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Abstract

In a heterogeneous wireless network, a user can associate with any Radio Access Technol-

ogy (RAT) when there are multiple RATs available and can move seamlessly among them.

To handle the explosive growth of traffic in cellular network, the idea of mobile data traf-

fic offloading to Wireless Fidelity (WiFi) has been proposed. Today’s wireless networks

consist of a multitude of Radio Access Technologies (RATs), each being controlled by

individual controllers. The unprecedented growth of data traffic is driving academia and

standardization organizations towards the inter-working of various RATs which can cir-

cumvent the problem of suboptimal utilization of network-wide resources. Application of

Software Defined Networking (SDN) principles enables the control and management of

various RATs in a unified way.

In this thesis, we focus on mobile data offload assisted optimal association problem

in a heterogeneous network. The problem where we aim to maximize the total system

throughput is formulated within the framework of Markov Decision Process (MDP). An-

other problem where we aim to maximize the total system throughput subject to a con-

straint on the blocking probability of voice users is formulated as a Constrained Markov

Decision Process (CMDP). Relative Value Iteration Algorithm (RVIA) and gradient de-

scent algorithms are used to determine the optimal policy. In our model, we consider

the possibility of mobile data user offload from one RAT to another during the associa-

tion or the departure of a user. Optimality of the threshold policy is derived. Based on

the threshold based optimal policies, we propose two computationally efficient algorithms

for RAT selection in a Fourth Generation (4G) Long Term Evaluation (LTE)-WiFi Het-

erogeneous Network (HetNet) and conduct extensive simulations in Network Simulator-3

(ns-3) to compare their performance with existing RAT selection algorithms. Simulation

results indicate that algorithms proposed by us perform better than the other schemes
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in improving different system metrics like the total system throughput and the blocking

probability of voice users.

However, these algorithms require the knowledge of the statistics of the arrival pro-

cesses of voice and data users. To address this, an online algorithm for optimal RAT

selection is proposed based on a RVIA centric Q-learning approach. The proposed algo-

rithm can be implemented without any explicit knowledge of the arrival processes of voice

and data users. Simulation results are presented to exhibit the convergence behavior of

the proposed scheme to the optimal policy.

Although the convergence to optimality is guaranteed, this learning scheme need to

iteratively learn the value functions for all state-action pairs, thus possessing large memory

requirement. Additionally, due to the associated exploration mechanism, the convergence

rate is slow, especially under a large state space. To address this issue, we propose a

Post-Decision State (PDS) learning algorithm which speeds up the learning process by

removing the requirement of action exploration mechanism in the Q-learning algorithm.

Furthermore, the PDS learning algorithm has a lower space complexity than that of the

Q-learning algorithm because instead of the state-action pair values we need to store only

the value function associated with the states. We prove that the PDS learning algorithm

indeed converges to the optimality. ns-3 simulation results are presented to demonstrate

the convergence behaviors of Q-learning and PDS learning algorithms.

However, the convergence speed and storage complexity of Q-learning and PDS learn-

ing algorithms can be further improved if the underlying threshold structure can be ex-

ploited while learning. Therefore, we propose a structure-aware online learning algorithm

for RAT selection which reduces the feasible policy space, thereby offering lesser storage

and computational complexity and faster convergence. We prove that the proposed algo-

rithm converges to the optimal policy. We present simulation results to demonstrate how

the knowledge of structural properties affect the convergence speed, when compared to

traditional learning schemes.

RAT selection solutions lack the consideration of practical network parameters such

as channel states of users, control signaling overheads associated with mobile data offload-

ing. We consider a network where users of different priorities are present. To take into

account the practical network aspects, we consider the problem of optimal RAT selection
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to maximize the total system throughput subject to constraints on the high priority user

blocking probability and the low priority user offloading probability and formulate the

problem as a CMDP. We reduce the dimensionality of the action space by eliminating

the provably sub-optimal actions. Moreover, to address the curse of dimensionality and

the curse of modeling associated with the computation of optimal policy, we propose two

low-complexity online heuristic algorithms for RAT selection.

To conduct experiments, we develop an ns-3 based evaluation platform based on

an SDN based network architecture for the control and management of LTE and WiFi

networks. We restructure the existing modules of ns-3 towards this purpose. Experimen-

tal results demonstrate that the proposed algorithms provide near-optimal performance

and outperform traditional RAT selection algorithms under realistic network scenarios

including user mobility.
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Chapter 1

Introduction

Recent years have witnessed an ever-increasing demand for high data rate in cellular

mobile networks. The key factors affecting the demand are increase in the number of

always-connected devices such as smartphones and tablets, large scale deployment of

machine-to-machine devices and widespread use of entertainment services like YouTube,

Apples iTunes. Worldwide monthly mobile data traffic stood at 19 ExaBytes (EBs) by

the end of 2018. However, according to the industry forecast, monthly mobile data traffic

is expected to exceed 49 EBs by 2021 [1, 2]. Figure in [2] also reveals that the monthly

consumption of data is expected to increase consistently across the globe over the years.

As a result of this increase in data traffic, the data user density is continuously growing.

This is one of the biggest challenges to be handled in upcoming next generation wireless

networks.

High data user density in small geographical regions may produce temporal and spa-

tial variations in traffic pattern . The role of the current Fourth Generation (4G) network

is to meet the requirement of spectral efficiency for such a dense geographical region. This

necessitates additional spectral efficiency improvement mechanisms for mobile data traf-

fic. However, the Quality of Service (QoS) requirements of different applications to ensure

satisfactory performances are diverse. Real time applications such as Voice over Internet

Protocol (VoIP), video streaming generally have strict delay and rate requirements [3].

On the other hand, non-real time applications such as file downloads do not have any

strict data rate or delay requirement. However, file transfer applications cannot tolerate

any packet loss. The goal of the next generation wireless network is to meet these diverse

1
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QoS requirements of different applications while improving the spectral efficiency.

Several techniques have been suggested in the literature to mitigate the issue of

handling an enormous amount of mobile data traffic, while satisfying QoS requirements of

users in the 4G network. Due to the scarcity of the spectrum and the gradual saturation of

physical layer based solutions, network layer based approaches for improving the spectral

efficiency of cellular networks are of more interest. The idea of Heterogeneous Network

(HetNet) is a network layer based concept, where an overlay of low power small cells

(pico cells and femto cells), Wireless Local Area Network (WLAN) (popularly known as

Wireless Fidelity (WiFi) network) Access Points (APs) is performed on existing Third

Generation Partnership Project (3GPP) [4] 4G Long Term Evolution (LTE) [5] macro

Base Stations (BSs). As demonstrated in Fig. 1.1, while the macro BSs ensure wide

coverage area, small cells and WiFi APs are intended to serve high density geographical

regions. Upcoming Fifth Generation (5G) [6,7] cellular system aims to provide high data

rate, reduced latency and low energy consumption along with a support for higher system

capacity. It also targets to provide connectivity to a large number of devices. To cater to

these various needs, it is expected that the future wireless system will be a conglomeration

of a large number of Radio Access Technologies (RATs). Therefore, with the advent of

future 5G system, HetNets are envisioned to contain a wide variety of RATs with different

characteristics.

In a typical HetNet comprising multiple RATs, users can be associated with any

RAT. Moreover, after association, based on certain conditions, some users’ data can be

steered to any other RAT, alleviating the cellular network load and improving the overall

user experience. WiFi is a suitable candidate for steering traffic in a 4G LTE HetNet

because it operates on the unlicensed spectrum, and the deployment cum operating cost

of WiFi is low. The mechanism of steering the LTE data traffic to WiFi is known as

LTE-WiFi mobile data offloading. The idea of mobile data offloading from LTE to WiFi

has been standardized in 3GPP Release 12 specifications [8].

We consider a 3GPP LTE cellular network with an overlay of IEEE 802.11 based

WiFi APs for our analysis. In Sections 1.1 and 1.2, we provide overview of LTE and WiFi,

respectively. A description of architectures and mechanisms for the interworking between

LTE and WiFi networks in an LTE-WiFi HetNet is provided in Section 1.3. A discussion
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Figure 1.1: A heterogeneous network comprising various RATs.

on the main challenges involved in the RAT selection in HetNets is provided in Section

1.4. In the subsequent sections, we highlight the motivation and main contributions of

the thesis followed by the organization of the thesis.

1.1 Overview of Long Term Evolution (LTE)

LTE [5] technology emerges as a part of 4G wireless communication which succeeds the

older Second Generation (2G) and Third Generation (3G) technologies. Contrary to the

older generations of wireless technologies, LTE introduces an all Internet Protocol (IP)

packet core network for voice and data services. Furthermore, LTE provides significantly

higher data rate and better coverage compared to 2G and 3G technologies. LTE also

facilitates seamless mobility of users, reduced latency and flexible network deployment.

The physical layer of LTE uses Orthogonal Frequency Division Multiplexing (OFDM)

to counteract the frequency selective fading. OFDM divides the wide-band frequency-

selective fading channel into a number of narrow-band subchannels (known as sub-carriers).

Since each sub-carrier is narrow-band, the transmission in each sub-carrier experiences

flat fading. Thus, the system is able to counteract multipath fading [9], thereby greatly

enhancing the performance compared to older generation networks.

Using OFDM, multiple users can be assigned different groups of sub-carriers in a

single time slot. This multiple access scheme where multiple users can be scheduled



4 Chapter 1. Introduction

Time

Resource
block

12
 s

ub
-c

ar
rie

rs
Fr

eq
ue

nc
y

Slot 0 Slot 1 Slot 18 Slot 19 .        .                .        . 

1 ms subframe 

One radio frame=10 ms 

Figure 1.2: Resource block structure in LTE.

using OFDM is known as Orthogonal Frequency-Division Multiple Access (OFDMA).

Due to the time varying and frequency-selective nature of the wireless channels, the fading

characteristics of different sub-carriers are different. Therefore, in OFDMA, each user is

allocated the set of sub-carriers which provides the highest throughput. This results in

multi-user diversity which improves the spectral efficiency of the system [9,10].

In LTE, the allocated radio resources may be defined in terms of time, space, fre-

quency or a combination of them. The space dimension comes into picture when multiple

antennas are present in the system. For a given antenna, resources can be defined in

terms of time and frequency. The time-frequency resource structure is illustrated in Fig.

1.2. The length of a radio frame is 10 ms. A radio frame is divided into ten subframes.

Each subframe consists of 2 time slots, each of which has a duration of 0.5 ms. The num-

ber of OFDM symbols belonging to each slot depends on the sub-carrier spacing and the

length of a cyclic prefix [9]. Each slot contains six or seven symbols. A Physical Resource

Block (PRB) is defined as a group of 12 sub-carriers, each having a bandwidth of 180
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Figure 1.3: Basic access mechanism in WiFi.

KHz with a sub-carrier spacing of 15 KHz over a single slot. The smallest resource unit

in LTE is known as a Resource Element (RE). An RE comprises one sub-carrier in one

slot. The unit of data transmission in LTE is known as transport block which refers to

the Protocol Data Unit (PDU) of the Medium Access Control (MAC) layer. Transport

blocks are moved from the MAC layer to the physical layer once every subframe (1 ms)

which is known as Transmission Time Interval (TTI).

1.2 Overview of Wireless Fidelity (WiFi)

WiFi is a non-cellular broadband wireless technology which has become popular due to

its low operating cost, higher data rate and easy extensibility [11, 12]. Developments in

WiFi technology are driven by IEEE 802.11 family of standards [13]. Table 1.1 provides

a comparison of various WiFi standards. The major components of 802.11 networks are

Table 1.1: Comparison of various WiFi standards.

WiFi Standard Maximum data rate Frequency of operation

802.11a 54 Mbps 5.8 GHz

802.11b 11 Mbps 2.4 GHz

802.11g 54 Mbps 2.4 GHz

802.11n 600 Mbps 2.4 GHz/ 5 GHz

802.11ac 3.4 Gbps 5 GHz

AP and Wireless Stations (STAs) which communicate with each other over the wireless

medium. The basic building block of a WiFi network is the Basic Service Set (BSS) which
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consists of a group of STAs communicating among each other over a basic service area [11].

