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Abstract

The central theme of the thesis is to design stochastic transmission control algorithms to achieve
target Quality of Service (QoS) requirements while considering energy efficiency of the wireless
communication system. Towards this we address the problem of scheduling algorithm to provide
QoS guarantees like minimum rate, fairness, average and absolute delay, while minimizing the
average power required for the transmission. We first consider multiuser single cell system. We
propose a centralized power optimal scheduling algorithm, based on stochastic approximation for
uplink with minimum rate and fairness constraints. We next formulate the problem for point to
point wireless link with finite buffer at the transmitter to provide delay constraints. This problem
falls within the framework of constrained Markov Decision Problem. We adopt learning methods
like reinforcement learning to design an online algorithm to provide delay guarantees.
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Chapter 1

Introduction

The ubiquitous deployment of wireless networks is not too far! With a century long history of
wireless communication, the research in the wireless communication has taken long strides render-
ing implementable reliable wireless solutions and a cheap alternative to wired networks. Wireless
Local Area Networks (WLANs), Fixed Broadband Wireless Access (WiMax) and cellular tech-
nologies [1], speak the success stories of wireless communication. However, significant challenges
still persist for the wireless networks to become an acceptable solution for widespread deployment.
In this thesis, we address some of the unresolved issues. In particular we consider a subset of
resource allocation problems which arise in the area of wireless communication networks.

A system capability is highly dependent on the proper utilization of its resources. Similarly
for wireless systems, efficiency is dependent upon its physical resources like energy, time and
bandwidth. This mandates the upper layer in network stack to also incorporate the effect of
physical layer, crumbling the layered architecture. This cross − layer viewpoint has a potential
to increase the system efficiency tremendously. In this thesis, we are mainly concerned with the
interaction of Media Access Control Layer (MAC) with the physical layer and do not consider the
upper layer effects.

The resource allocation problems in networks deals with system level issues like scheduling, flow
control, admission control. to provide acceptable services to the users. These Quality of Services
(QoS) can be minimum rate guarantee, fairness, average or absolute delay. These allocation
problems are handled either by a centralized controller or by distributed algorithm. Examples of
networks using centralized scheduler include networks using standards like IEEE 802.16 [1], while
distributed networks include sensor networks and networks using standards like IEEE 802.11 [1].
A general class of networks, multi-hop networks, deals with transmission, whereby intermediate
nodes can forward the packets towards the destination. The resource allocation problem is further
exacerbated by the changing topology, We would be mainly concerned with the single hop networks
which forms a basic sub-unit in multi-hop networks.

The solution methods for wireless networks differ significantly from the wired networks because
of unique characteristics of wireless networks. Firstly, wireless medium is inherently broadcast
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medium, which results in inter channel interference issues. This factor comes into picture in multi-
hop or cellular networks. Multi-hop networks is beyond the scope of this thesis and we consider
Time Division Multiple Access (TDMA) single hop networks. Hence the interference issue does
not arise in our formulation . Secondly, randomly varying wireless channel adds another dimension
of complexity for managing resources. 1

In a wireless medium, the channel conditions of mobile users are time varying. This means
that the receiver receives the signal with varying power. The fluctuation in the wireless link is
attributed to is three independent phenomenon: Path loss, slow log normal shadowing and fast
multi-path-fading. Path loss depends on the distance between transmitter and receiver. Slow log
normal shadowing is due to diffraction effects and fast fading is due to multi-path reception. In
our thesis, we mainly focus on the the time varying channel due to fast fading.

We consider discrete time model for modeling fading. We assume block fading, which means
that the channel remains constant during the duration of one block of symbols transmitted during
one time slot. We assume no inter-symbol interference (ISI).

Let τ(n) be the transmitted signal during slot n, The transmitted signal is affected by fading
and Gaussian additive noise. Let zn is the Additive white Gaussian Noise (AWGN) with spectral
density N0

2 . Then the received signal r(n) is given by,

r(n) =
√
x(n)τ(n) + z(n), (1.1)

where x(n) is the channel gain during nth slot. The expected capacity for a fading channel is given
by,

C = EW log(1 + x(n)
P

WN0
)2, (1.2)

where W is the channel bandwidth and P is the transmission power.
The wireless nodes rely on limited battery power. Thus, power consumption and power man-

agement is imperative in wireless networks. The central theme of the thesis is minimization of
average transmission power required for the system to achieve acceptable service for each user.
Minimizing average transmission power leads to minimization of overall energy required for the
transmission.

The multiuser fading environment yields an important concept of multiuser diversity. Mul-
tiuser diversity is attributed to the fact that different users perceive difference channel condition
and that at any instant there is at least one user with relatively good channel condition. Mul-
tiuser diversity can be exploited by “Opportunistic scheduling” that is, for improving throughput,
a user with good channel condition must be given chance to transmit. Opportunistic Scheduling
is a technique to intelligently exploit the channel variation and increase the capacity. By schedul-

1Interference and fading can be analyzed simultaneously by modeling interference by a random variable and
considering joint random variable for interference and fading

2In the subsequent chapters we would not explicitly mention the dependency on W and N0 and will be concerned
with the form log(1+xP)
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ing the user which has the best channel condition the overall system throughput is maximized
[2] [3]. Methods to artificially introduce fast channel variations or increasing multiuser diversity
and thereby maximizing throughput have been proposed in [4]. As also argued in [5], we can uti-
lize the multiuser diversity in the channel along with power control at the transmitter to further
increase the throughput. Analogously power control can be used to minimize the system power
consumption, a scare resource. The power variation across slots would be the basic means in
minimizing the system power requirement.

1.1 Organization of Thesis

The thesis is organized as follows.
In Chapter 2, we first discuss the generalized system model, which we will use for the rest of

the thesis. We then formulate the power minimization problem for multiuser system, with rate
constraints. We give a formal proof for the optimal solution. We use stochastic approximation
method to find Lagrangian associated with the optimal solution. We then prove the conditions re-
quired for the optimality and the stability of the stochastic approximation algorithm used. Finally
we apply the optimal solution as an extension to the multi-hop networks and multiple channel
system. We assume that the transmitter can transmit at continuous rates.

In Chapter 3, we focus on the fairness issues. We take time as the resource to be shared. A
scheduler is a long term fair if it can achieve the required fairness criterion in a long run of time.
For a short term fair scheduler, it should achieve the objective within a given finite window of time
slots. We first consider power optimal long term temporal fairness. We apply the same idea for
the short term fairness. Finally we define a novel “Throughput short fair scheduler”.

In Chapter 4, we consider a single user system. We first present average delay constrained
power optimal solution for finite buffer discrete channel formulation. This method is not scalable
enough for large buffer and continuous channel, We, therefore formulate the problem using function
approximation method, to address the scalability issue.

In Chapter 5, we deal with devising scheduling policies for real application like video. Here
again we use reinforcement learning methods, specifically ‘Q learning’. We formulate the problem
as minimizing power subject to distortion constraint and absolute delay constraint. We conclude
the thesis with summery of results and point future research direction.

In Appendix A, mathematical preliminaries are presented. Appendix B discusses Markov
Decision Processes (MDP) and reinforcement learning methods for solving MDPs. We then extend
the temporal difference learning algorithm to deal with average cost continuous state space with
multiple policies with function approximation.
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Chapter 2

Power Optimal Opportunistic

Scheduling -Minimum Rate

Guarantees

2.1 Introduction

Wireless channels exhibit time varying fading characteristics, which vary from user to user. This
multiuser diversity can be exploited by opportunistically scheduling the user with the best channel
condition. Multiuser diversity has been explored in the pioneering work of Knopp and Humblet [5],
where the problem of maximizing the information capacity of the uplink in a single cell environ-
ment under an average power constraint has been addressed. Opportunistic scheduling, however,
introduces the issue of fairness among users. Proportional fairness in multiuser diversity has been
investigated in [6].

In wireless systems, battery and transmission power constraints mandate conservative energy
expenditure during transmission. Hence, resource allocation policies have to optimize energy
resources subject to Quality of Service (QoS) constraints like minimum rate, delay and fairness.
Most of the research work in energy efficient scheduling has focused on a point to point wireless
link scenario. [7] provides an overview of energy efficient scheduling under delay constraints.

In this chapter, we consider energy optimal opportunistic control strategies for a multiuser
TDMA system subject to minimum rate constraints. Moreover, we propose a stochastic approx-
imation based online algorithm and argue that this method achieves optimality. We also extend
the algorithm to consider “temporal” long term fairness as well as short term fairness1. [2, 3, 8]
have investigated opportunistic scheduling under various types of fairness constraints. However,
they do not consider variation in transmission power for energy efficient scheduling.

In [9], the authors have considered an interference-based joint scheduling and power allocation
1By temporal fairness, we mean that each user has access to certain number of time slots.
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Figure 2.1: Single hop system model

scheme for a multicellular environment. Though their problem formulation is mathematically sim-
ilar to ours, issues such as the convergence, optimality and stability of the iterative algorithm have
not been addressed. Moreover, we have validated our algorithm for independent and identically
distributed (i.i.d.) as well as Markovian channel fading.

Bit error rate constrained, power optimal solution for the uplink Code Division Multiple Ac-
cess (CDMA) system with time varying interference is considered in [10]. However the problem
considered is single user power optimal scheduling with varying channel conditions. Our work is
different, as we consider multiuser optimal policy for TDMA system. Our work has similarity
with [5] where the dual of similar problem is considered, which is maximizing capacity, subject
to power constraint. However, the problem considered is from the information theoretic point
of view. We consider the dual problem and use a different approach to derive our results. We
suggest a stochastic approximation based algorithm to achieve power minimization and prove its
optimality.

In Section 2.2, we describe our system model and derive the optimal scheduling policy. In
Section 2.3, we describe the stochastic approximation method used to solve the joint Opportunistic
and power optimal scheduling problem. In Section 2.4 we provide a detailed proof verifying all the
assumptions required for the convergence of the stochastic approximation.

2.2 Optimal Scheduling

In this section we describe the generalized system model, which will be used in this chapter
and Chapter 3. Consider a multiuser TDMA system with the base station as the centralized
scheduler as shown in Figure 2.2. Time is divided into slots of equal duration. The channel is time
varying with slow fading2. The channel state at the beginning of slot n is denoted by the vector
(x1(n), x2(n), · · · , xN (n)), where xi(n) denotes the channel gain for user i at slot n and N is the
number of users. We assume that the channel state (channel gain) changes only at slot boundaries
and perfect channel state information (CSI).

The channel state process (x1(n), x2(n), · · · , xN (n)) is assumed to be Rd−valued and ergodic
2Fading is constant over a slot duration.
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with marginal distribution ν, where N ≥ d ≥ 1. Channel gains experienced by different users
are independent and identically distributed (i.i.d.). The channel state evolution with time can be
either i.i.d. or Markovian. The rate requirement of each user is known apriori at the base station.

In any given time slot, only one user is allowed to transmit. The scheduler determines the
user who can transmit and its transmission power subject to that user’s rate constraint. For each
user i, we associate an indicator function yi(n) which is 1 if user i is scheduled at time slot n,
otherwise it is 0. Let q(n) be the actual transmission power of the scheduled user at time slot n.
Let ai(n) be the number of arrivals and Qi(n) be the queue length at time slot n. Let Ci be the
time-average minimum rate requirement for user i and Ui be the utility function for user i, which is
increasing and concave in channel gain xi and power q. We assume Ui(q, xi) = log(1 + qxi), which
is equivalent to the information theoretic capacity bound. Our objective is to minimize average
power subject to average rate constraints, which can be expressed as:

min lim sup
M→∞

1
MN

M∑
n=1

N∑
i=1

q(n)yi(n),

s.t. lim inf
M→∞

1
M

M∑
n=1

Ui(yi(n)qi(n), xi(n)) ≥ Ci ∀i. (2.1)

Due to ergodicity, we focus on the transmission policy for any slot and do not explicitly state
the dependence of the channel state process on time n. Let x = (x1, · · · , xN ) denote the channel
state vector. A = (e1, · · · eN), where ei denotes the unit vector in the ith coordinate direction. Let
y = (y1, · · · , yN ) be the vector of indicator random variables. Note that only one of the random
variables yi will be 1 in a given time slot. Let p be the conditional law of (q,y) given x, which can
be decomposed as p1(dq|y,x)p2(y|x). Thus, we can write the optimization problem (2.1) as:

min
∫
ν(dx1, · · · , dxN )

∑
y∈A

∫
[0,∞)

p1(dq|y,x)p2(y|x)q,

s.t.
∫
ν(dx1, · · · , dxN )

∑
y∈A

∫
[0,∞)

p1(dq|y,x)p2(y|x)

log(1 + qyixi) ≥ Ci ∀i, q ≥ 0. (2.2)

6



Proposition 2.1 The optimal policy is to select user k and transmission power q∗, where

k = arg min
i

{(
λi −

1
xi

)+

− λi

[

log
(

1 +
(
λi −

1
xi

)+
xi

)
− Ci

]}
, (2.3)

q∗ =
(
λk −

1
xk

)+

, (2.4)

and λi is the Lagrange multiplier associated with the rate constraint for user i.

Proof: The Lagrangian associated with (2.2) is

f(p1, p2,λ) ∆=
∫
ν(dx1, · · · , dxN )

∑
y∈A

∫
[0,∞)

p1(dq|y,x)

p2(y|x)

(
q −

∑
i

λi [log (1 + qyixi)− Ci]

)
(2.5)

where λ= (λ1, · · · , λN ). Therefore, the optimization problem decomposes into: minimize with
respect to (w.r.t.) p1(q|x,y) and then minimize w.r.t. p2(y|x). Note that the cost function
f(p1, p2,λ) is linear in the joint probability distribution when the marginal distribution of x is fixed
and the minimization is over the conditional distributions. The set of probability distributions with
a fixed marginal is a closed convex set with extreme points corresponding to those distributions
for which the conditional distributions are point masses [11]. Thus for each x, we minimize over q
and y. The Lagrangian (2.5) is strictly convex w.r.t. q and y and hence the minimizer is unique.
Since joint minimization over q and y can be done in any order, we minimize first with respect
to q and then w.r.t. y. Thus we first minimize (2.5) w.r.t. q for a fixed i which corresponds to
y = ei. The reduced single user min-max problem is:

max
λi

min
q
L(λi, q) (2.6)

where L(λi, q) = q − λi(log(1 + qxi) − Ci). Denote the optimal q for y = ei by qi. To minimize
(2.6) w.r.t. q, we differentiate L(λi, q) w.r.t. q,

∂L
∂q

= 1− λi

(
xi

1 + qxi

)
, (2.7)

leading, by the Kuhn-Tucker Theorem [12], to

qi =
(
λi −

1
xi

)+

. (2.8)
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Minimizing (2.5) w.r.t. y yields the optimal policy,

k = arg min
i

{
qi − λi [log(1 + qixi)− Ci]

}

= arg min
i

{(
λi −

1
xi

)+

− λi

[

log
(

1 +
(
λi −

1
xi

)+
xi

)
− Ci

]}
. (2.9)

The optimal policy is to schedule user k which satisfies (2.9). The scheduled user will transmit
with power q∗ = qk as given in (2.8). �

2.3 Stochastic Approximation based Online Algorithm

In this section, we focus on the on-line optimal policy to estimate parameters λ of the algorithm.
We use stochastic approximation to implement the policy. The policy and the update equation
involved in the algorithm are low in complexity The stochastic approximation algorithm guarantees
almost sure (a.s.) convergence to the optimal solution, if certain properties of the update equation
and the objective functions are satisfied. We prove that these properties are satisfied in our case
and thus the algorithm converges to optimal λ with probability (w.p.) 1. We outline informal
idea of the stochastic approximation scheme used. We provide formal proof of the optimality of
the stochastic approximation algorithm in Section 2.4. Stochastic approximation can be used
to determine the optimum solution for a perturbed function (in our case perturbation is channel
fading). After minimizing (2.5) over (q,y) in Section 2.2, we maximize over λ to obtain the optimal
solution. The stochastic gradient ascent scheme for maximization over λ is given by,

λi(n+ 1) = Γ

(
λi(n)− α(n)

[
yi(n) log

(
1 +

(
λi −

1
xi(n)

)+
xi(n)

)]
− Ci

)
∀i (2.10)

where3:

1. yi(n) = I((q∗i −λi [log(1 + q∗i xi)− Ci]. Note that yi(n) ≤ (q∗j −λj [log(1+q∗jxj)−Cj ]), j 6= i).

2. α(n) is a positive scalar sequence satisfying [13],∑
n

α(n) = ∞,
∑

n

α(n)2 <∞,

3I(a ≤ b) = 1 if a ≤ b, = 0 otherwise.
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Figure 2.2: Block diagram for on-line policy

3. Γ(·) is the projection to the set [0, L] where L ≥ 0 is a very large but finite number, i.e.,
Γ(x) = max(0,min(x, L)).

