Dual Degree Dissertation

Congestion Management

&
Bandwidth Allocation

for Best-effort Traffic
in Packet Switched Networks

submitted in partial fulfillment of the

requirements for the degree of

Bachelor of Technology

in Flectrical Engineering
&

Master of Technology

in Communications € Signal Processing
(under the Dual Degree Programme)
by
Abhishek Jain
Roll no. 98D07040

under the guidance of

Prof. Abhay Karandikar

Department of Electrical Engineering
Indian Institute of Technology, Bombay
Powai, Mumbai-400076.

June, 2003.

Dissertation Approval Sheet

The Dual Degree Dissertation titled “Congestion Management and Band-
width Allocation for Best-effort Traffic in Packet Switched Networks” sub-
mitted by Abhishek Jain (Roll Number: 98D07040) may be accepted.

Guide: Chairman:

Internal Examiner: External Examiner:

Date: 24/06/2003

Congestion Management &
Bandwidth Allocation for Best-effort

Traffic in Packet Switched Networks

Abhishek Jain

Dual Degree Thesis

Acknowledgements

No thesis is the complete work of any one particular author. In my journey towards
a successful completion of my Dual Degree thesis, I was assisted and shown the path
by numerous people. I would like to take this opportunity to thank and express my
gratitude towards some of them.

First and foremost, I would like to praise Prof. Abhay Karandikar, with whom I
have been working for the past 38 months on various projects big and small, for all the
valuable guidance, philosophy and most importantly the support and encouragement,
given during times of difficulty. I have learnt a lot and still have plenty to learn from
him. Once a guide, always a guide.

Work has not always been the incentive to come to lab. Here, I would like to show
appreciation towards Shruti Mahajan and Harish Ramamurthy for making the final
year sojourn in the lab, a very eventful and gratifying experience.

[am also indebted to Prof. Rakesh Lal, Prof. U B Desai, Prof. Deepankar
Sarkar and Electronic Design Project partners, Premal Shah, Hariharan Narayanan
and Shruti Mahajan, who conjointly, through the year long work (prior to my thesis)
helped inculcate the never compromise and always strive for perfection attitude in
me. This was the first time in my life, when I put in days and days of effort, just to
go the extra mile. This has helped me a lot in all my subsequent endeavors.

[am very much obliged to Rahul Verma for getting me started in APACE (Chapter
2) and Ajay Kumar Singh for Learning TCP (Chapter 4), which was his brain child.

On the whole, it was an experience worth carrying forward in all walks of life. As
they say,

“The best things in life are always free.”

Abhishek Jain

Abstract

In this thesis, we aim at reducing or eliminating wherever feasible, the side effects
and uncalled-for under link utilization, packet delay and packet loss owing to conges-
tion. We propose three new algorithms for congestion management and bandwidth
allocation, all addressing the same basic issue of improvement in the performance of
best-effort traffic in the Internet.

We propose an Active Queue Management (AQM) strategy, called Adaptive Pre-
diction based Approach for Congestion FEstimation in Active Queue Management
(APACE) that takes a packet drop decision at the router by predicting the instan-
taneous queue length at a future instant of time using adaptive filtering techniques.
APACE is competent in controlling the oscillations in the instantaneous queue. It
also achieves a higher link utilization, lower packet delay and lower packet loss rate
than the existing schemes in single as well as multiple bottleneck links. In addition
APACE is not very sensitive to parameter settings, adapts quickly to changes in traf-
fic and can achieve a given delay and/or link utilization or packet loss by varying
just one of its parameters, thus giving the network operator a better tool to manage
congestion, guarantee packet delays and improve the performance of the network.

We, then propose a modification to the TCP algorithm called Learning TCP
(LTCP) that is not specific to any particular type of network network ie, wireless or
wired or a mix of both) and hence can be employed in a wide variety of networks to
improve the end-to-end performance of TCP. LTCP attempts to learn the cause of
packet loss adaptively and subsequently takes appropriate corrective measures.

Our bandwidth allocation tool, Scepter, aims at improving the performance of
best-effort TCP traffic by enabling traffic aggregates operate very close to their al-
located bandwidth. Scepter will enable Internet Service Providers (ISPs) to allocate
its customers, the bandwidth they demand (could be 2Mbps, 1.85Mbps or anything)

with very high precision at a very small time scale. Scepter achieves its objectives by

i

modification in the token bucket of the traffic marker at the edge router.

il

Contents

Acknowledgements i
Abstract ii
List of Figures vii
1 Introduction & Motivation for the Thesis 1
1.1 Present-day Internet, 1
1.2 Contributions of the thesis 3
1.2.1 Adaptive Prediction based Approach for Congestion Estimation
in Active Queue Management (APACE) 3
1.2.2 Learning TCP (LTCP) 5
1.2.3 Scepter: A Bandwidth Management Tool 5
1.3 The Road Ahead, 6
2 An Adaptive Prediction based Approach for Congestion Estimation
in Active Queue Management (APACE) 7
2.1 Introduction to APACE,
2.2 Related Work o 9
2.3 Operating Point oL o 10
2.4 Proposed Schemeo 11
2.4.1 Predicting the Instantaneous Queue 11
2.4.2 Taking a Packet Drop Decision 12
2.5 Prediction Accuracy 13
2.6 Significance of various parameters 15
2.7 Comparison with other Queuing Strategies 17
2.7.1 Instantaneous queue length stability 17

iv

2.7.2 Link utilization 20

2.7.3 Packet lossrate 21
2.7.4 Trade-off Comparison with RED 21
2.8 Performance under Multiple Bottleneck Links 24
2.8.1 Instantaneous Queue, Link utilization and Packet loss 25
2.8.2 Trade-off Curves, 25
2.8.3 Stability of Link Utilization 29
2.9 Discussion e 30
2.10 Conclusions e 31
APACE - parameters in detail 32
3.1 Effectsof Ngand M 32
3.2 Effectsof max, 39
3.3 Effectsof o 42
3.4 Conclusions e 45
Learning TCP (LTCP) 46
4.1 Motivation for LTCP 46
4.2 Introduction to LTCP 47
4.3 Related Work in TCP 48
4.4 Learning TCP 49
4.5 Mathematical Analysisof LTCP 49
4.5.1 Ideal LTCP 49
4.5.2 Practical LTCP 52
4.6 Simulation Study o 53
4.6.1 Simulation Setup L 53
4.6.2 Throughput Enhancement 54
4.6.3 Fairness and Friendliness 54
4.7 Conclusions 56

4.8 Future Directions - some thoughts on improving the performance of TCP 56

Bandwidth Allocation and Rate Control 58
5.1 Token Bucket: Classic Bandwidth Allocation Techniques and Applica-

BIONS e 59
5.2 Motivation for Scepter L 60

5.4 TImpacto 61
D5 Sceptero 61
5.5.1 Estimator 62

5.5.2 Stabilizer 62

5.6 Conclusions & Future Work 64

6 Conclusions and Future Work 65
Bibliography 67

vi

List of Figures

2.1
2.2
2.3
2.4
2.5

2.6

2.7
2.8

2.9

2.10

2.11
2.12
2.13
2.14

2.15
2.16

2.17
2.18
2.19

The APACE algorithm 13
Network Topology 14
Learning curve 14
Error for fluctuating traffic scenario 15
Instantaneous queue at RED, APACE, SRED and PAQM routers un-

der heavy traffic conditions 18
Instantaneous queue at RED, APACE, SRED and PAQM routers un-

der fluctuating traffic conditions o000 19
Link utilization vs. number of sources in a single bottleneck scenario 20

Fraction of packets lost vs. number of sources in a single bottleneck
SCENATIO . . . v v v e e e e e e 21

Delay-link utilization trade-off curves for single bottleneck scenario

APACE . . . 22
Delay-link utilization trade-off curves for single bottleneck scenario

with RED 22
Delay-loss for trade-off curves for single bottleneck scenario with APACE 23
Delay-loss trade-off curves for single bottleneck scenario with RED . . 24
Network topology for multiple bottleneck links 25
Instantaneous queue at RED, APACE, SRED and PAQM routers in a

multiple bottleneck scenario 26

Link utilization vs. number of sources in a multiple bottleneck scenario 27
Fraction of packets lost vs. number of sources in a multiple bottleneck

SCENATIO . . . v v v e e e e e e 27
Delay-link utilization trade-off curves for multiple bottleneck scenario 28
Delay-loss trade-off curves for multiple bottleneck scenario 28

Link utilization of RED with various parameter settings 29

vii

2.20

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2
4.3
4.4
4.5

4.6

5.1

Link utilization of APACE with various parameter settings 30

Fraction of packets lost vs. maz, for different o and (No, M) 33
Packet delay vs. maz, for different o and (No, M) 34
Link utilization vs. max, for different o and (No, M) 35
Fraction of packets lost vs. « for different maz, and (No, M) 36
Packet delay vs. « for different max, and (No, M) 37
Link utilization vs. « for different maxp and (No, M) 38
Average queuing delay vs. max, (different «), harsh scenario 39
Average queuing delay vs. mazx, (different), mild scenario 40
Packet loss rate vs. max, (different «r), harsh scenario. 40
Packet loss rate vs. max, (different «), mild scenario 41

Number of packets transmitted vs. maz, (different «), harsh scenario 41

Number of packets transmitted vs. maz, (different «), mild scenario . 42
Average queuing delay vs. « (different max,), harsh scenario 42
Average queuing delay vs. « (different max,), mild scenario 43
Packet loss rate vs. « (different max,), harsh scenario. 43

Packet loss rate vs. « (different maz,), mild scenario 44

)
Number of packets transmitted vs. « (different max,), harsh scenario 44
(

Number of packets transmitted vs. a (different mazx,), mild scenario . 45
Window Control and learning p, 50
Enhancement by Ideal LTCP with Pb. 51
Simulation Topology 53

Throughput enhancement of LTCP over TCP as type B losses increase 55
Throughput of a LTCP and five TCP sources, all having the same RTT
(600ms) and sharing a common bottleneck link with receiver advertised
window of 15 packets L 55
Throughput of five LTCP sources having the same RTT (600ms) and
sharing a common bottleneck link with receiver advertised window of
15 packets 56

The token bucket mechanism 59

Introduction & Motivatio

for the Thesis

There are no problems...,
But only issues that need to be resolved

In this chapter, we explain the
following:
e /ssues in the present-day
Intemet

e Adaptive Prediction based
Approach for Congestion
Estimation in Active Queue
Management (APACE)

e [eaming TCP (LTCP)

e Scepter: A Bandwidth
Management Tool

Chapter 1

Introduction & Motivation for the

Thesis

1.1 Present-day Internet

Internet is fast becoming an inseparable part of our lives with its ever increasing appli-
cations such as emails, multimedia streaming, Internet telephony, video conferencing,
etc adding value and glamour to our daily lives. Imagine millions of computers! all
across the globe connected to each other, communicating, exchanging messages in less
than a fraction of a second. Imagine yourself video conferencing with someone 20,000
km away from you. Let us try to understand the global Internet topology. How
exactly does one connect to some other computer at a distant location? Computers
at one’s home, offices, labs, etc are connected to a switch owned by an Internet Ser-
vice Provider (ISP) either directly or through a central switch in case of Local Area
Networks (LAN’s). The ISP’s then connect them to the backbone routers connect-
ing various regions of the world. A similar network topology exists on the receiver
side of the network also, thus connecting one computer or another. Packetized data
traverses all these nodes typically in less than a fraction of a second, thus enabling
us to communicate efficaciously. As every good has a dark side to it, packets do not
always traverse across these nodes without encountering the devil named “Conges-
tion” which leads to packet drops, loss of data, increased packet delay, under link

utilization and many such problems. So,

!By a computer, we mean any electronic device capable of connecting to the Internet.

“Why do we have congestion?”
The answer to the above, though contradictory is:
“Our protocols are designed, so as to create congestion”

Not convincing, isn’t it? Consider the present Transmission Control Protocol
(TCP) [1], the most widely used transport layer protocol. TCP increases its trans-
mission rate till it causes congestion leading to packet drops. The protocol has been
designed, so as to maximize the link utilization by trying to utilize as much of the
resources as possible. As they say every dark cloud has a silver lining, the proto-
col after inducing congestion that has lead to packet drops of many others and itself,
drastically reduces its transmission rate in order to be friendly and fair to other fellow
sources. This act of kindness further aggravates the problem leading to severe under-
utilization of the link and global synchronization. However, we cannot also blame
everything on TCP. The dynamics of the Internet are quite complicated. Allocating
bandwidth to clients, ensuring maximum utilization of link, minimizing packet delays
and losses, etc are all very difficult issues to manage.

The end hosts, ie, the Desktop computers communicate with each other using
the transport layer protocols. These protocols provide for a logical communication
between the end hosts. It creates a virtual environment in which both the end hosts
communicate as if they are connected physically. The packets from the desktop
computers then encounter the various switches and routers?. Of the many functions, a
typical router performs, we shall restrict ourselves only to queue or buffer management
aspect of it initially. In the later part, we will focus our attention on a specific
bandwidth allocation mechanism at the ingress® router. Through these routers and
switches, the packet eventually reaches its destination. In this thesis, we attempt to
manage the congestion at various levels in the network and improve the performance

of best-effort responsive traffic, for instance TCP traffic.

2We use the terms routers and switches interchangeably, since the difference amongst the two
is irrelevant for our discussion. The algorithms that we will be discussing are applicable to both

likewise.
3 An ingress router is the first router through which a data packet enters a network from another

network.

1.2 Contributions of the thesis

In this thesis, we aim at reducing or eliminating wherever feasible, the side effects and
uncalled-for under link utilization, packet delay and packet loss owing to congestion.
We propose three new algorithms addressing the same basic issue of improvement in
the performance of best-effort traffic in the Internet. All of the three schemes attempt
to reduce the unwanted effects owing to congestion, though in different context. We,

now discuss the motivation for and the algorithms themselves in brief.

1.2.1 Adaptive Prediction based Approach for Congestion
Estimation in Active Queue Management (APACE)

When the incoming packet rate is more than the outgoing rate, packets are temporar-
ily kept in the router’s memory, also known as the buffer. We say that such a packet
has been buffered. In a DropTail mechanism, the incoming packet is kept in the buffer
as long as there is space in the buffer. If the buffer is full, all incoming packets are
dropped. The traffic source, which typically uses the TCP protocol, on encountering
a packet loss reduces its window size* to half or one. Since all incoming packets are
dropped, it is likely that many of the transmitting sources would experience a packet
loss resulting in all of them reducing their transmission rates, which may lead to
under utilization of the link in the near future. It takes considerable time for a TCP
source to recover owing to its conservative additive increase policy. We note that
a DropTail gateway uses buffer overflow as an indicator of congestion. The buffer
remains almost always near its capacity, resulting in high delays and high packet loss
rates. Given the very nature of TCP, this behaviour hampers TCP’s transmission
rates in particular and also has problems like global synchronization associated with
it.

To counter some of the drawbacks in a DropTail gateway, Random Early Detection
(RED), one of the initial Active Queue Management (AQM) policies was proposed
by Floyd et al in [2]. Active Queue Management (AQM) policies are mechanisms
for congestion avoidance, which pro-actively drop packets in order to provide an

early congestion notification to the sources. RED uses an exponentially weighted

4Window size corresponds to the maximum amount amount of unacknowledged data, a TCP

source can transmit.

average queue as a measure of congestion and starts dropping the packets randomly
in anticipation of congestion based on the average queue even if the packet can be
accommodated in the buffer. As a result, only a few TCP sources encounter packet
loss and hence the overall link utilization remains high. Though better than DropTail,
the performance of RED depends heavily on its parameter settings which is still
an inexact science. We discuss RED and other subsequent AQM schemes and the
problems associated with it in more detail in Chapter 2.