In this thesis, we focus on an infrastructure BSS system [12] where all communications

between the STAs happen through the APs. Before the delivery of data to STAs, STAs

need to register or associate with the APs. Although association is a mandatory function,

IEEE 802.11 does not specify any particular implementation strategy.

IEEE 802.11 MAC uses a Carrier Sense Multiple Access/ Collision Avoidance (CS-

MA/CA) scheme to control the access to the wireless medium. The basic mechanism for

accessing the medium in CSMA/CA is Distributed Coordination Function (DCF). Be-

fore sending the data, the STAs and the APs sense the channel. If they detect that the

channel is idle, then they start sending the data. Retransmission of collided packets are

handled using exponential back-off rules. However, due to collision, wireless capacity is

wasted. DCF introduces two techniques for packet transmission, viz., two-way handshak-

ing (also known as basic access) and four-way handshaking techniques. In the basic access

technique, the receiver sends a positive acknowledgement after successfully receiving the

packet sent by the sender. In four-way handshaking, IEEE 802.11 uses the concept of

Request to Send (RTS) and Clear to Send (CTS) signals. The RTS/CTS mechanism is

designed to counteract the hidden terminal problem [11]. In this process, a wireless node

which intends to send data, initially sends an RTS signal. When the target node receives

the RTS signal, it sends a CTS signal to the source node. Other nodes which hear the

RTS/CTS signal remain silent. After the exchange of RTS and CTS signals is over, the

sender node can start transmitting data without any possibility of collision. However,

the RTS/CTS mechanism consumes a certain amount of wireless capacity and incurs an

additional latency before the data transfer starts. When the data frames are received by

the receiver, they must acknowledge the reception. For acknowledgement and RTS/CTS

signals, transmission can start after the Short Interframe Space (SIFS) [11] has elapsed.

Similarly, there is another timer called DCF Interframe Space (DIFS) which is the min-

imum idle time for contention-based transmissions. If an STA is free for a period which

is longer than DIFS, it may immediately access the wireless medium. The basic access

mechanism is demonstrated in Fig. 1.3 where two STAs (STA A and STA B) contend for

accessing the channel to transmit their respective data.

In the next section, we discuss the existing architectures and interworking aspects
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of an LTE-WiFi HetNet. Subsequently, we describe the prevalent issues in RAT selection

or user association in an LTE-WiFi HetNet. This will set the background for the rest

of the chapters in the thesis where we address the RAT selection problem in an LTE-

WiFi HetNet. Note that throughout the thesis, the terminologies “RAT selection” and

“association” are used interchangeably.

1.3 LTE-WiFi Heterogeneous Networks

In an LTE based HetNet, apart from LTE macro BSs, LTE small cells like picocells and

femtocells may be present. Moreover, as shown in Fig. 1.4, in an LTE-WiFi HetNet,

WiFi APs may be deployed in hotspot regions to support high data rate. LTE BSs and

WiFi APs are rolled out with different objectives in mind. While the cellular network

deployment is done primarily to handle mobility of User Equipments (UEs) and provide

QoS guarantees to users, WiFi APs are deployed with an objective of providing high data

rate to a set of static users without any QoS guarantee. Most of the modern smartphones

have a dedicated WiFi interface which motivates the operators to focus on the interworking

between LTE and WiFi. In an LTE-WiFi HetNet, based on certain conditions, data users

can be offloaded from LTE to WiFi and vice versa. This offers an interesting way to

achieve load balancing and is expected to improve the network performance as well as the

user satisfaction.

WiFiAP

WiFiAP

LTEBS

Figure 1.4: An LTE-WiFi HetNet.
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1.3.1 LTE-WiFi Interworking Architecture

3GPP technologies (including LTE) and WiFi are embedded in smartphones as two sepa-

rate interfaces. Specific IP flows can be routed to the WiFi path without forwarding them

through the 3GPP core network. Different architectures have been proposed in the litera-

ture for the integration of WiFi and LTE networks. The Interworking WLAN (I-WLAN)

architecture is defined in [8] as a part of 3GPP Release 6 [14] specifications. From the

3GPP perspective, the relationship between LTE and WiFi is coined as a trusted or a non-

trusted network [15]. The 3GPP Evolved Packet Core (EPC) specifies the interworking

between 3GPP and non-3GPP RATs for both trusted and non-trusted networks and sup-

ports inter-RAT handover. Interworking functionalities are defined in terms of network

discovery, RAT selection, traffic prioritization, user authentication, roaming capabilities,

QoS and seamless handover.

To facilitate the interworking between 3GPP and non-3GPP RATs, 3GPP proposes

an optional entity in EPC known as Access Network Discovery and Selection Function

(ANDSF). The main objective of ANDSF is to provide the best-connected services to the

mobile users. Based on the user preferences and the operator policies, ANDSF provides the

best RAT to the mobile users. ANDSF is always available to the mobile users irrespective

of which RAT it is associated with, provided the RATs are interconnected through the

EPC. While in roaming state, a user can access the ANDSF server of its home operator

and the ANDSF server of the visited network. If any conflict occurs, ANDSF server of

the visited network takes the precedence. The notions of visiting and home Public Land

Mobile Network (PLMN) are applicable only to cellular networks. Home PLMN is a

PLMN where the Mobile Country Code (MCC) and the Mobile Network Code (MNC) of

the PLMN identity match with the MCC and MNC of the International Mobile Subscriber

Identity (IMSI). A PLMN which is different from the home PLMN is called a visited

PLMN. The IP address of the ANDSF server can either be provided to the users by the

home operator or can be discovered by Domain Name System (DNS) or Dynamic Host

Configuration Protocol (DHCP) query.

In 3GPP Release 10, specifications are provided to support simultaneous connectivity

of UEs to 3GPP and non-3GPP accesses. This can be supported by one of the following

protocols:
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1. Multi-Access Packet Data Network (PDN) Connectivity (MAPCON):

MAPCON provides the ability to possess two different Access Point Names (APNs)

on cellular and non-3GPP accesses.

2. IP Flow Mobility (IFOM): IFOM enables a user to select an appropriate RAT

on a per-IP flow basis and move seamlessly between the RATs.

3. Non-seamless Offload: Non-seamless offload also allows us to select the RAT on a

per-IP flow basis. However, the RAT selection is done under the constraint that the

non-3GPP access does not go through the 3GPP EPC. Therefore, session continuity

is not supported.

Among all these approaches, IFOM is the most preferred approach as seamless offloading

can be supported without any service discontinuity.

1.3.2 Enhancements in WiFi

As a part of WiFi offloading, some enhancements have been made in WiFi as well to

integrate the WiFi access network in the mobile core network. IEEE 802.11u [16] is an

extension to the existing 802.11 standard which specifies the protocols for the interwork-

ing with other RATs. It defines the functionalities required for the support of network

discovery and selection by UEs, information transfer between different RATs and mecha-

nisms for the provision of emergency services. To this end, IEEE 802.11u provides several

extensions to the legacy MAC layer.

Apart from 802.11u, IEEE 802.11i is another set of standards for establishing a secure

and two-way authenticated channel between an STA and an AP before establishing the

actual connection. Support of WiFi Protected Access 2 (WPA2) is mandatory in devices

to enable this functionality.

WiFi Alliance and Wireless Broadband Alliance (WBA) introduce Hotspot 2.0 as a

WiFi functionality enhancement protocol. Hotspot 2.0 [17] is an enhancement to IEEE

802.11u. Hotspot 2.0 enables the STAs to automatically discover and connect to APs

having roaming agreement with the user’s home network.

Existing efforts towards the interworking between LTE and WiFi reveal that LTE-

WiFi interworking is a promising solution for handling the rapid growth of traffic in today’s
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network. However, for an efficient interworking, it is necessary that both these networks

are controlled and managed in an intelligent way so that the optimal performance can

be obtained. The arrival of a new user in the LTE-WiFi system triggers the need for

RAT selection. Also, the active users in different RATs may need to get offloaded to

other RATs based on different criteria. Therefore, efficient RAT selection and offloading

algorithms are required to improve the overall network performance.

1.4 Challenges in RAT Selection in HetNet

In a HetNet, a large number of different RATs can coexist. In such a setting, the choice

of an appropriate RAT for the association of incoming users is an important issue. The

selection of RAT plays an important role in improving different system-wide objective

functions such as throughput, delay. RAT selection decisions can be taken based on the

availability of resources and the QoS requirements of users. The key idea is to ensure that

all users are associated with the appropriate RAT so that the desired QoS can be met. A

RAT selection algorithm which ensures this, may need to take into account various factors

such as loading conditions of the RATs, signal strengths received from individual RATs.

In existing networks, RAT selection decisions are taken by individual network elements

based on simple criteria such as received signal strength at the user. However, when we

consider a HetNet where WiFi APs are overlaid on LTE BSs, the existing association

scheme may not perform well. This is because the existing association scheme dictates

that whenever a user is in the vicinity of a WiFi AP, it always gets associated with the

WiFi AP. This may cause serious overloading at the WiFi AP, causing a degradation in

the overall network performance. Therefore, while choosing association decisions in an

LTE-WiFi HetNet, one needs to carefully consider various network parameters of both

the RATs so that improved system performance can be obtained.

RAT selection decisions can be taken either at the user side [18–24] or at the network

side [25–39]. In user-initiated RAT selection schemes, there is no cooperation between

LTE and WiFi networks, and users decide which RAT should be selected based on certain

criteria. As users individually perform RAT selection decisions, each user makes a selfish

decision so as to maximize its own utility function. Hence, user-initiated RAT selection
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schemes may not provide the globally optimal solution. This necessitates the need of a

network-initiated RAT selection algorithm which aims to optimize the overall network

performance rather than optimizing individual user utilities. Furthermore, in terms of

overall network performance, network-initiated approaches exhibit significant performance

improvement over user-initiated solutions [40].

User-initiated solutions are essentially distributed in nature and therefore, require

computing individual utilities which may have low computational burden. Since the

network-initiated solutions need to take into account network parameters of various RATs,

they may be computationally inefficient compared to user-initiated solutions. Moreover,

centralized computations in network-initiated solutions may require the exchange of RAT-

specific information with a centralized entity. This requires additional signaling exchanges

between the LTE BS/WiFi AP and the centralized entity, thereby incurring an additional

delay in RAT selection. On the other hand, since in distributed RAT selection mechanisms

each user takes their individual decisions, information exchange across various RATs may

not be required. However, unlike user-initiated approaches, network-initiated approaches

for RAT selection provide a way for the overall system optimization. Therefore, in this

thesis, we target to investigate different network-initiated RAT selection techniques for

the optimization of system-wide QoS metrics like total system throughput, blocking prob-

ability.

For an efficient interworking between LTE and WiFi, it may be necessary to develop

a unified framework which can control and manage these RATs together. With the up-

coming 5G [6,7] network, future wireless networks are expected to be a mixture of a variety

of RATs. Therefore, the need for a unified framework becomes even more pronounced.

Presence of a unified framework allows us to possess a global view of different RATs. In

the absence of a global view, as observed in today’s network, the utilization of network

resources becomes suboptimal. However, optimal performance can be achieved if the

RAT selection functionality is controlled and managed within a unified framework. The

concept of Software Defined Networking (SDN) [41–43] may be instrumental in achieving

the unified control and management of various RATs. The basic idea behind SDN is the

split of control and data plane elements and functionalities in a network. Using SDN,

the control plane functionalities can be aggregated by decoupling them from the network
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elements of LTE and WiFi. Since the control plane has a global view of the network, this

approach allows us to design the RAT selection algorithms in an optimal manner.

1.5 Motivation for the Thesis

Having introduced the challenges associated with the RAT selection in an LTE-WiFi

HetNet, we now set out to study four different aspects which may be important in devising

network-initiated RAT selection strategies. We consider an LTE-WiFi network where

different types of users are present. Users can be classified into various types depending

on several factors such as type of application, priority.

