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Abstract—In today’s wireless networks, a variety of Radio Access Technologies (RATs) are present. However, each RAT being
controlled individually leads to suboptimal utilization of network resources. Due to the remarkable growth of data traffic, interworking
among different RATs is becoming necessary to overcome the problem of suboptimal resource utilization. Users can be offloaded from
one RAT to another based on loads of different networks, channel conditions and priority of users. We consider the optimal RAT
selection problem in a Fifth Generation (5G) New Radio (NR)-Wireless Fidelity (WiFi) network where we aim to maximize the total
system throughput subject to constraints on the blocking probability of high priority users and the offloading probability of low priority
users. The problem is formulated as a Constrained Markov Decision Process (CMDP). We reduce the effective dimensionality of the
action space by eliminating the provably suboptimal actions. We propose low-complexity online heuristics for RAT selection which can
operate without the knowledge regarding the statistics of system dynamics. Network Simulator-3 (ns-3) simulations reveal that the
proposed algorithms outperform traditional RAT selection algorithms under realistic network scenarios including user mobility.
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1 INTRODUCTION

In the recent years, the number of mobile subscribers has
increased exponentially with a rise in the popularity of data-
intensive applications such as video, social networking. To
address the problem of increasing data traffic consumption
and demand for high data rate, small cells are being de-
ployed by network operators. Moreover, interworking with
IEEE 802.11 based Wireless Local Area Network (WLAN)
(popularly known as Wireless Fidelity (WiFi) network) Ac-
cess Points (APs) is also becoming popular. The reason
behind this is twofold. First, WiFi AP deployment is low
cost as they operate in unlicensed band. Moreover, while the
Third Generation Partnership Project (3GPP) Fourth Gen-
eration (4G) Long Term Evolution (LTE) base stations and
Fifth Generation (5G) New Radio (NR) [2], [3] Next Genera-
tion NodeBs (gNBs) primarily target to provide ubiquitous
coverage to support high speed mobility of users, WiFi APs
aim to provide high data rate in hotspot regions, campuses
and homes. Such networks where different types of Radio
Access Technologies (RATs) are present and a user can
be associated with any RAT, are known as Heterogeneous
Networks (HetNets). Therefore, for an efficient interworking
between various RATs in a 5G based HetNet, the need for
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a unified framework enabling a global view of different
RATs where control and management decisions are taken
by a common entity, becomes even more important. In the
absence of a global view, the utilization of network resources
may become suboptimal. The 3GPP 5G standards [2] define
a centralized core network to handle multiple RATs in a
unified manner. Additionally, in 3GPP 5G Release 15 [2],
Non 3GPP Interworking Function (N3IWF) is standardized
for seamlessly integrating non-3GPP RATs such as WLAN
with the centralized 5G core. Even though 3GPP 5G Release
15 standardization introduces a unified core [2], Radio Ac-
cess Network (RAN) level decisions are still taken in a RAT-
specific manner. However, optimal performance can be ob-
tained if the common RAN functionalities of different RATs
such as RAT selection, user offload, admission control and
mobility management are controlled and managed within a
unified framework. To this end, 3GPP Release 16 standard
[2] introduces an Access Traffic Steering, Switching and
Splitting (ATSSS) functionality which allows traffic steering
among multiple RATs. Using ATSSS, network-provided pol-
icy and RAN level information from users, the centralized
5G core is able to support RAT selection and user offload in
a 5G based HetNet.

We consider a 5G NR-WiFi HetNet where users of
different priorities are present. Control and management
functionalities of these RATs are unified at the centralized
controller (for example, a Software Defined Network [4],
[5] controller) in 5G core. In this paper, the centralized
controller takes control and management decisions within
a unified framework. Among the RAN functionalities, we
consider the RAT selection problem. We consider two classes
of users. Users of delay sensitive applications, such as Voice
over Internet Protocol (VoIP) users are classified as high
priority users, whereas users receiving best-effort service
are categorized as low priority ones. We assume that high
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priority users are served using 5G NR since WiFi may not
provide the required Quality of Service (QoS). Low priority
users may be served using either WiFi or 5G NR.

In our earlier works [6], [7], [8], we have addressed
the trade-off between the total system throughput and the
blocking probability of high priority users, in the context of
an LTE based HetNet. However, in an LTE-WiFi HetNet,
implementation of centralized RAT selection algorithms
may be cumbersome as it requires the existence of addi-
tional network elements (which are not standardized by
3GPP), viz., a centralized controller and interfaces between
LTE Evolved Node B (eNB) /WiFi AP and the centralized
controller. On the contrary, in 3GPP 5G network [2], the
presence of unified core enables the integration of multiple
RATs. Moreover, due to the presence of N3IWF, radio related
information such as load information of RATs and channel
condition of users, can be gathered with ease at the central-
ized controller. Motivated by this, in this paper, we consider
the trade-off between the total system throughput and the
blocking probability of high priority users in a 5G NR-WiFi
HetNet. Since low priority users are best effort in nature,
blocking probability of low priority users need not be taken
into consideration. However, maximizing the total system
throughput subject to a blocking probability constraint may
lead to a ‘ping-pong’ kind of behavior since the optimal
policy may result in offloading [9] of a low priority user
from 5G NR to WiFi and back to 5G NR again within
a short time interval when a high priority user arrival is
followed by a departure. Similar instances can occur where
a departure is followed by an arrival. Frequent offloading
between 5G NR gNB and WiFi AP causes additional delay
and hence, loss of throughput. Similar problem arises for
concurrent access to multiple gNBs/APs belonging to differ-
ent RATs in 5G. This is due to the controller queuing delay
and controller-gNB/N3IWF (AP) communication delay if
there are excessive traffic steering requests (changes in the
fractions of traffic through each AP/gNB) at the controller.
Therefore, to address the issue of control signaling traffic in
the backhaul and additional delay due to this ping-pong
behavior, we incorporate an additional constraint on the
offloading probability of low priority users (i.e., fraction of
offloaded low priority users). We thus aim to maximize the
total system throughput subject to the high priority user
blocking probability and the low priority user offloading
probability constraints.

The above problem is modeled as a Constrained Markov
Decision Process (CMDP) problem. We establish the sub-
optimality of various actions in different states of the sys-
tem and thereby, reduce the effective dimensionality of
the action space. However, even after reducing the size of
the action space, conventional Dynamic Programming (DP)
methods to solve the CMDP problem are computationally
prohibitive under large state spaces. Moreover, DP methods
require the knowledge of transition probabilities between
different states which depend on the unknown statistics of
system dynamics, viz., the arrival rates of low and high
priority users. These are hard to gather in reality. To address
these issues, we propose two online RAT selection heuris-
tic algorithms. Unlike DP based algorithms, the proposed
algorithms do not require the knowledge of the statistics
of system dynamics. Moreover, the proposed algorithms

have low computational and storage complexities. These
features make the algorithms suitable for practical online
implementation.

We implement the proposed RAT selection algorithms
in a Network Simulator-3 (ns-3) (a discrete event network
simulator) [10] based 5G NR simulation setup [11], [12].
The setup incorporates Physical (PHY) and Medium Access
Control (MAC) layers of the 5G stack. The higher layers
are extensions of corresponding layers in ns-3 LTE module
[13]. Performances of the proposed algorithms are compared
with the traditional RAT selection scheme under various
practical scenarios including user mobility.

1.1 Related Work

RAT selection and offloading are among the control plane
functionalities which are traditionally implemented either
in distributed [14], [15], [16], [17], [18], [19], [20], [21] or
centralized [6], [7], [8], [22], [23], [24], [25], [26] manner. An
overview of existing RAT selection techniques in HetNets
and their performance evaluation is presented in [27].

Among centralized RAT selection strategies, an inte-
grated interference management and user association 1

problem in a two-tier HetNet is considered in [23]. Although
the authors propose a computationally efficient algorithm,
this approach is not adaptable to fast changes in network
parameters. In [26], an admission control algorithm which
maximizes the users’ quality of experience, is proposed in
a macro cell-small cell HetNet. The authors show that the
optimal policy performs better than the random policy. In
our earlier work [6], we propose a computationally efficient
network-initiated RAT selection algorithm which maximizes
the total system throughput subject to a blocking prob-
ability constraint. However, it requires the knowledge of
the state transition probabilities of the underlying Markov
chain which depend on the statistics of unknown system
dynamics. Subsequently, we propose learning algorithms in
[7] which can work without the knowledge of the statistics
of unknown system dynamics and unlike [6], can be im-
plemented online. The convergence speed of the traditional
Q-learning based algorithm in [7] is further improved in [8]
by exploiting the structural properties of the optimal policy.

Among the distributed solutions, the authors in [14]
propose an association scheme which maximizes the net-
work utility subject to constraints on user requirements.
The proposed scheme is based on the utility obtained from
past associations of users. In [19], a low complexity RAT
selection algorithm is proposed for an LTE network com-
prising macro, pico and femto cells. The proposed algorithm
achieves a near-optimal performance with a theoretical
guarantee on the performance. The authors in [21] use
the information provided by the network to improve the
efficiency of distributed RAT selection algorithms.

Contrary to distributed approaches which focus on op-
timizing individual user utilities and hence, often may
not provide the globally optimal solution, centralized ap-
proaches provide a framework for overall system opti-
mization. Moreover, in [28], the authors demonstrate that

1. The terminologies “association” and “RAT selection” are used
interchangeably throughout this paper.
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network-centric resource allocation approaches perform bet-
ter than distributed approaches in a HetNet. Hence, we
focus on network-initiated centralized approaches for RAT
selection and offloading in a 5G NR-WiFi network. The
trade-off involving the total system throughput, the block-
ing probability and the offloading probability in a dynamic
5G NR based HetNet within an optimization framework has
not been considered in the literature before. Furthermore,
unlike others, we investigate the role of offloading in im-
proving the system performance at time instances of arrivals
and departures of users.