There has always been a need for an AQM policy that would keep the instanta-
neous queue stable, achieve higher link utilization keeping delay and packet loss rate
low. In addition, the scheme should not be very sensitive to its parameter values and
should perform over a broad traffic distribution. These are exactly the issues that
our scheme APACE addresses successfully.

In Chapter 2 we propose a new Adaptive Prediction based Approach for Conges-
tion Estimation in Active Queue Management (APACE) that predicts the instanta-
neous queue length at a future time using adaptive filtering techniques. We compare
the performance of APACE with other existing AQM schemes like RED [2], Stabilized
RED (SRED) [3], Adaptive Virtual Queue (AVQ) [4] and Predictive AQM (PAQM)
[5] in networks having single and multiple bottleneck links. We show that APACE is
indeed able to control the oscillations in the instantaneous queue. Moreover, APACE
performs remarkably well by achieving higher link utilization® and a lower packet loss
for a given delay®, especially in networks with multiple bottleneck links.

APACE is not very sensitive to parameter settings, adapts quickly to changes
in network conditions and can achieve a given delay or packet loss by varying just
one parameter, thus giving the network operator a better tool to manage congestion,
give delay guarantees and improve the performance of the network. In fact link
utilization in APACE remains remains almost constant at a high value irrespective
of its parameter settings, thus enabling the network operator to improve on other
performance metrices (such as delay and packet loss) keeping the link utilization
high. We explain the effects on the performance of APACE owing to its parameters
in Chapter 3.

By link utilization, we refer to the number of packets transmitted successfully on the particular

link.
5By delay, we refer to the average queuing delay.

1.2.2 Learning TCP (LTCP)

In our efforts to combat the unwanted repercussions of congestion at the end hosts, in
Chapter 4, we propose a modification to the TCP algorithm to improve the end-to-end
performance in heterogeneous’ networks. The performance of TCP deteriorates when
it operates over the networks in which packet losses can also occur due to reasons other
than congestion. This degradation in performance is caused by the rigidness of always
assuming the cause of packet loss as congestion and subsequent significant reduction
in window. Earlier research work have proposed many approaches on improving TCP
over such networks, but have focused on particular network characteristics, ie, for
wireless channel, mobility of host, etc. We propose an approach, Learning TCP
(LTCP) in which a TCP attempts to learn the cause of packet loss adaptively and
takes appropriate measures subsequently. LTCP is a comprehensive algorithm that

can be applied to a wide variety of networks.

1.2.3 Scepter: A Bandwidth Management Tool

The current token bucket mechanism used to mark the traffic though adequate for
shaping non-responsive constant rate traffic fails to guarantee, even the committed
bandwidth, to responsive best-effort TCP flows. It can only give long-term bandwidth
guarantees is unable to do so at shorter time scales.

Motivated by the fact, that in order to improve the goodput® of TCP aggregates,
we do not want that all TCP sources in a given aggregate drop their window sizes at
the same time. This may be inevitable in a heavy congestion scenario, but we would
like to minimize the occurrence of such a phenomenon. The motivation for this, as
mentioned before, is that the TCP source takes considerable time to recover from
a drop in window owing to packet loss because of its conservative additive increase
policy. Thus, in order to allocate and guarantee bandwidth to a TCP aggregate,
we need a token bucket (Section 5.1) that instead of dropping all incoming packets
for paucity of tokens should anticipate congestion and preemptively start dropping

packets randomly. Most importantly, we need to keep the number of tokens in the

"A heterogeneous network need not necessarily have a wireless link. It can be an entirely wired

network or a totally wireless network or a mix of both.
8In this thesis, goodput is the number of packets per unit time that have successfully reached the

destination host.

bucket at a constant level. This would imply that, the number of tokens coming
into the bucket, which corresponds to the bandwidth to be allocated, is equal to
the number of tokens being consumed, thus ensuring a guaranteed bandwidth to the
aggregate.

Scepter aims to improve the performance of best-effort TCP traffic by enabling
aggregates operate very close to their allocated bandwidth. Scepter will enable Inter-
net Service Providers (ISPs) to allocate its customers, the bandwidth they demand
(could be 2Mbps, 1.85Mbps or anything) with very high precision and minimum over
provisioning of the network resources by the ISP. Scepter achieves its objectives by
modification in the token bucket of the traffic marker at the ingress router. We

describe our this bandwidth management tool, Scepter in Chapter 5

1.3 The Road Ahead

In this thesis, we suggest alternatives to the most commonly used protocols and algo-
rithms. We hope that they would, therefore find immense utility and have maximal
impact in an effort towards improving Quality of Service (QoS) of best-effort respon-
sive traffic in the Internet. We conclude and discuss directions for future work in

Chapter 6.

Adaptive Prediction based
Approach for Congestion

Estimation in Active Queue
Management (APACE)

The Queue Principle: The longer you
wait in line, the greater the likelihood
that you are standing in the wrong line

In this chapter, we explain the
following:

e A new Active Queue
Management (AQM)
scheme called APACE

e Concept of Operating Point

e Significance of the various
parameters in APACE

e Companson of APACE
with other existing AQM
schemes

Chapter 2

An Adaptive Prediction based
Approach for Congestion

Estimation in Active Queue
Management (APACE)

2.1 Introduction to APACE

TCP (and its variants) remains the dominant end-to-end congestion control mecha-
nism deployed in the Internet. The essence of this mechanism is that a TCP source
adjusts its window size based on an implicit feedback about the congestion in the
network. This implicit feedback is in the form of lack of receipt of acknowledgment
from the receiver within a certain time out interval or the receipt of three duplicate
acknowledgments. Either of these feedbacks is taken as an indication of packet loss.
In a simple DropTail node, a packet gets dropped whenever the buffer is full. In net-
works with large Round Trip Times (RTT) and subsequently longer time out periods,
the TCP congestion control has slower response to a packet drop. Thus it is desirable
that the sender be notified early so as to adjust its rate pre-emptively in order to
avoid congestion in the bottleneck node. Active Queue Management (AQM) policies
attempt to estimate the congestion at a node and signal the incipient congestion by
dropping packet(s) before the buffer is full. A responsive congestion control strategy

then reduces its transmission rate. This helps in avoiding further congestion and is

expected to reduce the packet loss rate and keep the average queue size low. But if
packets are dropped aggressively, then the capacity of the node may remain under-
utilized. An AQM policy thus has two components - one component estimates the
congestion and another component takes the packet drop decision. The performance,
therefore, depends upon how aggressive or conservative the estimate of congestion is
and also on how aggressively the packets are dropped based on this estimate.

In this chapter, we propose and analyze extensively a new AQM strategy called
APACE. We also attempt to give a general framework in terms of operating points
(Section 2.3) for evaluating any AQM policy. We use this framework later to com-
pare APACE with other existing AQM schemes like RED [2], SRED [3], AVQ [4]
and PAQM [5] in networks having single and multiple bottleneck links. Our simula-
tion results indicate that the APACE scheme is able to learn the changes in network
conditions much faster than others. It is able to make a better decision regarding a
packet drop. Moreover, APACE performs remarkably well by achieving higher link
utilization and a lower packet loss for a given delay in networks with multiple bottle-
neck links. APACE is able to effectively control the oscillations in the instantaneous
queue. APACE is not very sensitive to its parameter settings and can achieve a given
delay or packet loss and/or link utilization by varying just one parameter, thus giving
the network operator a better tool to manage congestion, give delay guarantees and
improve the performance of the network. In fact, link utilization in APACE remains
almost constant at a high value irrespective of its parameter settings, thus enabling
the network operator to improve on other performance metrices (such as delay and
packet loss) keeping the link utilization high.

The rest of the chapter is organized as follows. In Section 2.2, we discuss some of
the related work in the area of queue management. We then explain the concept of
operating point in Section 2.3, the APACE algorithm in Section 2.4, discuss prediction
accuracy in Section 2.5, significance of various parameters in Section 2.6. We compare
the performance of our scheme with RED, SRED, AVQ, and PAQM in Section 2.7
for single bottleneck link scenarios and in Section 2.8 for a multiple bottleneck link
scenario. We discuss some relevant issues in Section 2.9 and finally conclude in Section
2.10.

2.2 Related Work

The RED scheme was initially described and analyzed in [2] with the main aim of
providing “congestion avoidance” by dropping packets in anticipation of congestion.
The performance of the RED algorithm depends significantly upon the setting of each
of its parameters, ie, wy, max,, miny, and mawxy,. Though significant progress has
been made towards the understanding of tuning RED parameters, it is a difficult
problem and has not yet been solved satisfactorily. The difficulty in tuning the
parameters of RED under different network conditions has limited its effectiveness.
Experiments have shown that it is difficult to find appropriate values of parameters
that will enable RED gateways to perform equally well under different congestion
scenarios. Incorrectly tuned parameters may in fact cause RED to perform worse than
Drop tail. In [6, 7], the authors have questioned the benefits of RED by performing
experiments on testbeds. The authors have also recommended more research with
realistic network settings in order to understand RED better before its wide scale
deployment in the Internet. They also argue that RED performs well only under
single bottleneck gateways and heavy TCP traffic. These are also the cases for which
most of the simulations have been performed and reported. The performance of
RED and most other schemes under multiple bottleneck gateways has not yet been
satisfactorily studied. Various authors [8, 9, 10] have given guidelines and proposals
for setting RED parameters or to adaptively vary them.

In [11], Hollot et al. have studied the problem of tuning RED parameters from a
control theoretic stand point. The aim was to improve the throughput by controlling
oscillations in the instantaneous queue.

Feng et al. [12] proposed a mechanism for adaptively varying one of the RED pa-
rameters, maxy, with the aim of reducing the packet loss rates across congested links.
Floyd et al. in [13] discusses the algorithmic modifications to the self-configuring RED
algorithm [12] for tuning max, adaptively. Their objective was to control the average
queue length around a pre-decided target. The choice of the target queue size, left
to the network operator, determines the trade-off between delay and link utilization.
Controlling the average queue size, however has a limited impact on regulating the
packet loss rate. Balanced RED (BRED) [14] and Fair RED [15] aim to improve the
fairness of RED by maintaining per-active-flow state information.

Adaptive Virtual Queue (AVQ) [4] tries to decouple congestion measure from the

performance measure. Stochastic Fair Blue (SFB) [16] attempts to enforce fairness
among a large number of flows. It handles and rate limits non-responsive flows effec-
tively using an extremely small amount of state information. CHOKe (CHOose and
Keep for responsive flows and CHOose and Kill for unresponsive flows) [17] also aims
to ensure fairness to each of the flows that share the outgoing link.

Predictive AQM (PAQM) [5] tries to exploit traffic predictability in the calculation
of the packet dropping probability. The authors have shown that the correlation
structure present in long-range dependent traffic can be used to accurately predict the
future traffic. PAQM enables the link capacity to be fully utilized without incurring
excessive packet loss by stabilizing the instantaneous queue to a desired level. This
scheme, however is very computation intensive.

All these schemes aim and achieve a particular target, but we need an AQM
policy that would keep the instantaneous queue stable, achieve higher link utilization
keeping delay and packet loss rate low. In addition, the scheme should not be very
sensitive to its parameter values, should perform over a broad traffic distribution and
must not be very computation intensive. These are exactly the issues that APACE

addresses successfully.

2.3 Operating Point

An AQM policy can be used to control the performance metrices such as link uti-
lization, the average queuing delay and the packet loss rate. An AQM policy should
give the network operator the freedom to specify the required performance metrices
and should be able to meet the requirements to its best. In other words, one should
be able to specify the operating point that one wants to achieve given a particular
network scenario. The operating point, for instance can be specified in terms of link
utilization, average queuing delay and packet loss rate that one wants to achieve. We
denote such an operating point by (t*,d*, [*), where t* is the target link utilization,
d* is the target average queuing delay and [* denotes the target packet loss rate. In
order to keep our representation simple and be able to visualize the graphs in two
dimension, in this thesis we define operating points as (t*,d*) and (I*,d*,). It is pos-
sible that a desired operating point might not be achievable. In that case, the aim of
the AQM policy should be to approach this operating point as closely as possible.

In case of a Drop Tail gateway, there is only one operating point for a given

10

network scenario since the packets are dropped only when the buffer is full. In RED
and APACE, the parameters can be suitably adjusted resulting in greater choices of
operating points. Setting the appropriate parameters is difficult in case of RED, but
as will be illustrated in this thesis, in APACE we need to vary only one parameter to

achieve a given operating point.

2.4 Proposed Scheme

In APACE, we estimate the congestion by predicting the instantaneous queue length
at a future time instant. This estimate is based on the queue lengths at the previous
packet arrivals. The decision to drop any packet is based on the predicted value
of the instantaneous queue length rather than the average queue length, as in the
case of RED. As will be shown later in this chapter, this makes the scheme more
responsive especially in scenarios with changing network conditions. We now explain

the APACE scheme in detail.

2.4.1 Predicting the Instantaneous Queue

We predict the instantaneous queue length using the Normalized Least Mean Square
(NLMS) algorithm [18]. Our simulation results show that the NLMS predictor can
be used to get a good estimate of the instantaneous queue length under a large
set of network scenarios (different kinds of sources, topologies etc). Moreover, the
algorithm takes only a few iterations to converge and adapts well under changing
network scenarios.

The instantaneous queue length prediction is made at every packet arrival. Let
M denote the order of the NLMS filter used for prediction, ¢(n) the instantaneous
queue length at the nth packet arrival and §(n) a Mx1 vector of the instantaneous
queue lengths of the past M packet arrivals. The instantaneous queue length after
Ny packet arrivals from the n'® packet is predicted based on g(n). We call Ny the
prediction parameter. We denote the predicted queue length by ¢(n+ Np). ¢(n+ Np)

is calculated as follows:

4(n+ No) = w) (n) = q(n) (2.1)

In the above equation, wy(n) denotes a Mx1 weight vector. These weights are

11

updated dynamically based on the error between the predicted and the actual queue

length. The error, e(n) in the prediction is computed as

e(n+ No) = q(n+ No) — @} (n) = q(n) (2.2)

The queue weights are updated using the following equation:

(0 + 1) = @y(n) + (n) * () * e(n) (2.3)

In the NLMS algorithm, p(n) is calculated using the following equation:

—_ Mo
1+ 4" (n)q(n)

The queue weights are initially set to a fixed value and are later updated using

p(n) (2.4)

the above equations. Typically, the weights are initially set to 0. o has been set
to 0.01. A small value of yy implies guaranteed convergence of the NLMS algorithm
though at a slower rate. A large value of yo though increases the rate of convergence,

may cause it to diverge.

2.4.2 Taking a Packet Drop Decision

As stated earlier, the decision to drop the incoming packet is based on the predicted
value of the instantaneous queue length. The incoming packet is dropped with a
probability p that is calculated based on ¢(n + Ny). The algorithm for dropping the
incoming packet(s) is illustrated in Figure 2.1. Let B denote the maximum buffer
size. If G(n+ Np) < a* B, no packet is dropped («a is a positive constant less than 1).
If G(n + Ny) > B, every incoming packet is dropped. If o * B < ¢(n + Ny) < B, the
incoming packet is dropped with a probability p, which is a function of the predicted
queue size. For the purpose of simulations, we vary the probability p linearly from 0
at aB to max, at B. The motivation behind linearly increasing the packet dropping
probability is to make the scheme more aggressive as the predicted queue length

increases. The packet dropping probability, p can thus be expressed as:

maz,(G(n + Ny) — ax B)
(1—a)xB

(2.5)

12

On every packet arrival

e Predict instantaneous queue size (after N, packet arrivals):

q(n+ No) < @] (n) = q(n)

e Calculate packet dropping probability p:

— If axB<{(n+ Ny) <B

mazp(G(n+No)—axB)
(1—a)*B

p

— else if ¢(n+ Ny) > B
p=1

— else if ¢(n+ Np) <axB
p=0

e Update queue weights using the NLMS algorithm

Figure 2.1: The APACE algorithm

2.5 Prediction Accuracy

The first issue that needs to be addressed is whether the NLMS algorithm can pre-
dict the instantaneous queue length accurately. We test the performance of NLMS
algorithm under different network loads. The simulations have been performed using
the network simulator, ns v2.1b8a [19]. The network topology shown in Figure 2.2
has been used for simulations.