While designing association schemes, generally we target to optimize different system

metrics depending on our requirements. Total system throughput is an important system

parameter from a network operator’s perspective since the throughput experienced by

the data users may have a significant impact on the profit and customer base of the

operator. Therefore, we consider the maximization of the total system throughput as

the optimization goal. Existing literature on user association focuses on devising RAT

selection strategies which specify which RAT should an incoming user be associated with.

However, in practice, the system may be dynamic in nature. In other words, users may

arrive and depart from the system at any point in time. While associating a user to a

RAT, one may choose to offload an existing user from the RAT to another RAT. This may

result in a better system performance than that of the association of the user without any

consideration of offloading. Similarly, after the initial association, if a user departs from

the system, it is necessary to investigate whether offloading of an existing user can result

in a better system utilization.

The second aspect which influences the RAT selection strategy while optimizing the

total system throughput is related to the blocking probability of users. Consider a system

where voice and data users are present. Voice users generally require QoS guarantees

which can be obtained by associating them with LTE. When we maximize the total

system throughput, data users are preferably admitted in the system because usually

their contribution in terms of throughput is more than that of voice users. Since voice

and data users share resources in LTE, this may result in excessive blocking of voice
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users. This causes an increase in the blocking probability of voice users. Thus, when we

aim to maximize the total system throughput, it is important to consider a constraint on

the voice user blocking probability. We address this trade-off while designing association

algorithms in an LTE-WiFi HetNet.

The third aspect that affects a RAT selection decision is the channel condition of

the users which is an indicator of the quality of signals received from the LTE BS/ WiFi

AP. The channel conditions of different users in a HetNet may be different. The number

of resource blocks consumed by a user is a function of the channel condition of the user.

If there is an arrival or a departure of user, then channel condition of the user may also

play a role in the choice of a user for offloading. For example, if a user departs from LTE

and we decide to offload a user from WiFi to LTE, it may be better to choose a user with

‘good’ channel condition in LTE rather than choosing one with ‘bad’ channel.

The fourth aspect which is important from the RAT selection perspective while aim-

ing to maximize the total system throughput subject to a blocking probability constraint

is the offloading probability of users (i.e., fraction of offloaded traffic). In the consid-

ered offloading-assisted association problem where we aim to maximize the total system

throughput subject to a blocking probability constraint, it may happen that a user is of-

floaded repeatedly from one RAT to another within a short time interval. This behavior

is undesirable as this may cause a lot of control signaling traffic in the backhaul, resulting

in a congestion in the core network. Therefore, it is necessary to consider a constraint on

the offloading probability of users so that the amount of backhaul traffic can be restricted.

In this thesis, apart from the tradeoff between the total system throughput and the block-

ing probability, we also address the trade-off involving the total system throughput, the

blocking probability of users and the offloading probability of users.

These problems can be formulated as control problems where we aim to obtain the

optimal association strategy for users. A well-known approach of solving such problems is

formulating the problem as a Markov Decision Process (MDP) and then solve them using

Dynamic Programming (DP) methods. However, this approach is associated with the

curse of dimensionality, i.e., the computation of the optimal policy becomes intractable,

when the state space is large. It so turns out that, in our problem, the optimal policy

possesses a provably threshold structure. To be precise, the optimal policy dictates that
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one RAT selection strategy is preferred over all other strategies upto a certain threshold

on some system parameters. Beyond the threshold, some other strategy is preferred.

Inspired by the existence of the threshold structure, we design computationally efficient

and storage-efficient RAT selection algorithms.

There is another issue which is prevalent in DP based methods of computing the

optimal policy. These methods require the knowledge of the transition probabilities as-

sociated with the underlying Markov chain in order to compute the optimal policy. The

knowledge of the transition probabilities in turn requires the knowledge of the system

model, i.e., statistical properties of the arrival processes of users, which may be difficult

to obtain in reality. This is known as the curse of modeling. To overcome this difficulty,

suitable assumptions on the arrival processes can be made. However, the performance

of the modeled system may be far from optimality and is governed by the accuracy of

modeling. This provides us the motivation to design RAT selection algorithms that do

not need the knowledge of the statistics of the arrival processes of users. To this end, we

design online RAT selection schemes which converge to the optimality without requiring

the knowledge of the statistics of the arrival rates of users. This is achieved by using

Reinforcement Learning (RL) and Stochastic Approximation (SA) frameworks.

Furthermore, if the knowledge of the threshold based optimal policy is incorporated

in the RL framework, it may result in faster convergence to the optimal policy than tradi-

tional learning algorithms which do not possess the knowledge of the threshold structures.

We propose a computationally efficient online RAT selection algorithm which exploits the

knowledge regarding the existence of threshold based optimal policy while learning.

The RAT selection solutions proposed in this thesis are suitable for implementation

within an SDN framework. We implement low complexity RAT selection algorithms

within a practical SDN based evaluation platform developed using Network Simulator-3

(ns-3) [44].

Note that although the RAT selection solutions in this thesis are developed for an

LTE-WiFi HetNet, the framework considered by us is generic and can be extended easily

to include other RATs as well.
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1.6 Contributions and Organization of the Thesis

In this section, we highlight some of the contributions of the thesis. We organize the thesis

into eight chapters. In Chapter 2, we present a review of related literature. Chapters 3-7

describe our contributions in this thesis. The chapter-wise contributions are described

below.

• In Chapter 3, we consider the optimal association problem in an LTE-WiFi HetNet

comprising voice and data users. We determine the optimal RAT selection policy

which targets to maximize the total throughput of the system. We also determine

the optimal policy which maximizes the total throughput of the system subject to

a constraint on the voice user blocking probability. Offloading of data users can

be performed at the time of association and departure of users. While there are

numerous approaches for RAT selection in a HetNet, no other work in the liter-

ature has considered the trade-off between the total system throughput and the

blocking probability of voice users for an LTE-WiFi HetNet within an optimization

framework. The considered problems are formulated as an MDP and a Constrained

Markov Decision Process (CMDP) problem, respectively. The threshold structure

of the optimal policy is derived analytically. We propose RAT selection algorithms

based on the derived optimality of threshold policies. We demonstrate through anal-

ysis that the proposed algorithms provide significant reductions in computational

and storage complexities compared to traditional DP methods. We conduct ns-3

simulations to compare the performance of the proposed algorithms with those of

existing RAT selection algorithms in the literature.

• In Chapter 4, we consider an extension of the RAT selection framework developed

in Chapter 3. Although the algorithms proposed in Chapter 3 provide reductions

in computational and storage complexities compared to traditional algorithms, they

are not free from the curse of modeling. To address this issue, in Chapter 4, we

propose two online learning algorithms for RAT selection which iteratively compute

the optimal policy. The proposed algorithms can be implemented without any ex-

plicit knowledge of the statistics of the arrival processes of voice and data users,

utilizing the framework of SA. The first RAT selection algorithm is based on the
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traditional Q-learning based approach [45]. The proposed approach is based on

an online implementation of Relative Value Iteration Algorithm (RVIA) which is a

well-known algorithm for solving MDP problems. The second RAT selection algo-

rithm is based on the reformulation of RVIA by introducing the notion of a virtual

state called post-decision state. We prove that the proposed algorithm converges

asymptotically to the optimal policy. Moreover, the proposed algorithm provides

faster convergence and lower space complexity than Q-learning algorithm. ns-3 sim-

ulation results are presented to demonstrate the convergence behaviors of both the

algorithms.

• Convergence speeds of the algorithms proposed in Chapter 4 can be further enhanced

if the underlying threshold structure (as investigated in Chapter 3) of the optimal

policy can be exploited. In Chapter 5, we propose a novel structure-aware learning

algorithm for RAT selection. Although there are existing learning approaches for

RAT selection in the literature, the idea of exploitation of the threshold structure

in the learning framework has not been considered in the literature before. The

proposed algorithm considers the threshold as a parameter and updates it itera-

tively in the RL framework. We prove that the proposed algorithm converges to the

globally optimal threshold policy. The structure-aware learning algorithm provides

lower computational and space complexities than those of the learning algorithms

proposed in Chapter 4. Simulation results indicate that the proposed algorithm

converges to a near-optimal solution after a reasonable number of iterations. More-

over, simulations under realistic scenarios demonstrate that the proposed algorithm

outperforms state-of-the-art RAT selection algorithms.

• In Chapter 6, we consider an extension of the model considered in Chapters 3, 4 and

5. We consider an LTE-WiFi system where users of multiple priorities are present.

Unlike the previous chapters, while maximizing the total system throughput subject

to a blocking probability constraint, we consider another constraint on the offload-

ing probability of low priority users. In Chapter 6, we also investigate the role of

the channel states of users in RAT selection. The considered problem is modeled

as a CMDP problem. We reduce the dimensionality of the action space by proving

the suboptimality of different actions in various states. To address the curse of di-
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mensionality and the curse of modeling, we propose two low-complexity online RAT

selection algorithms. Although the proposed algorithms are greedy in nature, they

satisfy the constraints associated with the problem. We also provide a comparison

of storage and computational complexities of the association algorithms.

• In Chapter 7, we implement the association algorithms (proposed in Chapter 6) on

an SDN-based evaluation platform. To conduct simulations, we propose an LTE-

WiFi network architecture based on the paradigm of SDN. In the proposed archi-

tecture, the radio resource management related decisions are unified in an SDN con-

troller. We develop the SDN-based evaluation platform according to the proposed

LTE-WiFi network architecture by restructuring the existing modules of ns-3. The

proposed algorithms are implemented on the platform. Simulation results demon-

strate that the performances of the algorithms are close to optimal. We also propose

modifications to the proposed algorithms so that they can function well in the pres-

ence of user mobility. Performances of the proposed algorithms are compared with

other state-of-the-art algorithms under realistic network scenarios.

We conclude along with possible directions for future work in Chapter 8. We include three

appendices in the thesis. In the interest of preserving the flow of the thesis, some of the

proofs are presented in the first appendix. The second appendix contains a generalized

framework of the structure-aware learning algorithm proposed in Chapter 5 which can

be applied to any general MDP problem where the optimal policy has a threshold struc-

ture. To make the thesis self-contained, the third appendix presents existing approaches

in the literature on Markov Decision Process, Reinforcement Learning and Stochastic

Approximation.





Chapter 2

RAT Selection in HetNets:

Perspectives and Open Research

Challenges

As pointed out in the previous chapter, traditional RAT selection techniques, as present

in today’s network, do not perform well in HetNets. Therefore, one requires to carefully

investigate how RAT-specific characteristics can be exploited to devise efficient RAT se-

lection techniques in HetNets. In this chapter, we present some existing efforts in the

literature towards RAT selection in HetNets. As discussed in the previous chapter, of-

floading of data users from LTE to WiFi may play a major role in improving the network

performance, and it is important to exploit the offloading opportunities which arise due

to arrivals and departures of users. Accordingly, we review various LTE-WiFi offloading

solutions proposed in the literature. In this thesis, we focus on network-initiated RAT

selection and offloading solutions as they provide a framework for system-wide optimiza-

tion due to the presence of a global view of the network. With the emergence of the SDN

paradigm, unification of control and management procedures of various RATs which offers

a global view of the entire network, is facilitated. Hence, in this chapter, we also present

state-of-the-art techniques in RAT selection and offloading in SDN-based LTE-WiFi net-

works. Towards the end of the chapter, we discuss some key open issues in the literature

which form the motivation for our investigation in rest of the thesis.
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2.1 RAT Selection in Heterogeneous Networks

Existing RAT selection solutions in HetNets can be broadly classified into two categories,

viz., user-initiated [18–24, 46, 47] and network-initiated [25–39, 48] solutions. While a

subset of these works focus on heuristic based approaches, rest of the works focus on op-

timization based approaches aiming to optimize different system metrics such as resource

utilization, generated revenue and QoSs of users.