1.2 Our Contributions
In this paper, We consider the problem of optimal RAT selec-
tion in a 5G NR-WiFi HetNet where we aim to maximize the
total system throughput subject to constraints on the high
priority user blocking probability and the low priority user
offloading probability. Our contributions are summarized as
follows:
• Optimal association problem of maximizing the total sys-

tem throughput subject to constraints on the high priority
user blocking probability and the low priority user of-
floading probability is formulated as a CMDP problem.

• We prove the sub-optimality of certain actions in different
states. This reduces the size of the effective action space.

• We propose two low complexity heuristics for RAT selec-
tion. They do not require the knowledge of the user arrival
rates and hence, can be implemented online.

• We implement the RAT selection algorithms in a 5G NR
based simulation setup [11], [12] in ns-3.

• We also compare the performances of the proposed al-
gorithms with that of traditional RAT selection algorithm
under realistic scenarios including user mobility.

The trade-off involving total system throughput, blocking
probability of high priority users and offloading probability
of low priority users in a dynamic 5G NR-WiFi network
(where users arrive and depart) within an optimization
framework is not considered in the literature before. More-
over, we investigate the role of offloading coupled with RAT
selection at the arrival and departure instants of users. While
the trade-off between the total system throughput and the
blocking probability is addressed in [6], [7], [8], this is the
first work where the constraint on the offloading probability
is considered to control the frequency of switching between
RATs and resulting issue of enhanced signaling and delay.
We propose low complexity RAT selection algorithms which
are free from the curses of dimensionality and modeling.
Moreover, unlike learning based methods, these algorithms
do not suffer from slow convergence issues, making them
suitable for practical implementation.

The rest of the paper is organized as follows. Section
2 describes the system model. In Section 3, the problem
formulation within the framework of CMDP is described. In
Section 4, we derive the suboptimal actions and eliminate
them from the action space. We describe the proposed
algorithms in Section 5 with a comparison of storage and
computational complexities. Performance analysis of the
proposed algorithms in ns-3 is provided in Section 6. Section
7 provides key insights of the paper and concludes the
paper.

2 SYSTEM MODEL

We begin by first describing the 5G NR-WiFi network archi-
tecture.

WiFi AP

WiFi AP

5G NR gNB

5G NR gNB

User Plane Function

N3IWF Centralized Controller
(AMF/SMF)

Control Path
Data Path

Internet

User
Data Flow

User

Figure 1: 5G NR-WiFi network architecture.

WiFiAP

N3IWF 5G gNB

CentralizedController
(AMF/SMF)

Low Priority User
High Priority User

Figure 2: 5G NR-WiFi heterogeneous network.

2.1 3GPP 5G NR-WiFi Network Architecture
The centralized controller is present in the core network
and controls radio access functionalities of 5G NR gNB and
WiFi AP, as shown in Fig. 1. The presence of N3IWF ensures
seamless integration between WLAN and 5G core. User data
from 5G NR gNB and WiFi AP are routed to User Plane
Function (UPF), directly and via N3IWF, respectively.

3GPP 5G standards introduce the usage of SDN tech-
nology, a unified (RAT agnostic) core and the support for
ATSSS functionality [2]. SDN paradigm enables the separa-
tion of control plane functions (such as Access and Mobil-
ity Management function (AMF) and Session Management
Function (SMF)) from data plane functions and usage of a
logically centralized control plane. The 5G NR-WiFi network
architecture in Fig. 1 exhibits both these characteristics.
AMF and SMF are responsible for controlling the distributed
multi-RAT (5G NR and WiFi) RAN and core network data
plane functions using a single unified 5G core. Due to the
centralization of control functionality in core, 5G network
can support centralized RAT selection algorithms. ATSSS
functionality can be used by AMF and SMF in 5G core to
dynamically select one of the RATs to deliver data to the
user. The RAT selection algorithm may utilize parameters
such as user priority and RAT specific information, e.g.,
radio link quality. The RAT specific information may be
collected by the controller either directly from the user
or from the RAN nodes. RAT selection decision taken by
the controller can be conveyed to UPF for real-time traffic
distribution. Therefore, the ATSSS feature coupled with the
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unified 5G core enables RAT selection and user offload from
one RAT to another based on RAT specific information and
user priority.

The system setting considered by us for the problem
formulation consists of a 5G NR gNB and a WiFi AP. As
described in Fig. 2, both 5G NR gNB and WiFi AP which
is present inside the coverage area of 5G NR gNB, are
connected to the centralized controller via high capacity
lossless links and N3IWF.

2.2 Assumptions

The assumptions made in the system model are as follows.
• High and low priority users are assumed to be present

anywhere within the coverage area of 5G NR gNB. Since
low priority users present outside the coverage area of
WiFi AP always associates with 5G NR gNB and no
decision is involved in this case, in the state space, we take
into consideration only those low priority users which
are present in the common coverage area of 5G NR gNB
and WiFi AP. In this case, the controller needs to choose
whether the user is to be associated with WiFi AP or 5G
NR gNB, based on the system state.

• Both high and low priority users are alloted resources in
5G NR gNB from a common set of resources. High priority
users are provided a Guaranteed Bit Rate (GBR) following
which available resources in 5G NR gNB are uniformly
allocated among low priority users.

• We assume that high priority users are always served
using 5G NR since WiFi (although may provide a good
channel to the user) may not provide the required QoS
guarantee.

• We further assume that in 5G NR, high and low priority
users can be in either “good” or “bad” channel state.
Based on the location of users, the coverage area of an 5G
NR gNB is assumed to be divided into two regions, viz.,
cell center and cell edge regions [29], [30], [31]. Since cell
edge users are present in the vicinity of the cell bound-
ary or in coverage holes, usually they receive weaker
signal strength than that of cell center users. Therefore,
it is assumed that users present in the cell center region
(outside coverage holes) have good channels, whereas cell
edge users have bad channels. Cell edge users can be
mapped to the 5th percentile users [32], [33] for which
the spectral efficiency is 5% point of the cumulative dis-
tribution function of normalized user throughput. Rest of
the users can be referred to as cell center users. Although
the coverage of a 5G NR gNB may be small (especially
for mmwave cells), the variation in SNR may be large [34]
due to factors such as blockage, reflector, small variation
in handset orientation relative to the environment.

• Cell center/ cell edge region can be chosen based on the
average Channel Quality Indicator (CQI) experienced by
the users in 5G NR, similar to [34]. If the average CQI
of a user exceeds a certain threshold, then the user is
called a cell center user. Otherwise, it is called a cell edge
user. Although 3GPP [35] standardizes 16 possible CQI
values, for analytical tractability we assume that possible
CQI values can be categorized in two groups.

• Since RAT selection decisions are made for a sufficiently
long period of time, we assume that users are distributed

in cell edge/cell center region depending on their average
radio conditions. We assume that instantaneous fading
effects are averaged out over the timescale in which
decisions are taken.

• We consider that the users are stationary, and the channel
state of a user does not change with time once the user
is admitted. The channel states of incoming users are as-
sumed to be known at the centralized controller, however,
the channel states in 5G NR gNB are random (good/bad)
with finite probabilities.

• Since WiFi AP has a small coverage area, it is assumed
that the channel states of users in WiFi are always good.

• Both 5G NR gNB and WiFi AP forward the channel condi-
tion of individual users to the centralized controller which
takes the RAT selection decisions. If WiFi AP does not
forward channel condition of a given user, the centralized
controller assumes that the user cannot be associated with
WiFi AP.

• Let high and low priority user arrivals be independent
Poisson processes with means λH and λL, respectively.
Following [36], the service times for high and low priority
users are assumed to be exponentially distributed with
means 1

µH
and 1

µL
, respectively.

• We also assume that low priority users use applications
such as video where the duration of a session does not
depend on the number of users.

Remark 1. One 5G NR gNB-one WiFi AP scenario (considered
for brevity for notation) in this paper can be extended easily
for multiple gNBs-multiple APs case. If coverage areas of gNBs
(APs) do not overlap, users present inside the coverage area of
each gNB (AP) can be considered as a tuple in the state space.
In the case of overlapping coverage areas, the problem can be
cast into the non-overlapping coverage area case, and analysis
follows in a similar way. This can be performed using some simple
criterion, say, mapping every geographical point to the gNB (AP)
which provides the highest Signal-to-Noise Ratio (SNR). The set
where multiple gNBs/APs have equal SNR is non-generic since
in the corresponding parameter space, the Lebesgue measure is
0. In case of multiple gNBs, the interference management and the
power control mechanisms would be present at gNBs and handsets
which employ advanced coordinated communications [37], [38].
Such mechanisms are currently under standardization by 3GPP.
Interference constraints associated with the problem, if any, can
be handled at individual gNBs. Hence, these constraints need not
be taken into account while optimizing the system throughput
subject to constraints on blocking and offloading probabilities.

Remark 2. As specified in 3GPP standards [39] and Inter-
national Telecommunication Union (ITU) International Mobile
Telecommunications-2020 (IMT-2020) requirements [33], inter-
gNB distances in case of dense urban, urban macro and rural
deployments are 200, 500 and 1732 m, respectively, which are
typically larger than the coverage of a WiFi AP.

