in (3) is mimicked by the
averaging over time implicit in an SA scheme. Note that contrary to
[29], where due to the independence among the threshold parameters,
only one threshold is updated at a time, in this paper, multiple
threshold parameters may need to get updated to capture the ordering
constraints.

Remark 4. Instead of the two-timescale approach adopted in this
paper, a multi-timescale approach where each individual threshold
is updated in a separate timescale, may be chosen. However, since
the updates of thresholds are coupled only through the ordering
constraints, they can be updated in the same timescale. Moreover,
in practice, a multi-timescale scheme may not work well since the
fastest (slowest) timescale may be too fast (slow), leading to higher
fluctuations and/or very slow speed.

Theorem 1. Update rules (10) and (11) converge to the optimal
policy almost surely (a.s.).

Proof: Proof is given in Appendix I.

Remark 5. Unlike the value function iterates, the threshold vector
iterates do not require local clocks of individual elements for conver-
gence. However, all components of the threshold vector are required
to get updated comparably often. In other words, their frequencies
of update should be bounded away from zero which generally holds
true for stochastic gradient approaches [22, Chapter 7].

Based on the foregoing analysis, we describe the resulting
SALMUT algorithm in Algorithm 1. On a decision epoch, action
a is chosen based on the current value of threshold vector. Based
on the event, value function of current state s is updated then using
(10) in the faster timescale. The threshold vector is also updated
following (11) in the slower timescale. Note that the value function
is updated one component at a time. However, multiple components
of the threshold vector may need to be updated in a single iteration.
The scheme resembles actor-critic method [13] with policy gradient
for the actor part (see (11)) and post-decision framework for the critic
(see (10)).

Algorithm 1 Two-timescale SALMUT algorithm

1: Initialize n← 1, V (s)← 0, ∀s ∈ S and τ ← ~0.
2: while TRUE do
3: if ith event occurs then
4: Choose action a based on current value of τ(i).
5: end if
6: Update value function of state s using (10).
7: Update threshold τ using (11).
8: Update s← s′ and n← n+ 1.
9: end while

Remark 6. Even if there does not exist an optimal threshold policy
for a given MDP problem, the techniques in this paper can be applied
to learn the best threshold policy (locally at least) asymptotically.
Threshold policies are easy to implement and often provide compa-
rable performances to that of the optimal policy, with a significantly
lower storage complexity.

IV. COMPLEXITY ANALYSIS

In this section, we compare the storage and computational com-
plexities of SALMUT algorithm with those of existing learning
schemes and summarize in Table I. Q-learning and PDS learning

TABLE I: Complexities of RL algorithms.

Algorithm Computational Storage
complexity complexity

Q-learning [6], [7] O(|A|) O(|S| × |A|)
Monotone Q-learning [17], [19] O(|A|) O(|S| × |A|)
MH-Q-learning O(log |A|) O(|S| × |A|)
OQL [9] O(log |A|) O(|S| × |A|)
EEQL [10] O(log |A|) O(|S| × |A|)
PDS learning [4], [11] O(|A|) O(|S|)
MH-PDS learning O(log |A|) O(|S|)
VE learning [12] O(|V| × |A|) O(|S|)
Grid learning [20] O(|W| × |A|) O(|S|)
Adaptive appx. learning [18] O(q(δ)|A|) O(|S|)
SALMUT O(1) O(|S|)