2.1.1 User-initiated RAT Selection

Existing user-initiated RAT selection schemes take into account various factors such as

Signal-to-Noise Ratio (SNR), load information and resource utilization. In [24], a user-

initiated RAT selection algorithm based on SNR and loading information of individual

RATs with the adaptation of hysteresis mechanism, is considered for an LTE-WiFi Het-

Net. The performance of this scheme is compared against network-initiated optimized

cell-range extension schemes [5] to steer users to other RATs. In [19], a distributed RAT

selection algorithm is proposed for a hybrid WLAN based on the distance and the peak

rate obtained from different APs. The problem where each user selfishly chooses the

RAT with an objective of maximizing the individual throughput, is considered in [20]

and formulated as a non-cooperative game. In [18], the authors propose a user-initiated

RAT selection algorithm in an LTE-WiFi HetNet. The proposed algorithm addresses the

trade-off between resource utilization and QoS. The authors in [46] propose a distributed

association scheme which maximizes the network utility subject to constraints on user

requirements. The proposed scheme is based on the utility obtained from past associa-

tions of the user. In [47], a low complexity RAT selection algorithm is proposed for an

LTE network comprising macro, pico and femto cells. The proposed algorithm achieves

a near-optimal performance with a theoretical guarantee on the performance. Moreover,

the authors extend their proposed scheme to the cell range extension technique so that it

can be implemented without much changes in the existing system.

In user-initiated schemes, since each user makes an individual selfish decision to

maximize its own utility function, these approaches may not result in a globally optimum

solution. Therefore, there is a need for a unified framework having a global view of both
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LTE and WiFi networks so that RAT selection decisions can be taken by considering the

parameters of both RATs. In a network-initiated approach, instead of optimizing individ-

ual utilities, total system performance can be optimized based on operators’ requirements.

2.1.2 Network-initiated RAT Selection

In this subsection, we review some representative network-initiated RAT selection ap-

proaches. Few heuristic-based RAT selection schemes are considered in [28–31]. While

the algorithm proposed in [30] prefers WiFi over cellular network regardless of the service

type, the one proposed in [31] prefers cellular RAT for voice users and WiFi for data

users. In [28], a simple admission control scheme is described inside a cellular-WiFi sys-

tem to improve the support for voice and data services. The objective is to study how the

resource utilization varies with the admission parameters and the impact of user mobility

and traffic properties on admission parameters. The authors in [28] devise schemes where

admission and rate control strategies are applied to limit the WiFi traffic, so that WiFi

can work in the most efficient manner.

There are several network-initiated RAT selection schemes [25, 26, 32–39, 49] which

follow the optimization approach. In [38], the optimal RAT selection problem is addressed

in a Global System for Mobile Communications (GSM)- Universal Mobile Telecommuni-

cations System (UMTS) HetNet with aims of optimizing different objective functions like

throughput, blocking probability using the formalism of MDP. Since the associated pol-

icy iteration algorithm to solve the problem scales exponentially as the system size, the

authors propose a computationally efficient heuristic algorithm which prefers UMTS for

voice users and GSM for data users. In [39], the authors consider the sum of logarithms

of throughputs obtained from different associations, and the association which results in

maximum value for this sum is chosen among STAs and APs. However, the authors do not

take into account user arrivals and departures. In [32], an optimal client-AP association

problem in a WLAN is considered within the framework of continuous time MDP, and

user arrival/departure is considered as a feasible decision epoch. Another RAT selection

problem in an LTE-WiFi HetNet where two user profiles are present, is considered in [34].

LTE is always preferred by the high-priority users. Only a portion of LTE resources can be

shared with the low-priority users. The key objective is to maximize the generated revenue
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from an operator’s perspective to obtain the optimal partitioning between the dedicated

and the shared resources. However, the proposed algorithm scales exponentially with the

system size. The authors in [25] propose distributed association algorithms by formu-

lating the association problem as a non-cooperative game and compare the performance

with the centralized globally optimal scheme. A context-aware RAT selection algorithm

is proposed in [26]. The proposed algorithm, which can be implemented on the user side,

albeit with network assistance, minimizes the signaling overhead as well base station com-

putations. A joint user association and interference management problem in a two-tier

HetNet is considered in [49]. The authors propose a computationally efficient method to

maximize the network utility under proportional fairness. However, this approach is not

adaptable to quick changes in network dynamics.

While the above solutions provide significant insight into RAT selection strategies,

only a few of them focus on computational efficiency. Therefore, practical implementations

of the proposed algorithms become infeasible. As discussed in Chapter 1, the curse of

dimensionality and the curse of modeling are the two main driving factors behind this

issue. In the first case, standard dynamic programming techniques to solve optimal RAT

selection and offloading problems become computationally inefficient and thus difficult to

implement when the state space is large. Although a few works propose computationally

efficient heuristics for RAT selection, the performances achieved by them are usually sub-

optimal. Due to the curse of modeling, we need to know the statistics of the arrival

processes of users which govern the transition probabilities between different states, in

order to determine the optimal policy. In practice, this may be difficult to obtain. Recent

studies [50–52] on the characteristics of cellular traffic reveal that although the voice traffic

can be predicted accurately, state-of-the-art prediction schemes for data traffic are not

very satisfactory. In the absence of knowledge regarding the statistics of system dynamics,

RL [35, 53, 54] based schemes, which can learn the optimal policy by trial-and-error and

can be implemented online, are adopted in the literature. The authors in [35] aim to

improve the network performance and the user experience jointly and formulate the RAT

selection problem as a Semi-Markov Decision Process (SMDP) problem. However, a Q-

learning [45] based approach is also adopted since the network parameters may be difficult

to obtain in reality. Although the asymptotic convergence to optimality is guaranteed, the
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scheme possesses a large memory requirement. Additionally, due to the exploration [45]

mechanism, the convergence rate is slow, especially under large state spaces.

2.2 LTE-WiFi Offloading

As a part of interworking between LTE and WiFi, offloading of data users [55,56] from one

RAT to another plays a vital role in the capacity improvement of the system. Due to the

high availability of WiFi APs in shopping malls, residential buildings, offices etc., they are

well-suited for offloading of high data rate services with limited mobility. Furthermore,

as modern smartphones, laptops and tablets support WiFi features, offloading of mobile

data traffic to WiFi APs has become a prominent and cost-effective solution to alleviate

the heavily overloaded cellular network. Different LTE-WiFi offloading solutions [21–23,

27, 53, 57–63] have been proposed in the literature. Similar to the case of RAT selection,

offloading decisions can be user-initiated or network-initiated in nature.

2.2.1 User-initiated Offloading Techniques

Based on the time of offloading, user-initiated offloading can be divided into two types,

viz., on-the-spot offloading and delayed offloading. Performance improvement achieved

by on-the-spot offloading [57] is analyzed in [21]. The basic idea behind on-the-spot

offloading is to steer the data users to WiFi whenever WiFi network is available. On the

contrary, delayed offloading [21] waits for a certain time interval before using the cellular

network, once the user is out of WiFi AP coverage. This is done to avoid the “ping-pong”

effect, where one data user repeatedly goes out and comes inside the coverage area of

WiFi APs within a short span of time. In [22], offloading efficiencies, i.e., the ratios of

the offloaded traffic to the total traffic, of on-the-spot and delayed offloading are derived.

In [59], the authors consider the trade-off between the cost and the delay involved in

opportunistic WiFi offloading and propose an adaptive strategy to maximize the user

satisfaction. In [23], opportunistic offloading is considered in the context of vehicular

users. The authors propose two game-based WiFi offloading schemes by predicting the

offloading opportunities and the access cost in the proposed framework.

In [58], the offloading decision is user-initiated and based on the combined informa-
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tion of signal strength and network load of LTE/WiFi. However, this algorithm, being a

greedy one, fails to converge to a globally optimum solution. Based on the locally available

information at the users and following a Q-learning approach, [53] undertakes distributed

traffic offloading decisions. Although this work addresses the curse of modeling associated

with the DP based approaches, the convergence behavior of the proposed algorithm is slow.

The work in [60] considers RAT selection and data offloading problem in an LTE-WiFi

HetNet by incorporating user mobility, WiFi availability and various pricing mechanisms

in the model. The considered problem which aims at providing congestion-aware network

selection, is formulated as a non-cooperative game.

2.2.2 Network-initiated Offloading Techniques

In network-initiated offloading techniques, decisions concerning when to offload and which

user(s) to offload, is taken at the network side. In [61], the authors propose a network-

initiated LTE-WiFi solution where data users are offloaded from LTE to WiFi when the

capacity requirement becomes more than the capacity of LTE. The proposed algorithm

uses a combination of load and SNR information to distribute the traffic between LTE

and WiFi. However, the proposed algorithm may not perform well when the traffic

load in the LTE network is of the order of the load in WiFi APs. The work in [62]

considers a generalized framework where the users in LTE can be offloaded to a small

cell or a WiFi AP. The authors propose offloading algorithms that achieve an appropriate

balance between the revenue obtained by serving the users and the fairness among the

users. In [63], the authors investigate the effectiveness of ANDSF server which assists

in data offloading in a 3GPP framework. The authors consider a scenario where the

users follow a policy and then report the observed performance to the cellular operator.

The cellular operator modifies the policy based on the report. The authors propose a

practical offloading scheme and compare the performance of the scheme with those of

other state-of-the-art algorithms. The network-initiated offloading approach described

in [27] computes the optimal fraction of traffic to be offloaded to WiFi to maximize the

per-user throughput of the system. The proposed offloading scheme in [27] performs

better than the on-the-spot offloading [57] scheme. However, this offloading approach

does not take into account a dynamic system where users arrive and depart at any point
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in time. Additionally, this model does not incorporate voice users inside an LTE network.

In the presence of voice users, blocking probability of voice users may play an important

role in choosing offloading decisions. We have addressed these limitations in our model

in Chapter 3.

Contrary to user-initiated offloading solutions where each user aims to maximize its

own utility, in network-based offloading mechanisms, overall network performance can be

optimized. In [40], the interworking between LTE and WiFi is considered in an LTE-WiFi

system. The authors consider user-centric and network-centric proportionally fair resource

allocation strategies. The analysis presented in the paper reveals that the network-centric

approach provides a better throughput than that of the user-initiated approach. However,

the network-initiated algorithm may be computationally more complex than the user-

initiated algorithm as the former needs to consider the parameters of various RATs while

taking decisions. Moreover, the network-initiated scheme may incur additional delay

because of the requirement of exchanging the RAT-specific information with a centralized

entity. On the contrary, the user-initiated scheme is distributed in nature, and hence, no

information exchange is needed between the RATs.

2.3 SDN-based RAT Selection and Offloading

A unified framework can facilitate the exchange of RAT-specific information with a cen-

tralized entity, thereby enabling network-initiated decisions based on the global view of

various RATs. With the 5G [6, 7] standardization in progress, it is expected that the fu-

ture wireless networks will contain a large number of RATs. Therefore, it is important to

define a unified framework which can control and manage these multiple RATs together.

Since the SDN paradigm facilitates the split of control and data planes in a network,

the control plane functionalities of different RATs can be unified in a centralized controller.

RAT selection and offloading problems in SDN-based HetNets are proposed in recent

literature [64–68]. The authors in [66] consider an SDN-enabled dynamic path selection

problem in a multi-RAT system and propose an algorithm which chooses the path based

on the rate obtained. The obtained rate takes into account various factors such as radio

conditions of UEs, performance requirements of different flows and loading conditions of
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RATs. In [67], the authors propose a QoS-aware RAT selection algorithm in an SDN-

based HetNet. The authors in [67] perform RAT selection based on a metric which

takes into account bit rate requirements of users and capabilities of different RATs. A

user association heuristic which considers multiple traffic classes and scales well with

the LTE/WiFi HetNet system, is proposed in [68]. The performance of the proposed

algorithm is evaluated in an SDN-based testbed.