Remark 3. Since 3GPP 5G architecture integrates different RATs
using a unified core, centralized algorithms can be easily imple-
mented. Note that even if 5G NR gNB and WiFi AP are deployed
by different operators, 3GPP 5G architecture [2] guarantees that
the interworking between them is supported at the core network
using standardized interfaces and N3IWF.



5

2.3 State Space

The system can be viewed as a controlled continuous
time stochastic process {X(t)}t≥0, similar to [6], [7], [8].
Any state s in the state space S is expressed as s =
(iG, iB , jG, jB , kG, kB), where iG, iB denote the number of
high priority users associated with 5G NR gNB with good
and bad channels in 5G NR gNB, jG, jB denote the number
of low priority users associated with 5G NR gNB with good
and bad channels in 5G NR, and kG, kB denote the number
of low priority users associated with WiFi AP, however, with
respect to 5G NR they have good and bad channels, re-
spectively. Channel states of users in WiFi are not explicitly
mentioned since channel states of users in WiFi are always
assumed to be good. The arrival and departure of high
and low priority users with good and bad channel states
in 5G NR are taken as decision epochs. It is evident that the
system changes state only at the decision epochs. Moreover,
since the system is Markovian, it is sufficient to observe the
system state at these decision epochs and not at other time
points.

An arrival or a departure of a user with good/bad
channel state in 5G NR is referred to as an event. Whenever
an event happens, the system changes state. Let the set
of all events be denoted by E . Let us denote the arrival
of a high and low priority user with good (bad) channel
by E1(E3) and E2(E4), respectively. Let the departure of
a high and low priority user with good (bad) channel be
denoted by E5(E6) and E7(E8), respectively. We assume
that the departure of a low priority user from WiFi with
good and bad channel in 5G NR are denoted by E9 and E10,
respectively. Note that, the channel states of users in WiFi do
not appear in the event space because the channel states of
users in WiFi are assumed to be good. At every decision
epoch, a decision is chosen by the controller based on the
event and the current system state. Based on the decision
chosen, the system moves to a different state with a finite
probability.

Let the 5G NR system be composed of CN resource
blocks. We assume that s = (iG, iB , jG, jB , kG, kB) ∈ S if
(iG + pciB) ≤ CN , (jG + jB) ≤ N and (kG + kB) < W ,
whereN is a sufficiently large positive integer (incorporated
for analytical tractability). The first condition signifies that a
high priority user is admitted only when sufficient resources
are available. The first condition is under the assumption
that a high priority user with bad channel requires pc(> 1)
times as many resource blocks as required by a high pri-
ority user with good channel. The quantity W signifies
the maximum number of users that can be supported in
WiFi to guarantee a specified minimum per-user through-
put. Note that the per-user throughput of WiFi decreases
monotonically with load [40]. Let the GBR required by a
high priority user be denoted by RL,H . A fixed number of
resource blocks are allocated to a high priority user based
on the channel condition of the user. Low priority users are
best-effort in nature. Therefore, the available resources in 5G
NR are allocated uniformly among low priority users. The
data rate obtained by a low priority user depends on the
channel states of the users and the number of high priority
users. We assume that the bit rate of a low priority user
with bad channel is 1

d (d > 1) times that of a low priority

user with good channel, where d is a constant.

2.4 Action Space

Let us denote the action space by A. Action A1 blocks an
arriving user or does nothing during a departure. Actions
A2 and A3 correspond to association with 5G NR and
WiFi, respectively. Note that actions A1, A2, A3 are similar
to those of [6], [7], [8]. Under action A4, a high priority
user is associated with 5G NR and a low priority user
with bad channel is offloaded to WiFi. Action A5 performs
offloading of a low priority user with bad (good) channel
from 5G NR (WiFi) to WiFi (5G NR) when a user departs
from WiFi (5G NR). Action A6 associates a high priority
user with 5G NR and offloads a low priority user with
good channel to WiFi. Action A7 offloads a low priority
user with good (bad) channel from 5G NR (WiFi) to WiFi
(5G NR) when a user departs from WiFi (5G NR). In case
of high and low priority user arrivals, the feasible action
sets are {A1, A2, A4, A6} and {A2, A3}, respectively. The
feasible action set for departures comprises A1, A5 and A7.
Note that blocking is a feasible action for high priority users
only when the system is non-empty. Low priority users are
blocked only when (jG + jB) becomes N .

Table 1: Transition Probability Table.

a|El (i′G, i′B, j′
G, j′

B, k′
G, k′

B)

A1|E ∩ (E2 ∪ E4)
{ (iG, iB , jG, jB , kG, kB)

A2|E1 (iG + 1, iB , jG, jB , kG, kB)
A2|E2 (iG, iB , jG + 1, jB , kG, kB)
A2|E3 (iG, iB + 1, jG, jB , kG, kB)
A2|E4 (iG, iB , jG, jB + 1, kG, kB)
A3|E2 (iG, iB , jG, jB , kG + 1, kB)
A3|E4 (iG, iB , jG, jB , kG, kB + 1)
A4|E1 (iG + 1, iB , jG, jB − 1, kG, kB + 1)
A4|E3 (iG, iB + 1, jG, jB − 1, kG, kB + 1)
A5|(E5 ∪ . . . ∪ E8) (iG, iB , jG + 1, jB , kG − 1, kB)
A5|(E9 ∪ E10) (iG, iB , jG, jB − 1, kG, kB + 1)
A6|E1 (iG + 1, iB , jG − 1, jB , kG + 1, kB)
A6|E3 (iG, iB + 1, jG − 1, jB , kG + 1, kB)
A7|(E5 ∪ . . . ∪ E8) (iG, iB , jG, jB + 1, kG, kB − 1)
A7|(E9 ∪ E10) (iG, iB , jG − 1, jB , kG + 1, kB)

Remark 4. Although consideration of 16 CQI values standard-
ized by 3GPP [35] mimics the practical scenario better, this
complicates the system model since cardinalities of state and action
spaces become larger. However, the solution methodology remains
identical to the one adopted in this paper. In Section 6, we propose
suitable modifications to our schemes which take into account 16
possible CQI values of users and demonstrate that the resulting
schemes outperform state-of-the-art algorithms.

2.5 Transition Probabilities

Let ŝ = (i′G, i
′
B , j

′
G, j
′
B , k

′
G, k

′
B), and e{i:1≤i≤6} be a set of 6

dimensional vectors where all elements except ith element
(which is ‘1’) is zero. Let pg denote the probability that the
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channel state of the arriving user in 5G NR is good. Then,

pss′(a) =



λHpg
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ,

λH(1−pg)
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ,

λLpg
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ,

λL(1−pg)
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ,

i′GµH
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e1,

i′BµH
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e2,

j′GµL
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e3,

j′BµL
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e4,

k′GµL
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e5,

k′BµL
v(i′G,i

′
B ,j

′
G,j

′
B ,k

′
G,k

′
B) , s′ = ŝ− e6.

Values of i′G, i
′
B , j

′
G, j
′
B , k

′
G, k

′
B as a function of action a and

event El are described in Table 1.

2.6 Rewards and Costs

Based on the system state and the action, a finite reward
rate is obtained. In WiFi, the total throughput is a function
of the total load of WiFi comprising low priority users with
good and bad channels in 5G NR. Let the reward rate
for state s and action a be denoted by r(s, a). Under full
buffer traffic WiFi model [40], let RW,D(k) be the per-user
throughput when k users are present in WiFi. RW,D(k) is a
function of success and collision probabilities (which signify
the contention-driven medium access of WiFi users) and
slot times for idle, busy (due to collision) and successful
transmissions. The reward rate under a state-action pair is
the sum of throughput of all users in 5G NR and WiFi under
an action. Let us define

R(iG, iB , jG, jB , kG, kB) = (iG + iB)RL,H

+
(CN − iG − pciB)

(jG + jB)
(jG +

jB
d

)RL,L1{(jG+jB)>0}

+ (kG + kB)RW,D(kG + kB),

(1)

where RL,L is the data rate obtained when single 5G NR
resource block is allocated to a low priority data user with
good channel condition. Note that the quantities pc and d
which describe the factors by which requirement of number
of resource blocks grow and bit rate degrade due to bad
channel, have been introduced while describing the state
space. The complete description of reward rates in state s
under different event-action pairs is given in Table 2. Note
that the association of a high priority user with 5G NR
provides QoS guarantees in terms of delay, data rate and
bit error rate by allocation of dedicated bearers providing
GBR.

We consider cost functions due to blocking and of-
floading, respectively. Let the cost rates for blocking and
offloading in state s under action a be denoted by cb(s, a)
and co(s, a), respectively. Whenever a high priority user is
blocked, cb(s, a) is unity, else it is zero. Therefore,

cb(s, a) =

{
1, if high priority users are blocked,
0, otherwise.

Table 2: Reward Rate Table.