Figure 2.3 illustrates the mean square error in the actual and the predicted value
of the instantaneous queue size (learning curve). The plot has been obtained for 25

TCP sources. The packet loss rate is relatively high ~ (5 — 10)%. The mean square

13

3Mbps, 10ms

3Mbps, 10ms

Bottleneck Link Q
1Mbps, 10ms

Router Sinks
N 3Mbps, 10ms
Sources
Figure 2.2: Network Topology
800 T T T T T
700 1
600 -
S
5 500 - B
o
S 400 - -
o
2]
8 300 - .
4]
=
200 -
A /\MWJM _
0 Mﬂl 1
0 500 1000 1500 2000 2500 3000

Number of packets arrived

Figure 2.3: Learning curve

error has been averaged over 100 sample paths. As can be seen from the figure, the
NLMS algorithm converges quickly and is able to predict the instantaneous queue to
a reasonable accuracy (residual error' ~ 8 square packets). We get similar learning
curves even for fluctuating network loads (described in Section 2.7), though the pre-
diction in case of sustained heavy traffic is better as compared to other scenarios with
lower or fluctuating network loads because under conditions of heavy congestion, the
aggregate incoming traffic characteristics do not vary much. Moreover, even under
fluctuating network loads, the algorithm is able to adapt to the network conditions

in a few iterations only and its estimation remains robust. The error in the queue

I By residual error, we refer to the steady state mean square error in predicting the instantaneous

queue.

14

prediction for the same is shown in Figure 2.4.

Mean square error

40
35
30
25
20
15
10

5

0
-5

-10
-15

1000 2000 3000 4000 5000 6000
Iterations

Figure 2.4: Error for fluctuating traffic scenario

Based on the above discussion and simulation results, we can conclude that the

NLMS algorithm does a good prediction of the instantaneous queue for various traffic

scenarios.

2.6 Significance of various parameters

The various parameters

of the scheme are listed in Table 2.1. Our simulation results

Table 2.1: APACE Parameters

Parameter | Function

M Order of the filter

Ny Prediction parameter for the filter

mazx, Maximum dropping probability

o Decides the lower threshold below which
no incoming packet(s) is dropped

6] Decides the upper threshold above which
every incoming packet is dropped

indicate that the order

of the filter, M does not have a significant impact on the

15

performance of the scheme. However, for large values of M (> 50), the NLMS algo-
rithm does not converge. This is because the NLMS algorithm typically takes 20M
iterations to converge and during this period the traffic arriving at the queue might
vary substantially for large M. Moreover, the computation complexity of the scheme
increases with increasing M. Therefore, it is advisable to take a low value for the
order of the filter. We suggest that M = (5 — 20) is a good value for the order of the
filter and the performance of the scheme is not sensitive to M in this range. For the
purposes of simulations, we have chosen M = 10.

The prediction parameter, Ny decides the trade-off between the accuracy of the
prediction and how early the prediction is made, ie, a lower value of Ny means that
the prediction is made over a relatively shorter time scale. In such a scenario, the
prediction error is typically low. On the other hand, by taking a large value of N,
the prediction is made over a longer time scale but the prediction error might be
large. The value of Ny should ideally depend on the round trip time to the source
as well. Ny should be large enough so that the effect of dropping a packet results in
an early congestion notification to the source. This implies that for large RTTs, one
should keep a large value of Ny though this might result in a greater residual error in
prediction. Keeping a small value of Ny in scenarios with large RT'Ts might result in
a delay in the congestion estimation (since the prediction instant is not far enough
in future) as well as a delay in the congestion notification (owing to a large RTT) to
the source.

Our simulation results in Chapter 3 also illustrate that Ny does not have a strong
bearing on the performance (in terms of packet loss rate, average queuing delay and
link utilization) of the scheme. We have reported simulations results for A/ = 10 and
Ny = 15. An extensive simulations study in support of the claims made can be found
in the next chapter.

The parameter maz, governs how aggressively the packets are being dropped,
based on the predicted value of the instantaneous queue length and « determines the
buffer occupancy at which we should start dropping packets. The effects of these
parameters on the performance has been explained in detail in the next chapter.
Extensive simulations by varying all the parameters indicate that the scheme gives
similar performance under a wide range of parameter settings. The scheme adapts
itself to the network conditions well, thus reducing the importance of initial parameter

settings. We suggest max, = 0.2, a = 0.3, Ny = 15, M = 10 as the default values.

16

2.7 Comparison with other Queuing Strategies

In this section we compare the performance of APACE with other queuing schemes
like RED, SRED, PAQM and AVQ. The network topology shown in Figure 2.2 is
used for performing the simulations. The results for multiple bottleneck scenario is
explained in the next section. The number of TCP sources, N, is varied to achieve
different incoming traffic loads. Packet size has been fixed to 500 bytes. The buffer
size at the router is of 20 packets for SRED and 50 for all others. The reason for
choosing 20 is the fact that SRED always tries to keep the buffer close to full. The

results (except for the instantaneous queue) have been averaged over 20 sample paths.

2.7.1 Instantaneous queue length stability

We first address the issue of instantaneous queue stability. In our simulation 40
TCP sources are switched on randomly in the first two seconds and the simulation
is performed for 40 seconds. Figure 2.5 illustrates the instantaneous queue size at
the gateway for various queuing strategies. We have used w, = 0.002, miny, = 5,
mazy, = 15, max, = 0.1 for RED, default APACE parameters, M = 1000, « = 1/M,
and pre, = 0.15 for SRED, v = 0.98, av = 0.10 for AVQ and @, = 20 for PAQM as
the queue in APACE is stable at 20.

As is evident from the plots, RED is unable to control the oscillations in the
instantaneous queue, while APACE and PAQM provide reasonable stability to the
instantaneous queue. Moreover, even under steady heavy traffic, the instantaneous
queue in RED becomes empty frequently (as shown in Figure 2.5) leading to severe
under utilization of the link. In addition, the average queue size in RED deviates
significantly from the instantaneous queue. This entices us to look for better indi-
cators of congestion than the average queue length. The decision to drop a packet
based on the average queue size also introduces delay in the estimation of congestion
as the learning is slower. As a result, RED might take a wrong decision regarding a
packet drop. SRED has problems of global synchronization similar to DropTail since
it always keeps its buffer close to full which keeps overflowing.

We next perform the simulation under fluctuating network loads. We switch on 40
sources within a small interval of time. After about 10 seconds of the simulation, 36 of
these sources are switched off resulting in a drastic decrease in the incoming traffic. At

about 20 seconds from the start of the simulation, 20 new TCP sources are switched on

17

Quese e

Qe e

Queue Size

Queue Size

50
as
a0
=25
=0
=2s
=20
a1s

K
ono

50
as
a0
=25
=0
=2s
=20
a1s

10

on

so
as
ao
=25
=20

le)
1s
10

on

RED

T T
INnsStantaneous?’
TAverage”

= =N e) s =20 =25 =0
Time (in seconds)
APACE
T T T T T 'Ihétahtar\e‘ous' T
| —]
I5 lIO 1‘5 2‘0 2‘5 3‘0 3‘5 4‘(;‘ a5
Time (in seconds)
SRED
I5 lIO 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 a5
Time (in seconds)
PAQM
A _
I _
I I I I I I I il N
= 10O s =20 =25 =0 =S <O a5
Time (in seconds)
Figure 2.5: Instantaneous queue at RED, APACE, SRED and PAQM routers under

heavy traffic conditions

18

RED

sOo T T T T T T T T

as |- —
a0 |- —
=25 |- —
=20 |- —
=2s |- —

le) —

Queue Size

10 —

=
o L L L L L L L L
o = 10 1rs =20 =2s =0 =5 2O a5
Time (n seconds)

APACE

so T T T T T T T T

as | —
ao |- —
=25 |- —
=0 |- —

=25 [— —

Queue Size

Z20 |- —]
a1s d —

R
ono
|

L L L L L L L L
o = 10 1s 2o =2s =0 =25 ao as
Time (in seconds)

SRED

so T T T T T T T T

as |- —
ao |- —
=25 |- —
=0 |- —
=2s |- —
Y=}
1s

Queue Size

10

L L L L L L
o = 10 1s 2o =2s =0 =25 ao as
Time (n seconds)

on

PAQM

so T T T T T T T T

as |- —
a0 |- —
=25 |- —

=20 [— —

Queue Size

le) —]
1s i —]
10 —]

on

L L) L A
o = 10 1rs =20 =2s =0 =5 2O a5
Time (n seconds)

Figure 2.6: Instantaneous queue at RED, APACE, SRED and PAQM routers under

fluctuating traffic conditions

19

resulting in a sudden increase in the incoming traffic and 10 seconds later additional
16 TCP sources are switched on. These 40 TCP sources run till 40 seconds from the
start where the simulation is terminated. Even under such fluctuating network loads,
the NLMS algorithm adapts very well and is able to predict the instantaneous queue
accurately. The error in prediction of the instantaneous queue is plotted in Figure
2.4. We note that at points where there is a sudden change in the incoming traffic,
the prediction error increases. However, the NLMS algorithm is able to converge and
predict the instantaneous queue accurately and quickly.

The instantaneous queues are shown in Figure 2.6. The instantaneous queues are
kept again around 20 for the sake of comparison. Conclusions similar to above can be
drawn from it. Though the queue in SRED seems to be more stable, there are other
problems like global synchronization attached to it as explained above. APACE is
indeed able to adapt well to the changes in network conditions and in maintaining

the stability of the instantaneous queue.

2.7.2 Link utilization

5200 . . T T T T
5150 | -
5100 T T
§ 5050 |- T -
< st -
N -
= 5000 [- -
>3 T -7
< 7
5 4950 - -
a 7 i
4900 S T APACE —— 1
/ // AVO —-————-
% PAQM -~~~ i
4850 - RED o
SRED -~
4800 1 1 1 1 1
0 20 40 60 80 100 120 140

Number of Sources

Figure 2.7: Link utilization vs. number of sources in a single bottleneck scenario

Figure 2.7 shows the number of packets transmitted successfully at the bottleneck
node as the number of TCP connections are increased. We observe that APACE is

able to successfully transmit more packets than any other scheme under inspection.

20

2.7.3 Packet loss rate

Figure 2.8 illustrates the fraction of packets dropped at the bottleneck node as the
number of TCP connections are increased. As can be seen from the figure, APACE
shows a consistent improvement in the packet loss rate. This improvement is more
prominent under heavy network loads (larger number of TCP sources) because under

mild congestion scenarios, the packet loss, as such, is quite low.

0.4 T T T T T T
0.35 |-
03 [
0.25 |-
0.2

0.15 |-

Fraction of Packets Lost

0.1

005 F -

0 20 40 60 80 100 120 140
Number of Sources

Figure 2.8: Fraction of packets lost vs. number of sources in a single bottleneck

scenario

2.7.4 Trade-off Comparison with RED

It should be noted that it is unfair to compare APACE and RED by fixing any
one set of parameters. In fact, the above statement holds true for any scheme whose
performance needs to be compared with RED. One might achieve an entirely different
performance for some other setting of RED parameters. Moreover, using only one
performance metric to compare any scheme with RED is also not entirely correct
because finally there is a trade-off between various performance metrics such as delay-
link utilization or delay-loss. Also we need to take into consideration the effects of
various parameters on the performance metrics.

Hence, we now compare the performance of APACE scheme with RED in terms
of the delay-link utilization trade-off curves (refer Figures 2.9, 2.10) and delay-loss
trade-off curves (refer Figures 2.11, 2.12) that can be achieved. The buffer size is 250

21

4060 ; : | | |
4040 - |
4020 |
4000 |
5 3980 - |
8 3960 |-]
g -l ’a:pﬂazo.oo' 7
- i ‘alpha=0.10" ------)
R ‘alpha=0.20" -------
i ‘alpha=0.30" -]
o "alpha=0.50" -—-—--
3880 |- "alpha=0.60" ------- i
‘alpha=0.80" -------
3860 I ‘alpha=0.90" -------- -
‘alpha=1.00" --------
3840 ! | . | |
0.2 0.3 0.4 05 0.6 07 o

Delay

Figure 2.9: Delay-link utilization trade-off curves for single bottleneck scenario
APACE

packets. The simulations have been performed with 80 TCP sources.

4000 ! ! T T T T T T T
'maxth=50.00"
'maxth=100.00' ------
'maxth=150.00" ------- |
3950 'maxth=200.00" - ," S
'maxth=225.00" —-—---- ;
c
2 3900 - |
@
N
5
£ 3850 | |
-
3800 + |
3750 1 1]] | . | | |
015 02 025 03 035 04 045 05 055 06 0.65

Delay

Figure 2.10: Delay-link utilization trade-off curves for single bottleneck scenario with
RED

Each curve corresponds to a different value of mazy, (o)) for RED (APACE). The
extreme right point on each curve corresponds to max, = 0 and as we move along the
curve, we get points corresponding to high values of max,. It is worth noting that the
plots for different values of o are close to each other and in particular, the plot with
a = 0, encompasses the complete range of the delay-link utilization trade-off plane

covered by the other plots (for different values of «). Therefore, by setting o = 0

22

and varying only maz,, one can span all the achievable delay-link utilization trade-
off operating points. An operating point below the delay-link utilization trade-off
curve is an achievable operating point, while the one above it is unachievable. By an
achievable operating point, we mean that given a particular delay-link-utilization pair
that one wants to achieve, an operating point with a higher link-utilization and lower
delay can be achieved. To get the suitable setting of APACE parameters, that can
achieve a desired operating point, a simple method is to join the given operating point
to the origin and extend the line. The point of intersection of this line segment with
the delay-link utilization trade-off curve(s) gives the values of the APACE parameters

and the corresponding average queuing delay and link utilization.

0.22 T T T T T
"alpha=0.00' ——
02 b alpha=0.10" ------ |
: alpha=0.20" -------
alpha=0.30" -
5 018 1 ‘alpha=0.50" -~ i
o "alpha=0.60" -------
" A\ ‘alpha=0.80" -------
g 016 N 'alpha=0.90" -------- |
—é : ‘alpha=1.00" --------
a 014 -
kS]
c
S 012 - -
Q
o
L 01k N,
0.08 N,
0.06 1 1 1 1 1
0.2 0.3 04 0.5 0.6 07 0.8

Figure 2.11: Delay-loss for trade-off curves for single bottleneck scenario with APACE

As can be seen from Figures 2.9 and 2.10, APACE gives a better link utilization
and also lower delay than RED. Also any operating point that is achievable by RED
can be achieved by APACE as well by a suitable setting of parameters. Moreover,
for the APACE scheme (refer Figures 2.9, 2.11) one can cover the entire range of
operating points by keeping o = 0 and varying max, only. The above observations
are also true when the buffer size is 50 packets. The same however cannot be said for
RED and both the parameters, max, and mazxy, need to be varied (Figure 2.10) in
order to achieve a certain operating point. This makes APACE scheme easy to adapt
to network conditions. Varying only max, adaptively based on the network traffic,
we can achieve a better AQM strategy than the existing ones.