2.4 Discussions and Open Problems

In this chapter, we have provided a description of existing RAT selection techniques in

HetNets. Furthermore, we have reviewed the existing efforts towards efficient LTE-WiFi

offloading, followed by a literature review of initiatives towards RAT selection and of-

floading in SDN-based LTE-WiFi HetNets. Both user-initiated and network-initiated ap-

proaches have been adopted in the literature. Since network-initiated approaches provide

a framework for overall system optimization, we focus on network-initiated approaches

for RAT selection and offloading in an LTE-WiFi network.

Various network-initiated approaches in the literature focus on optimizing different

system metrics. However, as discussed in Chapter 1, the trade-off between the total

system throughput and the blocking probability of voice users in a dynamic system within

an optimization framework has not been considered in the literature before. From the

perspective of total system throughput maximization, admission of data users are more

preferable as the throughput contribution of voice users is usually lower than that of

data users. This may increase the blocking probability of voice users since voice and

data users are allocated resources in LTE from a common resource pool. We address the

resulting trade-off between the total system throughput and the blocking probability of

voice users in this thesis. Furthermore, unlike others, we investigate the role of offloading

in improving the system performance at the time of arrivals and departures of users in a

dynamic LTE-WiFi system. We address the trade-off between the total system throughput

and the blocking probability of voice users in an offload-assisted RAT selection problem in

Chapter 3 within an MDP based framework. However, due to the curse of dimensionality

associated with DP based methods to solve the problem, the optimal solution is difficult



2.4. Discussions and Open Problems 27

to compute when the state space is large. We shall demonstrate in Chapter 3 that the

optimal RAT selection strategy obtained by us contains a threshold structure. By virtue

of the threshold structure, we propose optimal RAT selection algorithms which bring

significant reductions in the computational and storage complexities in comparison to

traditional DP based methods.

The curse of modeling is another drawback associated with the DP based methods of

computing the optimal solution. DP based methods require the knowledge of transition

probabilities between different states associated with the underlying Markov chain which

is governed by the statistics of the system dynamics. In practice, these may be difficult

to obtain. Few works in the literature have proposed RL based RAT selection/ offloading

schemes which can work without the knowledge of the statistics of the system dynamics.

However, the convergence behaviors of traditional RL algorithms such as Q-learning [45]

are slow which renders them difficult to implement in practice. In Chapter 5, we shall

propose an RL algorithm which exploits the knowledge of the threshold structure of the

optimal solution in the learning framework. It provides significant reductions in the

computational and storage complexities as well as the convergence speed in comparison

to traditional RL schemes. To the best of our knowledge, this is one of the first attempts

of exploiting the knowledge of the threshold structure in the learning framework.

Another aspect which we focus in this thesis is the role of channel conditions of

the users in RAT selection. As discussed in Chapter 1, channel conditions of users may

play a major role in association decisions since users with different channel conditions

may consume different number of resource blocks in LTE. Moreover, in the case of arrival

or departure of users, channel states of users need to be considered for the choice of an

appropriate user for offloading.

Apart from the trade-off between the total system throughput and the voice user

blocking probability, the trade-off involving the total system throughput, the blocking

probability and the offloading probability is also very important. This is because max-

imizing the total system throughput subject to a blocking probability constraint may

increase the offloading probability of the users. This particular problem has not been

studied in the literature before. We shall formulate the problem within the framework of

CMDP. Furthermore, we shall propose low-complexity online algorithms which although
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are greedy in nature, satisfy the associated constraints. The proposed low-complexity

algorithms are implemented on an ns-3 based evaluation platform which is built following

the SDN principles.

In the next chapter, we begin our analysis by considering the throughput efficient

RAT selection problem in an LTE-WiFi HetNet. Furthermore, we incorporate the trade-

off between the total system throughput and the voice user blocking probability in the

considered framework.



Chapter 3

Throughput Efficient RAT Selection

In this chapter, we investigate an optimal association policy for an LTE-WiFi HetNet.

The objective is to obtain a RAT selection policy which maximizes the total system

throughput. However, as described in Chapter 2, there exists a trade-off between the

total system throughput and the blocking probability of voice users. Higher layers such

as network and MAC layer may impose certain restrictions on the blocking probability of

voice users due to QoS requirements. This motivates us to subsequently determine a RAT

selection policy which maximizes the total system throughput subject to a constraint on

the blocking probability of voice users. We formulate these problems as optimization

problems within Markov Decision Process (MDP) and Constrained Markov Decision Pro-

cess (CMDP) frameworks, respectively. Value Iteration Algorithm (VIA) and gradient

descent are among the algorithms that are used traditionally to compute optimal policies

for MDP and CMDP formulations. However, such techniques are computationally pro-

hibitive due to the high computational complexity associated with VIA under large state

spaces. This motivates looking for structural properties that reduce the search space for

the optimal policy. Towards this end, we establish that the optimal policy has a threshold

structure. It is proved that the optimal policies admit a threshold structure, where after

a certain threshold on the number of WiFi data users, data users are served using LTE.

The existence of a similar threshold for the blocking of voice users is also established. As

a policy search over the entire policy space may become computationally inefficient, we

propose algorithms that exploit the threshold structure for determining the optimal RAT

selection policy. Our analysis reveals that the proposed algorithms provide significant im-

29
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provements in computational and storage complexities over the traditional policy iteration

algorithm [69]. We conduct extensive simulations in ns-3 to compare the performances of

the proposed algorithms with existing RAT selection algorithms proposed in [57]. 3GPP

recommended parameters are used in the simulations. Simulation results indicate that the

algorithms proposed by us perform better than existing schemes in improving different

system metrics.

The rest of the chapter is organized as follows. The system model is described in

Section 3.1. In Section 3.2, the RAT selection problems are formulated within the frame-

works of unconstrained and constrained continuous-time MDP, respectively. In Section

3.3, we derive the threshold structure of the optimal policy. Algorithms for the association

of users in LTE-WiFi HetNet are proposed in Section 3.4. Section 3.5 presents simulation

results. We conclude in Section 3.6.

WiFiAP
LTE BS

Centralized
Controller

Data User
Voice User

Figure 3.1: LTE-WiFi heterogeneous network architecture.

3.1 System Model

We consider a system where an LTE BS and a WiFi AP are present. As illustrated

in Fig. 3.1, we assume that both the BS and the AP are connected to a centralized

controller by high capacity lossless links. RAT selection and offloading decisions are taken

by the centralized controller, possessing an overall view of the network. To be precise, the

centralized controller has a knowledge of the load conditions of LTE and WiFi networks.
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Moreover, whenever a user arrives in the system or departs from the system, the controller

is notified by the LTE BS or the WiFi AP.

We assume that the voice and data users are geographically located at any point

in the LTE BS coverage area. Data users outside the dual coverage area of the LTE BS

and the WiFi AP always get associated with the LTE BS, and no decision is involved

in this case. Therefore, without loss of generality, we take into consideration only those

data users which are present inside the WiFi AP coverage area. We assume that there is

a common resource pool in LTE for the voice users as well as the data users inside the

WiFi AP coverage area. Data users inside the dual coverage area can be associated with

the LTE BS or the WiFi AP. All users are assumed to be stationary. Voice and data user

arrivals follow independent Poisson processes with means λv and λd, respectively. Service

times for voice users are independent and identically distributed. Similarly, Service times

for data users are independent and identically distributed. Moreover, service times for

voice and data users are independent. We assume that service times for voice and data

users are exponentially distributed with means 1
µv

and 1
µd

, respectively. For justification

behind these assumptions, see [70].

Remark 1. Although for the brevity of notation, a single LTE BS and a single AP is

considered, the system model can be generalized to a single LTE BS and multiple APs

with non-overlapping coverage areas by considering the number of data users in different

APs in the system model. Moreover, considering that each point in a geographical area

is mapped to a single LTE BS (the LTE BS with highest average signal strength, say),

multiple BSs can also be included in the system model with slight modifications. In the

case of multiple overlapping APs inside the coverage area of an LTE BS, a one-to-one

mapping between a user location and an AP using a decision criterion (based on highest

average signal strength, say) reduces the problem to a single BS-multiple non-overlapping

AP problem. The set where more than one AP have equal signal strength is non-generic

in the sense that in the associated parameter space it has Lebesgue measure 0.

Remark 2. Most of the cellular network operators support seamless offloading of data

users to trusted (operator-deployed) WiFi APs. The decision regarding when to offload

is at the discretion of the service providers. We build our system model based on the

architecture provided by the cellular operators for interworking with WiFi [8].
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3.1.1 State Space

We model the system as a controlled continuous time stochastic process {X(t)}t≥0 defined

on a state space S. Any state s ∈ S is represented as a 3-tuple s = (i, j, k), where i, j and

k represent the number of voice users in LTE, the number of data users in LTE and the

number of data users in WiFi, respectively. The system state remains unchanged unless

an existing user departs or a new user arrives in the system. The arrivals and departures

in the system are referred to as events. Let the set of all events be denoted by E . The

list of events in E are as follows:

E =





E1, Arrival of a voice user in the system,

E2, Arrival of a data user in the system,

E3, Departure of an existing voice user from LTE,

E4, Departure of an existing data user from LTE,

E5, Departure of an existing data user from WiFi.

Whenever an event occurs, the centralized controller takes an action, and based on the

type of event and the action chosen by the controller, a state transition happens. Note

that the transitions of {X(t)}t≥0 happen only at the event epochs and not otherwise.

Since the associated continuous time Markov chain has a finite number of states, the

Markov chain is regular (i.e., the rate of exponentially distributed sojourn time in every

state is bounded) [71]. Thus, it suffices to observe the system state only at the event

epochs to know the entire sample path. A finite amount of reward and cost rates are

associated with each state-action pair. Detailed descriptions of the action space, state

transitions, reward and cost are provided in subsequent subsections.

Now, we elaborate on the structure of S. We say that (i, j, k) ∈ S if (i+ j) ≤ C and

k ≤ W, where C is the total number of common resource blocks reserved in LTE for voice

and data users, and W is the maximum number of users in WiFi so that the per-user

throughput in WiFi is greater than a pre-defined threshold. The condition (i + j) ≤ C

arises because we assume that in each LTE subframe, each admitted user is allocated one

resource block. If this allocation is not possible, a new user is not admitted in the LTE

system. Furthermore, note that WiFi throughput decays monotonically as the number of

WiFi users increases [72]. We assume that each user should get more than a threshold
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value of average throughput (say 2 Mbps) for a meaningful connectivity, which leads to

the bound W on the maximum number of users that can be accommodated in the WiFi

system.

Remark 3. Although the allocation of multiple resource blocks is closer to the practical

scenario, this complicates the system model while the methodology and approach adopted

do not change.

3.1.2 Action Space

The set of actions defines a set of possible association and offloading strategies in the

event of arrival or departure of a user. Let the action space be denoted by A. Depending

on the arrival or departure, we have a set of actions as stated below.

A =





A1, Block the arriving user or do nothing during departure,

A2, Accept voice/data user in LTE,

A3, Accept data user in WiFi,

A4, Accept voice user in LTE and offload one data user to WiFi,

A5, Move one data user to a RAT (from which departure has occurred).

Remark 4. Actions are chosen based on the system state and the event occurred. One way

of representing this is embedding the event in the state space so that the action depends

only on the system state. However, to avoid notational complications associated with this

approach, we view the action as a function of the system state and the event.

Let the set of states (subset of S) in which action a is feasible given occurrence of

event El be denoted by SEl,a. Thus, in the case of voice user arrival, we have,

SE1,a =





S \ {(0, 0, 0)}, a = A1,

S \ {(i, j, k) : (i+ j) = C}, a = A2,

S \ {(i, j, k) : (j = 0)||(k = W )}, a = A4,

{∅}, else.
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For data user arrival,

SE2,a =





{(i, j,W ) : (i+ j) = C}, a = A1,

S \ {(i, j, k) : (i+ j) = C}, a = A2,

S \ {(i, j, k) : k = W}, a = A3,

{∅}, else.