4. We take α(n) = l
n , where l, the initial learning rate, is a small constant.

Note that we have assumed the transmission power q to be unconstrained. However, if we
impose a constraint q ≤ qmax for a prescribed qmax < ∞, then we can replace q∗ by q̂∗ = q∗ ∧
qmax

4. In [2, 3, 8], the authors have used stochastic approximation algorithm, but the convergence
proof is not discussed. Moreover the technical proof in these algorithms is simple because of
the differentiable functions involved. We now sketch the proof of convergence for the stochastic
approximation scheme as outlined in (2.10). The details are discussed in Section 2.4 We consider
the channel state process to be i.i.d. across slots. The proof of convergence for the Markovian
model is along similar lines.

Let ỹi(n) = yi(n) with λi(n) replaced by λi and Es[ · ] denote the stationary expectation.
Rewrite iteration (2.10) as,

λi(n+ 1) = Γ (λi(n)− α(n) [hi (λ(n)) +Mi(n+ 1)]) ,

where,

hi(λ(n)) = Es

[
ỹi(n)

(
log
(
1 +

(
λi −

1
xi(n)

)+
xi(n)

)
−Ci

)]
|λi=λi(n)

Mi(n+ 1) = yi(n) log
(

1 +
(
λi(n)− 1

xi(n)

)+
xi(n)

)
−Ci − hi (λ(n)) .

This iteration will converge w.p. 1 to an invariant set of the differential equation (Ref. [13])

λ̇(t) = h(λ(t)) + z(t), (2.11)

where h(·) = [h1(·), · · · , hN (· · · )] and z(t) = [z1(t), · · · , zN (t)] is the boundary correction term due
4a ∧ b = min(a, b)
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to the projection operator Γ [13]. Note that hi(λ) ∈ ∂F (λ), where,

F (λ) = Es

[
min

i

{(
λi −

1
xi(n)

)+
− λi

(
log
(

1 +
(
λi −

1
xi(n)

)+
xi(n)

)
− Ci

)}]
(2.12)

is the point-wise minimum of a family of affine functions of λ and is a strictly concave function of
λ. ∂F denotes its superdifferential. This can be verified by invoking the recent extensions of the
envelope theorem [14] [15]. Thus the ordinary differential equation (2.11) may be viewed as the
differential inclusion

λ̇(t) ∈ ∂F (λ(t)) + z(t).

Technical details for this are given in Lemma 2.3. This is a supergradient ascent scheme for a
strictly concave function and thus will converge to its unique maximum on the constraint set. If
L is sufficiently large, this will be the desired vector of Lagrange multipliers by the saddle point
theorem [12]. Thus, the iterates (2.10) converge almost surely to the Lagrange multipliers.

2.4 Proofs

In this section we give technical details for the convergence of the stochastic approximation, con-
sidered in the previous section.

F (λ) ∆= minp1,p2 f(p1, p2,λ), Let DxF denote the partial differentiation of F w.r.t. x.
The differential inclusion of F at λ is given by ∂+F (λ), ∂+F is upper semicontinuous [16].

From the existence of optimal solution for (2.2), we must have, stationary point 0 ∈ ∂+F .

2.4.1 Existence of optimal stochastic approximation algorithm

Lemma 2.1

F (λ) is concave.

Proof: F is affine in λ and F is the point-wise minimum of a family of affine functions of λ.
Hence F is concave.

Lemma 2.2 The stochastic approximation scheme for the maximization of function F (λ) is given
by,

λ(n+ 1) = Γ(λ(n) + α(n)[−h̃(λ(n)) +Mn+1]), h̃ ∈ ∂+F.

Proof: F is concave function, F : {0,R+} → R. A concave function is continuous in the interior
of the domain. Hence F is continuous over (0,∞). By stochastic subgradient descent [17], Lemma
2.2 is proved.
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Lemma 2.3

λ̇(t) ∈ ∂F (λ(t)) + z(t). (2.13)

Proof: f(., p1, p2) is affine continuous and differentiable in λ and continuous in p1, p2. Hence the
following properties are satisfied.

1. f(λ, p1, p2) is differentiable at λ uniformly in p1, p2.

2. p1 → Dλf(λ, p1, p2) is continuous.

3. p2 → Dλf(λ, p1, p2) is continuous.

4. λ → f(λ, p1, p2) is lower semicontinuous.

By [14], if above conditions are satisfied, then ∂+F (λ) = c̄oY (λ), 5 where,

Y (λ) : = Dλf(λ, p1, p2) : {p1, p2 ∈ [0, 1], F ∗(λ) = f(λ, p1, p2).}

p1 = Dirac function at
(
λi −

1
xi

)+

given i,

{p2}i = P (yi = 1)

= P
(
I
(
(q∗i − λi [log(1 + q∗i xi)− Ci]) ≥

(
q∗j − λj

[
log(1 + q∗jxj)− Cj

])
, j 6= i

))
.

Let || || denote the Euclidean norm on RN . Let H : RN → RN denote a set-valued map.
Stochastic approximation of the following form,

λ(n+ 1) = λ(n) + α(n)
[
h̄(n) +M(n+ 1)

]
, h̄(n) ∈ H (2.14)

characterizes a stochastic inclusion limit λ̇(t) ∈ H(λ(t)) if,

1. H is upper semicontinuous.

2. H(λ) is convex and and compact.

3. For some K > 0 and for all λ

sup
h̃∈ĥ(λ)

||h̃ ||< K(1 + ||λ||),

Set valued map ∂+F satisfies the above properties by (A.18), (2.16).
5c̄oY denotes the compact convex hull of Y
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Now we have to show h(λ) ∈ Y (λ). Differentiating f w.r.t. λi and substituting optimal values
q∗, y∗ we get,

{∂f}i

∂λi

∣∣∣∣
q∗,y∗

= −[
∫
ν(dx)

(
yi(n)log(1 + (λi(n)− 1

xi
)+xi)

)
− Ci].

⇒ h(λ) ∈ c̄oY (λ).

∫
[ν(dx)yi(n)log(1 + (λi(n)− 1

xi
)+xi)− Ci]

= [
∫
ν(dx)

(
yi(n)log(1 + (λi(n)− 1

xi
)+xi)

)
]

≤ [
∫

[ν(dx) (log(λi(n)xi))]

≤
∫
ν(dx)log(λi(n)) +

∫
ν(dx)log(xi)

< K̂(1 + λi) for some K̂ (2.15)

From (2.15) we get,
||h|| < K(1 + ||λ||). (2.16)

By [17], taking set valued mapH as ∂+F , stochastic approximation (2.13) satisfies a differential
inclusion limit λ̇(t) ∈ ∂+F . Thus from Lemma 2.1, Lemma 2.2 is proved.

2.4.2 Stability

Lemma 2.4 λ(t) converges surely to a unique globally asymptotically stable equilibrium point.

Proof: Let F̃= −F . Thus F̃ is the function to be minimized. Consider a continuous Lyapunov
function V = F̃ (λ) − F̃ (λ∗). V (λ∗) = 0, where λ∗ is the optimal point. V (λ) ≥ 0 as λ∗ is the
optimal minimum point. For the non smooth Lyapunov function we use the Dini derivative D+

and now the condition for stability is,

〈φ,D+V (x)〉 ≤ 0, φ ∈ −∂F̃ . (2.17)

But, D+V (x) ∈ ∂F̃ . Thus (2.17) is satisfied. As the minimum of F is unique, λ(t) converges
surely converges to optimal point and is stable.

The boundedness of the algorithm can be proved by assuming λi ∈ [0, L] ∀ i, L ≥ 0. The following
theorem states precisely the boundedness of the iterates. Let c0 = 0. Whenever λ is outside
[0, L]N , then cn+1 = cn + 1, else cn+1=cn.

Theorem 2.1 If λ∗ ∈ [0, L]N and all the assumption for Lemma 2.14 hold, then limn→∞ cn <∞.

This theorem from [18] implies that the projection is required only a finite number of times.
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Figure 2.3: Convergence for i.i.d. channel

2.4.3 Convergence of Stochastic Approximation Algorithm

We demonstrate the convergence of λi(n) via simulations. Consider a single hop network of 4
wireless users with 1 base station. We assume a Rayleigh fading channel, whose probability density
function is given by µ(x) = 1

γ e
−x
γ , where γ > 0. We first show the convergence for channel model

with i.i.d. Rayleigh fading. To make sense of absolute numbers, we take C = (0.6, 0.8, 0.7, 0.2),
λ(0) = (1, 1, 1, 1) and γ = (1, 1, 0.9, 0.3). Figure 2.3 shows the convergence for i.i.d. channel. The
average power vector to achieve the desired rates over 50 independent runs is, P=(0.7557, 1.0925,
1.0546, 0.9612 ).

For simulation purposes, we next model the more general case of Markovian channel fading to
demonstrate the correctness of our algorithm. Assume that the channel gain for user i obeys the
auto-regressive equation,

xi(n+ 1) = αxi(n) + (1− α)gi(n), (2.18)

where noise gi(n) is Gaussian with variance σ and correlation coefficient α. We take α = 0.3,
C = (0.6, 0.8, 0.7, 0.2), λ(0) = (1, 1, 1, 1) and σ = (1, 1, 0.9, 0.3). Figure 2.4 shows a particular
trajectory for λi(n). Our results demonstrate that the Lagrange multipliers converge for all users
within 3000 iterations. The average power required is given by (1.3677, 1.9966, 1.8971, 1.6322).
From the absolute numbers it can be inferred that average power required for the Markovian
channel is greater than for i.i.d. channel case, as expected.

Remark 2.1 In wireless data transfer applications, the duration of transfer is of the order of
seconds, while the slot duration is of the order of microseconds. Hence, even if there is non-
optimality for the initial slots, convergence will occur much before the actual completion of data
transfer.
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Figure 2.4: Convergence for Markovian channel

Remark 2.2 In practical scenarios, we may not want actual convergence to take place, or we may
only like to be within the neighborhood of the optimal solution. In [19], lock-in phenomenon for
stochastic approximation algorithm has been considered. If the iterate λ(n) is within the domain
of attraction (the iterate has begun to converge), then there exists a finite number of iterations for
the iterate to be within a finite distance from the convergence point λ∗. A probabilistic lower bound
is given for the occurrence of this “nearness” within finite number of iterations.

2.4.4 Performance of Energy Optimal Opportunistic Scheduling

We compare our scheduling policy with the round robin power scheme. Consider a symmetric
system, i.e., all users have the same channel conditions and minimum rate constraints. In the
round robin power scheme, we transmit with optimal power for each user in a round robin manner.
The scheme reduces to power-optimal single user scheme with minimum rate guarantee dependent
on N . Thus we determine the power p such that∫

log(1 + p(x)x)µ(x) dx = NC (2.19)

is satisfied. In our simulations, we assume C = 0.6, γ = 0.7. The results, shown in Figure 2.5,
demonstrate that as the number of users increases, the ratio of average transmission power of
the optimal policy to that of the round robin policy increases, but the marginal increase per user
decreases. The gain obtained from variable power scheme increases with number of users, which
is due to multiuser diversity.

We use (2.19) to calculate P numerically for a given C, for constant power opportunistic case.
In Figure 2.6, we compare the opportunistic scheme and the optimal scheme in terms the ratio of
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Figure 2.5: Gain of the optimal policy over round robin policy

average power required to satisfy a specific set of channel condition and rate constraints for two
cases.

The simulation results show an interesting result. For low γ values the gain is larger than when
the γ is large. Also as the number of users increases, the gain obtained by the optimal solution
deceases. The decrease can be attributed again to the multiuser diversity. As the number of users
increase, or the channel fading is fast, the opportunistic constant power scheduling performs as
good as the optimal solution.

2.5 Extensions

2.5.1 Extension to Multiple Channels

In this section, we extend the result for single channel case to independent multiple channel
multiuser system. We first notice an important fact that a channel can be considered to be a
sub-slot of a TDMA slot. The idea is explained in Figure 2.7. Let there be M number of channels.
Now the new system can be considered to be made up of M sub-slots with the channel condition
known. Thus combination of (2.3) and stochastic approximation algorithm over M time slots
would give a sub-optimal solution for multiple channels as:

k = argk min

((
λk −

1
xk

)+

− λk

[
log(1 +

(
λk −

1
xk

)+

xk)− Ci

])
.

q∗ =
1
M

(
λk −

1
xk

)+

, (2.20)
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Figure 2.7: Equivalence between TDMA and Multichannel schemes

where 1
M takes into account the decrease in effective resource, in the equivalent slot based system.

If we take an example of Orthogonal Frequency Division Multiplexing (OFDMA), M would denote
the number of subcarriers. The algorithm would perform update equation for each channel during
a given slot. The algorithm is sub-optimal because the algorithm does not take into knowledge of
channel gains of all the channels simultaneously.

2.5.2 Multi-hop Networks

In this section we would extend the result to the single sink Multi-hop TDMA network. The
network we examine is shown in Figure 2.8(a). It consists of mobile nodes as sources and base
station as a single sink for all the sources. We say that the nodes are in transmission range if
the transmission is received without any error and in interference range if one transmission does
not allow other transmissions in the same time slot. We assume that mobile stations placed as
shown in Figure 2.8(a), are in the interference range. The situation is realistic in accordance with
the current IEEE 802.16 based Mesh network [20]. However for the simplicity we assume that
the routing matrix is predefined and is static. Thus we have a problem of scheduling the nodes
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energy efficiently so that the rate constrained of all the nodes are satisfied. Here the effective rate
requirements would be sum of individual rate requirements along that route as shown in Figure
2.8(a). We can now convert the multi-hop scenario into single hop. The effective link rates are
given in Figure 2.8(b). Thus now the users are scheduled with the new rate constraints according
to the policy (2.3).

Sink (BS)
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(a) Multi-hop transmission
scheme
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(b) Single hop transmission

Figure 2.8: Equivalence between single hop and Multi-hop transmission.

2.6 Conclusions and Discussions

In this chapter, we have obtained a power optimal opportunistic scheme for multiuser TDMA
system with minimum rate constraints for individual users. We have proposed a stochastic ap-
proximation based technique, obtained an online optimal scheduling algorithm and argued the
theoretical convergence of the stochastic approximation policy. The results are extended to mul-
tiple channel and multi-hop scenario.

Appendix

2.7 Boundedness of Iterates

For proving the boundedness of the iterates λ we use a variation of the method adopted for proving
the boundedness of a linear stochastic approximation algorithm in [21]. We impose following
assumption for proving the boundedness.

Assumption 2.1 x(n) ∈ (0,∞)

This assumption is imposed for the boundedness of the function ĥ(λ) defined after the assumptions
are mentioned. The assumption is valid for most of the pdfs used in modeling the channel.

Assumption 2.2 λi(n) > 0
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This assumption is also imposed for the boundedness of the function ĥ(λ). For the linear pro-
gramming problem considered, the constrained is satisfied at the boundary. This means λ∗i is
> 0, whenever Ci > 0. In the stochastic approximation algorithm, we abide by this constraint by
setting λi = α, α > 0, α→ 0, whenever λi ≤ α.

Assumption 2.3 hi(λ)− Ci 6= 0 for λ 6= λ∗

Lemma 2.5

∣∣∣∣∣ log
“
1+(λi− 1

xi
)+

”
λi

∣∣∣∣∣ is bounded.

Proof: It can be easily proved using Assumption 2.1, 2.2.

Consider the following iteration to update λ,

λ(n+ 1) = λ(n) + α(n) (h(λ) +M(n+ 1)) (2.21)

We study the asymptotic behavior of the iterates λ. Consider the subsequence < λ(nj) >,
where the sequence of integers nj are defined as,

n0 = 0, nj+1 = min

n > nj

∣∣∣∣∣∣
n−1∑
l=nj

α(l) > T

 ,

where T > 0. We define a sequence,

λ̂j
i (n) =

λi(n)
max (1, |λi(n)|)

, n ≥ nj ,

where | | denotes the max norm. The new iterations λj(n), are given by,

λ̂j
i (n+ 1) = λ̂j

i (n) + α(n)

(
(hi(λj(n))

λj
i (n)

λj
i (n)

max(1, |λj(n)|)

)
+ α(n)

M j(n+ 1)
max

(
1, |λj(n)|

) (2.22)

= λ̂j
i (n) + α(n)

(
ĥi(λj(n)) + M̂(n+ 1)

)
(2.23)

Define a stopping time τ1
j (C) = min

{
n ≥ nj : |λ̂j

(n) ≥ K|
}

The explicit dependence of K is
not important in the further analysis, hence we suppress the notation. We first note that the value
of E[|λ̂j

(n)|] is bounded. Let bj = 1

max
“
1,|λj

(n)|
” . Following lemma states that, as long as the

iterates are bounded, the perturbation noise M̂(n+ 1) also remain negligible.

Lemma 2.6 There exits a constant C, such that,

E

 max
nj≤n≤τ1

j ∧nj+1

∣∣∣∣∣∣
n∑

l=nj

α(l)M̂(n+ 1)

∣∣∣∣∣∣
2 ≤ C

nj+1−1∑
l=nj

α(l)2 (2.24)
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Proof: If τ1
j ≥ nj+1, the above inequality is trivially satisfied. Hence we consider only for n > nj .