need to store the value function of every state-action pair and
every PDS, respectively. While updating the value function, both
choose the best one after evaluating |A| functions. Since only one
state-action pair is updated at a time, the computational complexity
associated with remaining operations is constant. Thus, the storage
complexities of Q-learning and PDS learning are O(|S| × |A|) and
O(|S|), respectively. The per-iteration computational complexity of
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Q-leanring and PDS learning is O(|S|). Since at each iteration, the
monotone Q-learning algorithm [17], [19] projects the policy obtained
using Q-learning within the set of monotone policies, the complexities
are identical to those of Q-learning. VE learning [12] updates multiple
PDSs at a time. Therefore, the computational complexity contains an
additional term |V| which signifies the cardinality of the VE tuple.
Similarly, grid learning [20] and adaptive approximation learning [18]
are associated with additional factors |W| and q(δ), respectively. |W|
and q(δ) depend on the depth of a quadtree used for value function
approximation and the approximation error threshold δ, respectively.
Note that computational complexities of Q-learning and PDS learning
can be reduced to O(log |A|) using a max-heap implementation (MH-
Q-learning and MH-PDS learning in Table I) where the complexities
of obtaining the best action and updating a value are O(1) and
O(log |A|), respectively. The computational complexity of a max-
heap implementation of Optimistic Q-learning (OQL) [9] and Explo-
ration Enhanced Q-learning (EEQL) [10] is O(log |A|). The storage
complexity of OQL and EEQL is O(|S|×|A|). It is not clear whether
the knowledge of structural properties can be encoded in Q-learning
easily since the range of the threshold is large, viz., the entire state
space. The storage complexity of SALMUT algorithm is O(|S|)
as we need to store the value functions of states. SALMUT may
require to update all components of the threshold vector at a time
(See (11)). Furthermore, the update of value function involves the
computation of a single function based on the current threshold (See
(10)). Therefore, the per-iteration computational complexity is O(1).
Thus SALMUT provides significant improvements in storage and
per-iteration computational complexities compared to other schemes.
Note that the computational complexity of SALMUT does not depend
on |A| and depends only on the number of events.

V. ILLUSTRATIVE EXAMPLE

We consider a queuing system with m identical servers, N
customer classes and a finite buffer of size B. We investigate an
optimal admission control problem. It is assumed that the arrival
of class-i customers is a Poisson process with mean λi. Let the
service time be exponentially distributed with mean 1

µ , irrespective
of the customer class. Note that presence of m identical servers
does not change the nature of the model. Similar analysis holds for
the single server case also. The state of the system is (s, i) where
s ∈ {0, 1, . . . ,m+B} denotes the total number of customers in the
system and i ∈ {0, 1, . . . , N} denotes the class type. Arrivals and
departures of customers are taken as decision epochs. We take i = 0
as the departure event and i = 1, . . . , N as an arrival of a 1, . . . , N th

class of customer. For example, states (2, 0) and (2, 1) correspond
to a departure and an arrival of class 1 customer while there are
2 users in the system, respectively. A consists of three actions,
viz., blocking of an arriving user (A1), admission of an arriving
user (A2) and continue/do nothing (A0, say) for departures. When
s = m+B, then the only feasible action for an arrival (i.e., i > 0)
is A1. We have, p(s, s′, A2) = 1{s′=s+1}, p(s, s

′, A1) = 1{s′=s}
and p(s, s′, A0) = 1{s′=(s−1)+}. where x+ = max{x, 0} and
v(s) =

∑N
i=1 λi + min{s,m}µ. Let λ0(s) = min{s,m}µ and

λi(s) = λi, ∀i 6= 0. Note that λ1(s), . . . , λN (s) do not depend on
s. Furthermore, r((s, i), a) = Ri1{a=A2,i>0}. R0 = 0 corresponds
to a departure event. In state (s, i), a non-negative cost rate of h(s)
is incurred. h(s) and h(s + 1) − h(s) are increasing in s (convex
increasing in the discrete domain).

One application of this model is a make-to-stock production system
that produces m items with N demand classes [34] and buffer size
B. Satisfaction of a demand (requesting a single unit of the product)
from class-i gives rise to reward rate Ri. The production time is

exponentially distributed with mean 1
µ . The inventory holding cost

rate is h(s).
Now, we derive that there exists a threshold based optimal policy

which admits a class-i customer only upto a threshold τ(i) which
is a non-increasing function of i. We prove these properties using
the following lemma. The proof follows from [35, Theorem 3.1].
Detailed proof is given in [36, Lemma 1].

Lemma 1. V (s+ 1)− V (s) is decreasing in s.

Theorem 2. The optimal policy is of threshold-type where it is
optimal to admit class-i customers only upto a threshold τ(i) ∈ S
which is a non-increasing function of i.

Proof: For class-i customers, if A1 is optimal in state s, then
Ri+V (s+1) ≤ V (s) (Using (2)). From Lemma 1, V (s+1)−V (s)
is decreasing in s. This proves the existence of a threshold τ(i) for
class-i customers. Since Ri > Rj for i < j, Ri +V (s+ 1) ≤ V (s)
implies Rj + V (s+ 1) ≤ V (s). Therefore, τ(i) is a non-increasing
function of i.