(a|El) r(s, a)
(A1| ∪Ei∈E Ei) R(iG, iB , jG, jB , kG, kB)
(A2|E1) R(iG + 1, iB , jG, jB , kG, kB)
(A2|E2) R(iG, iB , jG + 1, jB , kG, kB)
(A2|E3) R(iG, iB + 1, jG, jB , kG, kB)
(A2|E4) R(iG, iB , jG, jB + 1, kG, kB)
(A3|E2) R(iG, iB , jG, jB , kG + 1, kB)
(A3|E4) R(iG, iB , jG, jB , kG, kB + 1)
(A4|E1) R(iG + 1, iB , jG, jB − 1, kG, kB + 1)
(A4|E3) R(iG, iB + 1, jG, jB − 1, kG, kB + 1)
(A5|E5 ∪ . . . ∪ E8) R(iG, iB , jG + 1, jB , kG − 1, kB)
(A5|E9 ∪ E10) R(iG, iB , jG, jB − 1, kG, kB + 1)
(A6|E1) R(iG + 1, iB , jG − 1, jB , kG + 1, kB)
(A6|E2) R(iG, iB + 1, jG − 1, jB , kG + 1, kB)
(A7|E5 ∪ . . . ∪ E8) R(iG, iB , jG, jB + 1, kG, kB − 1)
(A7|E9 ∪ E10) R(iG, iB , jG − 1, jB , kG + 1, kB)

Whenever one low priority user is offloaded from one RAT
to another, co(s, a) is unity, else it is zero. Therefore,

co(s, a) =

{
1, if a = (A4|| . . . ||A7),

0, otherwise.

Remark 5. Apart from the single user offloading as considered
in the paper, one may consider offloading of multiple users from
one RAT to another in the action space. This may result in
an improvement in the RAT selection performance. However,
offloading of multiple users from one RAT to another causes
significant instantaneous control signaling in the core network.
Moreover, with the consideration of multiple user offloading as
feasible actions, the size of the resulting action space increases. As
a result, the computational complexity of obtaining the optimal
policy increases.

3 PROBLEM FORMULATION & SOLUTION TECH-
NIQUES

We target to determine an association policy which max-
imizes the total system throughput subject to constraints
on the blocking probability of high priority users and the
offloading probability of low priority users. A policy is a
mapping from a state to an action specifying the action to
be chosen in a state. Arrivals and departures of high and
low priority users can occur at any point in time. Therefore,
the considered problem is formulated as a continuous time
CMDP problem. In this case, a stationary randomized optimal
policy, i.e., a mixture of pure policies with finite probabilities,
is known to be optimal [41].

3.1 Problem Formulation

Let M be the set of memoryless policies. We assume that
the underlying Markov chains corresponding to the mem-
oryless policies are unichain to guarantee that the Markov
chains have unique stationary distributions. Let VM , CB,M

and CO,M denote the average reward, the cost due to
blocking of high priority users and the cost due to offloading
of low priority users over infinite horizon under policy
M ∈ M, respectively. Let the total reward, costs due to
blocking and offloading till time t be denoted byR(t),CB(t)
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and CO(t), respectively. The objective of the problem is as
follows:

Maximize: VM = lim
t→∞

1

t
EM [R(t)],

subject to: CB,M = lim
t→∞

1

t
EM [CB(t)] ≤ Bmax and

CO,M = lim
t→∞

1

t
EM [CO(t)] ≤ Omax,

(2)

where EM is the expectation operator corresponding to
policy M , and Bmax, Omax are constraints on the blocking
probability of high priority users and the offloading prob-
ability of low priority users, respectively. As the optimal
policy is stationary, the limits in Equation (2) exist.

3.2 Conversion to Discrete-Time MDP and Lagrangian
Approach

Optimal policy can be obtained using a combination of Rel-
ative Value Iteration Algorithm (RVIA) [42] and Lagrangian
approach [41]. The approach adopted is analogous to that
of [8]. However, due to the presence of an additional con-
straint, in this paper, we describe the approach to capture
the notational specificities. For fixed Lagrange Multipliers
(LMs) βb and βo, the equivalent unconstrained reward func-
tion is

r(s, a;βb;βo) = r(s, a)− βbcb(s, a)− βoco(s, a).

DP based optimality equation for the considered Semi
Markov Decision Process (SMDP) ∀s, s′ ∈ S is

V (s) = max
a

[r(s, a;βb;βo) +
∑
s′

pss′(a)V (s′)− ρt̄(s, a)],

where V (s), t̄(s, a), ρ denote the value function of state
s ∈ S , the mean transition time from state s when action
a is chosen and the optimal average reward of the system,
respectively. Since the sojourn times are known to be ex-
ponentially distributed, this is a special case of controlled
continuous time Markov chain. Therefore, the following
equation holds,

0 = max
a

[r(s, a;βb;βo)− ρ+
∑
s′

q(s′|s, a)V (s′)], (3)

where q(s′|s, a) denote controlled transition rates which
satisfy q(s′|s, a) ≥ 0, if s′ 6= s and

∑
s′
q(s′|s, a) = 0. We scale

the transition rates by a positive quantity which makes it
equivalent to time scaling. This scales the average reward
for every policy, however, without changing the optimal
policy. Therefore, let −q(s|s, a) ∈ (0, 1),∀a (without loss
of generality). Hence, q(s′|s, a) ∈ [0, 1] if s′ 6= s. Add V (s)
to both sides of Equation (3). The optimality equation for an
equivalent discrete-time MDP ({Xn} say) with controlled
transition probabilities pss′(a) is as follows:

V (s) = max
a

[r(s, a;βb;βo)− ρ+
∑
s′

pss′(a)V (s′)], (4)

where pss′(a) = q(s′|s, a) if s′ 6= s and pss′(a) = 1 +
q(s′|s, a) if s′ = s. For the rest of the paper, we focus on
the equivalent discrete-time MDP in Equation (4), instead of
the original continuous-time MDP.

For fixed values of βb and βo, we use RVIA to solve
the unconstrained maximization problem (see Equation (4))
using the following scheme.

Vn+1(s) = max
a

[r(s, a;βb;βo) +
∑
s′

pss′(a)Vn(s′)− Vn(s∗)],

(5)
where Vn(s) is the estimate of value function of state s at nth

iteration, and s∗ is a fixed state. We aim to obtain the optimal
values of βb and βo, viz., βb

∗ and βo
∗, which maximize

the average reward subject to cost constraints. The gradient
descent routines to update the values of βb and βo at kth

iteration are as follows,

βb,k+1 = βb,k +
1

k
(Bπβb,k −Bmax),

βo,k+1 = βo,k +
1

k
(Oπβo,k −Omax),

where βb,k and βo,k are the values of βb and βo at kth iter-
ation, and Bπβb,k , Oπβo,k are the high priority user blocking
probability and low priority user offloading probability at
kth iteration, respectively. Note that the optimal policy for
the CMDP is a randomized policy which is randomized in
at most two states [43].

4 ACTION ELIMINATION

The DP equations (Equations (4) and (5)) are exploited
to prove the sub-optimality of certain actions in different
states. Using this, the number of actions to be considered
in different states can be reduced. This fact is utilized
in analyzing the computational complexities of the RAT
selection algorithms, as described later. The sub-optimality
of different actions is established with the help of some
lemmas.

4.1 Suboptimal Actions for Departures
The subsequent lemmas describe the sub-optimality of cer-
tain actions in a subset of states. Specifically, whenever a
high/low priority user departs from 5G NR, A5 is better
than A7. Therefore, in this case, A7 is a suboptimal action.
Similarly, in case of a low priority user departure from WiFi,
A7 is a suboptimal action.

Lemma 1. A5 is better than A7 in case of high/low priority user
departure from 5G NR (events E5, E6, E7 and E8).

Proof. Proof is given in Section 8.1.

Lemma 2. A5 is better than A7 in case of low priority user
departure from WiFi (events E9 and E10).

Proof. Proof is given in Section 8.2.

The physical significance of Lemmas 1 and 2 is that
whenever there is a departure of a user, if we choose to
offload a low priority user, it is always better to choose the
user with good (bad) channel condition for offloading to 5G
NR (WiFi). Intuitively, since the contribution of a bad user
in 5G NR towards the total system throughput is less than
that of a good user in 5G NR, it is better to offload a bad
user to WiFi. Since we have assumed that in WiFi, every
user experiences good channel condition, the total system
throughput obtained by offloading a user with bad channel
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condition in 5G NR to WiFi is more than that obtained
by offloading a good user. Similar argument holds for the
offloading of a user with good channel condition to 5G NR.

4.2 Suboptimal Actions for Arrivals

We characterize the suboptimal action in the case of high
priority user arrivals. As described in the subsequent
lemma, whenever there is a high priority user arrival, then
irrespective of the channel condition of the user, action A4

is better than A6. In other words, whenever a high priority
user is associated with 5G NR, and we decide to offload
an existing low priority user to WiFi, it is always better
to choose a user with bad channel condition rather than
choosing one with good channel.

Lemma 3. A4 is better than A6 in case of high priority user
arrivals (events E1 and E3).

Proof. Proof is similar to Lemma 2.

5 PROPOSED RAT SELECTION ALGORITHMS

The CMDP problem described in Section 3 can be solved
using DP techniques which are computationally prohibitive.
For example, in policy iteration [42], the computational com-
plexity (which is O(|A||S|)) is exponential in the cardinality
of the state space. This is known as the curse of dimensionality.
Although elimination of suboptimal actions in Section 4
reduces the size of action space, still the complexity remains
exponential in |S|. Furthermore, to compute the optimal
policy, we need to know the state transition probabilities
which are governed by the statistics of arrival processes.
In practice, statistics of arrival processes may be unknown.
This is known as the curse of modeling. Although learning
based approaches [7], [8] do not require the knowledge
of statistics of arrival processes, usually their convergence
rates are very slow [44]. Moreover, presence of multiple
constraints, as considered in our problem, usually gives rise
to multiple timescales [45] where the value functions and
individual LMs are updated at separate timescales. How-
ever, convergence of the iterates at the slowest timescale
is too slow. In addition, the storage complexity of such
learning schemes is very high. In our earlier works [7], [8],
we have established that traditional learning schemes have
storage complexity of at least O(|S|) and slow convergence
behavior.