As M(n+ 1) is a martingale sequence,

n∧τ1
j∑

l=nj

α(l)bjM(l + 1), (2.25)

is also a martingale and we can use the Doob’s inequality,

E

 max
nj≤n≤τ1

j ∧nj+1

∣∣∣∣∣∣∣
n

τ1
j∑

l=nj

α(l)M̂(n+ 1)

∣∣∣∣∣∣∣
2 , (2.26)

≤ C1E

 n
τ1
j∑

l=nj

∣∣∣α(l)M̂(n+ 1)
∣∣∣2
 , (2.27)

≤ C2

nj+1∑
l=nj

α(l)2E
[
I{l ≤ τ1

j ]}
∣∣∣M̂(n+ 1)

∣∣∣2] , (2.28)

≤ C3

nj+1∑
l=nj

α(l)2 (2.29)

Next we consider an approximate deterministic iteration given by,

λj(n+ 1) = λj(n) + α(n) (h(λ)) , (2.30)

λj(nj) = λ̂
j
(nj) (2.31)

Define a new stopping time τ2
j (δ) as,

τ2
j (δ) = min{n ≥ nj :

∣∣∣λ̂j
(n)− λj(n)

∣∣∣} (2.32)

From Lemma 2.6 and boundedness of ĥ(λ), we obtain,

sup
j

max
nj≤n

∣∣λj(n)
∣∣ ≤ C, (2.33)

for some constant C. Hence τ1
j (C+ δ) ≥ τ2

j (δ). That is by the time λj(n) gets out of the ball with

radius C+ δ, λ̂
j
(n) must be deviated from λj(n) by at most δ since λj(n) is completely inside the

ball with radius C.

Lemma 2.7

lim
j

max
nj≤n≤nn+1

∣∣∣λ̂j
(n)− λj(n)

∣∣∣ = 0, w.p. 1 (2.34)
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Proof: Since ĥ is bounded, for n ≥ nj ,

∣∣∣λ̂j
(n+ 1)− λj(n+ 1)

∣∣∣ ≤ C

n∑
l=nj

α(l)
∣∣∣λ̂j

(l)− λj(l)
∣∣∣+
∣∣∣∣∣∣

n∑
l=nj

α(l)M̂(l + 1)

∣∣∣∣∣∣ (2.35)

Using Gronwall inequality,

max
nj≤n≤nj+1∧τ1

j

∣∣∣λ̂j
(n+ 1)− λj(n+ 1)

∣∣∣ ≤ eCT max
nj≤n≤nj+1∧τ1

j

∣∣∣∣∣∣
n∑

l=nj

α(l)M̂(l + 1)

∣∣∣∣∣∣ (2.36)

Using Chebyshev inequality,

P

(
max

nj≤n≤nj+1∧τ1
j

∣∣∣λ̂j
(n+ 1)− λj(n+ 1)

∣∣∣ ≥ δ

)
≤ C1

δ2

nj+1−1∑
l=nj

α(l)2 (2.37)

Since τ1
j ≥ τ2

j , LHS is actually P(τ2
j ≤ nj+1). Therefore,

P

(
max

nj≤n≤nj+1∧τ1
j

∣∣∣λ̂j
(n+ 1)− λj(n+ 1)

∣∣∣ ≥ δ

)
≤ C1

δ2

nj+1−1∑
l=nj

α(l)2 (2.38)

Using Borel Cantelli Lemma and using the property
∑

n α(n)2, we prove the lemma.

Lemma 2.8 If for δ > 0,
λ′ĥλ ≥ δ |λ|2 (2.39)

Then, for small a > 0, ∣∣∣1− aĥλ
∣∣∣ ≤ (1− 1

2
aδ) |λ| (2.40)

Lemma 2.9

sup
n
|λ(n)| <∞, w.p. 1, (2.41)

hence the iterates are bounded.

Proof: Since ĥ(λ) is bounded, for large nj , for some constant C.

∣∣λj(n+ 1)
∣∣ ≤ (1− 1

2
α(n)δ

) ∣∣λj(n)
∣∣+ α(n)

C

max(1, |λ(nj))
, (2.42)

Using the inequality 1− x ≤ e(−x), we get.

∣∣λj(n+ 1)
∣∣ ≤ e

−1
2

n∑
l=nj

α(l)δ

∣∣λj(n)
∣∣+ n∑

l=nj

α(l)
C

max(1, |λ(nj)|)
, (2.43)
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From Lemma 2.7, for αj → 0,

|λ(nj+1|)
max(1, |λ(nj)|)

≤ e(−
1
2
δT ) |λ(nj)|

max(1, |λ(nj)|)
+ T

C

max(1, |λ(nj)|)
+ αj (2.44)

⇒ |λ(nj+1)| ≤
(
e(−

1
2
δT ) + αj

)
|λn(j)|+ CT + αj . (2.45)

sup
n
|λ(n)| = sup

j
max (1, |λ(nj)|) max

nj≤n≤nj+1

∣∣∣λ̂j
(n)
∣∣∣

≤ sup
j

max(1, |λ(nj)|)
(

max
nj≤n≤nj+1

∣∣∣λ̂j
(n)
∣∣∣+ max

nj≤n≤nj+1

∣∣∣λj(n)− λ̂
j
(n)
∣∣∣)

< ∞
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Chapter 3

Power Optimal Opportunistic

Scheduling - Fairness Guarantees

In this chapter, we introduce fairness while considering the power optimization. In Chapter 2 we
have restricted ourselves to satisfy minimum rate guarantee of individual users and not considered
relative chance of transmission among users. In this chapter, we consider energy optimal fairness
in the long term as well as short term.

3.1 Scheduling and Fairness issues

A comprehensive work in [22] considers wireless packet fair schedulers and extends the work of
wireline fair queuing to wireless. In particular, fairness is assured by making lagging flows to
catch-up leading flows over long run in binary channel model.

The Proportional Fair (PF) Scheduler of the Qualcomm High Data Rate (HDR) system [23]
deals with conflict between fully exploiting the channel (by selecting the user with the highest
current rate) and being fair. The PF algorithm can be shown to be maximizing the logarithmic
utility functions for the users in asymptotic sense. In a time slot, the user j is selected for
transmission if,

j = arg max
i

(
ri(n)

[Ri(n)]α

)
(3.1)

Ri(M) =
1
M

M∑
n=1

ri(n)yi(n) (3.2)

where Ri(M) is the time average of rates for user i over time M , yi(n)1 is the indicator function
for user i and ri(n) is the rate of user i an the slot n. α is the fair exponent, for opportunistic
scheduling α = 0, for proportional fair α = 1. Variants of proportional fair schedulers like relatively

1yi(n) = 1 if user i is scheduled at slot n otherwise 0
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fair scheduler have been proposed. Modified Weighted Delay First (M-LWDF) strategy [24] serves
the user j such that,

j = arg max
i

(
γiWi(n)
ci(n)

)
(3.3)

where Wi is the head of the line delay for user i, γi = δi/Ri, δi > 0, Ri is the average rate
requirement for user i, ci(n) is the power required per unit of transmission. The policy is able to
satisfy minimum rate requirement in the long term and probabilistic delay constraints even under
discrete rate scheduling.

In [25], the author points out that the proportional fair scheduler is unstable by giving some
examples for which stable scheduler exits. A modified fair rule in [26] called exponential rule is
able to provide stability, if there exits any policy which does so. The exponential rule selects the
user j if,

j = arg max
i
γiri(n) exp

 δiQi(n)

β +
[
δiQi(n)

]η
 (3.4)

where Qi(n) is the queue length at time slot n, Qi(n) is the average queue length, δi, βi, η are
positive constants. A larger weighted latency of one of the users results in a very large exponent,
overriding the channel conditions and leading to the large latency user getting priority. On the
other hand, for small weighted latency differences, the exponential term is close to 1 and the policy
becomes proportional fair rule.

In [27], the authors compared the guaranteed supportable arrival rates for delay constrained
traffic for opportunistic and TDM schedulers in Rayleigh’s fading channel conditions. Using large
deviation theory, it is shown that TDM scheduler performs better when the number of users exceeds
a threshold level which depends on the channel parameters. There is a trade off between total
system throughput and fairness and QoS guarantee among users. Maximizing throughput strategy
can lead to unfairness among users. Hence a compromise between throughput and fairness has to
be reached.

In [8], the authors consider the problem of throughput maximization with deterministic and
probabilistic long term fairness constraints. The throughput maximization and fairness achieve-
ment are decoupled into two sub problems and solved as different entities. A adaptive iterative
algorithm is suggested for finding control weight vectors determined by current fairness achieved
among users. These weights are then used for maximizing the throughput.

In [2], an optimal index policy is derived for long term fairness in terms of bandwidth allocation
and maximizing throughput considering the probability distribution of instantaneous user rates.

In [3], the authors study scheduling policies under Short Term Fairness (STF) constraints.
Short term fairness reduces the inter scheduling delays at the cost of throughput. Using special
case of window size of M = N and M = ∞, where N are the number of users, the STF constrained
policy assigns φiM number of time slots to a user i in any scheduling frame of window M and
maximizes the system throughput under these constraints where φi is the weight assigned to the
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user i such that
∑
φi ≤ 1. A heuristic policy that schedules the users that maximize the system

throughput, while trying to provide the required STF guarantees is suggested. A heuristic policy
for obtaining for a general M has been suggested. It has been proved that such allocation in
opportunistic regime gives more throughput than scheduling non-opportunistically.

E(ri(n)yi(n)) ≥ φiE(ri(n)) (3.5)

As apposed to the view of throughput fairness, alternative idea of temporal fairness is more
suitable for wireless opportunistic schedulers. We define the temporal fairness as fairness in the
the number of media access or the number slots to the users. Providing throughput fairness results
in the degradation of the other users with weak channel conditions. On the other hand, the power
optimal scheduling considered in the Chapter 2 results in starvation of strong users in oder to
satisfy the rate guarantees of week users.

Hence in this chapter, we propose a scheme that minimizes power while guaranteeing minimum
rate and long term fairness to each user.

3.2 Temporal Fairness

3.2.1 Long Term Fairness

Our objective is to opportunistically schedule the user with the best channel condition such that
rate guarantees and temporal fairness are achieved and average transmission power is minimized.

Let φi be the proportion of temporal bandwidth allocated to user i and φ = [φ1φ2 · · ·φN ]
Thus, φi represents the fraction of the time slots allocated to user i. Our objective is to

minimize average power subject to rate and fairness constraints. Our optimization problem is the
same as that of (2.1) with the following additional constraint

lim inf
M→∞

1
M

M∑
n=1

E yi(n) ≥ φi ∀i. (3.6)

Using the ergodicity assumption from Section 2.2, the Lagrangian with the fairness constraint is:

L(p1, p2, λ ) ∆=
∫
ν(dx1, · · · , dxN )

∑
y∈A

∫
[0,∞)

p1(dq|y, x)

p2(y|x)

(
q −

∑
i

λi [log(1 + qyixi) −Ci] +
∑

i

λ′i(yi − φi)

)
,

where λ′i is the Lagrange multiplier associated with the constraint (3.6), λ is the vector
(λ1, · · · , λN , λ

′
1, · · · , λ′N ). Following the approach adopted in Section 2.2, we obtain the optimal
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policy as: Select user k and transmission power q∗ where

k = arg min
i

{(
λi −

1
xi

)+
− λi

[
log
(

1 +
(
λi −

1
xi

)+
xi

)
− Ci

]
+ λ′i(1− φi)

}
(3.7)

q∗ =
(
λk −

1
xk

)+
. (3.8)

Using the stochastic approximation algorithm from Section 2.2, the Lagrange multiplier update
equations can be written as

λi(n+ 1) =
[
λi(n)− a(n)

[
yi(n) log

(
1 +

(
λi −

1
xi(n)

)+
xi(n)

)]
− Ci

]+

λ′i(n+ 1) = [λ′i(n)− a(n)(yi(n)− φi)]+ ∀i (3.9)

The optimality of the above scheme can be proved in a manner similar to that in Section 2.2.

3.2.2 Short Term Fairness

In Section 3.2.1, we have considered long term fairness. Long term fairness guarantees average
proportional time share. However, one of the problems associated with long term fairness is
starvation or Head of Line (HOL) blocking. There exist conditions when a user may not get a
chance to transmit for some period of time even after being assured a minimum rate guarantee.
Thus, it is important to consider a short term fair scheduler.

We consider a window of size M ≥ N slots. In a short term fair scheduler, we allocate time
share equal to φiM

2 to user i over this window and say that the scheduler is short term fair over
the window M . The case M →∞ is same as the long term fairness. We first discuss the case when
M = N . Let A be the set of users, i.e., user k ∈ A. For M = N , we can allocate a maximum of
one slot per user. We first select the user from the set A which is optimal for that time slot from
(3.7)3. Let k be the optimal user. We remove user k from the list: A = A \ {k}. We repeat the
above process on modified A. We call this policy as elimination policy. The algorithm for general
M is explained below.

3.2.3 Performance Results

We run the simulation over 20000 time slots. We take rate vector C = (0.6, 0.8, 0.7, 0.2), γ =
(1, 1, 0.9, 0.3), l = 10 and λ(0) = (1, 1, 1, 1). In Figure 3.1 we have shown a snapshot of a particular
trajectory for λi(n). The results demonstrate that the λs converge for all users. The average power

2We assume that φiM is an integer ∀ i.
3In the modified algorithm, the set of users is A.
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Algorithm 1 Temporal Short Term Fair Scheduling
1: Slot vector v= M(φ1, φ2, · · · , φN )
2: A = {1, 2, · · · , N}
3: i = 1
4: for i ≤M do
5: for each j ∈ A do
6: Choose optimal k using (3.7).
7: Transmit with power q∗

8: {v}k = {v}k − 1
9: if {v}k ≤ 0 then

10: A = A \ {k}
11: end if
12: end for
13: end for

vector to achieve the desired rates over 10 independent runs is, P = (0.7557, 1.0925, 1.0546, 0.9612).
In our simulations, we assume that the channel gains are Markovian across slots, as in (2.18). To
make sense of absolute numbers, we assume C = (0.6, 0.8, 0.7, 0.2) and φ = (0.3, 0.4, 0.2, 0.1). We
implement Algorithm 1 and plot the average power required with increasing window size, as shown
in Figure 3.2. The power required is a decreasing function of window size. The actual fairness
achieved by the long term and short term temporal fair algorithm are plotted in Figure 3.3. It may
be noted that in short term fair scheduler more emphasis is given to providing temporal fairness,
but in the process, the actual rate obtained may deviate from the desired rates. Thus there is
trade off between window size and actual rates achieved.

3.3 Throughput Short Term Fair scheduling

Here again we consider a window length of M slots. We say that the short term fairness is satisfied
if we satisfy the rate constraints for the duration of length M . or the overall throughput in M

time slots is MTCi, where T is the slot length and Ci is the individual rate constraint. Thus the
new short term fair algorithm will transmit exactly MTCi for user i, so that the overall power is
minimized. The problem can be formulated as,

min
M∑

n=1

N∑
i=1

q(n)yi(n) (3.10)
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Figure 3.1: Trajectory of λi(n)

M∑
n=1

N∑
i=1

Ui(yi(n)qi(n)xi(n)) ≥ MTCi ∀i,

q(n) ≥ 0,
N∑

i=1

yi(n) ≤ 1 ∀n. (3.11)

We assume concave power-rate relationship, taking Ui as standard Shannon capacity as in Section
2.2. We consider a finite horizon problem, as opposed to infinite horizon problem considered in
Section 2.2, here it would be be desirable to wait for better channel conditions before transmission
and keep track of the amount of data to be transmitted by each user. The state of the system is
given by, {r(n),x(n)}, where {r(n)}i denotes the residual amount to be transmitted by user i at
slot n. At n = 0, {r(n)i = MTCi}. A dynamic programing formulation of (3.11) is expressed as
(cf. Chapter B):,

J(n, r(n),x(n)) = min
(
q(n) + J̄(n+ 1, r(n+ 1))

)
, (3.12)

= min
yi(n),q(n)

N∑
i

1
xi

(
e(ui(n)yi(n)) − 1

)
+ J̄(n+ 1, r(n+ 1)), (3.13)
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Figure 3.2: Power required for the short term fairness compared to long term fairness

where ui(n) is the amount of data transmitted by user i in time slot n and the expected future
cost of decision is given by,

J̄(n+ 1, r(n+ 1)) = E (J(n+ 1, r(n+ 1),x(n+ 1))) (3.14)

= E (J(n+ 1, r(n+ 1),x(n+ 1))) (3.15)

The stopping condition has to be imposed so that by M + 1th time slot, MTCi data has been
transmitted. This condition can stated as terminal cost,

J̄(M + 1, r(M + 1)) = ∞. (3.16)

The dynamic programing problem (3.13) does not have a closed form expression. It can be calcu-
lated numerically by assuming the discrete channel state. However, the state space of this problem
is large and increases exponentially as the number of users increases. A heuristic policy is needed
to deal with intensive computation.

Heuristic policy

We use optimal policy (2.3) for the heuristic short term fair algorithm. On a long run of time slots,
the short term fair algorithm works on a finite window size of M . We would simulate optimal
stochastic approximation algorithm in the background. Thus at the beginning of each window M ,
we would use the current values of λ obtained using stochastic approximation algorithm (2.10).
For M − N number of slots, we schedule the users with the optimal power values. We also keep
the track of the amount of data transmitted in these time slots by each user as well as update
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the parameters λi. Now for the N time slots, we use the elimination policy, i.e. schedule the
user which is best according to the criterion (2.3), but transit with power, so that the overall
throughput requirement for M times slot, for that particular user is met. Now eliminate this user
and perform the same algorithm on rest of the users. Thus last N slots are used to satisfy the
throughput requirements.