The subsequent lemmas establish the unimodality of the average
reward with respect to τ . Hence, Theorem 1 holds. Proofs are
presented in Appendix II.

Lemma 2. vn(s+ 1)− vn(s) is decreasing in n.

Lemma 3. σ(τ ) is unimodal in τ .

For this particular problem, the improvement in computational
complexity offered by SALMUT may not be significant since |A| =
3. However, in general, for a large |A|, the improvement in compu-
tational complexity may be remarkable.

VI. SIMULATION RESULTS

In this section, we compare the convergence speed of SALMUT
algorithm with traditional RL algorithms. We simulate the finite
buffer multi-server system with two customer classes. We take λ1 =
λ2 = 1 s−1, m = B = 5, R1 = 20, R2 = 10, h(s) = 0.1s2,
a(n) = 1

(b n
100 c+2)0.6

and b(n) = 10
n . We exclude initial 10 burn-in

period values of the iterates.
In practical cases, when the average reward of the system does

not change much over a suitable window, we may conclude that
stopping condition is met as the obtained policy is close to the
optimal policy with a high probability. The choice of window size∑p+n
k=p a(k) over n is to eliminate the effect of diminishing step

size affecting the convergence behavior. We choose a window size
of 50 and stop when the ratio of maximum and minimum average
rewards exceeds 0.95. Fig. 1a (1b) reveals that practical convergences
for Q-learning, PDS learning and SALMUT algorithms are achieved
in 1180 (1180), 580 (1180) and 426 (580) iterations, respectively.
Since unlike PDS learning, Q-learning is associated with exploration
mechanism, PDS learning converges faster than Q-learning. However,
SALMUT converges faster than both Q-learning and PDS learning
algorithms since it operates on a smaller policy space (threshold
policies only). Due to efficient exploration, the performances of OQL
[9] and EEQL [10] are better than that of Q-learning and slightly
worse than that of SALMUT. Since for a given sample path, the
sequence of actions are same, the performance of MH-Q-learning
(MH-PDS learning) is identical to that of Q-learning (PDS learning).
The performance of adaptive approximation learning algorithm [18]
is identical to that of PDS learning as batch update of PDSs is
not possible. Therefore, we do not show their performances in the
plot. The convergence behavior of Renewal Monte Carlo (RMC) [21]
algorithm (with discount factor=0.999) is slightly worse than that of
SALMUT. Since the sampled Q-learning algorithm [23] provides a
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Fig. 1: Plot of average reward vs. (
∑n
k=1 a(k)) for different algorithms ((a) µ = 4s−1, (b) µ = 2s−1).

near-optimal policy after a finite number of visits to a set of state-
action pairs, the convergence behavior may not be comparable.

VII. CONCLUSIONS & FUTURE DIRECTIONS

In this paper, we have proposed an RL algorithm which exploits the
ordered multi-threshold nature of the optimal policy. The convergence
of the proposed algorithm to the globally optimal threshold vector is
established. The proposed scheme provides improvements in storage
and computational complexities over traditional RL algorithms. Simu-
lation results establish the improvement in convergence behavior with
respect to state-of-the-art RL schemes. In future, this can be extended
to develop RL algorithms for Constrained MDP problems by updating
the Lagrange Multiplier (LM) in a slower timescale [22] than that of
value functions. The LM and the threshold parameter can be updated
in the same slower timescale without requiring a third timescale as
they are independent of each other. Another possible future direction
is to develop RL algorithms for restless bandits such as [37] since
threshold policies often translate into index-based policies.

APPENDIX I
PROOF OF THEOREM 1

We adopt the approach of viewing SA algorithms as a noisy
discretization of a limiting Ordinary Differential Equation (ODE),
similar to [1], [29]. Step size parameters are viewed as discrete time
steps. Standard assumptions on step sizes ensure that the errors due
to noise and discretization are negligible asymptotically. Therefore,
the iterates closely follow the trajectory of the ODE and ensure a.s.
convergence to the globally asymptotically stable equilibrium. Using
the two timescale approach [22], we consider (10) for a fixed τ . Let
M1 : R|S| →R|S| be the following map

M1(x) =
∑
s′
Pss′(τ )[

N∑
i=0

λi(s)

v(s)
Ri1{a=A2} − h(s)

+ x(s′)]− x(s∗), x ∈ R|S|.