To address these issues, we propose low-complexity
algorithms for RAT selection. Unlike DP based methods,
they do not require the knowledge of the statistics of arrival
processes and hence, can be implemented online. Morover,
they do not suffer from slow convergence and high storage
complexity issues prevalent in learning based approaches.

5.1 Myopic with Constraint Satisfaction Algorithm

In this subsection, we propose an algorithm which is my-
opic, i.e., it optimizes based on the current reward without
considering the future utility. However, the proposed My-
opic with Constraint Satisfaction Algorithm (MCSA) (de-
scribed in Algorithm 1) is designed in such a way that it

Algorithm 1 Myopic with Constraint Satisfaction Associa-
tion Algorithm.

Input: RL,H , RL,L, RW (.), Bmax, Omax.
1: Initialize D ← 0, AH ← 0, BH ← 0, OL ← 0, FB ← 0, FO ← 0.
2: while TRUE do
3: Determine event E in the current decision epoch.
4: Set a∗ ← argmax

a∈A
r(s, a).

5: if (E = E2||E4) then
6: Select action a = a∗.
7: else if (E = E1||E3) then
8: AH ← AH + 1.
9: if BH > (Bmax − εB) then

10: procedure HP–CONSTRAINT–VIOLATION
11: If OL < (Omax − εO) select a = a∗ ∈ A \A1.
12: Else select a = A2.
13: F0 ← I{a=A4||A6}.
14: end procedure
15: else
16: Select action a = A1.
17: end if
18: procedure UPDATE–BP–OP
19: FB ← I{a=A1}.
20: BH ← BHAH+FB

(AH+1)
.

21: OL ← OL(AH+D)+FO
(AH+D+1)

.
22: end procedure
23: else
24: procedure DEPARTURE–POLICY
25: D ← D + 1.
26: if OL < (Omax − εO) then
27: Select action a = a∗.
28: else
29: Select action a = A1.
30: end if
31: F0 ← I{a=A5||A7}.
32: OL ← OL(AH+D)+FO

(AH+D+1)
.

33: end procedure
34: end if
35: end while

satisfies the associated constraints on the blocking proba-
bility of high priority and the offloading probability of low
priority users.

We first determine the event corresponding to the cur-
rent decision epoch. Then we determine the best action
(denoted by a∗) which provides the highest immediate re-
ward (Line 4). Now, based on the event, we choose different
actions. If the current event is low priority user arrival
(events E2 and E4), then we always choose the action a∗,
irrespective of the channel condition of the user (Line 6).
Since the set of actions for low priority user arrivals (A2 and
A3) has no direct impact on the high priority user blocking
probability and the low priority user offloading probability,
whenever a low priority user arrives, we always choose
the action which is best in the myopic sense. However,
when a high priority user arrives (events E1 and E3), we
increment the counter which keeps track of the number of
high priority user arrivals (denoted by AH ). We block the
incoming high priority user if the current value of blocking
probability (which is BH ) is less than Bmax − εB (Line 16).
The factor εB is incorporated to ensure that the blocking
probability of high priority users remains below Bmax in
the long run. However, if BH exceeds Bmax − εB , then
actions are chosen based on the current value of offloading
probability of low priority users (denoted by OL). If OL is
less than Omax − εO, then the action a∗ (Line 11) is selected.
Note that, similar to the margin εB on Bmax, we consider
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a margin εO on Omax to guarantee that the offloading
probability of low priority users is less than Omax in the
long run. However, if the offloading probability constraint
is not satisfied (OL > Omax−εO), then A2 is chosen because
selection of A4 or A6 may increase the value of OL (Line
12). Depending on whether action involving blocking (A1)
or offloading (A4 and A6) is chosen, we update the values of
BH and OL, respectively (Line 20-21). Procedures followed
in case of departures are similar. Initially, we increment the
counter (denoted by D). If OL exceeds Omax − εO, action
A1 is chosen since it reduces the value of OL (Line 29).
Otherwise, we act in a myopic manner (Line 27). Based on
the action selected, we then update the value of OL (Line
31-32). Since the algorithm does not need the knowledge of
unknown system dynamics λH and λL, unlike DP methods,
it does not suffer from the curse of modeling. Note that
when the considered problem does not have a feasible
solution, then except few initial iterations, actions involving
blocking and offloading are never chosen.

5.2 State-aware Myopic with Constraint Satisfaction Al-
gorithm

In this subsection, we describe the shortcomings of MCSA
and propose a State-aware Myopic with Constraint Satisfac-
tion Algorithm (SMCSA) which addresses these shortcom-
ings.

Whenever the current values of blocking and offloading
probabilities are lower than the respective constraints, the
proposed MCSA blocks an incoming high priority user.
Hence, when the arrival rate of high priority users is small,
it may lead to unnecessary blocking of high priority users.
On the other hand, the optimal policy may result in a lower
value of blocking probability of high priority users than that
of MCSA, depending on Bmax. In this case, the optimal
policy corresponding to the unconstrained problem may
result in a high priority user blocking probability which
is significantly lower than Bmax. Intuitively, MCSA blindly
aims to satisfy the constraints of the considered problem
without a consideration of the system state. Thus, MCSA
always results in high priority user blocking probability
values which are close to the given constraints, irrespective
of λH and λL. Due to similar reasons, MCSA results in a
high value of offloading probability of low priority users
which is always close to Omax, irrespective of λH and λL.

To address this, we propose SMCSA which is described
in Algorithm 2. The procedures for low priority user arrivals
are same as that of Algorithm 1. In the case of high priority
user arrival, when the constraints on the blocking proba-
bility and the offloading probability are not satisfied, the
procedure is exactly same as that of Algorithm 1. However,
when the constraints on the blocking probability and the
offloading probability are met, we modify the RAT selection
strategy in the following way. We divide the entire state
space into multiple regions based on the number of high
and low priority users in the system. Let us divide the
entire state space into P regions denoted by R1, R2, . . . RP .
For a given region Rn(1 ≤ n ≤ P ), let the probability
of blocking and offloading be denoted by q(n) and p(n)
(0 ≤ q(n) ≤ 1, 0 ≤ p(n) ≤ 1), respectively, where q(n) and
p(n) are increasing functions of n, and q(P ) = p(P ) = 1.

Whenever an event happens, we determine the current state
of the system and evaluate the region in which it falls. If it
falls in Rn, we block (choose A1) the user with probability
q(n) and accept (chooseA2) with probability (1−q(n)) (Line
17). Similarly, if it falls inRn and the optimal action involves
offloading, we offload with probability p(n) and choose the
other action with probability (1−p(n)) (Line 11-12). Similar
procedures are followed for the departures. If the constraint
on OL is met and the optimal action involves offloading, we
offload with probability p(n) and choose the other action
with probability (1− p(n)) (Line 25-26). The procedures for
the update of BH and OL are same as those of Algorithm 1.

Algorithm 2 State-aware Myopic with Constraint Satisfac-
tion Association Algorithm.

Input: RL,H , RL,L, RW (.), Bmax, Omax.
1: Initialize AH ← 0, D ← 0, BH ← 0 and OL ← 0, FB ← 0,
FO ← 0.

2: while TRUE do
3: Determine the event E in the current decision epoch and the

region Rn in which the current state s falls.
4: Set a∗ ← argmax

a∈A
r(s, a).

5: if (E = E2||E4) then
6: Choose a = a∗.
7: else if (E = E1||E3) then
8: AH ← AH + 1.
9: if BH > (Bmax − εB) then

10: procedure HP–CONSTRAINT–VIOLATION–SA
11: If OL < (Omax − εO) and a∗ = (A4||A6)
12: Choose a = a∗(A2) w.p. p(n)(1− p(n)).
13: Else choose a = A2.
14: F0 ← I{a=A4||A6}.
15: end procedure
16: else
17: Choose a = A1(A2) w.p. q(n)(1− q(n)).
18: end if
19: procedure UPDATE–BP–OP
20: See Algorithm 1.
21: end procedure
22: else
23: procedure DEPARTURE–POLICY–SA
24: D ← D + 1.
25: if OL < (Omax − εO) and a∗ = (A5||A7) then
26: Choose a∗(A1) w.p. p(n)(1− p(n)).
27: else
28: Choose action a = A1.
29: end if
30: F0 ← I{a=A5||A7}.
31: OL ← OL(AH+D)+FO

(AH+D+1)
.

32: end procedure
33: end if
34: end while

The key advantage of SMCSA is that when the value
of λH is low, we block the incoming high priority users
with low probability. As λH increases and the system grad-
ually fills up with high priority users, the probability of
blocking increases. Hence, effectively, the system observes
less blocking probability than that of MCSA, when λH is
low. As λH increases, blocking probability of high priority
users increases since q(n) is an increasing function of n. The
performance of the resulting policy in the case of SMCSA
is closer to the optimal policy than that in the case of
MCSA. This is because unlike MCSA, the blocking is state-
dependent. The blocking probability of high priority users
gradually increases with λH , similar to the optimal policy.
Therefore, the problem of high blocking probability (which
is close to Bmax) of high priority users for all values of
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λH , as seen in MCSA, does not arise in SMCSA. Similar
observation holds in the case of offloading probability of
low priority users also. As λL grows, the offloading proba-
bility of low priority users gradually rises. Similar to MCSA,
SMCSA does not require the knowledge of λH and λL and
hence, is practically implementable.