3.4 Conclusions and Discussions

In this chapter, we have extended power-optimal rate constrained scheduling to incorporate tem-
poral long-term fair scheduling. We utilize this concept of long term fair scheduling to devise a
heuristic based short term fair algorithm. We compare the performance of the short term fair
and long term fair algorithms with respect to power consumption and fairness achieved. We also
state a throughput fair power optimal control policy. based on Markov Decision formulation and
suggest a heuristic policy for obtaining throughput fairness.
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Chapter 4

Power Optimal Opportunistic

Scheduling -Average Delay

Guarantees

4.1 Introduction

Efficient use of limited resources for providing Quality of Services (QoS) is an important issue in
the design of wireless networks. Power efficient transmission on the uplink has much significance,
since it impacts the battery life of the consumer mobile device and thus the overall efficiency of the
scarce resources. Hence methods for wireless transmission should be designed so that throughput
is maximized with minimum power consumption. However along with maximizing throughput,
the scheduler must also take into account the delay requirements of the individual users. The
opportunistic scheduling dealt in Chapter 2, does not consider the effect of the queue lengths
and arrivals, and bounds on the delay experienced by the user remain unspecified. Hence, the
individual delay requirements of the users should be emphasized while designing the scheduling
algorithm.

Wireless networks ought to be designed to cater to the needs of heterogeneous traffic like,
video, voice and file transfers. For file transfer like applications, the performance measure would
be average delay constraint. On the other hand, real time applications like video and voice have
to conform to the absolute delay guarantees. We consider these cases separately. First we, discuss
the average delay problem. In Chapter 5, we address the problem for strict delay constraint.

According to the classic result of Shannan capacity, for the AWGN channel the transmission
rate is a concave increasing function of transmitted power. This means that the marginal utility of
transmitting with higher power actually decreases. Only sufficient power needs to be transmitted
so that delay requirements are met. Thus the power efficient transmission comes with a trade-off
with the delay. In [28], the authors have considered problem of optimizing average power, subject

30



to average delay constraint for AWGN channel. They showed that the optimal stochastic scheduler
can be expressed as convex linear combination of deterministic schedulers. They used a well known
fact that a optimal policy can be obtained by randomization of deterministic policies. In [29], dual
problem of maximizing throughput given the delay constraint and power constraint in an AWGN
channel is considered. However [28, 29] do not consider the effect of fading in devising scheduling
strategies.

In the time varying fading environment, delaying transmission of packets during “bad channels”
and waiting for “good channels” states is the basic methodology used in the power minimization.
The scheduler transmits with more power and rate during ”good channel” states so that power is
most efficiently used.

In the early work [30], transmission policies are derived for the average power minimization
with average delay constraints in a time varying channel. However assuming a linear relationship
between power and rate, [30] has showed that the gains in power are possible, even if the power
delay relationship is not convex by exploiting the channel conditions.

In [31, 32], the authors have investigated the issues in minimizing power for time varying
channels. The problem is formulated as a discrete time constrained Markov Decision Process
(MDP). Various structural properties of the policies involved are analyzed. The convexity of
the capacity curve is used in concluding the convex relationship between power and delay. An
asymptotic quantitative expression for the Power-Delay curve is also derived. In a more recent
work [33], the authors have derived a closed form expression for minimizing average delay given
the average power constraint.

Most of the work discussed above present structural properties of the optimal policies. The
actual scheduling algorithm to achieve the optimal trade-off is never considered, which is impor-
tant for the protocol and implementation design. In this work we develop, an online adaptive
deterministic algorithm. We first formulate the problem in Section 4.3. We then discuss the case
when the state space (queue-length and channel state) and the action space (transmission rates)
are discretized. We formulate, a post-decision discrete state space based Markov Decision problem,
to decrease the storage space.

4.2 System Model

Consider a point to point slotted TDMA system consisting of single transmitter as scheduler and
a receiver with a wireless link. The wireless link is characterized by the fading and additive white
Gaussian noise. The channel state at the beginning of slot n is denoted by xn. where xn denotes
the channel gain for the user. The channel process xn is assumed to take values in finite set X. We
assume that the channel state is constant during a slot and change only at slot boundaries. We
also assume that there is perfect channel state information (CSI). We assume that the transmitter
has a finite buffer of length B.
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Figure 4.1: System Model

The unit of arrival and transmission can be number of bits or number of packets per slot. The
arrival process an at the transmitter is Markovian. We assume that arrival occurs at the end of
the slot n or at (n+ 1)−. Let Qn denote the queue length at the transmitter at slot n+. Since the
queue length is bounded by B and if Qn + an+1 ≥ B, then the extra units of data are dropped.

In every time slot 1, the scheduler determines the number of units un to transmit and its
corresponding power at time n+, depending on the state of the system at time n. We assume
that un is discrete and takes values in a finite set U . This condition is equivalent to considering,
discrete rates, which is an important constraints in the design of a practical scheduler. We also
restrict ourselves to policies such that un ≤ Qn is satisfied. Let the set of policies satisfying this
constraint be denoted by Ucd ∈ Ud, where Ud is the set of all deterministic policies.

In actual systems, the arrivals occur uniformly over the slot. Thus our approach is conservative
wherein average delay is about half of the slot more than the actual average delay.

Data enters into the queue and get buffered. The buffer evolution at the transmitter is given
as,

qn+1 = min {max {Qn − un, 0}+ an+1, B} (4.1)

= min {Qn − un + an+1, B} for un ∈ Ud.

4.3 Problem Formulation

Power minimization problem is states mathematically as follows. Let Pn denote the power required
for the transmission at slot n. The sample path dependent average power P is,

P = lim sup
N→∞

1
N

N∑
n=1

Pn, (4.2)

The average delay constraint is not tractable from the instantaneous samples. We convert the
average delay constraint into average queue length constraint using Little’s theorem. Let Q̄ be the
average queue length corresponding to the average delay constraint D̄ and average arrival rate ā

1We use time and slot interchangeably
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2. By Little’s theorem,
Q̄ = āD̄

In the calculation of the effective average arrival rate ā, we also consider the effect of data
dropped due to buffer overflow. We define average buffer overflow as,

ε = lim sup
N→∞

∑N
n=0 max(0, Qn − un + an+1 −B)∑N

n=1 an

. (4.3)

ε can be considered as equivalent to probability of packet drop.
If aavg is the actual arrival rate, then effective arrival rate, after dropping of packets is given

by,

ā = aavg (1− ε)

⇒ Q̄
∆= aavg(1− ε)D̄.

The average queue length Qavg of online-algorithm is given by,

Qavg = lim sup
N→∞

1
N

N∑
n=1

Qn.

We present here a constrained optimization problem. Our objective is to minimize the power for
the point to point transmission, subject to delay constraint D̄ and drop probability constraints ε̄.

Minimize P (4.4)

subject to Qavg − Q̄ ≤ 0, (4.5)

ε− ε̄ ≤ 0. (4.6)

Optimization problem (4.4) can be formulated as Constrained Markov Decision Problem (CMDP)
and solved using Lagrangian technique described in Appendix B.4 with state at time n: sn =
(Qn, xn). The Lagrangian for the above optimization problem is given by,

L(λ1, λ2) = P + λ1Qavg + λ2ε− λ1Q̄− λ2ε̄, (4.7)

where λ = {λ1 ≥ 0, λ2 ≥ 0} are the Lagrange multipliers.
The immediate cost of the CMDP is given by,

cn = Pn + λ1

(
Qn − D̄(an+1 − dn)

)
+ λ2 (dn − ε̄an+1) , (4.8)

2We will denote the constraint by ‘̄ ’
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where,
dn = max {0, Qn − un + an+1 −B} . (4.9)

For a given λ If there exists an optimal admissible, policy which minimizes 4.4, then there
exists vector h called as difference cost, such that,

h∗(s) = min
u∈U

E
{
c(s, u) + h∗(s̄)− h∗(s0)

}
, (4.10)

for some s0 ∈ [0, B] × X and s̄ is the next state of the simulated process. (4.10) is the average
cost relative value Bellman equation. For the solving average cost problem, we use relative value
iteration (RVI) algorithm for find the optimal. Here w.r.t. a reference state s0 we perform the
following iteration,

hn+1(s) = max
u∈U

{
c(s, u) +

∑
s̄

P (s̄|s, u)hn(s̄)− hn(s0),

}
(4.11)

, where P : S × U → S is the transition matrix. The proof of convergence of above algorithm is
presented in [34].

We now discuss the optimality of the dual problem 4.7. dn is a convex function of policy un,
hence cn is a convex function of policy un. We can apply Theorem B.1, so that the optimal average
cost for the CMDP is given by,

h∗ = sup
λ

inf
u∈U

{hλ(u)}

= inf
u∈U

{hλ
∗
(u)},

where λ∗ is the optimal Lagrange multiplier.
We concentrate on determining infu∈U{hλ(u)}, where λ is constant. The maximization over

λ will involve, use of multiple time scale stochastic approximation and is considered later in the
chapter.

4.4 Online Algorithm

The overview of the algorithm strategy is explained in this section. We first convert CMDP 4.4
into learning framework using post decision based formulation. The motivation of using post
decision formulation is given in 4.5. Thus we first perform, RVI based on post decision state (cf.
Section 4.5) done on a faster time scale. while the Lagrange multipliers λ are updated at a slower
time scale. The assumptions and the algorithm is stated in Section 4.5. In Appendix 4.8 the
convergence of the post-decision based learning algorithm for CMDP is presented.
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4.5 Post-Decision state Formulation

The Post-Decision state is briefly described in Appendix B.3. In our case it is possible to recognize
the exact “virtual state”, a state immediately after a decision is made, called post decision state.
Using a pre-decision method, we take the decision that takes into account the impact of future.
Thus moving into the state before the decision is taken makes the state sn+1, a random variable.
A simulation based learning algorithm, equivalent to the value iteration is not possible because the
expectation operator is inside the min operator in RVI (4.11). To circumvent this problem, if we
consider a state after the decision is taken, we can interchange the E and min operators in (4.11).
Recursion built around the post-decision state variable provides us with the direct control over the
structure of the value function, which can be exploited in the design of algorithms equivalent to
the value iteration 3. Thus the algorithms built using the post-decision variable reduce the space
complexity.

The state variables and value function are indexed with superscript “∼”, to denote the post-
decision state variable. We now define function Sd, which maps the pre-decision state to the
post decision state and Sp which maps post decision state to the pre-decision state. With these
definitions, following relations are easy to obtain.

s̃n = Sd(sn, un)

Q̃n = Qn − un

x̃n = xn

sn = Sp(s̃n, an+1)

We will now sketch the value iteration algorithm based on the post- decision state.
Define:

h̃n+1(s̃n) = E[hn(sn+1)|s̃], (4.12)

Using (4.12) and Relative Value Iteration (4.11), we can write (4.10) using the post-decision state
variable as,

h̃n+1(s̃) = E
[
min
u∈Ud

{
c(s,λ, u) + h̃n+1(˜̇s|s̃n)− h̃(s̃0)

}]
(4.13)

which leads to following synchronous post decision based relative value iterations with respect to
3Otherwise we can also use Q-learning algorithm.
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some arbitrary state s0:

h̃n+1(s̃) = h̃n(s̃) + α(n)

[
min
u∈Ud

{
cn(sn,λ, u) (4.14)

+h̃n(˜̇s)
}
− h̃n(s̃0)− h̃n(s̃)

]
∀s̃

h̃0(s̃) = 0 ∀s̃, (4.15)

where α(n) are the step sizes (specified in 4.19) An online version of the RVI should use asyn-
chronous updates in which, updates occur only to that component of value function corresponding
to the state of actual visit. Let

ν(s̃, n) =
n∑

m=0

I{s̃ = s̃m}, ∀s̃ ∈ S, (4.16)

where I(·) is an indicator function.

h̃n+1(s̃) = h̃n(s̃) + α(ν(s̃, n))I{s̃n = s̃}

[
min
u∈Ud

{
c(s,λ, u) (4.17)

+h̃n(˜̇s)
}
− h̃n(s̃0)− h̃n((s̃)

]
∀s̃

For the asynchronous algorithm we need following additional assumptions on the step sizes for
the convergence as stated in [35].

Assumption 4.1 If [z] denotes the integer part of z, then for x ∈ (0, 1),

sup
k

α([xk])
α(k)

<∞ (4.18)

∑[yk]
m=0 α(m)∑k
m=0 α(m)

→ 1 uniformly in y ∈ [x, 1]

Assumption 4.2 There exists ∆ > 0 such that,

lim inf
n→∞

ν(s̃, n)
n+ 1

≥ ∆ a.s.

Also, for all x ≥ 0 and

N(t, x) = min{m ≥ n :
m∑

k=n

α(k) ≤ x},
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the limit

lim
n→∞

∑ν(N(n,x),s̃)
k=ν(n,s̃) α(k)∑ν(N(n,x),˜̇s)
k=ν(t,s̃) α(k)

exists for all s̃, ˜̇s

The assumptions imply that all the states are updated often in and evenly manner.
Taking a cue from Q-learning (cf. Appendix B.5.2), let us call RVI 4.17 based on Post decision

state as “Post-learning” algorithm.
The next step would be to optimize with respect to λ, to obtain λ∗ and thus the optimal

policy. Assume that we have obtained optimal policy for given λ. Using two time scale stochastic
approximation [36], RVI algorithm to sees λ as a constant. Thus we first perform primal mini-
mization on a faster time scale, while the dual maximization is performed on a slower time scale.
The λn iterations are performed on a slower time scale, This effect is obtained if averaging step
sizes α(n) and β(n), satisfy, ∑

n

α(n) = ∞,
∑

n

β(n) = ∞,∑
n

α(n)2 +
∑

n

β(n)2 <∞,

lim
n→∞

β(n)
α(n)

→ 0. (4.19)

As the boundedness of λ is not easy to ensure, we project the iterates λn into the interval [0,K1]×
[0,K2], using projection functions Γ1 and Γ2 for λ1 and λ2 respectively, where K1,K2 are chosen
so that so that λ∗ ∈ [0,K1]× [0,K2] and the λ iterates are given by,

λ1n+1 = Γ1[λ1n + β(n)
(
Qn − D̄(an − dn)

)
] (4.20)

λ2n+1 = Γ2[λ2n + β(n) (dn − ε̄an)] (4.21)

4.6 Simulation Results

In this section we perform experimental study of the performance of the proposed algorithm. The
transmission power required at the nth slot is given by,

Pn =
N0W

xn

(
eun/W − 1

)
,

where N0 is the spectral density AWG noise of the channel and W is the spectrum bandwidth
of the wireless link. We consider transmission over a wireless channel of bandwidth W = 500
KHz and noise variance bandwidth product, N0W = 0.39. The fading is modeled using Rayleigh
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channel, whose probability density function is given by µ(x) = 1
γ e

−x
γ , where γ > 0. We assume

channel is i.i.d. across slots. and is modeled with parameter γ = 1 We discretize the channel into
equal probability regions as shown in Figure 4.2.

x

p.d.f.

Equal Probability bins

Figure 4.2: Discretization of Rayleigh channel

We quantify data in terms of packets transmitted. We assume packet of size of 1 Kb. We
particularly consider discrete rate transmission with rates u = {0, 200, 400, 800} Kbps. We assume
slot length of 10ms. These rates corresponds to different modulation schemes, selected depending
on the state of the system. We assume Poisson arrival of packets in each time slot. For the
simulation purpose, it is required that the algorithm should explore actions at all states. This
is achieved by running soft-max policy during initial time slots and thereafter apply the greedy
algorithm.

First we consider a buffer of large size B = 100 Kb, and average arrival rate of 1 packet.
The system helps us to analyze the power delay curve without taking into consideration the effect
of data drop. Figure 4.5 shows the plot of power-delay curve. As the constant on the delay
increases the average transmission power required decreases. The plot also demonstrates the
convex characteristics of the power-delay curve.

The second experiment demonstrates the effect of weak and tight delay constraints under a
finite buffer assumption. We take the buffer of size B = 50Kb and average arrival rate λ = 2
packets. For tight delay constraint we assume that D̄ = 1 packet and ε̄ = 0.1. Figure 4.3 shows
the plots for the tight delay constraint. In this case the convergence occurs faster within 2000
slots.

For weak delay constraint we assume that D̄ = 100 packets and ε̄ = 0.1. Figure 4.4 shows
the plots for the tight delay constraint. Here the convergence takes nearly 6000 slots for actual
convergence.

For tight delay constraint, Figure 4.3(c) shows that λ2 = 0 for all iterations, which means that
there are few/no data drop events. The algorithm has succeeded in maintaining the queue length
small and nearly satisfying the delay constraint. For weak constraint, we have the opposite effect.
The constraint of D̄ = 100 packets, would never be satisfied with B = 100 Kb. The algorithm
now tries to keep the buffer drop below the specified constraint. In this case, λ1 will remain close
to 0, demonstrating that the the delay constraint is satisfied with equality.