For voice user departure from LTE,

SE3,a =





S \ {(i, j, k) : (i+ j) = C}, a = A1,

S \ {(i, j, k) : ((i+ j) = C)||(k = 0)}, a = A5,

{∅}, else.

For data user departure from LTE,

SE4,a =





S \ {(i, j, k) : (i+ j) = C}, a = A1,

S \ {(i, j, k) : ((i+ j) = C)||(k = 0)}, a = A5,

{∅}, else.

For data user departure from WiFi,

SE5,a =





S \ {(i, j, k) : k = W}, a = A1,

S \ {(i, j, k) : (j = 0)||(k = W )}, a = A5,

{∅}, else.

In the case of voice and data user arrivals, the sets of all possible actions are

{A1, A2, A4} and {A1, A2, A3}, respectively. However, when an event El occurs, action

a is not feasible if the system state is not present in SEl,a. In this chapter, voice user

blocking (A1) is considered to be a feasible action in all the states, provided the system is

not empty. We consider blocking as a feasible action for data users, only when capacity

is reached for both the RATs. When a user departs from LTE or WiFi, the controller can

choose either A1 or A5. If after the departure of a user from LTE, A5 is chosen, it offloads

one data user from WiFi to LTE.
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3.1.3 State Transitions

Let us assume that from each state s, under an action a, the system makes a transition

to a state s′ with a positive probability pss′(a). In state s = (i, j, k), let the sum of arrival

and service rates of users be denoted by v(i, j, k). Therefore, we have,

v(i, j, k) = λv + λd + iµv + jµd + kµd.

Then,

pss′(a) =





λv
v(i′,j′,k′)

, s′ = (i′, j′, k′),

λd
v(i′,j′,k′)

, s′ = (i′, j′, k′),

i′µv
v(i′,j′,k′)

, s′ = (i′ − 1, j′, k′),

j′µd
v(i′,j′,k′)

, s′ = (i′, j′ − 1, k′),

k′µd
v(i′,j′,k′)

, s′ = (i′, j′, k′ − 1).

Values of i′, j′ and k′ as a function of different actions a (conditioned on events El)

are summarized in Table 3.1, where a|El denotes the conditional event that action a is

chosen in response to event El and El||Ek denotes the union of events El and Ek.

Table 3.1: Transition probability table.

a|El (i′, j′, k′)

A1|(E1|| . . . ||E5) (i, j, k)

A2|E1 (i+ 1, j, k)

A2|E2 (i, j + 1, k)

A3|E2 (i, j, k + 1)

A4|E1 (i+ 1, j − 1, k + 1)

A5|(E3||E4) (i, j + 1, k − 1)

A5|E5 (i, j − 1, k + 1)

Note that this table is exhaustive in all kinds of events and actions. However, in a

state, we need to consider only those events and actions which are feasible in that state.
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3.1.4 Rewards and Costs

Let the reward and cost functions per unit time corresponding to state s and action a be

represented by r(s, a) and c(s, a), respectively. Let RL,V and RL,D denote the bit rates of

voice and data users in LTE, respectively. To keep the model simple and computationally

tractable, we assume that the bit rate of a data user in LTE is constant. In general, a

voice user generates Constant Bit Rate (CBR) traffic, and hence we take RL,V to be a

constant. RW,D(k) corresponds to the per-user data throughput of k users in WiFi. We

assume full buffer traffic model [72] for WiFi. The calculation of RW,D(k) is based on

the contention-driven medium access of WiFi users. It is a function of the probabilistic

transmission attempts of the users, corresponding success and collision probabilities, and

slot times for successful, idle and busy transmissions during collisions.

Remark 5. Data users want to experience the maximum possible data rate. We assume

that a Transmission Control Protocol (TCP) connection is established between the data

user and the LTE BS (WiFi AP) before the data transfer begins. The throughput term

signifies the maximum data rate provided by the TCP pipe for a single TCP connection.

The reward per unit time in a state under the occurrence of an event and an action

chosen is defined as the total system throughput in that state under that event and the

chosen action. The complete description of reward rates for different events and actions

in state s is provided in Table 3.2. Note that the reward rate is a monotone increasing

function of i and j.

The cost function considered here is as follows. Whenever the centralized controller

blocks an incoming voice user, one unit cost is incurred per unit time. Otherwise, it is

zero. Thus,

c(s, a) =





1, if voice user is blocked,

0, else.

(3.1)

We consider the blocking of data users only when both LTE and WiFi systems are full.

Hence, we do not consider any cost on the blocking of data users. Note that once a voice

user is associated with LTE, QoSs in terms of delay and data rate are guaranteed by

allocating dedicated bearers providing Guaranteed Bit Rate (GBR) in LTE. Therefore,

we consider only the blocking probability as the QoS requiremet for voice users.
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Table 3.2: Reward rate table.

(a|El) r(s, a)

(A1|E1) iRL,V + jRL,D + kRW,D(k)

(A1|E2) iRL,V + jRL,D + kRW,D(k)

(A1|E3) (i− 1)RL,V + jRL,D + kRW,D(k)

(A1|E4) iRL,V + (j − 1)RL,D + kRW,D(k)

(A1|E5) iRL,V + jRL,D + (k − 1)RW,D(k − 1)

(A2|E1) (i+ 1)RL,V + jRL,D + kRW,D(k)

(A2|E2) iRL,V + (j + 1)RL,D + kRW,D(k)

(A3|E2) iRL,V + jRL,D + (k + 1)RW,D(k + 1)

(A4|E1) (i+ 1)RL,V + (j − 1)RL,D + (k + 1)RW,D(k + 1)

(A5|E3) (i− 1)RL,V + (j + 1)RL,D + (k − 1)RW,D(k − 1)

(A5|E4) iRL,V + jRL,D + (k − 1)RW,D(k)

(A5|E5) iRL,V + (j − 1)RL,D + kRW,D(k)

3.2 Problem Formulation & Solution Methodology

A decision rule describes the mapping from a state-event pair to an action at different

states s ∈ S and decision epochs tn. An association policy is a sequence of decision

rules (πt1 , πt2 , . . . , πtn , . . .) taken at different decision epochs. Our goal is to determine an

association policy which maximizes the total system throughput. This can be formulated

as a continuous-time unconstrained MDP problem. In this case, there exists a pure

optimal policy [69]. A pure policy is a stationary policy where the optimal action in

every state is deterministic. Since the contribution of the data users to the total system

throughput is more than that of the voice users, the optimal association policy may result

in a high blocking probability of voice users. Hence, to address the trade-off between the

total system throughput and the voice user blocking probability, we consider the CMDP

problem, where we target to maximize the total system throughput subject to a constraint

on the voice user blocking probability. In this case, a stationary randomized optimal

policy exists [73]. A randomized policy is a mixture of two pure policies with associated

probabilities. The arrivals and departures of users can occur at arbitrary points in time,
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which makes the problem continuous time in nature.

3.2.1 Problem Formulation

LetM be the set of all memoryless policies. To guarantee a unique stationary distribution,

we assume that Markov chains associated with the policies are unichain. Following the

policy M ∈ M, let the average reward and cost of the system over infinite horizon be

denoted by V M and BM , respectively. Let R(t) and C(t) be the total reward and cost of

the system incurred up to time t, respectively. For the unconstrained MDP problem, our

objective is to maximize the total system throughput which can be described as follows.

Maximize: V M = lim
t→∞

1

t
EM [R(t)], (3.2)

where EM denotes the expectation operator under the policy M . However, for the CMDP

problem, our objective is to maximize the total system throughput subject to a constraint

on the blocking probability of voice users. This can be described as follows.

Maximize: V M = lim
t→∞

1

t
EM [R(t)],

subject to: BM = lim
t→∞

1

t
EM [C(t)] ≤ Bmax,

(3.3)

where Bmax denotes the constraint on the blocking probability of voice users. Our ob-

jective is to determine the optimal policy for both unconstrained and constrained MDP

problems. Since the optimal policies are known to be stationary policies, the correspond-

ing limits in Equation (3.2) and (3.3) exist.

3.2.2 Equivalent Discrete-time MDP and Lagrangian Approach

To obtain the optimal policy using RVIA [69], we need to employ the Lagrangian approach

[73]. In this approach, for a fixed value of Lagrange Multiplier (LM) β, the reward function

is given by

r(s, a; β) = r(s, a)− βc(s, a).

The dynamic programming equation described below provides the necessary condition for

optimality in case of SMDP ∀s ∈ S, where s′ ∈ S.

V (s) = max
a

[r(s, a; β) +
∑

s′

pss′(a)V (s′)− ρt̄(s, a)],
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where V (s), ρ, t̄(s, a) denote the value function of state s ∈ S, the optimal average reward

and the mean transition time from state s under the action a, respectively.

Since the sojourn times are exponential, this is a special case of continuous time

controlled Markov chain for which we have,

0 = max
a

[r(s, a; β)− ρ+
∑

s′

q(s′|s, a)V (s′)], (3.4)

where q(s′|s, a) are controlled transition rates satisfying q(s′|s, a) ≥ 0 for s′ 6= s and
∑
s′
q(s′|s, a) = 0. Note that Equation (3.4) follows directly from Poisson equation [74] for

continuous time Markov chain. If we scale all the transition rates by a positive scalar,

it amounts to time scaling which scales the average reward accordingly for every policy

including the optimal, but does not change the optimal policy. Thus, without loss of

generality, we assume that −q(s|s, a) ∈ (0, 1) ∀a, implying in particular that q(s′|s, a) ∈
[0, 1] for s′ 6= s. Adding V (s) to both sides of Equation (3.4), we have,

V (s) = max
a

[r(s, a; β)− ρ+
∑

s′

pss′(a)V (s′)], (3.5)

where pss′(a) = q(s′|s, a) for s′ 6= s and pss′(a) = 1 + q(s′|s, a) for s′ = s (recall that

q(s|s, a) is negative). This equation is the DP equation for a discrete time MDP (say

{Xn}) with controlled transition probabilities pss′(a). Here onwards we focus on discrete

time setting as described in Equation (3.5).

For a fixed value of β, the following equation describes how RVIA can be used to

solve the equivalent unconstrained maximization problem.

Vn+1(s) = max
a

[r(s, a; β) +
∑

s′

pss′(a)Vn(s′)− Vn(s∗)], (3.6)

where Vn(.) is an estimate of the value function after nth iteration, and s∗ is an arbitrary

but fixed state. Next, we aim to determine the value of β (= β∗, say) which maximizes the

average expected reward subject to the cost constraint. The following gradient descent

algorithm describes the rule to update the value of β.

βk+1 = βk +
1

k
(Bπβk −Bmax), (3.7)

where βk is the value of β,
1

k
is the step size and Bπβk is the voice user blocking probability,

respectively, at kth iteration. Once the value of β∗ is determined, we obtain the optimal
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policy by employing a perturbation of β∗ by a small amount ε in both directions (policies

πβ∗−ε and πβ∗+ε, say) with associated costs Bβ∗−ε and Bβ∗+ε, respectively. Finally, we

have a randomized optimal policy where the the policies πβ∗−ε and πβ∗+ε are chosen with

probabilities p and (1− p), such that

pBβ∗−ε + (1− p)Bβ∗+ε = Bmax.

We know [75] that the optimal stationary policy can be randomized in at most one s ∈ S
where the optimal action is randomized between two actions.

3.3 Structure of the Optimal Policy

The dynamic programming equations (Equations (3.5) and (3.6)) described in the previous

section are exploited to establish the fact that the optimal policy is of threshold type.

The optimality of threshold policy is established with the aid of some lemmas.

3.3.1 Optimal Policy for Data Users

In this section, we present the structural properties of the optimal policy for the associa-

tion of data users along with their physical interpretations. Let us denote the throughput

increment in WiFi when the number of WiFi users increases from k to (k+1) by R̃W,D(k).

Therefore, R̃W,D(k) = (k + 1)RW,D(k + 1)− kRW,D(k). We assume the following.