Remark 6. Since information regrading user arrival/departure
is known to the network, the load information of 5G NR gNB
and WiFi AP are present in the core network and hence, does
not require any extra signaling. The only additional signaling
required for our schemes is due to channel state information of
users. However, since channel states of stationary users do not
change too frequently, the resulting signaling overhead is small.

Remark 7. In an LTE-WiFi HetNet, implementation of the
proposed RAT selection algorithms may be difficult since it
requires the presence of additional network elements which are
not standardized by 3GPP. Specifically, one requires a centralized
controller and new interfaces between LTE eNB (WiFi AP) and
the centralized controller. However, in 3GPP 5G network [2], the
presence of unified core enables the integration of multiple RATs.
Moreover, radio related information such as load information of
RATs and channel condition of users, can be made available to the
centralized controller using N3IWF.

Remark 8. In this paper, we consider one 5G NR gNB-one WiFi
AP scenario. However, the proposed algorithms can work in the
presence of multiple gNBs (considering the dense network scenario
in 5G) and APs. In case of non-overlapping coverage areas, for
each user, the problem reduces to one gNB-one AP scenario and
the algorithms are applicable without any modification. When the
coverage areas of multiple gNBs (APs) overlap, we map every user
to the gNB (AP) providing highest SNR. Thus, we can tessellate
the entire geographical area into multiple non-overlapping areas.
For example, if a user connects to its closest AP, then Voronoi
tessellation gives non-overlapping areas for the APs, satisfying
our condition. Such models are adopted in [46], [47]. Following
that, MCSA and SMCSA choose appropriate RAT (5G NR
gNB/WiFi AP) for a particular user.

5.3 Extensions to Multiple User Offloading2

The proposed MCSA and SMCSA consider only single user
offloading in the feasible action space as multiple user of-
floading may lead to increase in computational complexity
along with an increase in instantaneous control signaling
in the backhaul. However, the proposed algorithms can
be extended to the case where more than one user can
be offloaded. The motivation behind the consideration of
multiple user offloading is when OL is less than Omax− εO,
we act in a myopic fashion. In principle, offloading of
multiple users may give rise to more instantaneous reward
than single user offloading depending on the system state.
For example, when event E1 occurs, offloading of two low
priority users with bad channels in 5G NR is better than
offloading of one low priority user with bad channel in
5G NR if R(iG + 1, iB , jG, jB − 1, kG, kB + 1) < R(iG +
1, iB , jG, jB − 2, kG, kB + 2) (See Equation (1)). Therefore,
the system performance by offloading multiple users may
be better than that of single user offloading.

2. We thank the reviewer for pointing this out.

The modifications to MCSA which are necessary to
take into account offloading of multiple users, are as fol-
lows. Let the resulting action space after incorporation
of multiple user offloading be denoted as A′. Now, the
best action a∗ is chosen as a∗ ← arg max

a∈A′
r(s, a) and

a∗ ← arg max
a∈A′\A1

r(s, a) (Lines 4 and 11 of Algorithm 1,

respectively). Additionally, if a∗ dictates the offload of u
users (say), then we use the update rule F0 ← u (Lines
13 and 31 of Algorithm 1). The rest of the algorithm re-
mains unmodified. The modifications required in the case
SMCSA are similar to the foregoing modifications required
for MCSA.

5.4 Comparison of Complexities

In this subsection, we analyze the computational and the
storage complexities associated with the proposed algo-
rithms and the optimal policy. We summarize the complexi-
ties of MCSA and SMCSA in Table 3. Storing the optimal
action for every state results in a storage complexity of
O(|S|). Furthermore, the computation of the optimal policy
using policy iteration has the worst case computational com-
plexity of O(|A||S|), making it computationally restrictive.

In MCSA, based on every event, we need to calculate
the best action a∗, resulting in a per-iteration computational
complexity of O(|A|). As discussed in Section 4, action elim-
ination reduces the effective cardinality of the action space.
Although this does not reduce the theoretical computational
complexity of MCSA, in practice, the computation time may
reduce. MCSA requires to store the values of AH , D,BH
and OL. However, it need not store any information regard-
ing the state space. Hence, the storage complexity of MCSA
is O(1).

The per-iteration worst case computational complexity
of SMCSA is also O(|A|) because when the current values of
the constraints are below the specified values, the associated
procedures are same as that of MCSA. However, the com-
plexity involved with the probabilistic state-aware blocking
and offloading is O(1) because no comparison among the
actions is required. Apart from AH , D, BH and OL, SM-
CSA needs to store the information regarding the regions
Rn(1 ≤ n ≤ P ) and corresponding probabilities q(n) and
p(n). Therefore, the storage complexity of SMCSA is O(P ).
Clearly, storage complexities of the proposed algorithms are
significantly lower than those of learning schemes [7], [8]
having a storage complexity of at least O(|S|).

Table 3: Complexities of different algorithms.

Algorithm Storage complexity Computational complexity
MCSA O(1) O(|A|)
SMCSA O(P ) O(|A|)

Remark 9. A well-studied approach for MDP problems is the
investigation of structural properties, see e.g., [6], [48], which
often leads to a threshold-based optimal policy. In [6], which does
not consider offloading probability of low priority users, we prove
the optimality of threshold policies. Although the computational
complexity of the resulting algorithm in [6] is lower than that
of policy iteration, it is still exponential in one of the parameters
of the state space. The problem addressed in this paper does not
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result in a threshold-based optimal policy. However, the proposed
algorithms provide significantly lower computational complexities
compared to what would have been achieved corresponding to a
threshold-based optimal policy.

6 SIMULATION RESULTS

In this section, we evaluate the performances of the pro-
posed algorithms in ns-3. We utilize the open source ns-3
simulation package for 5G NR developed in [11], [12]. The
simulation package consists of customizable PHY and MAC
layers of mmWave based 5G NR stack. Higher layers of the
5G stack are implemented following the design principles of
corresponding LTE stack in ns-3 [13]. One can tune various
5G system parameters such as bandwidth, frame structure
within the simulation package. We observe performances of
the proposed algorithms and the optimal policy in terms of
the blocking probability of high priority users, the offload-
ing probability of low priority users and the total system
throughput. We also compare the performances of the pro-
posed algorithms with the association scheme adopted in
existing network. In this scenario, the association scheme
results in on-the-spot offloading [49], where low priority
users are always associated with WiFi and high priority
users are associated with 5G NR. However, when capacity is
reached in 5G NR, high priority users are blocked. We also
compare the performances of our proposed algorithms with
on-the-spot offloading in the face of user mobility.

6.1 Simulation Setup and Methodology
Our simulation setup consists of a centralized controller
which comprises a 5G NR controller and a WiFi controller as
logical entities. RAT selection functionalities are handled in
the centralized controller. The network model is composed
of a 3GPP 5G NR gNB and an operator-deployed IEEE
802.11g WiFi AP inside the coverage area of the 5G NR
gNB. Users are assumed to be stationary. We set the radius
of the coverage area of WiFi AP to be around 30 m. WiFi
AP is located at nearly 50 m from 5G NR gNB. 5G NR and
WiFi parameters are described in Tables 4 and 5. 5G NR and
WiFi parameters are selected based on 3GPP [39] models
(rural and low density urban macro scenario) and saturation
throughput [40] IEEE 802.11g WiFi [50] model, respectively.
The carrier frequency for 5G NR is chosen to be 700 MHz,
and the bandwidth is 20 MHz [39]. In simulations, we
assume that a low priority user can obtain a maximum data
rate of 10 Mbps due to access network bottleneck. We set
Bmax = Omax = 0.05, εB = εO = 0.01. In case of SMCSA,
we divide the entire state space into two regions, viz., R1

and R2. We keep q(1) = p(1) = 0 and q(2) = p(2) = 1. We
choose d = pc = 2.

Remark 10. We consider that high and low priority users use
VoIP and video services, respectively. Note that the bit rate and
the packet payload for high priority VoIP users (see Table 4) are
chosen in accordance with [51].

6.2 High Priority User Arrival Rate Variation
Fig. 3a describes the high priority user blocking probability
performances of the proposed algorithms, optimal policy

Table 4: 5G NR Network Model.

Parameter Value
High priority user capacity 4 users
Bit rate of a high priority user 20 kbps
High priority user packet payload 50 bytes
Low priority user packet payload 600 bytes
Tx power for gNB and MS 49 dBm and 23 dBm
Noise figure for gNB and MS 5 dB and 9 dB
Antenna height for gNB and MS 35 m and 1.5 m
Path loss (R in kms) 128.1 + 37.6 log(R)
Multi-path fading Extended Pedestrian A

model [52]

Table 5: WiFi Network Model.

Parameter Value
Channel bit rate 54 Mbps
UDP header 224 bits
Packet payload 1500 bytes
Slot duration 20µs
Short inter-frame space (SIFS) 10µs
Distributed Coordination Function 50µs
IFS (DIFS)
Minimum acceptable per-user throughput 4.5 Mbps
Tx power for AP 23dBm
Noise figure for AP 4 dB
Antenna height for AP 2.5 m
Antenna parameter Isotropic antenna
Path loss (R in kms) 140.3 + 36.7 log(R)
Fading Rayleigh fading

(without the consideration of multiple user offloading) and
on-the-spot offloading (existing RAT selection algorithm) as
a function of λH . The blocking probability of the optimal
policy increases with λH . Since MCSA blocks high priority
users based on Bmax (irrespective of λH ), the blocking prob-
ability is nearly the same for all λHs. SMCSA is designed
in such a way that it blocks high priority users only when
the system reaches region R2. We consider two cases, viz.,
R1 : (iG + 2iB) ≤ CN − 2, and R1 : (iG + 2iB) ≤ CN − 1,
respectively. The high priority user blocking probability of
SMCSA gradually increases with λH , similar to the optimal
policy. This happens because when the value of λH is
low, we block the incoming high priority users with low
probability. As λH increases and the system gradually fills
up with high priority users, the probability of blocking
increases as q(n) increases with n. Since the size of the
regionR1 is smaller in the first case, the blocking probability
is lower in the second case. In case of on-the-spot offloading,
the high priority user blocking probability gradually rises
with λH . Since blocking happens only when the system
reaches capacity, the blocking probability is lower than those
of other algorithms.