Remark 4.1 In the experiments, it is observed, for the decreasing step sizes (α(n), β(n)) con-
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Figure 4.3: Convergence plots for D̄ = 1 and ε = 0.1 (finite state space)

straints are not satisfied. One possible reason would be value estimation rate is faster than state
exploration rate. In order to speed up the algorithm and to allow for rapid state exploration, in the
experiments, we have used constant sequences e.g. α = 0.01 ≤ 1, β = 0.001 ≤ 1. In the literature
[37] convergence of ODE for decreasing step sequences and for constant bounded sequences is given.

4.7 Scheduling for Continuous Channel and Large Buffer size

In the previous sections, we have assumed discretized channel, and used finite state space formu-
lation for the Markov Decision problem. This formulation faces two noticeable deficiencies.

• The underlying channel is not actually discrete, but continuous

• As the buffer size is increased, the time and space complexity increase exponentially. For
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Figure 4.4: Convergence plots for D̄ = 100 and ε = 0.1 (finite state space)

the learning based algorithms with very large state space, it becomes impossible to learn for
each state.

We use function approximation based technique within actor-critic framework (cf. Appendix B.8)
for avoiding these difficulties. We assume queue length to be continuous for analysis. If we
further assume that the arrival and departure occur in multiples of the fixed amount fluid then the
analysis will also hold for the discrete arrival and discrete rate scenario. Unconstrained improved
temporal difference method for solving average cost MDP is discussed in Appendix B.6. In this
section, we state the function approximation based algorithm for solving constrained MDP without
the convergence proof. We use multiple time scale stochastic approximation method for solving
the constrained MDP. The unconstrained algorithm is solved on a faster time scale, while the
Lagrange multiplier are updated on a slower time scale. The details about the convergence of

40



0 5 10 15 20 25 30 35 40
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

Delay Constaint

Po
we

r (
in

 w
at

ts
)

Figure 4.5: Power Delay curve with finite state space

the unconstrained problem is given in Appendix B.6. For the constrained multiple time scale the
slower scale analysis follows in a similar way as discussed in Section 4.8 and not stated to avoid
repetition. Let the difference value function be given by,

h(x) =
K∑

i=1

fi(x)ri, (4.22)

where f = [f1, f2, · · · fK ], are the feature vectors and r = [r1, r2, · · · rK ] are the corresponding
weights. The weight update is given in Algorithm 2.

4.7.1 Simulation Results

The simulation assumptions are the same as discussed in Section 4.6. except that we assume
continuous Rayleigh channel distribution . We take parameter Λ = 0.99 and the feature vectors
as, f = [1, Q, x,Qx]

First we consider a buffer of large size B = 100 Kb, and average arrival rate of 1 packet.
The system helps us to analyze the power delay curve without taking into consideration the effect
of data drop. Figure 4.7.1 shows the plot of power-delay curve. As the constraint on the delay
increases the average transmission power required decreases. The plot also demonstrates the convex
characteristics of the power-delay curve.

The second experiment demonstrates the effect of weak and tight delay constraints under a
finite buffer assumption. We take the buffer of size B = 50 Kb and average arrival rate λ = 2.
For tight delay constraint we assume that D̄ = 1 and ε̄ = 0.1. Figure 4.7 shows the plots for the
tight delay constraint. For weak delay constraint we assume that D̄ = 100 and ε̄ = 0.1. Figure 4.8
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Algorithm 2 Algorithm for weight updates

rn+1 = rn + α(n)B̄n

n∑
k=0

(
k∑

m=0

Λk−mf(sm)

)
en(sk, sk+1) (4.23)

en(sn, sn+1) = c(sn, sn+1)− φn + α(n) (f(sn+1)− f(sn)rn) ,∀k, n
φn+1 = φn + β(n) (c(xn, xn+1)− φn) (4.24)

B̄n+1 = B̄n −
B̄nf(sn+1)f ′(sn+1)B̄n

1 + f(sn+1)′B̄nf(sn+1)
Q(sn, un) = r(sn, un) + V (sn+1)

λ1n+1 = Γ1[λ1n + γ(n)
(
Qn − D̄(an − dn)

)
] (4.25)

λ2n+1 = Γ2[λ2n + γ(n) (dn − ε̄an)] (4.26)

where sequences α(n) and γ(n), satisfy,∑
n

α(n) = ∞,
∑

n

β(n) = ∞,
∑

n

γ(n) = ∞∑
n

α(n)2 +
∑

n

β(n)2 +
∑

n

γ(n)2 <∞

lim
n→∞

γ(n)
α(n)

→ 0

β(n) = cα(n) for some constant 0 < c ≤ 1

shows the plots for the tight delay constraint.
In Appendix B.6, we proved the existence of fixed point for Algorithm 2. However nothing can

be said about the uniqueness and optimality of Algorithm 2. For weak delay constraint, Figure
4.8(a) shows that average queue length Qavg actually decreases, rather than being near the buffer
size. This behavior is due to non exploration of policies during simulation or because of the non
uniqueness in the algorithm is yet to be researched.

4.8 Conclusions and Discussions

In this chapter, we have designed an online power optimal scheduling algorithm with average
delay constraint and finite buffer. We have dealt with finite state space and continuous state space
separately.

For the finite state space, we have used post decision based formulation of Markov Decision
Process. We first proved the convergence of the algorithm using multi time scale stochastic approx-
imation. We showed the convexity of the power delay curve, a well known fact, experimentally.

For the continuous channel and large buffer size, we represented value function using function
approximation. We used temporal difference algorithm for value function improvement and soft-
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max for policy improvement. We proved existence of fixed point. however we were not able to
able to prove the exact convergence. The experiments showed that the delay constraints are met
without equality. This may be because of non-exploration or non-uniqueness of the algorithm.
The issue is further required to be studied.

Here, it should be noted that, our aim here is to highlight the issues in the development of
algorithm for delay constrained power optimal scheduling and thus considered only point to point
wireless link. The algorithm developed can be extended to multiple users but, with increased
complexity (state space).

Appendix

Convergence of the Post-learning Algorithm

We recourse to two time scale ODE analysis of stochastic approximation algorithms [36].

Assumption 4.3 Iterates h̃n are bounded.

We rewrite the RVI Algorithm 4.11 as,

h̃n+1 = h̃n + α(ν(s̃, n))
(
T (h̃n)− h̃n(s̃0)e− h̃n +Mn+1

)
, (4.27)

where e is a |S| × 1 vector with all entries 1. The map T : |S| × 2 → |S| × 1 is defined by,

T h̃(s̃,λ) =
∑

ṡ

P (˜̇s|s̃) min
u

{
c(s,λ, u) + h̃(˜̇s)

}
− h̃n(s̃0)e
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Figure 4.7: Convergence plots for D̄ = 1 and ε = 0.1 (continuous state space)

and the Martingale sequence Mn+1 is given by,

Mn+1(s) = min
u
{c(s,λ, u) + h̃n(ṡ)− T h̃n(s̃)}

Let Fn
∆= σ(h̃n,Mn), t ≥ 0, denote the increasing family of sigma fields. We observe that,

1. E[Mn+1|Fn] = 0.

2. E[||Mn+1||2|Fn] ≤ C(1 + ||h̃n||
2
), for some constant C ≥ 0. This can be easily proved by

noting that, E ||hn|| ≤ C1

∣∣∣∣∣∣h̃n

∣∣∣∣∣∣ for some constant C1 ≥ 0.

These relations are the basic assumptions in converting the Iterations 4.11 to ODE form. By the
theory of two time scale stochastic approximation, we can treat λ as a constant in the basic RVI
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algorithm It can be shown that, iterations track following ODE’s asymptotically [35],

˙̃
h(t) = T (h̃(t),λ)− h̃(t). (4.28)

We note that the RHS of the above ODE is Lipschitz continuous and hence the ODE has a unique
solution. The deterministic sequence of policies for a given λ is equivalent to some randomized
policy µλ(s|u). Let πµ(s) be the steady state probability for state s by employing policy and thus
µλ(s|u)

Xλ ∆=
∑

s

πµ(s)x

ελ
∆=

∑
s

πµ(s)ε(s)
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The Lagrange multipliers track the ODE,

λ̇1(t) = x(λ(t))− X̄, (4.29)

λ̇2(t) = ε(λ(t))− ε̄, (4.30)

Let h̃λ denote the value function for given λ. We now fix λ and prove convergence results for
Equation 4.28.

Lemma 4.1 Equation 4.28 has a unique equilibrium point at h̃.

Proof: Average cost Bellman’s equation involving post decision state, has solutions of the form
h̃ = h̃∗ + ce, where c is a constant and unique h∗, such that h∗ = φ, where φ is the average cost.
Thus T (h̃∗) = h̃∗ and h̃∗ is the equilibrium point of Equation 4.28.

Lemma 4.2 h̃∗ is the globally asymptotically stable equilibrium point for Equation 4.28.

Proof: The proof can be given in an analogous way as in [38].

The conversion from recursive iteration to ODE 4.28 requires boundedness of iterates h̃n. We
initially have assumed this fact. Now we prove that indeed iterates h̃n are bounded.

Lemma 4.3 The iterates h̃n remain bounded a.s.

Proof: We use results from [37]. Consider a function,

T sh̃(s̃) =
∑

ṡ

P (ṡ|s̃)h̃(˜̇s). (4.31)

Then

lim
r→∞

T (rh̃, λ)
r

= T s (4.32)

and the ODE,
˙̃
h(t) = T s(h̃)− h̃, (4.33)

has the origin as globally asymptotically stable equilibrium. Thus the results of [37] apply and we
conclude that the iterates are bounded.

Lemma 4.4 ∣∣∣∣∣∣h̃n − h̃(λn)
∣∣∣∣∣∣→ 0. (4.34)

Proof: h̃ is piecewise linear and concave decreasing function of λ. Hence the function h̃ is
continuous function of λ. By [36] the result follows.

Theorem 4.1 The iterates {h̃n,λn} → {h̃∗,λ∗} a.s.
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Proof: Let G(λ) = Eλ
µ [cn] Now for maximizing with respect to λ, the equivalent gradient scheme

is given by,
λ̇(t) = ∇G(λ(t)) (4.35)

(4.29),(4.30) are equivalent to (4.35) as G is perfectly differentiable. By considering ∇G(λ(t)) as
Lyapunov function and noting that we note,

− |∇G(λ(t))|2 < 0. (4.36)

Thus the iterates λn converges almost surely to the maximum of G. Hence h̃λ converges to optimal
h̃∗.

Proposition 4.1 If there exists an admissible policy then, the Lagrange multipliers satisfy the
relation, λ1λ2 = 0, (except possibly at one set of constraints).

Proof: This relationship implies that, both the constraints cannot remain active simultaneously.
Let Q̂ = aavgD̄. Let q denote the queue length. First constraint will keep average queue length
Q ≤ Q̂.

1. Case 1: Q̂ < B For an admissible policy Q < Q̂. Consider |Q−Qavg| as the Lyapunov
function. There exists a ball Bδ at Q, such that P (Q − Qavg > δ) < θ, θ > 0, implying
ε < θ. Hence the second constraint is satisfied without equality. i.e. λ2 = 0.

2. Case 2: Q̂ ≥ B For an admissible policy Qavg < D̄(1 − ε̄), previous argument works and
λ2 = 0. For Qavg > D̄(1− ε̄), λ1 = 0. However the arguments fails if Qavg = D̄(1− ε̄).
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Chapter 5

Energy Efficient Video Transmission

over Wireless Networks

In the previous chapters, our main objective has been to provide Quality of Service (QoS) guaran-
tees like minimum rate, average delay and fairness as well minimize the power requirement. In this
chapter, we present the performance of video application. In particular we consider, power min-
imization with a long term distortion requirement and absolute delay constraint and thus defers
from our previous exposition (cf. Section 4).

Shannon’s theory states that source coding and channel coding can be separately dealt with.
The underlying impractical assumption is that, source coding has infinite symbol length. Hence
joint source and channel coding has major impact in effective use of resources. Joint source
and channel coding has been an important research area, particularly for video transmission in
wireless networks. In this chapter, we develop on-line joint source and channel coding scheme which
exploits channel variations using power control in video transmission. Most of the work in the joint
coding has not considered the power adaptation and exploited the channel variations. We use
reinforcement learning framework to design an online joint coding scheme for power minimization
in point to point video transmission. In our work, the terms source coding and channel coding
defers from the standard nomenclature for these terms. We would use term source coding as the
quantization steps used for quantizing the video and the channel coding for the transmission rate.

The optimization problem, that we consider can be formulated as minimizing power under the
long term distortion constraint and absolute delay constraint to deliver a sequence of frames. The
channel feedback is considered for adapting the rate of the transmission. This problem can be
modeled as a Markov Decision Problem and can be solved using reinforcement learning techniques
for on-line implementation. We use Q-learning algorithm for learning the environment and pro-
ducing decisions for every Macro Block (MB) resulting in encoding parameters and the rate of
transmission for each MB.
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5.1 Introduction

In this chapter, we intend to consider the interaction of video compression, resulting distortion,
transmitter power and rate adaptation. The goal is to efficiently utilize transmission energy while
meeting the delay and video quality constraints imposed by a video streaming application.

The traditional approach of rate control for MPEG-4 video based [39] on second-order rate-
distortion model. The focus of the rate adaptation algorithm in [40] is on the video characteristics
and not on the channel over which the bit stream is transmitted.

In wireless networks, due to the user’s mobility, the channel behavior is inherently time-varying,
with periods of good channel alternating with periods of high error rates. Hence, error resilience
and error concealment become extremely important. A complimentary approach in [41] is to
adapt the behavior of the video encoder to the conditions of the channel. Usually, the behavior of
the video encoder and decoder is adapted to cope with the effects of the lossy and time-varying
channel. Apart from distortion, transmission of real time video mandates that the absolute delay
requirement are also met [42].

In [43], the authors formulate the problem as finite horizon Markov Decision problem and
assume that channel transition matrix is apriori known to the transmitter. The Macro Block
(MB) level parameters (quantization and transmission rate) are obtained by minimizing the power
while meeting constraint on the average distortion to transmit the video sequence over wireless
channel and the absolute delay constraint.

We frame the power optimization problem as a constrained finite horizon Markov Decision Pro-
cess (cf. Appendix B). MDP assumes the underlying transition model known to the transmitter.
Hence a model free approach for the channel (environment) is required for the on-line implementa-
tion of the joint coding algorithm. The transmitter should be able to learn the channel behaviors
and adapt to the changes to determine optimal solution based on the history of decisions and
channel conditions. Reinforcement learning methods are suited for the model free optimization of
MDP. We use Q-learning method modified suitably for the finite horizon MDP.

In Section 5.2, we describe the Q-learning algorithm for finite horizon MDP. In Section 5.3, we
present system model and state the problem formulation in detail. Section 5.5 demonstrates the
simulation details and results.

5.2 Finite Horizon Q learning

We consider finite state space and action space, N horizon MDP. The expected cost for the finite
horizon MDP, is given by,

V = E
N∑

n=0

c(sn, un), (5.2)

where sn is the state and policy un is the action at horizon n. Q learning algorithm discussed
in Appendix B.5.2 works for infinite horizon problems which involve stationary policies. Finite
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Figure 5.1: Finite horizon Q learning

Algorithm 3 Algorithm for Finite Horizon average cost Q learning

Qn+1(s, u) = Qn(s, u) + αn(s, u)en
φn+1 = φn + βne

′
n,

en =


cn − φn +maxbQn(yn, b)−Qn(s, u)
if (s, u) = (sn, un), sn ∈ Si, i < N
cn − φn

if (s, u) = (sn, un), sn ∈ SN

0 otherwise

,

e′n =


cn − φn +maxbQn(yn, b)−Qn(s, u)
if s = sn, sn ∈ Si, i < N
cn − φn

if s = sn, sn ∈ SN

0 otherwise

, (5.1)

∑
αn = ∞,

∑
α2

n <∞ ,
∑

βn = ∞,
∑

β2
n <∞.

horizon problems may have non-stationary policies and the direct application of Q learning is
not possible. A simple technique, which converts finite horizon problem into infinite horizon is
presented in [44]. Figure 5.1 shows that, if we artificially introduce a loop from the horizon N to
horizon 0, then we get a infinite horizon version of the considered finite horizon problem, with the
assumption that, from state s ∈ SN

1 at horizon N , the transition can occur to any state s̄ ∈ S0 at
horizon 0. The resulting Q learning algorithm for average cost finite horizon MDP is described in
Algorithm 3.

5.3 Problem Formulation

We have adopted the system model from [43]. A block diagram of the system is shown in Fig-
ure 5.2. The encoder encodes the incoming video data stream according to MPEG-4 standard.

1Since finite horizon the policy is non-stationary it is dependent on the horizon, Si denote the state space for
horizon i.
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Figure 5.2: System Block Diagram

This encoded video is to be transmitted over wireless channel which is a time-varying and unreli-
able channel. Here a specific example of a varying wireless channel with frequency non-selective
block fading modeled as finite state Markov channel is considered. We assume a slotted system
with each slot of length Tc. The channel value remains constant during the slot and it changes
at the slot boundary. Our objective is to minimize the expected power per frame under the con-
straints of distortion and delay. Important assumptions in the implementation of the algorithm
are:

1 We assume that the transmitted data is received without any error.

2 There is no sudden change of scene in the video. Thus the rate distortion curve for each
frame do not change significantly.