We have compared the performance with only RED here, mainly to illustrate

23

0.26 T T T T T T T T T
'maxth=50.00' ——
0.24 - 'maxth=100.00" ------ i
'maxth=150.00" -------
'maxth=200.00" -~
= 02T) 'maxth=225.00' ———- |

S

m 0.2 | 2 .

5] \

S 018 [) . .

o Y } .

S 016 [*y A .

15 kY i

S 014 LN : i

< a7 !

LL -
0.12 '_
0.08 1 1 1 1 1 1 1 1 1

015 02 025 03 035 04 045 05 055 06 0.65

Delay

Figure 2.12: Delay-loss trade-off curves for single bottleneck scenario with RED

the significance of the concept of trade-off curves. Trade-off comparisons with other
schemes is reported in the next section for multiple bottleneck link scenario, which
is also more important. From the above we can conclude that the APACE gives a
better link utilization with lower delay and only one parameter max, needs to be

varied to achieve any given feasible operating point.

2.8 Performance under Multiple Bottleneck Links

We now compare the performance of the various AQM schemes in networks having
multiple congested bottleneck links. The network topology is shown in Figure 2.13.
There are “N” TCP sources connected to router 1 and a cross traffic of 25 TCP sources
each flows from router 2 to router 3 and from router 4 to router 5 respectively. Packet
size has been fixed to 500 bytes and buffer size to 50 packets. The results (except for
instantaneous queue) have been averaged over 20 sample paths.

Routers 2 and 4 are the most congested nodes and hence show similar behavior.
We have chosen router 2 for detailed study. We verify our earlier observation by
extensive simulations similar to those in Chapter 3 that values of Ny and M do not
affect the performance significantly. The results are infact, so similar to the single
bottleneck case in terms of dependence on Ny and M, that we choose not to report
them in this thesis to avoid repetition. We choose the same parameter settings as
before, except that @,y = 40 for PAQM and a buffer size of 40 packets for SRED at

24

Cross—traffic Sources Cross-traffic Sources

e o e o
10
2Mbps, 5ms 2Mbps, Sms 2Mbps, 5ms

2

. 2Mbps, 10ms 2Mbps, 10ms

2Mbps, 10ms 2Mbps, 10ms /" __2Mbps, 10ms
L]
Router 1 Router 2 Router 3 Router 4 Router S Router 6
L]
2Mbps, 5ms, 2Mbps, 5ms

1®

Sources PO ° o O Sinks

Cross-traffic Sinks Cross-traffic Sinks

Figure 2.13: Network topology for multiple bottleneck links

all the five nodes.

2.8.1 Instantaneous Queue, Link utilization and Packet loss

The instantaneous queue length results are similar to those obtained for single bot-
tleneck link. The queue occupancy is around 40 packets instead of 20 previously. We
observe that APACE is able to keep the instantaneous queue stable in agreement to
our observations for the single bottleneck case. This implies that the packet delay
remains almost constant under the APACE scheme.

In addition APACE also gives better link utilization and lower packet loss as shown
in Figures 2.15 and 2.16. Link utilization and fraction of packets lost are illustrated
in Figures 2.15 and 2.16 respectively, as the number of TCP connections is increased.
We observe that in networks with multiple bottleneck links, APACE is able to achieve
high link utilization with low packet loss rate and a stable queue that keeps the delay
bounded.

2.8.2 Trade-off Curves

The delay-link utilization and delay-loss trade-off curves for the various schemes are
shown in Figures 2.17 and 2.18 respectively. The curves for APACE correspond to
a = 0 and varying maz,. Though APACE has better curves for other values of «,
we plot the curves for a« = 0 while comparing it with others to illustrate the fact
that we can indeed fix o at 0 or some other small value and vary only max, and

still get performance better than other schemes. For RED, the curves correspond to

25

Quese e

Qe e

Queue Size

Queue Size

50

as
a0
=25
=0
=2s
=20
a1s

K
ono

50
as
a0
=25
=0
=2s
=20
a1s

10

on

so
as
ao
=25
=20

le)
1s
10

on

RED

10 1rs =20 =2s
Time (n seconds)

APACE

T T T
T

[0
W
29
NO

n

e
0

=)

S |

=3 10 1s 2o =2s
Time (in seconds)

SRED

=3 10 1s 2o =2s
Time (n seconds)

PAQM

= 10 s =20 =2s
Time (n seconds)

Figure 2.14: Instantaneous queue at RED, APACE, SRED and PAQM routers in a

multiple bottleneck scenario

26

6200 T T T T T T

6100 - .-~ - 1

6000 [e]

5900 = . T T ———]
5800 - |

5700 - b

Link utilization

5600 - b
5500 -

5400 - Tl

5300 1 1 1 1 1 1

Number of Sources

Figure 2.15: Link utilization vs. number of sources in a multiple bottleneck scenario

0.26

0.24

0.22

0.2

0.18

0.16

Fraction of Packets Lost

0.14

0.12

0.1 I I I I I I
0 20 40 60 80 100 120 140

Number of Sources

Figure 2.16: Fraction of packets lost vs. number of sources in a multiple bottleneck

scenario

27

Link utilization

6200

6000

5800

5600

5400

5200

5000

4800

0.04 0.06 0.08 0.1 0.12
Delay

0 0.02

0.14

Figure 2.17: Delay-link utilization trade-off curves for multiple bottleneck scenario

maxy, = 15 and varying maz,. Qo in PAQM and buffer size in SRED is varying

from 3 to 50 as we move from left to right and « is varying from 0.05 to 0.99 in AVQ.

Fraction of Packets Lost

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0 0.02 0.04 0.06 0.08 0.1 0.12
Delay

0.14

Figure 2.18: Delay-loss trade-off curves for multiple bottleneck scenario

We observe that for a given delay APACE achieves the highest link utilization at

a much lower packet loss rate. Though the trade-off curves for SRED look better,

it is associated with other problems like global synchronization owing to its frequent

overflow of buffer.

In addition link utilization in APACE remains almost constant

at a high value indicating that it is quite independent of its parameter settings and

hence the network operator can focus more on the delay and packet loss rate without

worrying much about link utilization.

28

Note that the drop in the link utilization-delay trade-off curve in Figure 2.17(a) for
maxy, = 15 which is the default value for RED indicates that we would achieve lower
link utilization and higher packet delays at least for the traffic scenario considered
here (which is common) for higher values of max,. This suggests that varying max,
adaptively may sometimes worsen the performance of RED under multiple bottleneck
links. This parameter dependence in RED and its unexpected behavior is a cause of

concern given that RED is being deployed extensively in routers these days.

2.8.3 Stability of Link Utilization

6100 .

6080 -

6060 -

6040 -

6020 -

Link Utilization

6000 - —

5980 —

5960 —

5940 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

max_th and max_p varying

Figure 2.19: Link utilization of RED with various parameter settings

Figure 2.19 shows the link utilization of RED at router 2 as its parameters are
varied. For RED we have taken 4 values for maxy, ie 15, 30, 45, 50. For every
value of maw,,, we have varied maz, from 0.00 to 1.00. For these different values, we
have plotted the link utilization on the Y-axis. Similarly for APACE, we have varied
max, from 0.00 to 1.00 and « from 0.0 to 1.0. The link utilization is plotted on the
Y-axis of Figure 2.20. We observe that the link utilization remains fairly constant
for the different values of its parameters as compared to RED. In fact the initial
part of Figure 2.19 corresponds to max,, = 15, which is also its default value. The
average packet delay and packet drop rate varies in both the schemes. Given this
flexibility in parameter adjustment for link utilization in addition to the fact that

the instantaneous queue remains fairly constant and its level of occupancy can be

29

6180 T T T T T T T T
'sta_apace50’ ——

6160

6140

6120

6100

Link Utilization

6080

6060

6040

6020 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

max_th and alpha varying

Figure 2.20: Link utilization of APACE with various parameter settings

controlled by varying only max, can help substantially the service provider to give

delay guarantees and achieve better link utilization.

2.9 Discussion

One can also consider a generalized version of the APACE scheme where the upper
threshold for dropping the packets is kept as % B rather than B. Here [is a
positive constant greater than 1. Such a scheme is able to achieve a greater range
of operating points (with lower packet loss rates). However, it also introduces an
additional parameter 5. The APACE scheme presented is a special case of this scheme
with 8 = 1. However, our preliminary simulation results with the generalized scheme
show that the performance gain by the introduction of parameter 3 is not significant.
We therefore suggest that § =1 is a good enough value for most practical purposes.

Also, as discussed, the average queue size (in RED) might not give a true indication
of the congestion. This suggests that a modified version of RED in which the decision
to drop any packet is based on both the instantaneous and the average queue size
might give a better performance as compared to RED. A simple way to this is to
look at the difference between the instantaneous queue length and the average queue
length before making a drop decision. The maximum packet dropping probability,
max, can then be varied based on this difference (ginstantaneous —Gaverage). For example,

if the absolute value of the difference is greater than a certain threshold, max, can

30

be decreased or increased based on whether the difference is negative or positive.

In the current version of the scheme, the prediction is made at every packet ar-
rival. A scenario where the number of packet arrivals is large might lead to a lot
of computational overhead. To overcome this problem, one might consider a scheme
where the prediction is done at periodic time intervals, though this might come at

the expense of lower prediction accuracy.

2.10 Conclusions

In this chapter, we have presented a novel AQM scheme based on (predicted) in-
stantaneous queue length. We conclude that algorithms like NLMS can indeed be
used to predict the instantaneous queue length. The APACE scheme performs bet-
ter than existing AQM schemes as it adapts faster to changes in network conditions
and is able to keep the instantaneous queue stable. APACE also gives higher link
utilization and a much lower packet loss rate as compared to PAQM in addition to
the instantaneous queue stability comparable to PAQM. In addition the scheme is
able to achieve better operating points than that of PAQM and others (in terms of
delay-link utilization or delay-loss trade-off) for both single and multiple bottleneck
links. The link utilization of APACE remains more or less constant at a high value, in
networks with multiple bottlenecks, with change in its parameters that can be varied
suitably to achieve a given delay and packet loss rate without worrying much about
link utilization. Moreover this can be achieved by varying just one of its parameters
ie., maz,. The performance of APACE is predictable depending on its parameters,
unlike RED which sometimes can behave unexpectedly. With APACE we can thus
achieve an AQM strategy better than most others. APACE with max, being varied

adaptively is expected to perform even better and is an area of future research.

APACE - parameters

In detail

In this chapter, we explain the
following:
e Effects of Nyand M on the
performance of APACE
o Eff f max,
Only two things are infinite, the universe . Effeiif;‘ a,pahap @
and graphs in this chapter, and I'm not

sure about the former

Chapter 3

APACE - parameters in detail

In this chapter, we provide extensive simulation results supporting our earlier claims
regarding the performance of APACE being independent of the values of Ny and M.
We, then explain the effects of the parameters maz, and a on various performance
metrics including packet loss rate, average queuing delay and link utilization. We use
the same simulation set up as in Figure 2.2. We verify our claims for three types of
network scenarios. The harsh scenario consists of 25 TCP sources with about 5—10%
packet loss rate. The mild scenario has just 5 TCP sources and 1 — 2% packet loss
rate. We have also done simulations for an extreme scenario, in which there are 80
TCP sources and about 20 — 25% packet loss rate. We conduct simulations for buffer
sizes of 50 and 250 packets and for both, single and multiple bottleneck networks.
The mean packet size is 500 bytes.

3.1 Effects of Ny and M

Though we have done extensive simulations for all the above mentioned scenarios [20],
we report in this thesis the results for the harsh scenario with buffer size of 50 packets
only. The results are and the conclusions that can be drawn from the other scenarios
are identical and hence we skip them in order to avoid repetition. The complete set
of simulations is can be accessed at [20].

Figures 3.1, 3.2 and 3.3 illustrate the probability of packet loss, packet delay and
link utilization with max, as the independent variable. Each figure has 12 sub-figures,
each of which corresponds to a particular pair of (Ny, M). The prediction parameter,

Ny is a measure of how far in time, the prediction is made. Computational complexity

32

Fraction of Fackets Lost

Loss H=5 H=

Fraction of Packets Lost

[
Pha=, 31—
* 3lpha®l. 46
»slpha=p.50° -

Fraction of Packets Lost

Loss N=5 M=20

T T
*alpha=a,00°

5.05 L T S S R T
L L ® 8.1 B.2 5.3 8.4 8.5 8.6 5.7 8.8 6.3 1
© ©.1 0.2 8.3 8.4 0.5 @.6 6.7 B.8 8.9 1 naxp
naxp naxp
Loss N=1S5 H=1@ Loss N=15 n=2p
.12 T T T T T T T T g.12 T
*slpha=p. 6@
*5lpha=g. 18°
L - L
4Bl TACIEE)
2 2 3
S - Talpha=g. 4@: o1l
n w 8.1 * 31phawegw FEN
H b Lalpha=a. 6@’ o
= x * 31phazie %
il L] o
I & o Letphazie
" “ =T EEIhAS g8
K s B.os 5 i
=
5 1 2]
= © oB.o7 ¥
5 19 i
o H ke 4
& L B.086 w
2.05 L S S R
S T T R R S
a.05 P S T L T B85 1 0.2 9.3 0.4 9.5 0.6 0.7 2.8 @,
5 0.1 0.2 8.3 8.4 8.5 8.6 8.7 B.8 8.9 1 @ 9.1 6.2 9.3 6.4 6.5 0.6 @.7 0.8 @.9 1 e @.18.2@83040.:35 0808706029 L
naxp
naxp naxp
Loss N=38 H=5 Loss N=38 n=18 Loss N=3@ r=2@
a.1e T T T T T Tom T 8.11 T T T T
Talp
*slph B.105 [
b a1 *alph. * +
o 8.1 alpha=A.367 3
- - *alpbat, 481 -
w 8.1 W 8.895 *abfha=t. 500 -----] »
b H Yalpha=0.68° a
FHERE e H
o n »
o & a.@85 "
. - 13
S @.e8 - 3
5 5 :
2 3 e.e7s ol
o ow.e7 3 +
1 o H
o n o g.e7 2
£ oe.ms & I
. a.065
8.85 L L L L L I L I 1 8,85 L Lt L — L L L .1 B.2 8.3 B.4 B.5 8.5 9.7 8.8 @.
@ @.1 8.2 8.3 9.4 8.5 0.6 9.7 0.8 8.9 1 @ 8.1 @.2 6.3 8.4 6.5 8.6 8.7 8.8 8.3 1 e Pl 8 08 0 85 0.6 0.7 88 83 L
naxp
naxp naxp
Loss H=58 M=5 Loss N=S@ H=2@ Loss N=50 n=2p
.11 T R S .15 ——— 77— .15 : : . .
*s3lpha=o. 60" *slpha=p. 6@ *alpha=8.68°
B.105 [
w1
B.895 alehi
21 phasd, 6otz
8.09 |

Fraction of Packets Lost

? glphazEmAaY
s

B o.1

9.2 B.3 B.4 8.5 B.6 0.7 8.8 8.9 1

maxp

Fraction of Packets Lost

B.2 9.3 0.4 8.5 8.6 @.7 0.8 8.9 1

maxp

Fraction of Packets Lost

8.2 8.3 8.4 8.5 0.6 0.7 0.8
naxp

Figure 3.1: Fraction of packets

33

lost vs. max, for different o and (Ny, M)

=5

H=18

Delay N=5 M=28

Auerage gueuing delay (in seconds)

T —

8.8 L L L L L L L L L

@ 8.1 8.2 8.3 8.4 8.5 B.6 6.7 8.8 8.9 1

naxp

Ausrags queuing delay Cin seconds)

v 3l phata, 0o®
alpha=@.1@

9.1 B.2 8.3 ©.4 0.5 8.6 8.7 0.9 8.9

maxp

Ausrsge queuing delay Cin ssconds)