In Fig. 3b, we plot the low priority user offloading
fractions for the considered algorithms. In existing network,
offloading is never performed for the considered scenario.
The low priority user offloading probabilities of MCSA and
SMCSA are similar for all values of λH since λL is fixed.
Changes in λH do not have much impact on the offloading
probability of low priority users. However, the low priority
user offloading probability of the optimal policy rises with
λH because with increasing λH , actions involving offloading
(A4, A5, A6, A7) are selected more frequently.

The total system throughput provided by MCSA is very
close to the total system throughput of the optimal policy,
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(c) Total system throughput vs. λH .
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Figure 3: Plot of different system parameters for different algorithms under varying λH (λL = 1, µH = 1 and µL = 1) and varying
λL (λH = 0.2, µH = 1 and µL = 1).

as observed in Fig. 3c. The total throughput of SMCSA
in both the cases are slightly lower than that of MCSA
because MCSA blocks more fraction of high priority users
than those by SMCSA. Since there is a trade-off between the
total system throughput and the high priority user blocking
probability, the total system throughput is higher in the case
of MCSA. All these algorithms perform better than on-the-
spot offloading. Since in on-the-spot offloading, low priority
users are always associated with WiFi, no load balancing
mechanism is present. Moreover, the total throughput in
WiFi degrades due to contention among low priority users.
Hence, the throughput performance of on-the-spot offload-
ing is the worst among all.

6.3 Low Priority User Arrival Rate Variation
Fig. 3d illustrates the high priority user blocking probabil-
ity performances of different algorithms as a function of
λL. Similar to Fig. 3a, the blocking probability of MCSA
is close to Bmax for all λL. SMCSA blocks high prior-
ity users and offloads low priority users only when the
system reaches region R2. We consider two cases, viz.,
R1 : (iG+2iB) ≤ CN −2, (kG+kB) ≤ 4, (jG+jB) ≤ 2 and
R1 : (iG + 2iB) ≤ CN − 2, (kG + kB) ≤ 4, (jG + jB) < 2,
respectively. The performance of SMCSA for the first case
is close to that of the optimal policy. In the second case,
the blocking probabilities are slightly higher than those of
the first case because R1 is smaller in the second case.

Since on-the-spot offloading always associates high priority
users with 5G NR, changes in λL do not affect the blocking
probability of high priority users.

In Fig. 3e, the offloading probability of the optimal policy
grows with λL. The offloading probability of MCSA is close
to Omax for every λL. In SMCSA, the offloading probability
grows with λL (similar to the optimal policy) because p(n)
is an increasing function of n. The offloading probability in
the second case is slightly larger than in the first case since
region R1 is smaller in the second case. Since offloading
is not possible in the case of on-the-spot offloading, the
offloading probability of low priority users is always zero.

In Fig. 3f, we observe that the performances of both
MCSA and SMCSA are close to optimal, outperforming on-
the-spot offloading algorithm. Though the proposed algo-
rithms take into account only the instantaneous rewards
while optimizing, these algorithms facilitate load balancing
between 5G NR and WiFi. The total system throughput of
on-the-spot offloading does not increase much with λL due
to contention among users in WiFi. Fig. 3f demonstrates
that indeed our proposed algorithms provide near-optimal
performances. The gain in total throughput obtained by the
proposed algorithms with respect to on-the-spot offloading
is more in Fig. 3f compared to Fig. 3c because the low
priority users have a higher contribution to the total system
throughput than high priority users. The throughput of a
high priority user (20 kbps, see Table 4) is significantly



13

smaller than the throughput of a low priority user in 5G
NR (remaining resources are allocated uniformly) and WiFi
(minimum per-user throughput=4.5 Mbps, See Table 5),
depending on the number of users in the system.

6.4 Consideration of Realistic 5G NR Capacity
In previous simulations, to compare the performances of
the proposed algorithms with the optimal policy, we set the
high priority user capacity in 5G NR to a small value. This is
needed for the computation of the optimal policy for which
the computational complexity becomes intractable, even for
moderate values of system parameters.

In this section, we set the high priority user capacity in
5G NR to 40 and demonstrate that the proposed algorithms
perform better than on-the-spot offloading for both under-
load (low arrival rates of high and low priority users)
and overload scenarios (high arrival rates of high and low
priority users). For SMCSA, we consider R1 : (iG + 2iB) <
30, (kG + kB) ≤ 4, (jG + jB) < 30. As demonstrated in Fig
4a and 4b, in under-load condition, both MCSA and SMCSA
perform better than on-the-spot offloading. However, the
throughput obtained by MCSA is slightly higher than that
of SMCSA since SMCSA blocks and offloads based on the
system state. Similar observation is made (Fig. 4c and 4d)
in overload condition when the arrival rates are high. We
have not shown the blocking probability and the offloading
probability performances since they follow similar trend as
those of Figs 3a, 3d, 3b and 3e.

6.5 Consideration of Multiple Channel States in WiFi
In the system model, we have assumed that channel states
of users in WiFi are always good. In this section, we evaluate
the performance of our proposed algorithms considering
multiple channel states of users in WiFi. We consider two
types of low priority users. As assumed previously, users
present within the coverage area of the WiFi AP are taken
to be users with good channel states in WiFi. Users present
outside the coverage area of the WiFi AP are assumed to be
users with bad channel states in WiFi. Such users are always
associated with 5G NR, irrespective of their channel states
in 5G NR.

In Fig. 5a, we plot the total system throughputs for the
considered algorithms as a function of λH . As observed
from the figure, both the proposed algorithms perform
better than on-the-spot offloading. The throughput perfor-
mance of MCSA is slightly better than that of SMCSA.
However, the performances of SMCSA and on-the-spot of-
floading are very close to each other. This is due to the fact
that for users with bad channel in WiFi, both on-the-spot
offloading and the proposed algorithms work in a similar
fashion since all these algorithms associate them with the
5G NR gNB. Therefore, performance benefits corresponding
to the proposed algorithms are achieved only due to users
which do not have bad channels with respect to the WiFi
AP. Since separate resources are reserved in 5G NR for low
priority users outside the coverage area of the WiFi AP, the
blocking probabilities and the offloading probabilities are
identical to those of Figs. 3a and 3b.

Similarly, in Fig. 5b, we illustrate the comparative per-
formances of MCSA, SMCSA and on-the-spot offloading in

terms of the total system throughput as a function of λL.
Clearly, both MCSA and SMCSA outperform on-the-spot of-
floading. As λL increases, the performance gap between the
proposed algorithms and on-the-spot offloading, increases.
The blocking probabilities and the offloading probabilities
are identical to those of Figs. 3d and 3e.

6.6 Consideration of CQI in 5G NR
In this section, we propose and evaluate the performances of
variants of MCSA and SMCSA so as to take into account 16
CQI values in 5G NR standardized by 3GPP and call them
MCSA-c and SMCSA-c, respectively. The modification to
MCSA and SMCSA is as follows. While choosing an action
involving offloading of a low priority user (A4, A5, A6 and
A7), we always choose the user with the lowest CQI value in
5G NR for offloading to WiFi and the user with the lowest
SNR in WiFi for offloading to 5G NR. For example, when
A4 is chosen, we choose the low priority user with the
worst CQI among the users with bad channels in 5G NR,
for offloading to WiFi. Since a user with bad CQI provides
low throughput, we choose the user with the worst CQI
for offloading. Fig. 6a and 6b illustrate that both MCSA-c
and SMCSA-c outperform on-the-spot offloading in terms
of total system throughput. The blocking probabilities and
the offloading probabilities are identical to those of Figs. 3a,
3d, 3b and 3e.

6.7 Consideration of Mobility
In this section, we evaluate the performances of the algo-
rithms in the presence of user mobility. We consider random
waypoint model [53] for user mobility. We set the user speed
in the range [0, 40] km/h.

Mobile users may be offloaded frequently from one RAT
to another. This may increase the offloading probability of
the overall system. Since the proposed algorithms are de-
signed in such a way that the offloading probability satisfies
the constraint, a mobile user may significantly increase the
offloading probability of the system. As a result, it may hap-
pen that stationary users get very less number of offloading
opportunities. Furthermore, a user with mobility is expected
to drain a lot of battery due to excessive offloading from
one RAT to another. To take into account these factors, we
modify the algorithms in the following way. Apart from the
constraint on the overall offloading probability of low pri-
ority users, we consider offloading profile of individual low
priority users while offloading. To be precise, whenever an
action involving offloading of low priority users (A4, A5, A6

and A7) is chosen, we choose a user which has not been
offloaded till now. If no such user is present, then we choose
the user which has been offloaded the earliest before.