3 A video sequence is large enough so that algorithm can converge. A typical video sequence
would of 10 seconds or 300 frames. For real time applications like conferencing, the length
of sequence is even larger.

5.3.1 Distortion Constraints

We assume the video is encoded as a sequence of IPPPP· · · i.e. every I frame occurring at the
start of GOP (Group of Pictures). The Rate-Distortion (R-D) model for the P frame in the GOP
is represented mathematically as,

Rp

Mp
= a1Q

−1
p + a2Q

−2
p (5.3)

Rp(Dp) = ln
(

1
αDp

)
(5.4)

where,

• Qp is the quantization level used for the current frame p.
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• Mp is the Mean Absolute Difference (MAD), computed using motion-compensate residual
for the luminance component.

• a1, a2 are first- and the second-order coefficients.

• Rp is bit rate for frame p.

• Dp is distortion for frame p.

• α is constant of proportionality.

Let qk be the quantization parameter of kth MB and uk be its corresponding transmission rate.
qk takes values from a finite set Q, uk from a finite set of rates R. and channel state xk from X.
Let the total number of bits in each MB be Bk. Let each frame consists of M number of MBs.

5.3.2 Delay Constraints

Each frame enters the queue at the transmitter with a constant rate. Let TMB be the inter arrival
time between MBs at the queue of the transmitter. Let the delay experienced by the kth the MB
is given by δk, which is expressed as,

δk = ωk +
Bk

uk
(5.5)

where,
ωk = (δk−1 − TMB)+ (5.6)

is the waiting time for each MB. ωk is the additional time the MB must wait for the preceding
MB to finish its transmission. For real time application the MB entering at time slot n, must be
decoded at the receiver by the time nTc + T , where T is the end to end delay experienced by each
MB. If we remove the encoding and decoding delays from T , which is Tmax = T − (M + 1)TMB

[43].

5.3.3 Energy Considerations

Let P (xn, uk) be the power required for the transmission at rate uk and fading coefficient xn, given
by,

P (xn, uk) =
N0W

xn

(
euk/W − 1

)
, (5.7)

where N0 is the power spectral density AWGN channel and W is the spectrum bandwidth of the
wireless link. If Bk are the number of bits of MB k, then the number of slots required for the
transmission is given by, Lk = d Bk

ukTc
e. Figure 5.3 explains the concept of slot and number of slots

required for kth MB.
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Figure 5.3: kth MB transmission at nth slot

Energy required for transmission of kth MB, starting the transmission at slot n is obtained as,

Ek = E

{
Lk+n−1∑

l=n

P (xl, uk)Tc |xn

}
(5.8)

Hence the total energy required for the transmission of whole frame is given by
∑M

k Ek.

5.3.4 Optimization Model

We now formulate the energy minimization problem as,

min
uk,qk

E
M∑
k

Ek

such that
1
M

E
∑

k

Dk ≤
1
M
Dmax (5.9)

δk ≤ Tmax,∀k, (5.10)

whereDmax is the average distortion constraint per frame and E {
∑

k Dk} is the expected distortion
per frame. For the constrained optimization problem (5.10), we consider relaxed unconstrained
optimization problem as,

min
uk,qk

E

{∑
k

[Ek + λDk]

}
,

such that δk ≤ Tmax,∀k (5.11)

where and λ is Lagrange multiplier.
(5.11) optimization problem is M horizon Markov Decision Problem. The state for kth MB is

given by sk = (ωk, xk). and action ak = (qk, uk). For introducing the absolute delay, we restrict
the set of feasible policies to, U(sk) =

{
qk ∈ Q, uk ∈

{
Bk
uk

≤ Tmax

}}
with per stage cost incurred

is given by,
c(sk, uk) = Ek + λDk. (5.12)

Bellman’s Equation with cost to go function V is given by,

Vk(sk) = min
U(sk)

E {c(sk, uk) + Vk+1(sk+1)} . (5.13)
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Finite horizon Bellman Equation (5.13) requires explicit knowledge of channel transition matrix
for determining optimal solution. Hence we take resource to learning methods for solving (5.13).
We first convert the finite horizon problem into approximate infinite horizon problem. discussed
in Section 5.2. We then apply finite horizon Q learning Algorithm 3. In calculation of the energy
Ek, the algorithm must also learn about the expected energy for transmission of Lk duration of
slots given channel condition xk. Thus we are required to find, E

∑Lk
0

1
xk

∀Lk, x0 ∈ X This is
done by averaging samples for every Lk and x ∈ X. The update for the Lagrange multiplier is
performed at a slower time scale as [36],

λn+1 = λn + γn

(
Dn −

Dmax

M

)
, γn = o(αn), (5.14)

5.4 Implementation Details

We now discuss implementation level details for the algorithm. The algorithm works on two levels
- frame level and MB level.

5.4.1 Frame Level Calculations

At frame level, the rate-distortion model given in (5.3) is used to calculate the frame level encoding
parameters. The algorithm first calculates the bit rates R for given set of quantization parameter.
The R-D model gives corresponding distortion values for set of R values.

5.4.2 MB Level Calculations

Here the minimization problem stated in (5.11) is solved. From the frame level algorithm, the
distortion and the rate for different quantization levels are obtained for that particular frame. The
values of quantization parameters for each MB qk and rate of transmission for each MB uk are
obtained based on a state sk.

5.4.3 Updating the Model Parameters

The model parameters are updated by window method using least square approximation. The
source coding parameters Qi and the actual bits taken by the frame Ri, for past n frames called
as window are stored. The model parameters are calculated as,

a1 =
∑n

i=1QiRi − a2Q
−1
i

n
(5.15)

a2 =
n
∑n

i=1Ri −
(∑n

i=1Q
−1
i

)
(
∑n

i=1QiRi)

n
∑n

i=1Q
−2
i −

(∑n
i=1Q

−1
i

)2 (5.16)

Qi is approximated to be the average of all the quantizations used for each frame i, in the window.
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5.5 Simulations Results

The video sequence is encoded with the MPEG-4 implementation provided by MoMuSys. The
possible quantization parameters are given by Q = {4, 8, 16, 20, 24, 31}. The channel bandwidth
is given by W = 500 KHz. We consider the AWGN channel of variance N0W = 0.39. The
Time required for encoding each MB is considered as TMB = 0.7 ms. We assume that the fading
transitions occur every Tc seconds where Tc = 0.1 ms

The fading channel model is represented by a two-state Markov chain with state space X =
{0.9, 0.1}. The transition probability matrix is considered to be symmetric as follows:[

p 1− p

1− p p

]
(5.17)

Let p = 0.7 and we consider Tmax = 100 ms. The transmission rate is chosen from R ∈ {100, 200}
Kbps. We perform experiments using foreman video sequence of duration 10 sec, with 100 MB
per frame. In Figure 5.7 expected power required for transmission per frame vs. the expected
distortion per frame is plotted. It shows the convex relationship between average transmission
power and average distortion. We now let Dmax = 2000. Figure 5.5 and 5.5 show particular
snapshot of the original video sequence and transmitted video sequence respectively. Figure 5.7
shows the expected power required for transmission per frame and Figure 5.6 shows the expected
Peak Signal to Noise Ratio (PSNR) per frame. There is a sudden drop in the PSNR at frame
number 250 because there is a sudden scene change in the foreman video sequence.
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Figure 5.4: Power-Distortion curve
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(a) Transmitted Foreman frame (b) Received Foreman frame

Figure 5.5: Transmission of Foreman Frame
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Figure 5.6: Output PSNR Graph

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

n

Av
er

ag
e 

Po
we

r p
er

 fr
am

e

Figure 5.7: Expected Power for Dmax = 2000

5.6 Conclusions and Discussions

The optimization problem discussed in these paper deals with the important issue of distortion
experienced in wireless video constrained to energy of transmission and delay in the reception. We
have shown the convex relationship between power and distortion experimentally.
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Chapter 6

Conclusions

In this thesis, we have explored the issues related to resource allocation in wireless networks.
Exploitation of the channel variations using “opportunistic scheduling” has been instrumental
in efficiently utilizing the scarce resources. We have developed algorithms for providing QoS
like minimum rate, fairness and average delay guarantees, while minimizing the average power
for transmission. Towards this, we have exploited the convex relationship between transmission
rate (capacity of channel) and power for developing optimal scheduling algorithms under various
constraints. We posed the resulting problems in the framework of constrained convex optimization
and used stochastic control techniques in designing online solutions to these problems.

We have first considered the minimum rate constrained multiuser scheduling problem and
provided stochastic approximation based optimal algorithm. It has been shown that solution for
rate constrained multiuser system has the form of memoryless ‘water filling’. The performance
of the optimal algorithm is compared with the round-robin scheduling scheme. We have also
addressed the issue of power optimal temporal short term fair and long term fairness.

We have then considered average delay constrained power optimal algorithm for finite buffer.
We have formulated the problem as a average cost Markov Decision Problem. We have presented
solution for finite state space version of this problem using ‘Post learning’. We have used function
approximation technique for solving the continuous channel state and large buffer space version
of the problem. This problem has been formulated for point to point link setting. However this
method can be easily extended to multiple user scenario. We would like to remark that the function
approximation algorithm convergence without using multiple time scale is non-trivial but we have
provided the existence of fixed point using function approximation for the average cost MDP.

Finally, we have considered the problem of video transmission over wireless channel. Specifi-
cally, we have addressed the issue of minimizing power subject to distortion and delay constraints.
We have argued how Q learning algorithm can be used for minimizing power in a finite hori-
zon MDP setting. Here we have demonstrated the convex nature of the power-distortion curve
experimentally.

Resource allocation in wireless networks is a complex problem with many facets. In this thesis,
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we have addressed only few aspects of this problem. There are many interesting problems yet to
be solved in this area. Few refinements and modifications to the problems considered are discussed
here. While providing minimum rate and fairness guarantees, we have assumed that the scheduler
can transmit with arbitrary rates. More practical case of discrete rate scheduler needs to be
investigated.

Among various notions, we have used quantifiable temporal fairness as a fairness measure. The
idea of fairness in fading environment not yet completely resolved. It is not clear what definition
of fairness is more appropriate in this context. Further investigation is required in this direction.

In practice, both average rate and delay constraint may have to be satisfied simultaneously.
A joint multiuser delay and rate constrained problem can be investigated. For a broader class
of Ad-hoc Networks the network layer issues like routing also play an important role in optimal
scheduling policies. Thus joint routing and scheduling algorithms for wireless Ad-hoc networks is
an important area of further investigation. Performance of these algorithms with multiple channels
particularly Multiple Input Multiple Output(MIMO) systems can be studied. Approaches to these
problems may include off-line optimal solutions with the assumption of entire traffic and channel
information, on-line model-based solutions and heuristic algorithms. Heuristic algorithms play
an important role in real-time scheduling problems because the optimal scheduling problems are
exponentially complex or NP-complete and simplicity is a desirable feature.

From the stochastic control theory point of view, function approximation seems to be a potential
technique in solving large stage space optimization problems. However, convergence of function
approximation with multiple policies is still an unresolved issue. A significant research is required
in developing function approximation based provably convergent algorithms.

The online solution presented for video transmission is rather restrictive and imposes con-
straints on the smoothness of video frames, an impractical situation. The problem of developing
an online algorithm for joint source and data rate adaptation suited to all scenarios of video se-
quences needs further investigation. In this study, we have assumed that a packet is made of one
MB. A variable packet length power optimal online scheduling could be a potential area for future
work.
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Appendix A

Review of Stochastic Approximation

and Related Concepts

Mathematical preliminaries and relevant results from the adaptive learning and stochastic approx-
imation literature [37, 45, 18] are presented in this appendix.

A.1 Stochastic Approximation

In this section we will state key results in stochastic approximation theory. Let H(., .) : R×RN →
R be a Lipschitz continuous function with respect to first argument uniformly in second. Let
h(.) : R → R is Lipschitz continuous, such that for scalar K,

||h(x)− h(y)|| ≤ K ||x− y|| (A.1)

Consider the stochastic approximation of the form,

x(n+ 1) = x(n) + a(n) (H(x(n), γ(n))) , n ≥ 0,

x(n+ 1) = x(n) + a(n) (h(x(n)) +M(n+ 1)) , (A.2)

E[H(x, γ)] = h(x),

The ‘martingale difference sequence’ is given by,

M(n+ 1) = H(x(n), γ(n))− h(x(n)), (A.3)

where x(n) ∈ R. γ(n) ∈ RN are i.i.d. or Markovian random variable. We assume that the step
sizes satisfy,

∞∑
n=0

a(n) = ∞,

∞∑
n=0

a(n)2 <∞ (A.4)
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Equation A.2 can be viewed as the discretization of ordinary differential equation (ODE),

ẋ(t) = h(x(t)), (A.5)

with the noisy measurement of h(x). As the function h(x) is Lipschitz, ODE A.5 has a unique
solution. Let the ODE posses unique asymptotically stable equilibrium point x∗. The fact that
step sizes have infinite sum ensures that the algorithm does not converge to a point other than x∗.
If x(n) remain bounded then the martingale sum

∑∞
n=0 a(n)M(n+ 1) converges with probability

one (w.p. 1) and iterates track the ODE to converge to x∗.
If each component of the iterate x(n) is not updated simultaneously, then the resulting version

is called as asynchronous stochastic algorithm, given by,

xi(n+ 1) = xi(n) + a(ν(n, i))I(n, i)[h(x(n)) +M(n+ 1)], (A.6)

where ν(n, i) =
∑n

k=0 I(k, i), is the number of times component i gets updated up to time n. The
asynchronous version of the above algorithm is shown to track the scaled o.d.e. x̄(t) = 1

εh(x(t)),
ε ∈ R. [35] For notational simplicity the scaling term ε is not states explicitly. The two time scale
version of stochastic algorithm is given by,

x(n+ 1) = x(n) + a(n) [h(x(n), y(n)) +M1(n+ 1)] , (A.7)

y(n+ 1) = y(n) + b(n) [g(x(n), y(n)) +M2(n+ 1)] , (A.8)

where,
∞∑

n=0

b(n) = ∞,

∞∑
n=0

b(n)2 <∞, b(n) = o(a(n)), (A.9)

Here x(n) update occur at a faster time scale, while y(n) updates occur at a slower time scale. Thus
for iterates x(n) , y(n) can be viewed as constant and for y(n), x(n) to have attained equilibrium
value. Thus iteration A.7 track the o.d.e., ẋ(t) = h(x(t), ŷ), where ŷ act as a constant. Let it
has globally asymptotically stable equilibrium, λ(ŷ). Thus x(n) track λ(y(n)) and A.8 tracks
ẏ(t) = g(λ(y(t), y(t)). If both the o.d.e. posses globally asymptotically stable equilibrium, then
(x(n), y(n)) → (λ(y∗), y∗) a.s.

Theorem A.1 (Martingale convergence theorem.) Let {ζ(n) : n = 0, 1, · · · } be a martingale and
there exists a positive scalar L such that E

[
ζ(n)2

]
≤ L ∀n, then there exists a random variable ζ

such that,
lim

n→∞
ζ(n) = ζ (A.10)

Theorem A.2 (Cauchy-Schwartz inequality.) If x and y are elements of complex space over which
inner product < > is defined then,

|〈x, y〉|2 ≤ 〈x, x〉 . 〈y, y〉 (A.11)
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Theorem A.3 (Kolmogorov-Doob Inequality.) Let X0, X1, · · · be a martingale sequence. Then,
for any a,

Pr
[

max
0≤i≤n

X(i) ≤ a

]
≤ E[|X(n)|]

a
(A.12)

Theorem A.4 (Gronwall’s Lemma.) If, for t0 ≤ t ≤ t1, f(t) ≥ 0 and g(t) ≥ 0 are continuous
functions such that the inequality,

f(t) ≤ K + L

∫ t

t0

f(s)g(s)ds, (A.13)

holds for some constants K ≥ 0 and L ≥ 0, then,

f(t) ≤ K exp
(
L

∫ t

t0

g(s)ds
)

(A.14)

Theorem A.5 (Borel Cantelli Lemma.) Let (Σn) be a sequence of events in some probability space.
If the sum of the probabilities of the Σn is finite

∞∑
n=1

Pr(Σn) <∞, (A.15)

then ,

Pr
(

lim sup
n→∞

Σn

)
= 0. (A.16)

Theorem A.6 Sherman-Morrison formula Let A be invertible matrix A, u column vector and v

be row vector.

(A+ uv)−1 = A−1 − A−1uvA−1

1 + vA−1u
. (A.17)

Definition A.1 (Upper Semi-continuous Map.) Set valued map ĥ is upper semi continuous (u.s.c.)
if, for any neighborhood N(ĥ(x)) of ĥ(x), there exits a neighborhood N(x) of x such that that
ĥ(N(x)) ⊂ N(ĥ(x).