T T
*alpha=8.08°

W oB.s Woe.3 W 8.3 — T T T
3 T T % S T 2 *alpha=0.08’
5 *slpha=. 16* H 5 *alpha=g.18?
o ks o =
i i B.2s i o.es PSignaen o0
. - = 4 alphasd-der
z T sz} T omee b
Fl
3 5 :
= - r} L
k1 2 a5 | 2 6.15
2 2 Z
3 S oear 3 et
3 H E
3 Ed
v oa.es | 4 8.0
o .
@ =4 ki
g b H
g H a P S T S S S S a o 1
z a L L L L L L L L L i 8 8.1 8.2 8.3 8.4 8.5 0.6 0.7 8.8 8.3
= ® 6.1 6.2 8.3 0.4 0.5 8.6 B.7 8.8 8.9 1 @ e.1 0.2 8.3 9.4 0.5 9.6 8.7 8.8 0.9 naxp
naxp maxp
Delay H=15 M=5 Delay NH=15 K=1g@ Delay N=15 H=2D
Woe. L S B B S P W 9.3 — T T, T .. i
© *slpha=. 60" z *slpha=p. 6@ 2
H . H *alpha=@. 187 H
2 5 o STRRE=H.EH H
3 .25 L e.23 . 2lpha=iya. n
: talphasd. 402 < *alphazi. 48 =
< *2lpha=p. 56 - on- = ' 51pha=g.58° T
Zogel ~ ezt 7Y 1t
E o Tphssarar—= T
= 2 o TSI PHESET B i
2 B.15 - 2 B.15 P Elpha=E9aL 3
TEIphe=1. 0 atphas : >
@ = £
£ - < Z
] L 5 8.1 H
3 et H E]
T = =
@ B.85 [L @.8% %
o
7 o b
g H e ER P S S R S W
2 a L z ° = @ 8.1 8.2 0.3 8.4 8.5 0.6 0.7 8.8 8.3 1
< @ 8.1 8.2 8.3 8.4 8.5 B.6 6.7 8.8 8.9 1 @ 8.1 8.2 8.3 ©.4 8.5 9.5 0.7 0.9 8.9 g
naxp naxp
Delay H=3@ M=35 Delay =38 H=18 Delay H=30 H=20
W B.28 W oB.2E — — W 8.3 — T T
z Tz * 5lpha=g. 6@ 2 ralph —
-3 R Yalphazh. 182 H *alph,
o 3 0) i STpR
b om.ze Woe.24 ~r5Tpha-a. 387 - W oe.es ‘a;;‘h
. =@, 487 *aly
< .22 Z a2 | Jalehaz g £ *alph
< = ~ *STphaEY
L 8.2 2 e.2 7 .2 =
2 oa.te FICECES T)alphaTEiEey -
k1 k S o 2
L et LR siphss1.087 - D o.1s
2l T o5 b
S a4 = B4 | =
E H H
3 Bz Lotz 3
B3 Ed Z et
o 8.1 w01 .
@] ki
T @.08 L 8.85 i
g R, P S T S S S S 3 9.05 B —
3 .85 L L L L L L L L L z 8 8 B.1 B.2 8.3 0.4 B.5 0.6 9.7 8.8 8.3 1
= ® 6.1 8.2 8.3 8.4 8.5 8.6 9.7 8.8 8.9 1 8.1 B.2 8.3 8.4 8.5 B.6 B.7 0.8 8.9 naxp
naxp naxp
Delay H=58 M=5 Delay H=S@ H=i@ Delay N=58 H=2D
@.2e T T T T T a.28 T T T T T 0.28 T T T T T

L
@ 8.1 8.2 8.3 8.4 8.5 0.6 0.7 0.8
naxp

Figure 3.2: Packet delay vs. max, for different o and (N, M)

34

Packets Transmited N=5 M=2@

naxp

maxp

z49@ 2498 2508 T T T T T T
= = H ’alpha=w.?§’
& & z4zm :
£ 2ds0 + 1 24me
o = 2470 2
£ 2470 H oo
H 5 edse H
¢ 2460 & i
=

" 2458 w 2448
& aiso i eaee a 3
o 2
= 2440 E alpha=1.88° 0 zaz8
a 5 2430 I
. 2430 “ 2428 5 2400
3 5

<
L 2420 < L
i § zae L cae0
S 241 5 za0n 2
z))))) =z 2390)))))) 2360 L L L L L I I L I
2480 6.1 8.2 8.3 6.4 8.5 8.6 0.7 8.8 6.3 1
0.1 0.2 0.3 0.4 8.5 8.6 8.7 @.5 6.9 1 9.2 9.3 0.4 8.5 0.6 0.7 0.8 8.9 naxp
naxp maxp
FPackets Transmited N=15 M=5 Packets Transmited N=15 M=1@ Packets Transmited N=15 M=28

2490 2498 r T r T r T 2508
o - *slpha=g. o0’ E
o o !alpha=A. 182 b
£ 2480 § 2438 N + e4ee
= 2 2470 TR, E
0 2470 2 5 2468
? T 24c0 =
£ 246 " 2448
) u zase H
o 2458 w b
H G 244l 3 eaze
o za4n < -

. o 2438 T zame

s 5

7 zazm L 24z i

z H £ 2aee

H

£ zaze < 2410 H

z = 1 1 L L 1 L L 1 L
2388

T S S
2410 L L L L L 2408 B.1 8.2 9.3 0.4 B.5 0.6 0.7 0.8 0.9 1
a ©.2 8.3 0.4 8.5 B.6 B.7 8.8 8.9 1 @ ©.2 9.3 8.4 8.5 9.6 .7 0.9 8.9 g
naxp maxp
Packets Transmited N=30 M=5 Packets Transmited N=38 M=18 Packets Transmited N=30 M=28
2498 T T r 2438 T T T T T 2498
H 'aipﬂ g.?g‘ H Sihneza tas 3 came
alpha=d. 10 talpbes : +
L zaze + edon i
o = o 247l
z =
i H * 31pha=g. 48° H TTAIpHEE AR -
5 247a Zalg] T 5 247a *slpha=0. 582 W 2458 Sadpha=foS0L
kS R = +alphs, i £ =
*alphs=d. 78 sasn 2950
o 246l ~~, 'alpha=8.80" » £
v \~}ehma=ar g w 3 2448 -
¥ 2450 FalohasioBg), ; % caza 3 aaan |-
o i o o
« “ w420 ¢
o 2440 5 244
o & § 241e [
o g E
< =430 v T 2430 S 24m0
H 2
H H S <
2420 L L L L L 2428 - * - * - * B.1 8.2 6.3 0.4 B.5 8.5 8.7 8.8 8.9 1
[8.2 8.3 8.4 8.5 8.6 8.7 0.8 8.3 1 a 8.3 B.4 8.5 8.5 B.7 5.8 8.9 naxp
naxp maxp
FPackets Transmited N=50 M=35 Packets Transmited N=58 M=1@ Packets Transmited N=50 M=28

2490 T T T 2508 r T T r T 2508
o *alphs=0.08" = *slpha=a. o’ H
H H
£ z4n0 £ zasm £ 2ase
2 = 2 2400
& 2470 = zacn :
© H k]

? T 244 L esse

= 2460 =

u n z4za & 2998

4 1

v zas8 H % 2250

H % zape H

3 » I

a 2440 2388 .. £2088

. “ :

s

. 2420 . 2368 “L/ 2158

o g g

£ zaze 2 2aae t 2100

3 2 =z

= z410 L L L L 2328 L L L L L L eese - ! ! - !
] P PP o 5.2 8.3 0.4 0.5 6.6 8.7 0.0 6.9 o 8.1 8.2 0.3 8.4 8.5 0.6 0.7 8.6 0.5 |

naxp

35

Figure 3.3: Link utilization vs. maz, for different o and (Ny, M)

Fraction of Fackets Lost

Loss H=5 H=

*maxp=1.80"

Fraction of Packets Lost

Fraction of Packets Lost

Loss N=5 M=20

T T
P laxp=g. 817 ——
P laxp=g. 857

Fraction of Packets Lost

Fraction of Packets Lozt

5.05 L I I L
[} B.z 0.4 0.6 8.6
Alph
alpha pha
Loss N=1S5 H=1@ Loss N=15 n=2p
b1z T T r . 0.12
*maxp=d. @1
* maxp=8. B5*
B.11 *maxp=g. 18° 2.11 max e
*maxp=p. 26 maxp=9.28’
*maxp=g. 20 5.1 30°
8.1 *maxp=. 587 -
-, *maxp=. 78

*naxp=1. 000

Fraction of Packets Lost

8.5 L L L
L L L L
a.05 L L I I B85
8 8.2 8.4 8.6 8.8 @ B.2 8.4 8.6 8.8 ¢ o B“m " e o8
pha
Alpha Alpha
Loss N=38 H=5 Loss N=38 n=18 Loss N=3@ r=2@
B.12 T T T T 811 T T T . 8,12 T T T
*maxp=8. @1 *maxp=@.@817 —— axp=0.01°
*hiaxp=@. 857 B.185 > maxp=n. 85 *maxp=n. 85
+ * a1 fmaxp=8.18° i
8 E- 5 fmaxp=8.28°
3 3 - fmaxp=0.38*
w " n *maxp=0.58*
P #oa.e9s el maxp=9. 78 h
E X % . “oas
H X p.@3 3
o » &
o & a.@85 "
. - 13
e ° g.es -
c 3 H
@ 3 e.e7s b
b b o
b o H
o n o g.e7 2
< ks P
- a.065
B.85 L L L I o.85 L | L .
[:} 8.2 6.4 a6 8.8 8.2 a.4 8.6 a.8 al
pha
Alphs Alpha
Loss H=58 M=5 Loss N=5@ H=1@ Loss N=50 n=2p
8.11 T b1z 0.15

Fraction of Packets Lost

Fraction of Packets Lost

s haxp=8. 81"

Fraction of Packets Lost

T T
maxp=a. 817
.85°

Figure 3.4: Fraction of packets lost vs. « for different max, and (Ny, M)

36

fAverage queuing delay €in seconds}

Auerage queuing delay Cin seconds)
=
o

Alphs

haxp=0. 81"
* maxp=p. 65

Alpha

Ausrsge guesuing delay ¢in seconds)

Delay N=5 M=28

T T
P laxp=g. 817
*laxp=g. 857

alpha

Auerage gueuing delay (in seconds)

Delay N=15 =5

Ausrage queuing delay Cin seconds)

Alpha

Delay H=15

H=18

s haxp=8. 81"
*maxp=8.B5°

Alphs

Auerage qusuing delsy Cin seconds)

Delay N=15 M=2@

Alpha

fAverage queuing delay €in seconds}

B.28

B.26

Delay N=38 =35

8,28

T T
*maxp=@. @17
> : B.26

B.24
,,,,, B.22
a.2
B.18
B.16
B.14
B.12
8.1
8,08

Auerags queuing delay Cin seconds)

Alphs

Delay H=38

H=18

T T
fmaxp=E.@817 —
maxp=p. 65

8.6
a

Alpha

huerags gqusuing delsy Cin seconds?

Delay H=38 H=28

Alpha

Auerage gueuing delay (in seconds)

Delay N=58 M=5

Ausrags queuing delay Cin seconds)

Delay H=5a

H=18

s haxp=8. 81"

Bxp= ..

Ausrsge queuing delay Cin ssconds)

Delay N=58 M=28

Figure 3.5: Packet delay vs. « for different max, and (Ny, M)

37

Packets Transnited N Fackets Transmited N=5 M=1@ Packets Transnited
2490 EXED] T T T T 2500 T T T T
= = Tmaxp=@.@817 —— - fmaxp=8.81"
i I 2408 ! maxp=#. B5* u .85*
£ zama + . Y = 1 eame
= 2 2478 b z
£ 2470 H o
5 & 2dsm [5
0 zdeo |- £ *maxp=p. 76 =
= 2458 *maxp=1.88° w 2440
4 z4sm e -
oy T ozdadn »
3 zaam o 3§ eeze
K o 2438 o
. 2430 “ 2428 T zdm0
5 3
.
< 2420 3 ed1e H
2 H £ 3@
€ 2410 S eamm 2
2 E
z400 L L L L 2398 L L L L g3ea g
[8.2 8.4 8.6 8.8 1 a B.2 2.4 8.6 8.8 Alpha
Alpha Alpha
Packets Tranzmited M=15 =3 Packets Transmited N=15 M=18 Packets Transmited N=15 r=ze
zasm T 2498 T T T T 2500 T T
- = *maxp=@.@817 —— b
o T s E—
ELEL] ¥
£ 2430 £ T oame
= H H
u 2470 = 5 B9800
] H ?
4 £ =
= 2460 = *nap=1]88° " caan
£ o oease M
o 2450 1] z
5 o 2448 o 2420
] » o
o 2440 [
o . 2438 T 2400
1 3
. 2430 ; 2420 4
g H 2 2380
€ zazm z za1m 3
E = 2360
za10 L L I I zapm L @
] 0.2 0.4 w6 w8 1 0.8 8.4 o8 9.8 Alpha
Alphs Alpha
Packets Transnited N=38 M=5 Packets Transmited N=3@ M=18 Packets Transmited N=3D M=2p
2490 2498 T T T . 2490 T T T T
o o *maxp=d. @1 -
g o * maxps : 2 2480
L edsa + edsm ¥
g e
S 2478 5 2d7e 5 2468 p
? P z Taxp=0.78°
= = 2450 fmaxp=1.88"
w 2468 w 2468 »
3 + 2448
2 E 3
2 zasm o zase o 2430
o o
- - = 2420
o 2440 o 2448 ¢
< 2410
& H EH i
£ 2430 £ @438 5 adme
H 5 E
z =)))) 2390 L I I L
P, 2420 @ 0.2 a.4 8.6 a.a
o @ 0.2 0.4 0.6 0.8 -~
pha
Alpha Alpha
Packets Tranzmited N=50 r=3 Packets Transmited N=58 M=18 Packets Transmited N=5@ r=2e
zasm 2508 T T T . 2560
- = *maxp=@.@817 —— -
o T o 3
£ masa £ ze0m § ease
& = zace = 2400
Bogaze e e T RORSERE LT n B
g P 2448 I esse
= 2460 - haxp=1, 88" = fmaxp=1.88* W
2 W 24zl 4 2380
o 2450 Bl 1] 3 aass
s G 2408]
] » o
o
o 2440 Bl 2388 T zz00
E : . 2150
. 2430 Bl ; 230 4
o =
H 2
% 2420 4 £ 2348 HEL
= = L L L L 2850
za10 L L I I 2328 @
] 0.2 0.4 w6 w8 1 @ 0.2 8.4 9.8 8.8
Alphs Alpha

Figure 3.6: Link utilization vs. « for different mazp and (Ny, M)

38

and rate of convergence depends on M, which is the order of the NLMS filter. Refer
to Section 2.6 for more elaborate definitions of the various parameters. N takes the
values {5, 15, 38,50}, while M takes the values {5, 10, 20} for each value of Ny. In each
of the sub-figures, maz, is the free axis and each curve in the sub-figure corresponds
to a different value of a. From the three figures, we observe that the value of Ny and
M do not affect any of the performance criterion, viz, link utilization, delay or packet
loss rate significantly. We choose Ny = 15 and M = 10 as our default values as they
give us slightly better performance over other values.

Similarly Figures 3.4, 3.5 and 3.6 illustrate the probability of packet loss, packet
delay and link utilization with o as the independent variable. Every curve in each of
the sub-figures corresponds to a different value of max,. From these three figures, we
again take note that the variation in the performance is insignificant with change in
either Ny or M.