Assumption 1. Let RL,D be such that RL,D ≥ R̃W,D(k), ∀k ≥ kth and RL,D < R̃W,D(k),

∀k < kth, where kth is a threshold such that if k ≥ kth, the data rate improvement provided

by a single data user in LTE is more than the improvement in total WiFi throughput as

the number of WiFi data users is increased from k to (k + 1).

Remark 6. Following the full buffer traffic model [72], R̃W,D(k) initially increases with

k and then decreases. This behavior matches with Assumption 1. The value of kth can

be easily obtained by computing R̃W,D(k) (following [72]) for different values of k and

comparing with RL,D.

The following two lemmas describe a threshold structure of the optimal policy for

the association of data users. Specifically, up to a certain threshold on the total number
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of data users, data users are served using WiFi. After the threshold is crossed, data users

are served using LTE.

Lemma 1. For every i and j such that (i+ j) < C, if the total number of data users in

the system is (j + k) ≤ kth, then the optimal policy is to serve all data users using WiFi.

In other words, (j + k) ≤ kth =⇒ j = 0.

s1

s2

s3

s4

π
∗ (s1

, E
l)

π(s
1 , E

l )

π ∗
(s

2 , E
l )

π(
s3
, E

l)

Figure 3.2: Sample path under different policies.

Proof. Since the decisions of association and offloading are involved during the arrival

and the departure of users, proving this lemma is equivalent to proving the following

statements.

(a) A3 (Accept in WiFi) is optimal when there are less than kth data users in the system,

and a data user arrives.

(b) A1 (Do nothing) is optimal when there are less than or equal to kth data users in the

system, and a voice user from LTE departs.

(c) A1 (Do nothing) is optimal when there are less than or equal to kth data users in the

system, and a data user from WiFi departs.

We prove the statements by sample path arguments. Suppose the system starts at time

t = 0.
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Proof of (a): We consider the scenario when the system is in the state s1 = (i, 0, 0),

when a data user arrival occurs (after a time t1, say). Assume that the optimal policy π∗

does not associate the incoming data user with WiFi. Therefore, the optimal action must

be A2 (accept in LTE). As the optimal policy is π∗, we have V π∗(s) ≥ V π̂(s), ∀π̂ ∈∏ and

∀s ∈ S, where
∏

is the set of all policies. Let us consider another policy π (non-stationary

in general) which chooses A3 in state s1 = (i, 0, 0). As illustrated in Fig. 3.2, let us assume

that starting from the state s1 and following the policy π∗ and π, the system reaches the

state s2 = (i, 1, 0) and s3 = (i, 0, 1), respectively. The inter-arrival times and service times

are same for both the sample paths as we have considered a Markovian system. Assume

that from the state s2, based on the next event (after a time t2) and the chosen action,

the system makes a transition to the state s4 according to the policy π∗. Before reaching

the state s2, the sample path followed by the policy π∗ has one less WiFi data user and

one more LTE data user than that of the policy π before it reaches the state s3. Suppose,

the policy π is such that in state s3, it takes the same action as that of policy π∗ and

additionally offloads one data user from WiFi to LTE. Hence, sample path followed by

both the policies end up in the same state s4. We construct π in such a manner that

from the state s4 onwards, both the policies choose the same actions and follow the same

sample path. Therefore, the difference of value functions of the state s1 under the policy

π∗ and π is

V π∗(s1)− V π(s1) = RL,D −RW,D(1).

Since RL,D < R̃W,D(k),∀k < kth and R̃W,D(1) = RW,D(1), we have, V π∗(s1) < V π(s1).

Clearly, this contradicts the original claim that π∗ is an optimal policy. Since the Markov

chains induced by different policies are recurrent, the state (i, 0, 0) is visited infinitely

often. Upon each visit, the choice of action A3 upon a data user arrival provides more

reward than action A2. Therefore, when there is no data user in the system, and one data

user arrives, A3 is optimal. In a similar manner, it can be proved that A3 is optimal when

a data user arrives and the system is in state (i, 0, k), where k < kth.

Proof of (b) and (c): These can be proved using a similar sample path argument.

In Lemma 1, following Assumption 3, since for k < kth, the data rate improvement is

more if an additional data user is served using WiFi rather than using LTE, it is optimal
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to serve the data users using WiFi.

Lemma 2. For every i and j such that (i+ j) < C, if the total number of data users in

the system is (j + k) > kth, then the optimal policy is to serve kth data users using WiFi

and all other data users using LTE. In other words, (j + k) > kth =⇒ k = kth.

Proof. Similar to Lemma 1, proving this lemma is equivalent to proving the following

statements.

(a) A2 (Accept in LTE) is optimal when there are more than or equal to kth data users

in the system, and one data user arrives.

(b) A1 (Do nothing) is optimal when there are more than kth data users in the system,

and a voice/data user from LTE departs.

(c) A5 (Data offload to a RAT from where a user has departed) is optimal when there are

more than kth data users in the system, and a data user from WiFi departs.

Proof of (a):

From Lemma 1, we have, (j + k) ≤ kth =⇒ j = 0. We consider the scenario when the

system is in the state (i, 0, kth), and a data user arrival occurs. Assume that the optimal

policy π∗ does not associate this incoming data user with LTE. Consequently, the optimal

action must be A3. As the optimal policy is π∗, we have V π∗(s) ≥ V π̂(s) ∀π̂ ∈ ∏ in

every state s. Let us consider another policy π which chooses A2 in state (i, 0, kth). As

illustrated in Fig. 3.2, starting from the state (i, 0, kth) and following the policies π∗ and

π, the system reaches the states s2 and s3, respectively. From the state s2, based on an

event, the system reaches the state s4. Suppose, in the state s3, the action governed by

the policy π is such that it chooses the same action as that of policy π∗ and additionally,

offloads one data user from LTE to WiFi. Clearly, paths followed by both the policies

end up in the same state s4. We construct π in such a way that from state s4 onwards,

both of them follow the same path. Similar to the previous lemma, the difference of value

functions under the policies π∗ and π is

V π∗(s1)− V π(s1) = (k + 1)RW,D(k + 1)− kRW,D(k)−RL,D.

Since RL,D ≥ R̃W,D(k),∀k ≥ kth, we have, V π∗(s1) < V π(s1). Clearly, this contra-

dicts the original claim that π∗ is an optimal policy. Thus, A2 is optimal when there are

kth data users in WiFi, and one data user arrives. The same result can be extended for
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the case when there are kth data users in WiFi, more than or equal to one data user in

LTE, and one data user arrives.

Statements (b) and (c) can be proved in a similar way.

The physical significance of Lemma 2 is that for k ≥ kth, the data rate improvement

provided by a single data user in LTE is more than that in WiFi (following Assumption 1),

and hence, it is optimal to serve up to kth data users using WiFi and serve the additional

data users using LTE.

Following lemma is a direct consequence of how the system is modeled.

Lemma 3. For every i and j such that (i+ j) = C, the optimal policy is to serve all the

incoming data users using WiFi until k = W , where an incoming data user is blocked.

Proof. Proof follows directly from the system model.

3.3.2 Optimal Policy for Voice Users

In this section, we characterize the optimal policy for the arrival of voice users. We prove

that the optimal policy is of threshold type. In this section, the terminologies “increasing”

and “decreasing” are used in the weak sense of “non-decreasing” and “non-increasing”,

respectively. In each state, let the sum of arrival and service rates be denoted by v(i, j, k).

Thus, we have,

v(i, j, k) = λv + λd + iµv + (j + k)µd.

Let us define f(i, j, k) = iRL,V + jRL,D + kRW,D(k). The subsequent lemma describes

the superiority of one action over the other for the association of incoming voice users.

Specifically, up to a certain threshold on the total number of data users, A4 (accept voice

user in LTE with data user offload to WiFi) is better than A2 (accept voice user in LTE).

After the threshold is crossed, A2 becomes better.

Lemma 4. In the case of a voice user arrival in state (i, j, k), where (i+ j) < C,

(i) A4 is always better than A2 if k < kth,

(ii) A2 is always better than A4 if k ≥ kth.

Proof. Proof is similar to the proof of Lemma 1.
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Similar to Lemmas 1 and 2, following Assumption 1, since for k < kth, the data rate

improvement is more if an additional data user is served in WiFi rather than in LTE,

A4 is better than A2. Hence, when k < kth, the choice of optimal action is between A4

(accept voice user in LTE with data user offload to WiFi) and A1 (blocking). Similarly,

for k ≥ kth, the optimal action is either A2 (accept voice user in LTE) or A1.

The following lemma describes that when capacity is not reached in LTE and a voice

user arrives, a threshold structure is observed. Until a threshold on the number of voice

and data users in LTE, A2 (for k ≥ kth) or A4 (for k < kth) is preferred. After the

threshold, A1 becomes optimal.

Lemma 5. For every i and j such that (i+ j) < C and a voice user arrival,

(i) if the optimal action in state (i, j, k) is A1, then the optimal actions in states (i +

1, j, k) and (i, j + 1, k) are also A1,

(ii) if the optimal action in state (i, j, k) is A2 (A4), then the optimal actions in states

(i− 1, j, k) and (i, j − 1, k) are also A2 (A4).

Proof. Proof is provided in Appendix A.1.

When the number of voice/data users in LTE is less, A2 or A4 is chosen as the

optimal action in the event of a voice user arrival. When i or j crosses a certain threshold,

the number of free resources for incoming voice users decreases. Therefore, the blocking

probability of voice users increases. Thus, after a threshold on i or j, A1 becomes optimal.

However, when (i+ j) = C, since A2 is infeasible, optimal action is either A1 or A4.

The lemma presented next discusses the threshold nature of the optimal policy for voice

user arrivals when (i+ j) = C.

Lemma 6. For every i and j such that (i+ j) = C and a voice user arrival,

(i) if the optimal action in state (i, j, k) is A1, then the optimal action in state (i +

1, j − 1, k) is also A1,

(ii) if the optimal action in state (i, j, k) is A4, then the optimal action in state (i −
1, j + 1, k) is also A4.

Proof. Proof is provided in Appendix A.2.
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The physical interpretation of this lemma is that for the states with (i+j) = C, when

i is small, A4 is preferred. However, when i crosses a threshold, since j becomes small,

and consequently, the total system throughput is small, A4 may further lower the total

system throughput. Therefore, blocking of voice users is chosen as the optimal action.

3.4 Proposed Network-Initiated Association Algorithms

Based on the threshold structures of the optimal policies for the unconstrained MDP and

CMDP problems, in this section, we propose two network-initiated association algorithms

for an LTE-WiFi HetNet.

3.4.1 Unconstrained MDP-based Association Algorithm

The details of the Unconstrained MDP-based Association Algorithm (UMAA) is presented

in Algorithm 1. As discussed in Section 3.3, the threshold for the service of data users,

kth, can be computed easily without the knowledge of the arrival and service rates of

users. The value of kth completely specifies the optimal policy for the arrival of data users

(event E2) and the departure of voice and data users (events E3, E4 and E5). Since this

is an unconstrained problem, we set β = 0.

The procedure THRESHOLD–POLICY–SEARCH of UMAA computes the optimal

policy for the arrival of voice users by solving an unconstrained MDP problem. The pro-

posed procedure is motivated from the well-known policy iteration algorithm [69]. How-

ever, the threshold nature of the optimal policy (as derived in Lemmas 5 and 6) is exploited

which offers a significant reduction in computational complexity over policy iteration. We

initially choose an arbitrary threshold th0. In the POLICY–EVALUATION procedure,

the system of value function equations is solved to determine the value function vector

corresponding to thresholds thn, thn + 1 and thn− 1. In the POLICY–IMPROVEMENT

procedure, if the policy corresponding to the threshold thn + 1 (or thn − 1) improves the

value function vector with at least one strict inequality (denoted by �), the threshold is

updated to thn + 1 (or thn− 1). In other words, compared to thn, the policy correspond-

ing to the threshold thn+1 (or thn − 1) has lesser number of states where the action is

suboptimal. The procedure stops when no further improvement in value function vector
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Algorithm 1 Unconstrained MDP-based Association Algorithm (UMAA).