Definition A.2 (Superdifferential.) The superdifferential ∂+f∗: of function f : R → R is given
by, ∂+f∗ is compact, convex, nonempty set of all Γ satisfying,

f∗(z) ≤ f∗(x) + 〈Γ, z − x〉, (A.18)

where x, z ∈ R. If The smallest closed convex set containing the set X is denoted by c̄o(X ). The
differential inclusion of f at z is also given by

∂+f∗(z) =
⋂
δ>0

c̄o

(⋃
ẑ

∈ Nδ(z)∂+f∗(ẑ)

)
.
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Appendix B

Reinforcement Learning for Average

Cost Markov Decision Processes

Markov Decision Process (MDP) is a general model for a large class of multistage, decision mak-
ing problems with uncertainty. The underlying probabilistic transitions, occur according to a the
Markov chain. Dynamic Programming (DP) is a technique for solving the MDP based optimiza-
tion problems. Various methods in DP include value iteration and policy iteration. However, these
methods require exact structure of the transition law. In recent years, reinforcement learning has
emerged as a popular paradigm for simulation based algorithms and providing “near optimal”
solution to the Markov Decision Problems. Reinforcement learning algorithms learn good poli-
cies, in an environment, where the environment incurs a cost, for the action taken by the agent.
Depending upon the feedback obtained from the environment, the agent changes its action which
would lead to a better strategy. The legacy effect of “curse of dimensionality” in large state space
Markov Decision Processes, is also present in the reinforcement learning methods. An approximate
form called functional approximation is suggested for tackling the large state space problem. In
functional approximation method, the value function is approximated as a linear or non-linear
combination of basis vectors called feature vectors, thereby providing an implementable method
for large state space. In this chapter we first discuss Markov decision problems involving average
cost. We then take a look at various reinforcement learning methods, like learning using post deci-
sion state, Q learning, temporal difference TD(Λ) learning. We then focus on the Markov decision
processes with average cost involving general state space and finite action space. We use function
approximation method involving a variation of the standard temporal difference as suggested in
[46]. We further extend this algorithm for the average cost optimal problems involving multiple
policies. In this chapter, both finite state space and general state space are referred.
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B.1 Control using Markov Decision Processes

Markov Decision Processes form a basic framework for dynamically controlling systems, which
evolve in a stochastic way. In Markov decision processes or controlled Markov chains, current
decisions are influenced by previous decisions. MDP involve sequential optimization problems, ob-
served over a infinite or finite duration of horizon N . They involve different performance criterion,
like infinite horizon, discounted cost, infinite horizon average cost. Detailed explanation about
MDP is given in [47], [34, 48]. In this exposition, we would concentrate on average cost infinite
horizon Markov Decision Processes.

Section B.2 deals with finite state and action space. Section B.7 considers generalized state
and finite action space. The assumptions in the generalized state space are rather involved and
only relevant assumptions are presented.

Consider a discrete time stochastic process, specified by the tuple, {S,U, P, u, c}, where,

• S indicates for finite state space S = {1, 2 · · · l}. For generalized case (infinite dimensional
continuous space) we assume, S is compact Borel space of “states” and is R valued. The
Borel space S is Polish (complete and separable). Let B(S) be the σ algebra of the space S.

• U indicates the finite space of actions. U = {u1, u2, · · ·ua}. and a probability space
{U,B(U),Pu}

• P indicates the conditional law P (y|s, u) y ∈ B(S), the probability of moving from state s
to state y, under the policy u. For general state space, P (.|s, u) : S → B(S) is a measurable
function called transition kernel (transition matrix for finite state space) and �(p(.|s, u)) = 1,
where �(p(.|s, u)) =

∑
y∈S p(.|s, u) for finite state space and �(p(.|x, u)) =

∫
y∈S p(dy|s, u)

for general state space. For a measurable function f on S, the transition kernel act as a
operator, (similarly the transition matrix acts on the vector)

Pf(s) =
∫
f(y)P (dy|s, u). (B.1)

The nth step transition kernel is given by,

Pn(z|s, u) =
∫
P (z|y, u)Pn−1(dy|s, a). (B.2)

The transition kernel induces (an invariant measure) π under Assumption B.1,

Pπ(s) = π(s). (B.3)

• c : U → R, is the immediate cost incurred, under policy u and at state s, such that (s, u) ∈ U ,
s ∈ S, u ∈ U . For general state space, we assume c to be continuous bounded function of
state s.
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The history space, Hn at time n, is defined as,

Hn = Hn−1 × S × U (B.4)

Thus a sample history at time n, is given by, hn = {s0, u0, s1, u1, · · · , sn, un}, where the state
evolves as a sequence {sn}, n = 1, 2, · · · , under the action sequence {un}, n = 1, 2 · · · .

A policy µ is a sequence of actions {un}. The policies µ under which the process sn is
Markov are called Markov policies. A generalized class of Markov policies are randomized policies
µn(.|hn) : U → Pu. µn(.|hn) represents condition law where the action un ∈ U is selected, with
the distribution µn. Thus policy µ represents a sequence of conditional laws, µn. Markov policies
such that µn = µ, are called as stationary policies. Stationary policies depend on the current state
and are given by µ = [µ(u|i)]u∈U,i∈S . If the policy µ(.|i)i ∈ S has a Dirac function, then the policy
is called as non randomized or deterministic. Let US denote the set of all stationary policies. A
policy is admissible if it satisfies the constraints imposed by the structure of the problem. This
may include constraints such as a policy or action that cannot be used for a particular state. (Note
that these constraints may also include the constraints introduced by the optimization problem.
We discuss such Constrained Markov Decision Process (CMDP) in Section B.4).

B.2 Markov Decision Process

The expected average cost over infinite horizon incurred by a policy µ is given by,

Vµ = lim sup
N→∞

E

[
1
N

N−1∑
n=0

c(sn, un)

]
(B.5)

Corresponding path wise average cost is given by,

Vµ = lim sup
N→∞

1
N

N−1∑
n=0

c(sn, un) (B.6)

Assumption B.1 Every stationary policy results in an irreducible Markov chain

Assumption B.2 The transition costs c(sn, un) are bounded.

Remark B.1 In the general state space, these assumptions are required to be stated in more tech-
nical terms, as the irreducibility in general state space is not the same as in finite state space.

Definition B.1 (Irreducibility measure.) A probability measure ψ is called an irreducible measure
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for a Markov chain, if for any given point s ∈ S, and given any set A ∈ B(U).

ψ(A) > 0 ⇒ Pn(s,A), for some n .

Definition B.2 (Irreducible Markov Chain.) A Markov chain sn is called ψ-irreducible if there is
an irreducibility measure on B(S) such that,

ψ(A) = 0 ⇒ ψ(LA) = 0

with,
LA = {s ∈ S|Pn(s,A) > 0 for some k}.

If a Markov chain is ψ-irreducible, then there is a measure on B(S) such that, starting at any
point s ∈ S, the chain can reach any “ψ-large” set A ∈ B(S) with non-zero probability.

Definition B.3 (Geometric Ergodicity of Markov chains) For the set S, there is “geometric drift”
towards A, that is, for some function L and some β > 0

P (s, dy)L(y) ≤ (1− β)L(s) + 1A(s), (B.7)

where 1A(s) is a indicator function and is 1 if s ∈ A, otherwise 0. This implies that there exists
limiting probability measure π, a constant R <∞ and some uniform rate ζ < 1 such that,

sup
|f |≤L

∣∣∣∣∫ Pn(s, dy)f(y)−
∫

(π)f(y)
∣∣∣∣ ≤ RL(s)ζn (B.8)

The optimal average cost is obtained by minimizing over all possible policies ans is expressed
as,

J∗ = inf
µ∈US

Jµ (B.9)

For finite state space, if there exists an optimal admissible policy µ∗, which satisfies (B.9), then
there exists a scalar φ∗ and vector h such that,

φ∗ + h(s) = min
u∈U

{c(s, u) + P (y|s, u)h(s)} (B.10)

The vector h is unique up to additive constant. h(s) − h(y) represents the difference in the
total cost from starting from s instead of y. φ∗ uniquely specifies the optimal average cost. The
differential cost h can be specified uniquely by letting h(s0) = φ∗ for arbitrary s0 ∈ S, The average
cost optimal equation with unique h∗ is given by,

h∗(s) = min
u∈U

{c(s, u) + P (y|s, u)h∗(y)− h∗(s0)} s, y ∈ S (B.11)
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Further an optimal stationary policy µ must satisfy,

µ ∈ arg minu ∈ U{c(s, .) + P (y|s, .)h(y)} (B.12)

For a given stationary randomized policy µ, the corresponding average cost is given by,

φµ + hµ(s) =
∑
u∈U

{c(s, u) + P (y|s, u)hµ(y)} (B.13)

B.2.1 Value Iteration Algorithm

Value iteration algorithm provides an iterative method for determining the optimal value function.
For the average cost problem, we use relative value iteration (RVI) algorithm. Here we arbi-

trarily choose a reference state s0 and perform the following iteration,

hn+1(s) = max
u∈U

{
c(s, u) +

∑
y

P (y|x, u)hn(y)− hn(s0)

}
(B.14)

The proof of the convergence of above algorithm is presented in [34].

B.3 Post Decision State based formulation

Consider the scenario where the state transition be expressed as,

sn+1 = f(sn, un, wn+1), (B.15)

where f : S × U ×W → S, wn ∈ W is a disturbance which induces probabilistic transitions into
the system and determines the transition matrix (transition kernel for continuous state space)
We have viewed our system evolution, where transitions take place, after the disturbance wn has
occurred. Here the state of the system, is defined after the new disturbance occurs, but before the
action (decision) is taken. Hence we call such a state sn as the pre-decision variable. It is possible
to define the state after the decision take place. Such a state s̃n is termed as “post decision state
variable” and the history of the information, decision and states is given by:

Hn = {s0, u0, s1, u1, s̃1, s2, u2, · · · , s̃n−1, sn}.

We utilize “post decision” based approach in reducing the complexity of algorithms in Chapter 4.
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B.4 Constrained Markov Decision Processes

Consider a constrained optimization problem,

minimize lim sup
N→∞

E

[
1
N

N∑
n=0

c(sn, un)

]
(B.16)

subject to lim sup
N→∞

1
N

N∑
n=0

Xi(sn, un) ≤ X̄i, i = 1 · · ·K (B.17)

Following the standard Lagrangian approach for solving the constrained Markov Decision Prob-
lem [49] the corresponding unconstrained problem of minimizing the Lagrangian is given by,

V λ,µ = lim sup
N→∞

1
N

[
N∑

n=0

c(sn, un) +
K∑

i=1

λiXi(sn, un)

]
(B.18)

We directly state the following theorem for the constrained MDPs from [49].

Theorem B.1 If the cost function is convex in s, then, there exists an optimal stationary random-
ized policy µ∗, which needs at most K randomizations, i.e. policy is deterministic for all except
one s ∈ S and for the later state policy randomizes between K policies. There exist Lagrange
multipliers λ, such that λi ≥ 0 ,∀i ≤ K, such that µ∗ minimizes the cost V λ∗(µ). Furthermore
the following “saddle point condition hold”.

V λ = inf
µ∈US

sup
λ≥0

{V λ(µ)} = sup
λ≥0

inf
µ∈US

{V λ(µ)}. (B.19)

Also if λ ≥ 0 is the optimal Lagrange multiplier, then the necessary condition for average cost
optimality is given by,

h(s) = min
u

{
c(s, u) +

K∑
i

λiX(s, u)− φ+
∑

s̄

p(s̄|s, u)h(s̄)

}
, ∀s ∈ S. (B.20)

B.5 Simulation based Learning Algorithms for MDP

Implementing value iteration (cf. Section B.2.1) requires the agent to know the expected rewards
and the transition matrices. Simulation based learning approach has been developed to perform
prediction and optimization, where the agent learns expected rewards and the transition matrices
implicitly by trying various possible actions to arrive at the optimal strategies asymptotically.
Learning based methods can be further sub classified into algorithms which use actor-critic frame-
work [50] like Temporal difference learning and others like Q learning.
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B.5.1 Temporal Difference Learning

Temporal Difference (TD) learning is forms actor part of “Actor-Critic” framework. Actor eval-
uates the the policy specified by the critic. Critic evaluates the value function for a given policy
based on the reward and transitions occurring for the policy. Temporal difference method, improves
the value estimation based on the observed and estimated value functions.

For average cost MDP, define Nth step temporal difference at iteration n by,

δN
n =

n+N∑
i=n

c(si, ui) + hn+N (sn+1)− hn(s0) (B.21)

TD(Λ) method gives weightages to all the temporal differences δN
n ,depending on the parameter

Λ ∈ [0, 1] and finds an effective δn as,

δn = (1− Λ)
∞∑
i=0

Λiδi
n (B.22)

It can be shown that, the effective δn is expressed as,

δn = δ1zn, (B.23)

where, zn is called as eligibility trace. Eligibility traces are calculated iteratively as,

zn(s) =

{
αΛzn−1(s) if s 6= sn

αΛzn−1(s) + 1 if s = sn

The temporal learning rule becomes,

J(sn) → J(sn) + γnδnδ
1
n (B.24)

Depending on the changed value function, a policy improvement is made by the actor.We would
discuss about policy improvement methods in Section B.8.

Two timescale version for value iteration

Actor critic based learning algorithms require separating the rate (time scale) at which the policy
and the value function updating to be performed on different time scale for ease for convergence
proofs. Value function evaluation (critic) is performed on a faster time scale while the policy
improvement (actor) is performed on the slower time scale. While evaluating a policy µ the value
function observes the policy as a constant. The intuition is that the the value function for a current
policy is evaluated, which is improved by changing the policy at a slower rate.
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B.5.2 Q learning

For policy µ Q : S × U → R function is defined as,

Qµ(s, u) =
[
c(s, u) + Es′∈Shµ(s′|s)−Q(s0, u)

]
, (B.25)

The policy improvement algorithm using Q function is given by,

u′ = arg max
u

Q(s, u) (B.26)

In the learning environment Q function can be evaluated as,

Q(sn, un) → Q(sn, un) + γn

[
cn + αmax

u′
Q(sn+1, b)−Q(sn, un)−Q(s0, un)

]
(B.27)

B.6 Function Approximation

For finite state and action space, we can represent value function using table based entry for each
state, as done in previous section. Clearly this method is not scalable. For large state space, it is
likely that the current visited state is never visited before. Function approximation uses learning
done for other states for approximating the value function for the current unvisited state. The
problem of large state space and action space is addressed by function approximation methods,
where the value function is represented by a set of basis vectors called as feature vectors.

The issues involve in the function approximation because of the stochastic nature of the function
approximation and is not just regression analysis. Although function approximation is used various
forms, convergence proof only linear function approximation are known [51], where value function
h(x) : S → R is approximated by linear combination of feature vectors fi(x) i ∈ 1 · · ·K and ri ∈ R
as,

h(x) =
K∑
i

fi(x)ri (B.28)

Function approximation basically involves projection of the function h(x) onto the space spanned
by feature vectors. Important issues like need for online-sampling for convergence and necessity of
the weighted projection rather that Euclidean projection are discussed in [51].

In learning algorithms involving function approximation, multiple policies introduces further
complexities. Greedy policy improvement removes the linearity in the value function. Further the
projection operator Π, which maps h(x) onto the space of feature vectors is not non-expansive
under max-norm, a property used for convergence for table based learning, which complicates the
issue of convergence. The only known method of convergence is to use multiple time scale actor
critic framework [52]. Analysis of general state space and action space for average cost problems
is presented in [52].

In this dissertation we are mainly concerned with function approximation for continuous state
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space and finite action space. The convergence proof for the continuous state space is not pos-
sible, without using policy function approximation. The policy space would be compact set of
randomized policies and thus the analysis of the [52] is applicable. However the algorithm has
slow convergence properties.

For infinite state space and finite action space we propose a modification of the algorithm
discussed in Appendix B.8.1. We present a finite state space and action state space functional
approximation based reinforcement learning algorithm in Appendix B.8.1. The algorithm in B.8.1
is based on the two time scale approach discussed in Section B.5.1 suggested in [21]. For finite
state space the convergence can be proved, however with the modification suggested for the infinite
state, we can prove certain convergence properties and not the exact convergence. Although exact
convergence is not proved. For the sake of completeness we prove the convergence properties for
the finite state space and finite action space algorithm in Appendix B.8.1.

B.7 Function Approximation with single policy for Average Cost

Problem

We consider the following Poisson equation for the average cost problem.

h(s) = min
u

E
[
c(s, u)− φ∗ +

∫
P (dy|s, u)h(y)

]
, (B.29)

where φ∗ is the average cost. h(s) is non-unique up to an additive constant. It is well known that
the following definition for some state s0 ∈ S leads to unique average difference cost h(s)

h(s0) = φ∗,

with the property, ∫
π(ds)h(s) = 0

The Poisson equation B.29 can be written in terms of dynamic programming operator T as,

Th = min
u

[c(s, u)− φ∗ +
∫
p(s, u, dy)h(y)], (B.30)

Stationary randomized policies, forms a convex polytope in which deterministic policies are
present at the corners. Deterministic policies improvement algorithms are not continuous functions
of value function and result in difficulty in proving the convergence of the learning algorithm. On
the other hand randomized policies will be continuous functions of value functions. We describe
an simulation based actor critic learning algorithm for for continuous state space and comment
on its convergence properties using continuity of randomized policies. We suggest an algorithm
soft-max policy based algorithm, where actor and critic work at the same time scales, as apposed
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to the algorithm in Section B.8.1, which work on different time scales. We prove the existence of
fixed point for this algorithm.