3.2 Effects of maxz,

0.3 T T T T T T T T T

0.25

o
[N

0.15 O —
"alpha=0"0Q <
"alpha=0.10" <~ e

o
[
T
2
gS]
=
il
o
N
=]

Average queuing delay (in seconds)

005 - APna=DL0

0

0 01 02 03 04 05 06 07 08 09 1

Figure 3.7: Average queuing delay vs. maz, (different o), harsh scenario

The parameter max, governs how aggressively the packets are dropped, based
on the predicted value of the instantaneous queue length. Figure 3.7 illustrates the
variation of the average queuing delay as a function of maz, in a harsh scenario
(25 TCP sources and 5 — 10% packet loss rate). The different plots, as indicated,

correspond to different values of a. The plots show that the average queuing delay

39

is a non-increasing function of maxz,. Moreover, for relatively high values of o (>

0.5), the delay stabilizes above a certain value of mazx, (= 0.2). For low values of «,

the delay keeps decreasing even for high values of maz,. In a mild scenario (5 TCP

sources and 1 — 2% packet loss rate) (see Figure 3.8), even for low values of a, the

average queuing delay stabilizes beyond maz, = 0.1.

Figure 3.8:

Average queuing delay (in seconds)

Average queuing delay vs. maz,

Fraction of Packets Lost

0.006

0.004

0.002

0.12

Delay N=15 M=10

T T
‘alpha=0.00' ———

oo alphaz0.20’ -

- "alpha=0.8Q". -

—alpha=0.30" -
"alpha=0.40’

. "alpha=0.50’

7 - -lalpha=0.60'. -
"""""""""" ~alpha=0.70

T "alpha=0.90’
"alpha=1.00’

0.5
maxp

0.11 |-

0.1

0.09 -

0.08

0.07

0.06 [

T T
"alpha=0.00’
"alpha=0.10’
"alpha=0.20’

‘alpha=0.30" -

"alpha=0.50"
"alpha=0.60’

"alpha=0.80" ---- -

‘alpha=0.90" --->~--
"alpha=1.00" /-

0.05

0.3

0.4

0.5
maxp

06 0.7

Figure 3.9: Packet loss rate vs. maxz, (different «), harsh scenario

Figure 3.9 illustrates the variation of the packet loss rate against max, in a harsh

scenario. The plots show that the packet loss rate increases with increasing max,.

This is intuitive because a higher value of max, results in a more aggressive dropping

40

Loss N=15 M=10

T T T
"alpha=0.00' ——
‘alpha=0.10" ------

‘alpha=0.30" -~
‘alpha=0.40" --———--
"alpha=0.50" ------- i
"alpha=0.60" - -
——————————————————— ‘alpha=0.70" zzsx]
I "alpha=0.80" --------

0.008

0.006

0.004

Fraction of Packets Lost

0.002 |

0 01 02 03 04 05 06 07 08 09 1
maxp

Figure 3.10: Packet loss rate vs. maxz, (different o), mild scenario

of packets leading to a greater packet loss rate. Moreover, the increase is more
prominent for low values of . For large values of o (> 0.5), the packet loss rate
stabilizes beyond mazx, ~ 0.2. However, in a mild scenario (Figure 3.10) the packet

loss rate is independent of max, for a large range of o (o > 0.2).

2490 T T T T T T T T T

2480
2470
2460

2450

2440 "alpha=0.00’
"alpha=0.10" ------
2430 "alpha=0.20" -------
"alpha=0.30" -+

L ‘alpha=0.50" ——--
2420 "alpha=0.60" -------
"alpha=0.80" -------
2410 - alpha=0.90' ---
’alllpha=|1.00'

Number of Packets Transmitted

2400

0 01 02 03 04 05 06 07 08 09 1

Figure 3.11: Number of packets transmitted vs. maz, (different o), harsh scenario

Figure 3.11 depicts the number of packets transmitted as a function of maz, in
a harsh scenario. From the plots, it is evident that typically the number of packets
transmitted decreases as maz, is increased. Though for high values of «, the number
of packets transmitted is more or less independent of max,. We observe a similar

trend for the mild scenario too (see Figure 3.12).

41

Packets Transmited N=15 M=10

25000 T T T T T T T T T
ST T aiphasg 00T T
N IERRREEEE TR "alpha=0.10]
g 24000 “---alpha=0.20’ -
£ N "alpha=0.30" -
£ 23000\ T “~ ‘alpha=0.40’ -
< “~._ ‘alpha=0.50" -------
£ 22000 “~Jalpha=0.60" - - 4
A ‘aipha=0.70" -
5} B "alpha=0.80"" -7~
% 21000 'alpha=0.90' ——
g ‘alpha=1.00" ------
5 20000 -
g
£ 19000 [
=}
< 18000 |-
17000 | | | | | | | | |

0 01 02 03 04 05 06 07 08 09 1
maxp

Figure 3.12: Number of packets transmitted vs. max, (different o), mild scenario

3.3 Effects of o

0.3 T T T T

0.25 R O

0.2 b

0.15

'maxp=0.00’
'maxp=0.02" ------

'maxp=0.04" ------- -
'maxp=0.10" -
'maxp=0.20" —-——-
'maxp=0.30" -------
'maxp=0.50" ------ -
'maxp=0.80" ------ -
’maxpzl.(l)O’ ———————

01f

0.05 [

Average queuing delay (in seconds)

0 0.2 0.4 0.6 0.8 1
alpha

Figure 3.13: Average queuing delay vs. « (different max,), harsh scenario

In this section, we explain the effect of o on various performance metrics. Figure
3.13 illustrates the variation of average queuing delay with «. The different plots, as
indicated, correspond to different values of max,. The plots correspond to a harsh
scenario. As can be seen from the figure, in most cases the average queuing delay
increases with increasing «. This effect is more prominent for high values of maz,
(> 0.2). For low values of max,, the average queuing delay is independent of a. In

a mild scenario (Figure 3.14), the plots corresponding to different mazx, are close to

42

each other (especially for maz, > 0.01). Though here too, the average queuing delay

increases with increasing a.

Delay N=15 M=10
0.016 T T T

0.014

0.012

'maxp=1.00" --- - --
0.008
0.006

0.004

0.002

Average queuing delay (in seconds)

0 I I I
0 0.2 0.4 0.6 0.8 1

Alpha

Figure 3.14: Average queuing delay vs. « (different max,), mild scenario

0.12 . . .

T
'maxp=0.00' ——
‘'maxp=0.02" ------
0.11 -2 'maxp=0.04" ------- -

'maxp=0.10" -

SN, 'maxp=0.20" --——-

0.1 v " 'maxp=0.30" -------
. 'maxp=0.50" -------

Ty 'maxp=0.80" ------ --

0.09 |- 'maxp=1.00" -------- .

0.08

Fraction of Packets Lost

0.07

0.06

0.05 ! ! ! !

alpha

Figure 3.15: Packet loss rate vs. « (different mazx,), harsh scenario

Figure 3.15 shows the packet loss rate as a function of o (in a harsh scenario).
For high maz, (> 0.2), the packet loss rate reduces with increasing «. However,
this trend is prominent for high values of maz, only. For low values of max,, the
packet loss rate is independent of o. Also as o approaches 1, the packet loss rates for
different values of mazx, start converging. From the plots for mild scenario (Figure

3.16), we can infer that the packet loss rate is independent of max, for high values

43

(> 0.1) of max,. Therefore, we can say that in a mild scenario, maz, does not play a
significant role in controlling either the packet loss rate or the average queuing delay.

The above observation is more precise for values of maz, greater than 0.1.

Loss N=15 M=10
0.012 T T T

T
‘maxp=0.01" ——

'maxp=0.05" ------

'maxp=0.10" ------- -
'maxp=0.20" e
'maxp=0.30" --—-—--
'maxp=0.50" ------
'maxp=0.70" -------
‘'maxp=1.00" --------

0.008
0.006

0.004

Fraction of Packets Lost

0.002

Alpha

Figure 3.16: Packet loss rate vs. a (different maz,), mild scenario

2490 T T T T
2480
a0 b
2460

2450 F

°
2
=
[0}
c
o
'_
0
o
n“f 2440 'maxp=0.00"
ks AN 'maxp=0.02" ~-----
5 2430 'maxp=0.04" ------- -
£ ! 'maxp=0.10" -~
L ‘'maxp=0.20" —-——- _
2 a0 'maxp=0.30" -------
/ 'maxp=0.50" -- - ---
2410 1t 'maxp=0.80" -------- 7]
] ‘maxp=1.00" --------
2400 L 1 I]
0 0.2 0.4 0.6 0.8 1
alpha

Figure 3.17: Number of packets transmitted vs. « (different maz,), harsh scenario

In Figure 3.17, the number of packets transmitted (in a harsh scenario) is plotted
against a. From the plots we can infer that unless max, is very high (> 0.7), the
number of packets transmitted is independent of . For high values of max,, the
number of packets transmitted is lower for low values of a.. Also for high values of «,

the number of packets transmitted is independent of max,. In a mild scenario, the

44

Packets Transmited N=15 M=10

25000 : : :
. - - maxp=0.01

- ‘'maxp=0.05" ------ _
3 24000 'maxp=0.10" -------
= Co 'maxp=0.20" -~
£ 23000 [K 'maxp:0_30’ —_———— -1
2 i 1 ,
g cy maxp=0.50" -~
= 22000 1~ G0 o 'maxp=0.70" -------
@ 2 'maxp=1.00" --------
£ 21000 |+ J
%
IS i
o i
5 20000 £]
8 oo U
S 19000 i
S -/
< 18000 |/]

17000 L 1 1 1
0 02 04 0.6 0.8 1

Alpha

Figure 3.18: Number of packets transmitted vs. « (different maz,), mild scenario

number of packets transmitted stabilizes beyond o« = 0.3. For o < 0.3, the number
of packets transmitted is less for lower values of a.. Also the curves corresponding to
different max, are close to each other which further validates the observation that

max, does not have a significant role to play in mild scenarios.

3.4 Conclusions

The above detailed study of the parameters of APACE indicates that the behaviour
of APACE for its various parameter settings is limited and predictable. We have
verified out claim that the performance is independent of the choice of Ny and M.
This is mainly due to the inherent adaptive nature of the algorithm used for prediction
of queue length. These conclusions, along with our inferences regarding parameter
settings of APACE from Chapter 2 make APACE a very convenient AQM scheme with
only one parameter mazx, to be varied to achieve any given performance (operating

point).

Learning TCP (LTCP)

In this chapter, we explain the
following:
e The Leaming TCP (LTCP)
algorithm
[]
Those who don't learn from history, Ll\;l_actgematlca/ analysis of
are doomed to repeat it e Performance evaluation
with respect to
o Throughput
Enhancement
o Faimess
o Frendliness

Chapter 4

Learning TCP (LTCP)

4.1 Motivation for LTCP

The TCP estimates the available bandwidth on a link through its window increase-
decrease policy and adjusts its window control behavior accordingly. But this method
(and all it’s subsequent enhancements) are not the best, for learning in today’s per-
spective as losses do not solely occur due to network bandwidth limitations.

TCP’s flow and congestion control mechanisms are based upon the assumption
that packet loss is an indication of congestion. This rigidity in always assuming the
cause of packet loss as congestion and subsequent significant reduction in window is
one of the primary factors in degradation of TCP’s performance over the networks
where the assumption fails to hold. These includes networks such as wireless LAN,
wireless WAN;, satellite links, etc, where to make up for the random losses owing to
errors in the wireless channel, a simple retransmission of the packet(s) is sufficient
and there is no need for the source to drop its window size. Thus, there is a need
for the TCP, which would differentiate and try to learn the reasons for packet loss
and act accordingly, which would attempt to learn the network rather than assume,
which would be universal and work for all types of networks, ie, wired networks,
wireless networks, DiffServ networks, etc, which is exactly what LTCP attempts to

accomplish.

46

4.2 Introduction to LTCP

LTCP attempts to learn the cause of packet loss and takes action appropriately. It is
not specific to any particular network characteristics (ie, wireless or wired) and hence
it can be applied in a wide variety of heterogeneous networks including fully wired
networks.

We first characterize packet losses into two types based on the desired action that
should be taken by the sender upon their occurrence. Type A losses require the sender
to retransmit the lost packets and also reduce its transmission rate. Congestion losses
are type A losses. Type B losses require the sender to retransmit the lost packets
only and there is no need for window reduction. These are primarily the random
losses occurring in the network owing to fading in the wireless channel, shadowing,
etc. An ideal approach should correctly determine the type of each packet loss and
take appropriate actions subsequently.

LTCP attempts to learn the type of packet loss using prediction based on proba-
bility py, which is the estimated conditional probability that the packet loss is of type
B, given a packet loss over the link where TCP is operating. LTCP updates p, based
on accuracy of predictions, thus being adaptive to the changes in link characteristics.
We have assumed that if the transmission window size is not reduced in case of packet
loss due to congestion (this will happen if we predict incorrectly a congestion loss as
type B loss), then it is highly probable that there will be atleast one more packet loss
in the next ‘n’, where n > 1 round trip times (RTTs).

Earlier research work have proposed many approaches on improving TCP over
such networks, but have focused on a particular network characteristics, ie, for wireless
channel, mobility of host, etc. These schemes are not universal in the sense that they
assume a particular kind of network and therefore cannot be used in heterogeneous
networks that can be fully wired, or completely wireless or a combination of both.

The algorithm is explained in detail in Section 4.4. We have performed the math-
ematical analysis of throughput enhancement by LTCP and also derived an upper
bound on throughput enhancement that can be achieved in Section 4.5. We have
implemented LTCP in network simulator ns-2 [19] and have performed simulations
for different loss scenarios and reported the results in Section 4.6 . We also show that

LTCP is fair and TCP friendly in the same section.

47

4.3 Related Work in TCP

Most modern TCP implementations [21] incorporate algorithms introduced by Van
Jacobson [1] into 4.3 BSD to fix the original 1988 congestion collapse. Wireless
Media are more prone to transmission losses due to fading, shadowing, etc. TCP was
designed with reference to a wired medium, which has much lower bit error rates than
the wireless medium. Random losses or type B losses according to our terminology
have been the most widely addressed issue in literature, and many solutions aim at
alleviating this deficiency of TCP. As mentioned earlier, retransmission of lost packets
in not an issue at all, it is that the lost packet triggers the congestion avoidance
mechanism, which essentially leads to unnecessary substantial reduction in the sender
window. A transient error, thus leads to TCP back off and it is not able to sustain
a good throughput level [23]. There have been several improvements to TCP. TCP
SACK was primarily proposed to alleviate the inefficiency in handling multiple drops
in a single window of data [23, 24]. TCP Forward Acknowledgment (TCP FACK)
attempts to decouple the TCP congestion control algorithm from data recovery [25].
However, it has never really been tested for wired-cum-wireless environments, and
is more or less targeted to improving TCP’s performance when losses are of type
A rather of type B [26]. Proposals like Delayed ACKs [27, 28] and ACK pacing
[29, 30] mainly aim at dealing with congestion-related losses and, in view of [31],
it may not be suitable for wired-cum-wireless environment. TCP Westwood [32]
attempts to estimate the available bandwidth in the network, however it does not
attempt to learn the reason behind the packet loss. It simply reduces the window to
maximum estimated bandwidth on an packet loss. Proposals like Explicit Congestion
Notification (ECN) [33, 34] and Explicit Loss Notification (ELN) [35] are meant for
wired-cum-wireless domain, but calls for more functionality in the routers. Most of
the schemes focus on a particular problem and do not address the need for a general
approach. LTCP on the other hand is an universal algorithm which can be used for
both, wired as well as wireless networks without requiring any modifications at any

of the routers in the network.