In Fig. 7a, we observe that both MCSA and SMCSA out-
perform on-the-spot offloading in terms of the total system
throughput. Similar observation holds in Fig. 7b for varying
λL. We have not shown the blocking probability and the
offloading probability performances since they are exactly
same as those of Figs 3a, 3d, 3b and 3e.

6.7.1 Consideration of Channel States
In the presence of mobility, the channel states of users
may vary over time. Hence, it may not be appropriate to



14

0.1 0.2 0.3 0.4 0.5
10

12

14

16

High priority user arrival rate (λH)(s−1)

T
ot
al

sy
st
em

th
ro
u
gh

p
u
t
(M

b
p
s)

MCSA
SMCSA

on-the-spot
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(b) Total system throughput vs. λL (λH =
0.2, µH = 1 and µL = 1).
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(c) Total system throughput vs. λH (λL = 1, µH =
1 and µL = 1).
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Figure 4: Plot of total system throughput for different algorithms under realistic 5G NR capacity and varying λH and λL.
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Figure 5: Total system throughput for different algorithms under varying λH and λL.

assume that users are distributed in cell edge/cell center
region depending on their average radio conditions. To
take into account this factor, we propose modifications to
MCSA and SMCSA and call them MCSA-m and SMCSA-
m, respectively. The modification is as follows. Whenever
the channel state of a user changes, we update the sys-
tem state. For example, when the channel state of a high
priority user changes from good to bad, then we increase
and decrease the number of high priority users with bad

and good channels in the state space, respectively, by one.
This can be viewed as if a user with good channel has
departed, and a user with bad channel has arrived. Figs. 7a
and 7b illustrate that MCSA-m and SMCSA-m outperform
on-the-spot offloading. Moreover, MCSA-m and SMCSA-m
perform marginally better than MCSA and SMCSA, respec-
tively as we take into account the changes in channel states
(due to mobility) in the state space.
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Figure 6: Total system throughput for different algorithms under consideration of CQI in 5G NR and varying λH and λL.
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Figure 7: Plot of total system throughput for different algorithms under user mobility and varying λH and λL

6.8 Consideration of Large Network with User Mobility
In this section, we evaluate the performances of variants
of our algorithms (MCSA-l and SMCSA-l, respectively) in
a large network consisting of 5 5G NR gNBs and 5 WiFi
APs. The inter-gNB distance is 200 m [39], and WiFi APs are
present in hotsopt regions. The users are mobile, following
the model described in Section 6.7.

To take into account multiple gNBs and APs, we adopt
the following strategy. As stated in Remark 8, we map every
user to the gNB (AP) providing highest SNR. Also, similar to
MCSA-m and SMCSA-m (Section 6.7), we take into account
offloading profile and channel states of individual users
while making RAT selection and offloading decisions to
handle user mobility. Figs. 8a and 8b illustrate that MCSA-
l and SMCSA-l perform better than on-the-spot offloading
in terms of total system throughput. Moreover, MCSA-l
performs marginally better than SMCSA-l.

6.9 Consideration of Multiple User Offloading
As multiple user offloading may lead to significant instanta-
neous control signaling in the core network and increase in
the computation complexity, the system model considered
by us take into account single user offloading only. How-
ever, our model can be extended to incorporate offloading

of multiple users in the action space. Offloading of multiple
users may provide higher instantaneous reward than single
user offloading depending on the system state. Therefore,
the total system throughput corresponding to the policy
involving multiple user offloading may be more than that
involving single user offloading. To this end, we compare
the optimal policy considering multiple user offloading as
actions in the action space, with the optimal policy without
considering multiple user offloading as actions in the action
space (single user offloading only). As demonstrated in Fig.
9, we observe that indeed consideration of multiple user
offloading results in marginal improvement in the total
system throughput.

7 DISCUSSION AND CONCLUSION

Optimal RAT selection problem in a 5G NR-WiFi HetNet
aiming to maximize the total system throughput subject to
constraints on high priority user blocking probability and
low priority user offloading probability is formulated as a
CMDP. The key insights from our analysis are as follows.
• Elimination of sub-optimal actions in different states re-

duces the size of the effective action space. Still, DP
techniques for the computation of optimal policy suffer
from the curses of dimensionality and modeling.
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Figure 8: Total system throughput for different algorithms in a large network with user mobility and varying λH and λL.

0.1 0.2 0.3 0.4 0.5
10

15

20

25

High priority user arrival rate (λH)(s−1)

T
ot

a
l

sy
st

em
th

ro
u

gh
p

u
t

(M
b

p
s)

Single user offload
Multiple user offload

Figure 9: Total system throughput vs. λH (λL = µH = µL = 1).

• Similar to learning based approaches, both MCSA and
SMCSA are free from the curse of modeling. Although
optimal performance may not be guaranteed, our schemes
do not suffer from high storage complexity and slow
convergence issues present in learning based schemes.

• Contrary to MCSA, SMCSA performs blocking and of-
floading based on the system state and hence, is closer
in spirit to the optimal policy. The per-iteration compu-
tational complexity of both algorithms is O(|A|). Storage
complexities of MCSA and SMCSA are O(1) and O(P )
since SMCSA needs to store additional information re-
garding the regions Rn. Thus, the proposed algorithms
overcome curses of dimesnionality and modeling associ-
ated with the DP based methods to compute the optimal
policy.

• Simulations conducted in ns-3 based 5G NR HetNet indi-
cate that both MCSA and SMCSA outperform traditional
algorithms under various network scenarios.

To summarize, in this paper, we consider the optimal RAT
selection problem in a 5G NR-WiFi HetNet consisting of
users of multiple priorities and channel states. Maximizing
the total system throughput subject to constraints on the
high priority user blocking probability and the low prior-
ity user offloading probability is formulated as a CMDP
problem. We prove the sub-optimality of different actions
in different states. We then propose two low-complexity al-

gorithms for RAT selection in a 5G NR-WiFi network. These
algorithms do not require the knowledge of the unknown
system dynamics. Contrary to the first algorithm where
the blocking probability and the offloading probability do
not depend on the statistics of the arrival processes, in the
second algorithm, blocking and offloading are performed
based on the system state. Simulation conducted in a ns-
3 based 5G NR-WiFi HetNet establish that the proposed
algorithms outperform traditional algorithms, even in the
face of user mobility.

8 PROOFS

8.1 Proof of Lemma 1
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Figure 10: Sample path for various policies.

We prove the lemma using sample path arguments.
We consider case of event E5. Proofs for the other events
follow in a similar manner. We assume that the system
starts at time t = 0. Suppose that the system is in
state s1 = (iG, iB , jG, jB , kG, kB), when event E5 occurs
at time t1. Consider a policy which chooses A7 in state
(iG, iB , jG, jB , kG, kB) and denote it by π1. Consider an-
other policy (may be a non-stationary policy) π2 which se-
lectsA5 in state (iG, iB , jG, jB , kG, kB). As illustrated in Fig.
10, let us assume that under policies π1 and π2, the system
move from state s1 to state s2 = (iG, iB , jG, jB+1, kG, kB−
1) and s3 = (iG, iB , jG + 1, jB , kG − 1, kB), respectively.
Since we consider a Markovian system, the inter-arrival and
service times are identical for the considered sample paths.
We assume that based on the next event El and following
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the policy π1, the system moves from state s2 to state s4.
Suppose the policy π2 is such that in response to event
El, it chooses the same action as that of π1. Additionally,
it offloads one good user from 5G NR to WiFi and one bad
user from WiFi to 5G NR. Therefore, under the policy π2, the
system moves from state s3 to s4. We construct the policy π2
in such a way that here onwards, it chooses the same action
as that of policy π1. Therefore, from state s4 onwards, both
the sample paths follow the same trajectory. The difference
of value functions of state s1 under policies π1 and π2 is
given by

Vπ1
(s1)− Vπ2

(s1) =
(CN − iG − pciB)

(jG + jB + 1)
RL,L(

1

d
− 1) < 0.

Therefore, policy π2 is strictly better than π1. Since the
Markov chains under various policies are recurrent in na-
ture, state s1 is visited infinitely often. Upon each visit,
action A7 induced by policy π1 provides lesser reward than
action A5 corresponding to π2. This completes the proof of
the lemma.

8.2 Proof of Lemma 2
Similar to Lemma 1, we prove this lemma for event E9.
Proof for event E10 follows in a similar way. Suppose the
system is in state s1 = (iG, iB , jG, jB , kG, kB) when event
E9 occurs at time t1. Consider policies π1 and π2 which
choose A5 and A7 in state s1, respectively. We assume
that under policies π1 and π2, the system move from
state s1 to state s2 = (iG, iB , jG, jB − 1, kG, kB + 1) and
s3 = (iG, iB , jG−1, jB , kG+1, kB), respectively. We assume
that based on the next event El and following the policy
π1, the system moves from state s2 to state s4. Suppose the
policy π2 is such that for eventEl, it chooses the same action
as that of π1, offloads one bad user from 5G NR to WiFi and
one good user from WiFi to 5G NR. Therefore, under the
policy π2, the system moves from state s3 to s4. We construct
the policy π2 in such a way that here onwards, it chooses
the same action as that of policy π1. Therefore, from state s4
onwards, both the sample paths follow the same trajectory.
The difference of value functions of state s1 under policies
π1 and π2 is given by

Vπ1
(s1)− Vπ2

(s1) =
(CN − iG − pciB)

(jG + jB + 1)
RL,L(1− 1

d
) > 0.

Therefore, policy π1 is strictly better than π2. Due to the
recurrent nature of the Markov chain, similar to Lemma 1,
A5 is better than A7.
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