(12)

Note that the knowledge of Pss′(τ ) and λi(s) are not required for
the algorithm and is only required for analysis. For a fixed τ , (10)
tracks the limiting ODE V̇ (t) = M1(V (t))− V (t). V (t) converges
to the fixed point of M1(.) (determined using M1(V ) = V ) [38]
which is the asymptotically stable equilibrium of the ODE, as t →
∞. Analogous methodologies are adopted in [38], [39]. Note that

the approximation described in (7) does not impact the convergence
argument since the fixed point of M1(.) remains the same. Next
we establish that the value function and threshold vector iterates are
bounded.

Lemma 4. The threshold vector and value function iterates are
bounded a.s.

Proof: Let M0 : R|S| →R|S| be the following map

M0(x) =
∑
s′
Pss′(τ )x(s′)− x(s∗), x ∈ R|S|. (13)

Clearly, if the reward and cost functions are zero, (12) is same as
(13). Also, limb→∞

M1(bV )
b = M0(V ). The globally asymptotically

stable equilibrium of the ODE V̇ (t) = M0(V (t)) − V (t) which is
a scaled limit of ODE V̇ (t) = M1(V (t)) − V (t), is the origin.
Boundedness of value functions and threshold vector iterates follow
from [40] and (11), respectively.

Lemma 5. Vn − V τn → 0, where V τn is the value function of
states for τ = τn a.s.

Proof: Since the threshold vector iterates are updated in a
slower timescale, value function iterates in the faster timescale treat
the threshold vector iterates as fixed. Therefore, iterations for τ are
τn+1 = τn + γ(n), where γ(n) = O(b(n)) = o(a(n)). Therefore,
the limiting ODEs for value function and threshold vector iterates are
V̇ (t) = M1(V (t))−V (t) and τ̇ (t) = 0, respectively. It is sufficient
to consider the ODE V̇ (t) = M1(V (t)) − V (t) alone for a fixed
τ because τ̇ (t) = 0. The rest of the proof is analogous to that of
[13].

For the time being assume that σ(τ ) is unimodal in τ . This is
proved later. The lemmas presented next establish that threshold
vector iterates τn converge to the optimal threshold vector τ∗ and
hence, (Vn, τn) converges to the optimal pair (V, τ∗).

Lemma 6. The threshold vector iterates τn → τ∗ a.s.

Proof: The limiting ODE for (11) is the gradient ascent scheme
τ̇ = ∇σ(τ ). Note that the gradient points inwards at τ(.) = 0 and
τ(.) = W . Since σ(τ ) is unimodal in τ , there does not exist any local
maximum except τ∗ which is the global maximum. This concludes
the proof of the lemma.

Remark 7. If the unimodality of the average reward with respect to
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the threshold vector does not hold, then convergence to only a local
maximum can be guaranteed.

APPENDIX II
A. Proof of Lemma 2:

Proof: Proof methodologies are similar to [1].

vn+1(s) =

N∑
i=1

λi max{Ri + vn(s+ 1), vn(s)}+

min{s,m}µvn((s− 1)+) + (1− v(s))vn(s)− h(s),
(14)

and v̂i,n+1(s) = max{vn(s), Ri+vn(s+1)}. We know, Dvn(s) =
vn(s + 1) − vn(s). We use induction to prove that Dvn(s) is
decreasing in n. If n = 0, v0(s) = 0 and Dv0(s) = 0. Using (14), it
is easy to see that Dv1(s) < Dv0(s) as h(s+ 1) > h(s). Assuming
that the claim holds for any n, i.e., Dvn+1(s) < Dvn(s), we need
to prove that Dvn+2(s) < Dvn+1(s). To analyze the second and
third terms in (14), we consider two cases.
(a) s ≥ m: mµDvn+1((s−1)+) + (1−

∑N
i=1 λi−mµ)Dvn+1(s)

is less than mµDvn((s− 1)+) + (1−
∑N
i=1 λi −mµ)Dvn(s).