48

4.4 Learning TCP

In this section, we describe the LTCP algorithm in detail. For every packet loss
detected by LTCP, it predicts with probability, p; (learning probability), that the
packet loss is of type B and not due to congestion. If it predicts the loss to be of type
B, then it simply retransmits the lost packet and the appropriate subsequent packets
without any reduction in the congestion window size. If it predicts the loss to be of
type A, then normal TCP action is taken. As LTCP is finding out the cause of packet
loss probabilistically, it is likely to make errors in prediction. In case, the actual packet
loss is due to congestion and LTCP predicts it as type B (not congestion), then it
is highly probable that LTCP will incur again at least one packet loss in the next n
RTTs (n > 1) as it continues to transmit without reducing the congestion window.
This assumption is more appropriate for large window sizes. Hence we define p;,.
as the ratio of window at the time of packet loss detection and maximum window
achieved on the link. LTCP uses these information for adjusting the value of p,
adaptively and thus learns about network characteristics. Also we need to take some
conservative action (we reduce the window size to one) to compensate for the error
made in prediction (type A loss predicted as type B). In case of type B loss being
predicted as type A (congestion), LTCP will update the value of p, appropriately
and behave as normal TCP and will not perform worse. The detailed algorithm with

pseudo code is illustrated in Figure 4.1.

4.5 Mathematical Analysis of LTCP

4.5.1 Ideal LTCP

We calculate maximum performance enhancement by assuming that LTCP behaves
ideally 7e, the prediction is always correct.

Let,

p = Packet loss probability.

p. = Probability of type A loss given a packet loss has occurred.

py = Probability of type B loss given a packet loss has occurred.

k = Number of packets acknowledged per TCP ack.

Thye, = Throughput of TCP.

49

Initialization

e initialize p; to some constant value
e p; = constant; /*variable used for predicting py*/

e Check Prediction = 0;
Learning p;()

e a packet loss is detected;
e If Check Prediction == 0 then

— predict packet loss type using prediction probability p;;
— if (Packet loss cause = Type A) then

x take TCP congestion control action;

— else

* retransmit lost packet and successive packets with no

reduction in sender window
* set Check_Prediction = 1;
% Set Check_Prediction Timer = n*RTT; /#n=1.5 in our

implementation*/

— end if

e else

— Check Prediction == 1; /#Previous prediction that packet loss

is of type B is incorrect */
— decrease p;;
— cancel Check_ Prediction_Timer;
— set Check_Prediction = O;
— take a conservative action; /*We make congestionwindow = 1%/

e end if
CheckingPredictionTimeOut()

e previous calculation: packet loss is of type B is correct
e increase p; with probability pi,. ;

e set Check_Prediction = 0;

Figure 4.1: Window Control and learning p,
50

Thyyep = Throughput of LTCP.
E = Enhancement = Thyye, / Thicp.

Calculating the throughput of ideal LTCP similar to [36] we get:

lpbp+2+k+\/1pbp +)
3k

Thitey = pop 3kpyp (4.1)
RTTQHH+¢%;$? + (22 4+ 1)
which can be approximated as:
1 3
Thitey = —— 4.2
" T RTT 2kpyp (42)

Similarly we get the approximate expression for TCP throughput as:

1 3
Thy,, = N 4.3
P RTT\ 2k(pa + po)p (4.3)

From (4.1), (4.2) and (4.3)

E=J1+2 (4.4)

Pa

IdeaI‘Appru‘ach
LTCP

18 -

1.6 -

Thicp / Thygp

14

12

o ; L L .
0 02 04 06 08 1
Py

Figure 4.2: Enhancement by Ideal LTCP with Pb

In case of only wired networks (p, = 0), and thus E = 1, ie, LTCP achieves
same throughput as TCP and thus is TCP friendly. E will never be less than 1
and will always be > 1 in the presence of type B losses. Figure 4.2 gives the plot

ol

of enhancement, F, against p,. The curve for the ideal approach illustrates the
maximum possible gain, given the source knows exactly which of the packet loses
are of type A and which are of type B respectively. This curve corresponds to the
maximum enhancement that can be achieved. LTCP performs slightly inferior as
losses in consecutive windows (ie, within n RTT’s) are assumed to be type A (owing

to congestion) losses.

4.5.2 Practical LTCP

In real life scenarios LTCP will not be able to predict the type of loss accurately for
all losses. The measure of how well LTCP performs depends on how close to p; can it
adapt p; and how accurate is the prediction. To analytically compare the performance

of a practical LTCP with TCP, we need to find the probability of window drop.

Prob|Decrease in window | loss
= Prob[type A loss predicted as type A
+Probltype A loss predicted as type B

]
]
]
]

+probltype B loss predicted as type A (4.5)

We have assumed that whenever type A loss is predicted as type B, LTCP will
detect the error in prediction in the next ‘n’ (we have kept n = 1.5) RTTs. It
will take a conservative action and reduce its window. Hence we have included the
corresponding term (second term on the right hand side of Equation 4.5) in our
calculation. This implies that type A losses will always lead to reduction in window
size as expected and how well we predict type B losses will determine the performance

gain we achieve. Thus:

Prob|Decreaseinwindowl|loss] = p.(1—p)
+ pap+ (1 — 1)
= Patp(l—p1)
= 1—ppr (4.6)
Thus we have an enhancement in throughput equal to:
o (4.7)

V1=
52

@ LTCP Source Type B losse:

-
-

| :

Type A losses @

UDP Source
9
5]
X w !
X
F b B
% ON 2 A b L
S 1
=) B B Ideal
time time time

Figure 4.3: Simulation Topology

We observe that keeping p;, = 1, i.e., predicting all packet losses as type B loss
may maximize throughput, but this will also make us TCP unfriendly which is not
desirable. Another point worth mentioning is that the conservative action we take
after we detect that a type A error was predicted as type B may rather impair the
throughput (we are dropping the window to 1 in our implementation to compensate

for the extra window of packets sent).

4.6 Simulation Study

4.6.1 Simulation Setup

The simulations have been performed using the network simulator, ns v2.1b8a [19].
A representative network topology as shown in Figure 4.3 was used to test LTCP in
various scenarios. All sources start randomly and packet size has been fixed to 1000
bytes.

Congestion that leads to type A losses are induced in the network using a Con-
stant Bit Rate (CBR) source with high sending rate. This congestion occurs at the
bottleneck link to which all the TCP/LTCP sources are transmitting. The sending
rate of CBR source is metric to the congestion in the bottleneck link. It’s sending
rate is to be less than the bandwidth of the bottleneck link, but high enough to cause
congestion at the bottleneck link.

Type B losses which are random in nature with bursts are induced using a Two

93

State Markov Loss Model which alternates between a good and a bad state, dropping
packets with a certain probability when in the bad state. By varying the good state
duration, bad state duration and the loss probability of bad state we can achieve any
type B loss probability. The bad state duration is kept less than the average RTT of
all the sources ,so that the random losses are confined only to a single window.

We use the File Transfer Protocol or FTP based applications over TCP or LTCP.
These applications have sufficient data to be sent ,in order to ensure that the con-
nection never starves for data. The values chosen for the Round Trip Time (RTT)
are approximately 60 ms and 600 ms. The 60 ms value represents a Wireless Local
Area Network (WLAN) environment where RTT values are in the order of millisec-
onds. The large values of 600 ms models a Wireless Wide Area Network (WWAN)
environment.

The buffer size at bottleneck link is kept as 150 packets to avoid any influence in
throughput due to the buffering and scheduling mechanisms. The buffering mecha-
nism isRandom FEarly Detection and the Scheduling mechanism is First in-First out
as these are dominantly used in the Internet. Link capacity for the small round trip
time (RTT) of 60ms was taken to be 10Mbps to represent a WLAN link, while for a
large RTT of 600ms it was taken as 100Kbps, to represent a WWAN link.

For WLAN environment, simulation is carried out for 200 seconds and for WWAN

environment for is 1000 seconds.

4.6.2 Throughput Enhancement

The CBR source is switched off permanently and bandwidth of bottleneck link and
queue length is increased sufficiently to avoid type A losses altogether. The Markov
loss model simulating type B loss is initiated. In a network with only type B losses,
the throughput of TCP degrades drastically as the probability of type B loss increases,
while LTCP flows are able to achieve higher throughput than the TCP flows of same
RTT as shown in Figure 4.4.

4.6.3 Fairness and Friendliness

Figure 4.5 shows that a LTCP source is friendly with other TCP sources. The plot
has one LTCP source and five TCP sources. The LTCP source achieves the same

throughput as all other TCP sources.

54

60

8 50 - B
]
k.
9 40 - -
d
o
£ 30 - -
5
&
o 20 -
3
e
£
F 10 + a
Itcp B —
0 ! ! ! tCP T
o] 02 04 0.6 0.8 1

Random Loss probability

Figure 4.4: Throughput enhancement of LTCP over TCP as type B losses increase

20 T T | T
: : loss prob:0.047 —+—

loss prob:0.055 -->--
loss prob:0.060 ---%--
loss prob:0.070 &
loss prob:0.080 —-&---

Throughput (in packets/seconds)

i i i i
%0 1 2 3 4 5
0-LTCP source, 1-5 TCP sources
Figure 4.5: Throughput of a LTCP and five TCP sources, all having the same RTT
(600ms) and sharing a common bottleneck link with receiver advertised window of 15

packets

95

T
loss prob:0.030 —+—
loss prob:0.040 -->--
loss prob:0.050 ---%--
loss prob:0.062 -
loss prob:0.072 —--&---
loss proq:0.082 -0---

N
a1
T

N
o

=
al

Throughput (in packets/seconds)

LTCP sources

Figure 4.6: Throughput of five LTCP sources having the same RTT (600ms) and

sharing a common bottleneck link with receiver advertised window of 15 packets

In addition to being friendly to other TCP sources, the LTCP source is also be fair
to other LTCP sources. Figure 4.6 shows five LTCP sources with same RTT sharing
the same bottleneck link. Both the types (A and B) of losses occur in the network.
We observe that LTCP source with same RTT’s achieve the same throughput. Similar
behavior is observed for lower RTTs also. Hence we conclude LTCP adheres to the

behavior of TCP in terms of fair share of bandwidth among peers.

4.7 Conclusions

In this chapter, we have proposed a modification to the existing TCP algorithm to
improve end-to-end performance in heterogeneous networks, which may be completely
wired or entirely wireless or a combination of both. LTCP attempts to learn the reason
for packet loss in the network and then acts accordingly. Such learning can also be

applied to incorporate various other networks like DiffServ networks, etc.

4.8 Future Directions - some thoughts on improv-

ing the performance of TCP

In this section, we throw light on some of our thoughts regarding improving TCP’s

performance in general and over Differentiated Services networks in particular. We

26

plan to achieve the above by modifying suitably the algorithms currently used in any

of the following ways:

1. The Explicit Congestion Notification (ECN) [33, 34] scheme can be extended

by reserving another bit for it. The additional bit may be used to indicate any

of the following:

()

IN/OUT bit: The additional bit can be used to indicate whether the packet
dropped/marked was an IN/OUT packet. The TCP at the hosts can then
reduce their window size appropriately. They should not make drastic

reduction in the window if the packet marked was an OUT packet.

Retransmitted packets: A loss of retransmitted (i.e., packets that have been
lost once before) packets severely deteriorates the throughput of the TCP
source and may lead to severe under-utilization of the link. This is one of
the major problems that TCP is currently facing since the TCP window is
reduced to one in such a scenario. A mechanism by which a source would
mark a retransmitted packet and an appropriate AQM policy at the router
which will give preference to such packets will definitely help improve the

overall link utilization.

Slow Start, etc: If the source sends an indication when its in slow start,
or other conditions in which a unnecessary packet loss may prove very
costly, the AQM policy can take care of it and give such packets a higher
preference. It will also help us achieve better fairness for sources with
larger RTT’s.

2. The ingress routers currently use the token bucket scheme for marking TCP

traffic. We argue that since TCP reduces its window size upon a packet loss,

the packet shaper at the ingress router should take this fact into account before

marking the packet as OUT. The packet shaper should be aware of the feedback

action which will result in case of packet drop if it marks it as OUT. The ingress

router is also the most appropriate place to make changes from implementation

point of view. The later part of the report is exclusively devoted to improving

the performance of the token bucket at the ingress routers.

Bandwidth Allocatio
& Rate Control

In this chapter, we address the
following issues:
e Banawidth allocation
. . . . techniques & applications
The imperial authority symbolized S S ot
by a Scepter mechanism
e [ssues in allocating
bandwidth to TCP
aggregates
e Reasons for failure of the
classic token bucket
mechanism
e Scepfter, an altemate
algorithm for precise
bandwidih allocation for
TCP aggregates

Chapter 5

Bandwidth Allocation and Rate

Control

Managing Bandwidth still remains a largely unsolved issue. Lack of QoS guarantees
impairs human interaction in applications such as tele-conferencing, Internet phones,
video and audio streaming, etc.

The service provider would want ideally to give delay and jitter! guarantees to the
subscriber, simultaneously maintaining high utilization of its link resources. However
these type of delay and jitter sensitive flows form a very small fraction of Internet
traffic. As of today, most of the traffic in the Internet is carried by TCP and this
is where bandwidth allocation is most relevant. Consider an example of an ISP that
wishes to provide different customized bandwidth to its various customers. Some may
want 2Mbps, some other may require 1.75Mbps. Given that most of its customers
will have largely TCP traffic, the real challenge in front of the ISP is to allocate
and guarantee precisely the required bandwidth with minimum over provisioning of
resources. Giving guarantees and allocating bandwidth to TCP flows is a very difficult
problem due to the very nature of the TCP protocol. Adding access bandwidth may
not always be a good idea. The nature of TCP is to expand traffic flows until all of
the bandwidth is consumed. Therefore an increase in bandwidth does not solve the
problem of congestion, window drops, global synchronization and under utilization
of the link. Moreover, an increase in bandwidth may benefit the larger sources and
may not necessarily improve the performance of the smaller, less aggressive sources.

The ISP, therefore needs a tool which would give it more freedom and precision to

1Jitter is the variation in the latency experienced by different packets in the same stream.

o8

allocate bandwidth to both TCP as well as non TCP sources. It should, if necessary

be able to allocate additional bandwidth to exactly one aggregate of the many.

5.1 Token Bucket: Classic Bandwidth Allocation
Techniques and Applications

Arriving Tokens

Rate = p
/

!
I

Incoming Packets Outgoing Packets

Dropped Packets

Figure 5.1: The token bucket mechanism

Token Bucket, also known as Leaky Bucket (refer to Figure 5.1) is currently the
most widely used mechanism to allocate bandwidth. Though schedulers, classifiers
and many others play a crucial role in bandwidth provisioning, we will restrict our
focus only to token bucket in order to identify easily the effects of the proposed token
bucket mechanism. A token bucket flow is defined by two parameters (p, o), where p
denotes the rate at which the tokens enter the bucket which also corresponds roughly
to the long-term average rate allocated by the network and ¢ is the maximum bucket
size which also corresponds to the longest burst a source can send. A packet which
enters the system is allowed to go out only if it has tokens worth the number of bytes
in the packet. When the bucket overflows, excess incoming tokens are discarded. If

there are insufficient numbers of tokens in the bucket, then, one of the following may

29

happen:
e The packet is dropped.
e The packet is marked in a particular way.

e The packet may be kept in a buffer and transmitted later when sufficient number

of tokens are available.

For the purpose of discussion, let us assume that those packets which have insuffi-
cient number of tokens are dropped. We observe that the long term transmission rate
of the source is p which can sometimes deviate on a smaller time scale as dictated by
0. The number of bits transmitted in any interval of length ¢ is less than pt + o.