Let µa be a stationary randomized policy suggested by the policy improvement actor algorithm.
Let πa(x) be the invariant distribution of state space using µa policy. The subscript a suggest that
the policy is improved by the actor.

B.7.1 Value Function Evaluation (Critic)

Let µa be the policy (randomized or pure) which is to be improved using actor algorithm. We state
and derive properties for the critic using a fixed policy µa. We consider approximated function
difference value function h̄ : S → R,

h̄(s) =
K∑
i

fi(s)ria,

where fi : S → R is a continuous function over the space S. Let Tµa denote the operator for the
fixed policy µa.

Tµa h̄(s) =
[∫

p(s, µa, dy)c(s, µa, y)− φ∗ + h̄(y)
]

1

ra = (r1a, · · · , rKa) are the scalars which also depend the actor. Subscript a shows this explicit
dependency. For notational simplicity we do not show the explicit dependency of a on r. Let
f = [f1, f2, · · · fK ]. The value function h̄(x) can be considered as a projection Π of h(x) on
the space spanned by f(x). Let || ||π denote the weighted norm with respect to the invariant
distribution π. The weighted norm ||g(s)||π is defined by

∫
g(s)π(ds)g(s). The projection Π of

h(x) is given by,
Πhµa = arg min

f ′r

∣∣∣∣h− f(x)′r
∣∣∣∣

πµa
(B.31)

where weighted norm is with respect to the invariant distribution πµa .

Assumption B.3 1. E
[
f2

i (x)
]
<∞

2. fi are linearly independent

We use improved Λ−LSPE (Least square policy evaluation method), for value function calculation
for a given policy. It is an improved version of the classical temporal difference method and as
argued in [46], it has fastest convergence rate in the family of Temporal Difference (TD) learning
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algorithms. In the Λ− LSPE method the weight rn is expressed by,

r̄n = arg min
r

n∑
m=0

(f(sm)′r − f(sm)′rn −
n∑

k=m

(αΛ)k−mdn(sm, sm+1))2.

rn+1 = rn + βn(r̄n − rn) (B.32)

dn(sm, sm+1) = c(sm, sm+1)− φn + (f(sm+1)− f(sm)rn,∀k, n (B.33)

φn+1 = φn + γn (c(sn, sn+1)− φn) (B.34)

The approximate value iteration using temporal difference can be written in as,

J̄k+1 = ΠuaTµaJk

We consider following minimization for Λ-LSPE.

r̄n = arg min
r

n∑
m=0

(f(sm)′r − f(sm)′rn −
n∑

k=m

(αΛ)k−mdn(sk, sk+1))2. (B.35)

By setting the gradient of the above minimization function to zero, we obtain the following iterative
gradient scheme.

rn+1 = rn + βn

(
n∑

m=0

f(sm)f(sm)′
)−1 n∑

k=0

(
k∑

m=0

(αΛ)k−mf(sm)

)
dn(sm, sm+1)

= rn +

(
n∑

m=0

f(sm)f(sm)′
)−1

(Anrn + bn)

= rn +

(
n∑

m=0

f(sm)f(sm)′

n+ 1

)−1

(
An

n+ 1
rn +

bn
n+ 1

) ∀t,

= rn + B̄n(
An

n+ 1
rn +

bn
n+ 1

) ∀n, (B.36)

φn+1 = φn + γn(c(sn, sn+1)− φn) (B.37)
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where,

An =
n∑

k=0

zk(f(sm+1)′ − f(sm)′)),

bn =
n∑

k=0

zkc(sk, sk+1),

zk =
k∑

m=0

(αΛ)k−mf(sm)

B̄n =

(
n∑

m=0

f(sm)f(sm)′

n+ 1

)−1

(B.38)

Using Sherman-Morrison formula B̄n is computed recursively as (Ref. A.6),

B̄n = B̄n −
B̄nf(sn)f(sn)′B̄n

1 + f(sn)B̄nf(sn)
(B.39)

Assumption B.4 The step sizes βn and γn satisfy,

1
∞∑

n=0

γn = ∞,

∞∑
n=0

γ2
n <∞ (B.40)

2 There exists a positive scalar c such that the sequence βn satisfies γn = cβn, ∀n.

Note that in the iterative policy we do not show decreasing value of the step size βn. We now
state basic lemmas, in order to present the iterate in a convenient form for analysis. Let νn(s) be
number of visits to state s up to time n.

Lemma B.1 Let N ε(s) ∈ S be the ε neighborhood of s,

lim
ε→0

lim
n→∞

νn(N ε(s))
(n+ 1)

= lim
ε→0

∫
ε
π(ds) = π(s) w. p. 1. (B.41)

Proof: Geometric Ergodicity of Markov chains implies lemma B.1.
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Lemma B.2

B = E

[
lim

n→∞

(
n∑

m=0

f(sm)f(sm)′

n+ 1

)]
= (
∫

S
f(s)π(ds)f(s)′)

E[f(sn)f(sn+m)′] =
∫

S
π(ds)f(s)

∫
S
Pm(dy|s)f(y)′

A = E
[

lim
n→∞

An

n+ 1

]
=

∫
S
π(ds)f(s)

{ ∞∑
m=0

∫
S

Λ)mPm+1(dy|s)f(y)′ (B.42)

−
∞∑

m=0

∫
S

ΛmPm(dy|s)f(y)′
}

(B.43)∣∣∣∣A− An

n+ 1

∣∣∣∣ < Cζn for C > 0 ∈ R (B.44)

b = E
[

lim
n→∞

bn
n+ 1

]
∣∣∣∣b− bn

n+ 1

∣∣∣∣ < Cζn for C > 0 ∈ R (B.45)

=
∫

S
π(ds)f(s)

∞∑
m=0

∫
S

Λ)mPm(dy|s)c̄(y), (B.46)

where c̄ =
∫
S P (dy|s)c(s, y).

Proof: Notational changes in [53]. Convergence with geometric rate is proved using geometric
ergodicity assumption of Markov chain (cf. Definition B.3).

We impose following assumption involving inequality on the weighted norm || ||π:

Assumption B.5 For J(x) : S → R.

||PJ ||π < ||J ||π (B.47)

This assumption can be imposed by letting r such that r ∈ RK , f ′r 6= 1 constant

Iterate B.36 can be written in the form, rn+1 = rn + βn(hn +Mn), where,

hn = B̄(Arn + b− φn) (B.48)

Mn = (B̄nAn − B̄A)rn + B̄nbn − B̄b+ φ∗ − φn (B.49)

B.7.2 Proof of convergence for Λ ∈ [0, 1)

Lemma B.3 Eigen values of the matrix I + (B̄)A are less than 1
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Proof: The proof reduces to showing eigen values of the matrix

(1− Λ)

{(∫
π(ds)f(s)f(s)′

)−1
(∫

π(dx)f(x)
∞∑

m=0

Λm

∫
Pm+1(dy|s)f(y)′

)}
(B.50)

are less than unity. Assume π(ds) is a differentiable function, π(ds) = p(s)ds. Let a(s) be the
eigen vector and β be the corresponding eigen value. Thus,
(∫

π(ds)f(s)f(s)′
)−1


∫
π(ds)f(s) (1− Λ)

∞∑
m=0

Λmαm+1

(∫
Pm+1(dy|s)f(y)′a(y)

)
︸ ︷︷ ︸

L(s)


 = βa(s),

{(∫
π(ds)f(s)f(s)′

)−1(∫
π(dz)f(z)L(z)

)}
a(s) = βa(s).

Let W =
√
p(s)f(s)′. (B.51)

Left-multiply both sides by W , to obtain,

W

{(∫
π(ds)f(s)f(s)′

)−1(∫
π(ds)f(s)L(s)

)}
= βWa(s). (B.52)

Take the Euclidean norm on both sides. RHS of the above equation becomes,

||βWa(s)|| = |β| ||Wa(s)|| (B.53)

= |β|

√∫ √
p(s)f(s)′z(s)f(s)′a(s)

√
p(s)dx (B.54)

= |β|
∣∣∣∣f(s)′a(s)

∣∣∣∣
π

(B.55)
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LHS is given by,∣∣∣∣∣
∣∣∣∣∣√p(s)f(s)′

{(∫
p(y)f(y)f(y)′dy

)−1(∫
p(z)f(z)L(z)dz

)}∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣√p(s)f(s)′

{(∫
p(y)f(y)f(y)′dy

)−1(∫ √
p(z)f(z)dz

√
p(z)L(z)

)}∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∫ 

√
p(s)f(s)′

(∫
p(y)f(y)f(y)′dy

)−1√
p(z)f(z)︸ ︷︷ ︸

K(x,z)∈ l2


√
p(z)L(z)dz︸ ︷︷ ︸

∈ l2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
√√√√∫ (√p(s)f(s)′

(∫
p(y)f(y)f(y)′dy

)−1√
p(z)f(z)dz

)2√∫ (√
p(z)L(z)dz)

)2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

(by Cauchy-Schwartz inequality)

=

∣∣∣∣∣
∣∣∣∣∣√p(s)f(s)′

(∫
p(y)f(y)f(y)′dy

)−1√
p(z)f(z)

∣∣∣∣∣
∣∣∣∣∣ ∣∣∣∣∣∣√p(z)L(z)

∣∣∣∣∣∣
∣∣∣∣∣∣√p(s)f(s)′

(∫
p(y)f(y)f(y)′dy

)−1√
p(z)f(z)

∣∣∣∣∣∣ = 1

⇒ LHS ≤
∣∣∣∣∣∣√p(s)L(s)

∣∣∣∣∣∣ (B.56)

∣∣∣∣∣∣(√p(s)L(s)
)∣∣∣∣∣∣ = ||L(s)||π

=

∣∣∣∣∣
∣∣∣∣∣(1− Λ)

∞∑
m=0

Λm

(∫
Pm+1(dy|s)f(y)′a

)∣∣∣∣∣
∣∣∣∣∣
π

≤ (1− Λ)
∞∑

m=0

Λm

∣∣∣∣∣∣∣∣(∫ Pm+1(dy|x)f(y)′a(y)
)∣∣∣∣∣∣∣∣

π

< (1− Λ)
∞∑

m=0

Λm
∣∣∣∣f(s)′a(s))

∣∣∣∣
π

< (1− Λ)
∞∑

m=0

Λm
∣∣∣∣f(s)′a(s)

∣∣∣∣
π

<
∣∣∣∣f(s)′a

∣∣∣∣
π

As I + B̄A is negative definite, B̄A is also negative semidefinite. Consider the deterministic
algorithm for the above stochastic approximation,

rn+1 = rn + βnB̄(Arn + b) (B.57)

φn+1 = φn + γn(c̄− φn), (B.58)
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where c̄ = c̄(s) = E[c(sn, sn+1)|sn = s]. Let z = E[zn] =
R

φ(ds)π(s)
1−Λ Let

θn =

[
φn

rn

]

(B.57) and (B.58) can be written in the matrix form as,

θn+1 = θn + βn (Cθn + d) , (B.59)

where,

C =

[
−c 0 · · ·
−B̄z A

]

d =

[
−cφ∗

−B̄b

]
Let L be a diagonal matrix with first element l > 0 and all other diagonal elements 1. Consider a
modified iteration with θ̄n=L

1
2 θn, Hence,

θ̄n+1 = θ̄n + βn

(
L

1
2CL−

1
2 + L

1
2 b
)
. (B.60)

Lemma B.4 LC is negative definite

Proof: Let

θ =

[
φ

r

]
.

θLCθ′ = −lcφ2 − 1
1− Λ

∣∣∣∣Y f ′r∣∣∣∣+ r′Ar, (B.61)

where operator Y is given by,

Y =
(∫

p(y)f(y)f(y)′dy
)−1φ(s)p(s)

1− Λ
(B.62)

||Y || is finite because of compact state space and bounded feature vectors. Hence

|Y r| ≤ C1 ||r|| , for some constant C1 (B.63)

As matrix A is negative definite,

r′Ar ≤ −C2 ||r||2 , for some constant C2 (B.64)

θLCθ′ ≤ −lcφ2 + C1 ||r|| − C2 ||r||2 , (B.65)
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for some large l, θLCθ < 0. Hence LC is negative definite. As LC is negative definite, L
1
2CL−1 1

2

also negative definite.

Theorem B.2 For policy µ
rn → r∗µ, φn → φ∗µ w. p. 1 (B.66)

Proof: From Lemma B.2, C and d converges geometrically. From [45] and Lemma B.4, θ̄n

converges to the θ̄∗, if θn converges to θ∗. and θ∗ = L−
1
2 θ̄∗. Thus rn → r∗µ, φn → φ∗µ w. p. 1.

B.8 Policy Improvement

Crtitic
(Value Function

Evaluation)

Value Function

Projection

Actor

(Policy Improment)

Figure B.1: Actor-Critic Framework

We have considered a constant policy evaluation. The single policy iteration with compact
state space has unique fixed point for average cost Markov Decision Problems. But the existence
of fixed point can’t be guaranteed while using a greedy policy B.67 improvement for the function
approximation.

u′a = arg max
ua

{c(sn, ua)− φn + f(sn+1)ra} (B.67)

We use following non-greedy solution for the policy exploration.

rn+1 = rn + βnB̄n

n∑
k=0

(
k∑

m=0

Λk−mf(sm)

)
dn(sk, sk+1) (B.68)

φn+1 = φn + γn(c(xn, xn+1)− φn)

B̄n+1 = B̄n −
B̄nf(sn+1)f(sn+1)′B̄n

1 + f(sn+1)′B̄nf(sn+1)
Q(sn, un) = r(sn, un) + V (sn+1)

µδ
φr(sn, ua) =

Q(sn, ua)/δ∑
u′a

expQ(sn, u′a)/δ
(B.69)
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B.8.1 Convergence Properties

The continuity of the agent’s action selection strategy is used in proving the existence of fixed
points for the algorithm. We do not show the optimality and uniqueness of the convergence of the
proposed algorithm. The randomized policy µδ(s, u) achieves two important requirements for the
implementation of the algorithm. It makes the policy a continuous function of the value function
along with the exploration as well. Let πµδ be the stationary invariant distribution attained by
following the randomized policy µδ

φr(x, u).

Assumption B.6 rn is bounded.

The transition kernel Pµ is a continuous function of any randomized policy µ and thus invariant
distribution πµ is also continuous function of policy µ. Similarly average cost φµ is a continuous
function of µ. Hence the vector θ. is continuous function of µ. Thus ru is a continuous function
of µ. Since µ forms a convex polytope C , R = {rµ|rµ ∈ C}. Let Rmax = max ||r||.

Lemma B.5 (B.68) has a fixed point.

Proof: We consider the scaled iteration B.60. Let Tθµ = θ̄µ + γCθ̄µ + d. With respect to some
norm || ||w,

||Tθµ||w ≤
∣∣∣∣θ̄µ

∣∣∣∣
w

+
∣∣∣∣γCθ̄µ

∣∣∣∣
w

+ ||d||w
≤ (1 + γ) ||r||w +D

Thus T is a continuous function of rµ over a compact space,

R =
{
r
∣∣∣ ||r||w ≤ (1 + γ)Rmax +D

}
Hence by Brouwer’s fixed point theorem, the lemma is proved.

A Look at Finite State space and Finite Action Space Function

Approximation

We do not deal with finite state space function approximation further. Hence for the completeness,
in this section, the sketch of the proof of convergence for the finite state, finite policy function
approximation is presented.

From ODE analysis for the stochastic approximation, iterations B.68 track the ODE,

ṙ(t) = Y O
(
TΛf ′r(t)− f ′r(t)

)
, (B.73)

where Operator O is,
O = πµ(x)δ

φ(x)
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Algorithm 4 Convergent form of Actor Critic Algorithm for finite state and action space

rn+1 = rn + βnB̄n (Anθn + bn) (B.70)
φn+1 = φn + γn(c(s, a)− φn)

Qn+1(s, u) = Qn(s, u) + εn
(
c(s, u)− φn + f(N(s, u))′rn − f(s)′rn

)
, (B.71)

where N(s, u) gives the simulated next state by taking action a from state x.

µδ(sn, ua) =
Q(sn, ua)/δ∑

u′a
expQ(sn, u′a)/δ

(B.72)

and acts on vector v, Ov =
∫
π(x)µ(x)δ

φ(x)v(x)dx, and TΛ operator is,

TΛ(hn(s)) = (1− Λ)
∞∑

m=0

ΛmE

[
m∑

n=0

c(sn, sn+1)− φn + αm+1hn(sm+1) |s0 = s

]
. (B.74)

For Algorithm 4 the actor critic algorithm in [21] is modified to include the function approxi-
mation in the value function evaluation. In Algorithm 4 value function is evaluated at faster time
scale, while the policy improvement by the actor is done at a slower time scale. Except for the
ODE related to the value function evaluation, convergence proof in [21] can be extended to prove
the convergence of Algorithm 4.
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