(b) s < m: sµDvn+1((s− 1)+) + (1− v(s+ 1))Dvn+1(s) is less
than sµDvn((s− 1)+) + (1− v(s+ 1))Dvn(s).
We proceed to prove that Dv̂i,n+2(s) ≤ Dv̂i,n+1(s). Let at
(n+ 2)th iteration, maximizing actions for the admission of class-i
customers in states s and (s + 1) be denoted by ai,1 ∈ {A1, A2}
and ai,2 ∈ {A1, A2}, respectively. Let bi,1, bi,2 ∈ {A1, A2} be the
maximizing actions in states s and (s+1), respectively, at (n+1)th

iteration. It is not possible to have ai,2 = A2 and bi,1 = A1. If bi,1 =
A1, then Dvn(s) ≤ −Ri. Therefore, we must have Dvn(s + 1) <
−Ri (Using Lemma 1). If ai,2 = A2, then Dvn+1(s + 1) ≥ −Ri
which contradicts the inductive assumption. Therefore, we consider
the remaining cases. Note that if the inequality holds for any ai,1
and bi,2 for given ai,2 and bi,1, then the maximizing actions will
satisfy the inequality too.
(a) ai,2 = bi,1 = A1: We choose ai,1 = bi,2 = A1 to get
Dv̂i,n+2(s)−Dv̂i,n+1(s) = Dv̂i,n+1(s)−Dv̂i,n(s) ≤ 0.
(b) ai,2 = bi,1 = A2: Proof is similar to the preceding case by
choosing ai,1 = bi,2 = A2.
(c) ai,2 = A1, bi,1 = A2: Choose ai,1 = A2 and bi,2 = A1.
Dv̂i,n+2(s) −Dv̂i,n+1(s) = vn+1(s + 1) − Ri − vn+1(s + 1) −
vn(s+ 1) +Ri + vn(s+ 1) = 0.
Thus, Dv̂i,n+2(s) ≤ Dv̂i,n+1(s). Since this holds for every i and
h(s) is independent of n, this concludes the proof.

B. Proof of Lemma 3:

Proof: Proof idea is similar to that of [29]. We prove this
lemma for ith component of the threshold vector (viz., τ(i)). If
the optimal action for the admission of class-i customers in state
s is A1, then V (s + 1) − V (s) ≤ −Ri. Since VIA converges
to the optimal threshold vector τ∗, ∃N0 > 0 such that ∀n ≥
N0, vn(s+1)−vn(s) ≤ −Ri, ∀s ≥ τ∗(i) and vn(s+1)−vn(s) ≥
−Ri, ∀s < τ∗(i). Let Ui,n, n ≥ 1 be the optimal threshold for
class-i customers at nth iteration of VIA. Hence, Ui,n = min{s ∈
N0 : vn(s + 1) − vn(s) ≤ −Ri}. If no values of s satisfies
the inequality, then Ui,n = m + B. Since vn(s + 1) − vn(s) is
decreasing in n (Lemma 2), Ui,n is monotonically decreasing in n,
and lim

n→∞
Ui,n = τ∗(i).

Consider a re-designed problem where for a given threshold vector
τ ′ such that τ∗(i) ≤ τ ′(i) ≤ m + B, action A1 is not allowed in
any state s < τ ′(i). Note that Lemma 2 holds for this re-designed

problem also. Let nτ ′(i) be the first iteration of VIA when the
threshold reduces to τ ′(i). The value function iterates for the original
and re-designed problem are same for n ≤ nτ ′(i) because in the
original problem also A1 is never chosen as the optimal action in
states s < τ ′(i) at these iterations. Hence, nτ ′(i) must be finite and
the inequality vn(τ ′(i) + 1)− vn(τ ′(i)) ≤ −Ri is true for both the
problems after nτ ′(i) iterations. Using Lemma 2, this inequality holds
∀n ≥ τ ′(i). Therefore, in the re-designed problem, Ui,n converges
to τ ′(i). Thus, the threshold policy with τ ′(i) is superior than that
with τ ′(i) + 1. Since this holds for arbitrary choice of τ ′(i), average
reward monotonically decreases with τ ′(i), ∀τ ′(i) > τ∗(i).

If we have σ(τ ) ≥ σ(τ +ei) (where ei ∈ RN is a vector with all
zeros except the ith element being ‘1’), then we must have τ(i) ≥
τ∗(i). Therefore, σ(τ +ei) ≥ σ(τ +2ei). Hence, the average reward
is unimodal in τ(i). Since the proof holds for any i, this concludes
the proof of the lemma.
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