Given a source, say a video, we would like to come up with parameters p and o,

that best describe it such that no other descriptor has both a smaller p and o.

5.2 Motivation for Scepter

A change at the edge router requires minimal effort and investment as compared to
a change at the core routers or the transport protocol at the millions of individual
computer hosts. The current token bucket mechanism used to shape the traffic though
adequate for shaping non-responsive constant rate traffic fails to guarantee, even
the committed bandwidth, to responsive TCP flows. This is primarily because, the
current token bucket implementation allows a packet to pass through, if it conforms
to the service level agreements and drops it, if it exceeds the agreed upon rate. In the
presence of TCP aggregates, invariably the window sizes of individual sources keep
increasing to a point till it exceeds the limit and then the token bucket at the marker
starts dropping the incoming packets. The root cause of the problem is, that the TCP
sources at the end points are unable to distinguish, whether a packet was dropped
owing to congestion or due to exceeding the allocated bandwidth. In the later case,
dropping the window size drastically is totally unwarranted for. So, when the bucket
is empty and it starts dropping all incoming packets, most of the transmitting TCP
sources encounter packet loss as was explained in Section 1.2. The drastic reduction
in their individual window sizes and hence transmission rates of most of the individual
TCP flows in the aggregate disregarding the cause for packet drop incapacitates the

aggregate to send traffic even at the allocated rate. One solution to this could be

60

to let the source know the cause of packet loss, but this would require a change at
all end sources (Computers, etc) and in addition to the edge routers. This option,
though feasible, is not that practical. Instead we propose an alternate token bucket
marking mechanism which significantly reduces the number of packets dropped in an
aggregate by pre-emptively notifying the aggregates (not sources) in advance without
requiring any change in the source TCP protocol. Only a few TCP sources, which
are picked randomly, in the aggregate, drop their window sizes, thus facilitating the

aggregate to maintain its overall transmission rate up to the desired level.

5.3 The Idea: Keep the number of tokens in the

bucket constant

If somehow, we are able to maintain the number of tokens in the bucket for a given
aggregate at some constant level, it would imply that the number of tokens going in
the bucket is equal to number of tokens going out of the bucket. If the rate of flow
of tokens in the bucket corresponds to the allocated rate, then the network is giving
the aggregate exactly the bandwidth allocated to it. Though maintaining the token
level in the bucket constant is a trivial problem for non-responsive aggregates as one
can just drop the excess packets. The issue becomes more challenging for responsive
flows, such as TCP, which indeed constitute a bulk of today’s Internet traffic. As

explained

5.4 Impact

Token bucket, today is employed extensively in almost all types of bandwidth allo-
cation mechanisms used by Internet Service Providers (ISP) for data traffic, IP tele-
phony, video conferencing, metro access routers, etc. An improvement in it, would

therefore have consequential effects.

5.5 Scepter

Scepter aims to improve the performance of best-effort traffic by enabling aggregates

operate very close to their allocated bandwidth. We achieve our objectives by modi-

61

fying the token bucket of the traffic marker at the edge router.

Our algorithm guarantees TCP aggregates a pre-specified bandwidth over very
small time intervals unlike the present token bucket mechanism where it keeps fluc-
tuating and only an aggregate rate over a very long time interval is guaranteed.

The idea is to treat the bucket as a queue and then apply the various AQM strate-
gies for keeping the instantaneous queue stable in the context of bucket. Number of
bytes in the queue corresponds to the bucket size less the number of tokens in the
bucket. A full queue implies an empty token bucket and an empty queue implies a
bucket full of tokens. To guarantee a TCP aggregate a constant bandwidth through-
out, we must be able to maintain the token level in the bucket constant and put in
tokens in the bucket at a constant rate that correspond to the bandwidth allocated
to it. This ensures that the aggregate is constantly getting a rate equal to the rate
of flow of tokens in the bucket. A lot of work on AQM focuses on maintaining the
instantaneous queue constant. We take cue from some of these [5, 20] in designing
our algorithm. The algorithm essentially consists of two modules, the estimator and

the stabilizer.

5.5.1 Estimator

As was discussed in Chapter 2, NLMS is indeed able to predict the incoming traffic
quite accurately. In Scepter also, we use a similar algorithm to predict the incoming
traffic at a future instant of time based on which we will take a decision, whether or
not to allow the packet to pass through. We will predict the traffic at a future instant

in time at every packet arrival, exactly as we did in APACE.

5.5.2 Stabilizer

The purpose of this module is to keep the number of tokens in the bucket at a constant
level, so as to guarantee the allocated bandwidth to the source aggregate. We are
currently in the implementation stage of this module and are considering the following

options:

62

Probability of packet drop independent of target token level in the bucket

This module maintains the stability of the queue using a probability drop function
similar to that of APACE in Section 2.4. “mazx,”, as was explained in Chapter 2 is the
maximum probability with which an incoming packet can be dropped in anticipation
of congestion, given that there are sufficient number of tokens available in the bucket
for the same to be forwarded. This will lead to a stabilization of the bucket? at any
arbitrary value similar to the case in APACE. We believe that such an algorithm will
perform better, since the level at which the bucket remains stable is not very critical
to us (the level remaining constant is much more critical) and by not specifying the
target token level in the bucket, we end up providing more freedom to the algorithm

to adjust according to the traffic needs.

Probability of packet drop dependent on target token level in the bucket

This module maintains the stability of the queue using a simple controller that drops
packets in proportion to the difference between the target number of tokens and the
actual number of tokens in the bucket. Here, we try to keep the number of tokens in
the bucket at a pre-specified target level. We use the following equation to adaptively
vary the value of the packet dropping probability with the number of tokens in the
bucket:

mazx,,

T [Ttarget - Tcurrent + Tpredicted] (51)

p=
where,

p = Calculated packet loss probability.

max, = A constant less than 1.

B = Bucket size.

Tiarger = The target token level in the bucket at which we want the bucket to be
stable.

Tewrrent = Number of tokens in the bucket currently.

Tyredicted = Predicted number of tokens in the bucket at a future instant of time.

2By stabilization of the bucket, we mean that the number of tokens in the bucket remain constant.

63

5.6 Conclusions & Future Work

The algorithm is still in its implementation stages. Though intuitively it should
perform better than the classic token bucket, we are yet to provide with any factual
results supporting our claims. A detailed study on the performance of Scepter is an
area of future research. Scepter, if successful, can change the way in which bandwidth

is allocated and managed in the internet.

Conclusions &

Future Work

In this chapter, we explain the
following:
e Summary of the
contributions of the thesis
o APACE
o LTCP
o Scepter
s Directions for future work

It’s more like the future each day

Chapter 6
Conclusions and Future Work

In our efforts to combat the ill-effects of congestion, we have in this thesis suggested
three new algorithms. We now summarize the contributions and give directions for
future work on them.

In this thesis, we have presented a novel AQM scheme based on (predicted) in-
stantaneous queue length. We conclude that algorithms like NLMS can indeed be
used to predict the instantaneous queue length. The APACE scheme performs better
than existing AQM schemes and it adapts faster to changes in network conditions and
is able to keep the instantaneous queue stable. APACE gives higher link utilization, a
much lower packet loss rate and comparable delay as compared to PAQM in addition
to the instantaneous queue stability comparable to PAQM. In addition, the scheme
is able to achieve better operating points than all other existing schemes (in terms of
delay-link utilization or delay-loss trade-off) for both single and multiple bottleneck
links. The link utilization of APACE remains more or less constant at a high value
with change in its parameters in networks with multiple bottlenecks. The parameters
can thus be adjusted suitably to achieve a given delay and packet loss rate without
worrying much about link utilization. Moreover this can be achieved by varying just
one of its parameters ie., max,.

APACE with maz, being varied adaptively is expected give even better perfor-
mance and is an area of future research. One possibility is to vary max, in proportion
to the difference between the predicted queue and the target queue in order to keep
the the queue even more stable at a pre-defined level. There can be other alternate
ways to vary maz,, in order to enhance link utilization, packet delay and/or packet

loss in particular. Also, in the current version of the scheme, the prediction is made

65

at every packet arrival. A scenario where the number of packet arrivals is large might
lead to a lot of computational overhead. To overcome this problem, one might con-
sider a scheme where the prediction is done at periodic time intervals, though this
might come at the expense of lower prediction accuracy.

LTCP attempts to improve the end-to-end performance of TCP in heterogeneous
networks which is general and not specific to a particular type of network. LTCP is
able to learn the cause of packet loss in the network. It is fair and also TCP friendly.
How to adapt LTCP and apply it to other form of networks like DiffServ, etc is an
area of future study.

Though intuitively, Scepter should perform better than the classic token bucket,
it is still in its implementation stages. A detailed study of the algorithm is left as
a topic of future research. If successful, it could well be a major break through in

bandwidth allocation and management in the Internet.

66

Bibliography

1]

Van Jacobson, Michael J. Karels, “Congestion Avoidance and Control”, ACM
Computer Communication Review; Proceedings of ACM SIGCOM, August, 1988.
vol.18-4, pp. 314-329, 1988.

Sally Floyd and Van Jacobson, “Random Early Detection Gateways for Con-
gestion Avoidance”, ACM/IEEE Transactions on Networking, vol. 1, no. 4, pp.
397-413, August 1993.

Teunis J. Ott and T. V. Lakshman and Larry H. Wong, “’SRED: Stabilized
RED”, Proceedings of INFOCOM, pp. 1346-1355, 1999.

Srisankar Kunniyur and R. Srikant, “Analysis and Design of an Adaptive Virtual
Queue (AVQ) Algorithm for Active Queue Management”, Proceedings of ACM
SIGCOMM, pp. 123-134, August 2001.

Yuan Gao, Guanghui He, and Jennifer C. Hou, “On Exploiting Traffic Predictabil-
ity in Active Queue Management”, Proceedings of IEEE INFOCOM, 2002.

T. Bonald , M. May and J. Bolot, “Analytic Evaluation of RED Performance”,
Proceedings of IEEE INFOCOM, pp. 1415-1424, 2000.

Martin May, Jean Bolot, Christophe Diot and Bryan Lyles, “Reasons not to
deploy RED”, Seventh International Workshop on Quality of Service, June 1999.

Sally Floyd, “RED: Discussions of Setting Parameters”,
http://www.aciri.org/floyd/REDparameters.txt (Last accessed in May
2003.)

Van Jacobson, K. Nichols, and K. Poduri, “RED in a Different Light”,
www.cnaf.infn.it/"ferrari/papers/ispn/

red_light_9.30.pdf, September 1999 (Last accessed in June 2002.)

67

[10] H. Ohsaki and M. Murata, “Steady state Analysis of the RED Gateway: Sta-
bility, Transient Behaviour, and Parameter Setting”, IEICE Transcations on

Communications, vol. E85-B, vo. 1, January 2002.

[11] C. V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, “A Control Theo-
retic Analysis of RED”, Proceedings of IEEE INFOCOM, pp. 1510-1519, 2001.

[12] Wu-chang Feng, Dilip D. Kandlur, Debanjan Saha and Kang G. Shin, “A Self-
Configuring RED Gateway”, Proceedings of IEEE INFOCOM, pp. 1320-1328,
1999.

[13] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker, “Adaptive RED: An
Algorithm for Increasing the Robustness of RED’s Active Queue Management”,
www.icir.org/floyd/papers/adaptiveRed.pdf, August 2001 (Last accessed in
May 2003.)

[14] F Anjum, and L. Tassiulas, “Fair Bandwidth Sharing among Adaptive and Non-
Adaptive Flows in the Internet” Proceedings of IEEE INFOCOM, pp. 1412-1420,
1999.

[15] Don Ling, Robert Morris, “Dynamics of Random Early Detection” Proceedings
of ACM SIGCOMM, 1997.

[16] Wu-chang Feng and Dilip D. Kandlur and Debanjan Saha and Kang G. Shin,
“Stochastic Fair Blue: A Queue Management Algorithm for Enforcing Fairness”,
Proceedings of IEEFE INFOCOM, pp. 1520-1529, 2001.

[17] Rong Pan and Balaji Prabhakar and Konstantios Psounis, “CHOKE, A State-
less Active Queue Management Scheme for Approximating Fair Bandwidth Allo-
cation”, Proceedings of IEEE INFOCOM, pp. 942-951, 2000.

[18] Simon Haykin, Adaptive Filter Theory, Third Edition, Prentice-Hall, 1996.
[19] “Network SImulator”, http://www.isi.edu/nsnam/ns/,

[20] Abhishek Jain, Rahul Verma and Abhay Karandikar, “An Adaptive Pre-
diction based Approach for Congestion Estimation in Active Queue Man-
agement (APACE)”, Technical report, Department of FEE, IIT Bombay,

www.ee.iitb.ac.in/uma/~abhishek/research/apace.html, December 2002.

68

[21] G.Wright and W.R.Stevens, TCP/IP Illustrated, Volume 2:The Implementation,
Addison Wesley ,1995.

[22] W.C.Y.Lee, Mobile Communications Design Fundamentals, 2" Edition, John
Wiley ans Sons,1993.

[23] V.Tsaoussidis et al, “Energy/Throughput Tradeoffs of TCP Error Control
Strategies”, Proceedings of 5th IEEE Symposium Computer and Communications,
July 2000.

[24] Kevin Fall and Sally Floyd, “Simulation based Comparisons of Tahoe, Reno and
SACK TCP”, ACM Computer Communication Review, vol. 26, no.3, July 1996.

[25] M.Mathis and J.Madhvi, “Forward Acknowledgment: Refining TCP Congestion
Control”, Proceedings of ACM SIGCOMM, August 1996.

[26] Kostas Pentikousis, “TCP in Wired-cum-Wireless Environments”, IEEE Com-

munications Surveys, October 2000.

[27] S.Bradner, “Keywords for Use in RFCs to indicate Requirement Level”, BCP
14, RFC 2119, March 1997.

[28] R.Barden, “Requirements for Internet Hosts - Communication Levels”, STD 3,
RFC 1122, October 1989.

[29] M.Mathis, “The Ratehalving Algorithm fir TCP congestion Control”,
http://www.psc.edu/networking/rate_halving.html, April 2001 (Last ac-
cessed June 2003.)

[30] J.Hoe, “Startup Dynamics of TCP’s Congestion Control and Avoidance
Schemes”, Master’s Thesis, MIT 1995.

[31] Amit Aggarwal, Stefan Savage and Thomas Anderson, “Understanding the Per-
formance of TCP Pacing”, Proceedings of IEEE INFOCOM, pp. 1157-1165, 2000.

[32] M. Gerla, M. Y. Sanadidi, R. Wang, A. Zanella, C. Casetti and S. Mascolo
“TCP Westwood: Congestion Window Control Using Bandwidth Estimation”,
Proceedings of IEEE Globecom, vol. 3, pp. 1689-1702, 2001.

69

[33] K. Ramakrishnan and S. Floyd, “A Proposal to Add Explicit Congestion Noti-
fication (ECN) to IPv6 and to TCP”, Internet Draft draftkksjf -ecn-03.tzt, 1998.

[34] K. K. Ramakrishnan, Sally Floyd and D. Black, “The Addi-
tion of Explicit Congestion Notification to IP”, Internet Draft,
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-ecn-03.txt,
March 2001 (Last accessed in April 2003.)

[35] K.Pentikousis,H.Badr and B.Karmah, “TCP with ECN:Performance Gains for
Large TCP Transfers”, SBCS-TR-2000/01, Department of Computer Science,
SUNY at Stony Brook, March 2001.

[36] Jitendra Padhye, Victor Firoiu, Don Towsley, Jim Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation”, Proceedings of ACM
SIGCOMM, pp. 303-314, 1998.

70