Input: λv, λd, µv, µd, RL,V , RL,D, RW,D(.).

1: Compute kth for data users (See Remark 6). Set β ← 0.

2: procedure Threshold–Policy–Search

3: Initialize threshold th0 ← th. Set n← 0.

4: procedure Policy–Evaluation

5: Solve the linear system for policies corresponding to thresholds thn,(thn − 1) and (thn + 1).

6: V (s) =
∑
El

p̂(s, El)[r̂(s, El,M(s);β) + V
(
s′(El,M(s))

)
] +
(
1−∑

El

p̂(s, El)
)
V (s), ∀s ∈ S.

7: end procedure

8: procedure Policy–Improvement

9: If Vthn+1 � Vthn , set thn+1 ← thn + 1.

10: Elseif Vthn−1 � Vthn , set thn+1 ← thn − 1.

11: Else set thn+1 ← thn.

12: If thn+1 == thn stop,

13: Else n← n+ 1 and go to Line 4.

14: end procedure

15: end procedure

Output: Deterministic optimal policy.

16: Store thresholds vac(j, k) and valc(j, k) for the association of voice users for (i+j) = C and (i+j) < C,

respectively.

17: procedure Policy–Impl

18: for each arrival of voice users do

19: if (i+ j) < C then

20: Choose A1 if i ≥ valc(j, k).

21: Choose A2 if i < valc(j, k) and k ≥ kth.

22: Choose A4 otherwise.

23: else

24: Choose A4 if i < vac(j, k), A1 otherwise.

25: end if

26: end for

27: for each arrival of data users do

28: if (i+ j) < C then

29: Choose A3 if k < kth, A2 otherwise.

30: else

31: Choose A3 if k < W , A1 otherwise.

32: end if

33: end for

34: for each departure of users from LTE (WiFi) do

35: Choose A1 (A5) if k ≤ kth, A5(A1) otherwise.

36: end for

37: end procedure
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Algorithm 2 CMDP-based Association Algorithm (CAA).

Input: λv, λd, µv, µd, RL,V , RL,D, RW,D(.), Bmax.

1: Compute threshold kth for the association of data users.

2: procedure Calc–Opt–Policy

3: Initialize β.

4: while |Bπβ −Bmax| > θ do

5: procedure Threshold–Policy–Search

6: See Algorithm 1.

7: end procedure

8: Update β using Equation (3.7).

9: end while

10: end procedure

Output: Randomized optimal policy.

11: Compute thresholds vac(j, k) and valc(j, k) for association of voice users for (i+j) = C and (i+j) < C,

respectively.

12: procedure Policy–Impl

13: As discussed in Algorithm 1.

14: end procedure

is possible. Since in every iteration the policy improves and remains within the set of

threshold policies, UMAA converges to the optimal threshold policy.

The calculated thresholds for the association of voice/data users are made available

to the centralized controller connected to both the LTE BS and the WiFi AP. Since the

centralized controller has an overall view of the whole system, the information regarding

the numbers of active voice and data users in LTE and WiFi is available to it. Whenever

there is an arrival or a departure, the controller initiates the procedure POLICY–IMPL,

as described in UMAA. This procedure determines the state of the system based on the

number of active users in LTE and WiFi networks and then chooses an appropriate action

based on the corresponding thresholds.

3.4.2 CMDP-based Association Algorithm

We describe the CMDP-based Association Algorithm (CAA) which addresses the issue of

high blocking probability of voice users, which may be encountered in UMAA. The details

of CAA are described in Algorithm 2. Apart from the same set of input parameters as re-
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quired by UMAA, CAA requires Bmax as an additional parameter to specify the constraint

on the blocking probability of voice users. The procedure CALC–OPT–POLICY in CAA

computes the randomized optimal policy for the considered CMDP problem. First, the

optimal policy is determined for a fixed value of β using same methodologies as in UMAA.

Then the value of β is updated until the difference of Bπβ and Bmax becomes less than

θ, where θ is a very small positive real number. All other procedures are similar to the

procedures described in UMAA.

3.4.3 Complexity Analysis

In this subsection, we investigate the gain in computational complexities of the proposed

algorithms in comparison to the traditional policy iteration algorithm [69], which per-

forms the policy search over the entire policy space in order to determine the optimal

policy. As discussed before, the computation of optimal policies for data user arrival,

voice user departure and data user departure is equivalent to the calculation of kth with

a computational complexity of O(1).

Now, we derive the computational complexity associated with obtaining the optimal

policy for voice user arrivals. In UMAA, we evaluate three policies by solving a set of

equations using Gaussian elimination with associated complexity O(|S|3), where |S| is

the dimensionality of the state space. As described in Section 3.1, a state (i, j, k) in the

state space S has the constraints (i+ j) ≤ C and k ≤ W . Therefore, the dimensionality

of the state space is |S| = O(C2W ). Hence, each iteration of the policy evaluation can

be performed in a polynomial time as a function of C and W . In the policy improvement

phase, the threshold structure of the optimal policies for the service of data user and voice

user arrival are exploited to reduce the number of iterations in comparison to the policy

iteration algorithm. Without the knowledge of the threshold properties, the number of

feasible policies for voice user arrival is O(|A||S|), where |A| is the size of the action space.

To analyze how the threshold nature of the optimal policy helps in reducing the number

of feasible policies, we consider the following cases.

1. 0 ≤ k < kth: As derived in Lemma 1, k < kth =⇒ j = 0. According to Lemma

5, there exists a threshold on the value of i, where the optimal action changes to

A1. Since for every value of k, the threshold of blocking of voice users can be placed
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anywhere on the line j = 0, the number of policies in this region is equal to Ckth .

2. k = kth: Using Lemma 1 and 2, k = kth =⇒ j ≥ 0. For every value of j, the

threshold of blocking of voice users (see Lemma 5) can be placed in (C−j) different

ways. Thus, the total no of policies is O(C!).

3. W ≥ k > kth: As established in Lemma 3, k > kth => (i + j) = C. According

to Lemma 6, there exists a threshold on the value of i, where the optimal action

changes from A4 to A1. Thus, for every value of k, the threshold can be placed in

C different ways. Thus, the total number of policies in this region is C(W−kth).

Therefore, the total number of feasible policies is O(C!CW ) which is the number of iter-

ations required for UMAA in the worst case. As a result, the worst case computational

complexity of UMAA (which is O(C!CW )) is less than the computational complexity of

policy iteration (which is O(|A|C2W )). Thus, the knowledge of threshold properties helps

in achieving faster convergence in comparison to policy iteration. Unike the policy iter-

ation pahse, the policy improvement phase consists of a comparison of value functions,

which reduces the computational complexity from O(|S|2|A|) to O(|S|).
The computational complexity of CAA for a single iteration of β is equal to the

computational complexity of UMAA.

The threshold property also reduces the storage complexity of the policy. Without

the knowledge of the threshold nature of the optimal policy, the number of bits required

to store the optimal policy is O(C2W ). By virtue of the threshold properties, we need to

store the value of a single threshold in the case of data users and (kth + C + (W − kth))
thresholds in the case of voice users, which corresponds to storing only (C + W ) bits.

This is a considerable reduction in the storage complexity as well.

3.5 Numerical and Simulation Results

In this section, the algorithms proposed in the last section are implemented in ns-3 to

observe the performance of the proposed algorithms. Performance of the proposed algo-

rithms in terms of the blocking probability of voice users and the total system throughput

is compared to the performance of on-the-spot WiFi offloading algorithm [57].
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In this algorithm [57], data user chooses LTE only when there is no WiFi cover-

age. Therefore, in the considered system model, with on-the-spot offloading, data users

always get associated with WiFi until WiFi capacity is exhausted. Voice users always get

associated with LTE BS, and when LTE capacity is full, they are blocked.

We also compare the performance of the proposed algorithms with the LTE-preferred

scheme. In this scheme, voice and data users are associated with LTE until LTE reaches

its capacity. When LTE reaches its capacity, and a voice user arrives, one existing LTE

data user is offloaded to WiFi unless WiFi system also reaches its capacity. Otherwise,

the incoming voice user is blocked. Additionally, when a voice user from LTE departs, if

there is more than or equal to one data user in WiFi, an existing WiFi data user is moved

to LTE.

3.5.1 Simulation Model and Evaluation Procedure

The simulated network model consists of a 3GPP LTE BS and an IEEE 802.11g [13] WiFi

AP. All users are taken to be stationary. The AP is approximately 50 m away from the

LTE BS, and data users are distributed uniformly within 30 m radius of the WiFi AP.

The WiFi AP is assumed to be deployed by the same cellular operator and hence trusted

from the point of view of interworking. LTE and WiFi network parameters used in the

simulation, as summarized in Table 3.3 and 3.4, are based on 3GPP models [76, 77] and

saturation throughput [72] 802.11g WiFi model. Propagation delay in WiFi network is

assumed to be negligible. We consider CBR traffic for voice and data users in LTE. The

generation of a fixed rate uplink flow is implemented in ns-3 using an application developed

by us, which works similar to the ON/OFF application. This application creates sockets

between the sender and the receiver, and fixed sized packets are transmitted from the

sender to the receiver at a constant bit rate.

3.5.2 Voice User Arrival Rate Variation

3.5.2.1 Voice User Blocking Probability Performance

Fig. 3.3a illustrates the variation of voice user blocking percentage of on-the-spot offload-

ing [57], LTE-preferred, UMAA and CAA as a function of λv. In on-the-spot offloading,
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Table 3.3: LTE network model.

Parameter Value

Maximum voice capacity 10 users

Maximum data capacity 10 users

Voice bit rate of a single user 20 kbps

Data bit rate of a single user 5 Mbps

Voice packet payload 50 bits

Data packet payload 600 bits

Tx power for BS and UE 46 dBm and 23 dBm

Noise figure for BS and UE 5 dB and 9 dB

Antenna height for BS and UE 32 m and 1.5 m

Antenna parameter for BS and UE Isotropic antenna

Path loss 128.1 + 37.6 log(R), R in kms
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Figure 3.3: Plot of blocking fraction of voice users and total system throughput for

different algorithms under varying λv.

voice users are blocked when LTE reaches the capacity. When λv is small, the voice user

blocking probability is small. However, as λv increases, the probability of approaching

the LTE capacity and hence the voice user blocking probability increases. The voice user

blocking probability in UMAA is small when λv is small. However, as λv increases, voice
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Table 3.4: WiFi network model.

Parameter Value

Channel bit rate 54 Mbps

User Datagram Protocol (UDP) header 224 bits

Packet payload 1500 bytes

Slot duration 20 µs

Short Inter-frame Space (SIFS) 10 µs

Distributed Coordination Function IFS (DIFS) 50 µs

Minimum acceptable per-user throughput 3.5 Mbps

Tx power for AP 23 dBm

Noise figure for AP 4 dB

Antenna height for AP 2.5 m

Antenna parameter Isotropic antenna

user blocking probability values become marginally higher than the corresponding values

for on-the-spot offloading. UMAA may introduce blocking of voice users even when LTE

has not reached its capacity, i.e., for states with (i + j) < C. Voice users have very

less contribution to the total system throughput. Hence, voice users are blocked to save

resources for data users which contribute significantly to the total system throughput.

However, in CAA, the number of states with proactive blocking (blocking when

(i + j) < C) is reduced due to the presence of a constraint on the voice user blocking

probability. Additionally, when i is small, the optimal action in states with (i + j) = C

becomes A4 (accept voice user in LTE and data offload to WiFi). Voice user blocking

probability contribution comes mainly from the states with (i + j) = C, where i is

large (say states (C, 0, 0),(C − 1, 1, 0) etc.). Since a major fraction of voice user blocking

occurs when (i + j) = C and i is large, the system becomes analogous to the on-the-

spot offloading. Hence, the voice user blocking probability performance of CAA is almost

similar to that of the on-the-spot offloading algorithm. Both on-the-spot offloading and

LTE-preferred schemes block voice users only when LTE system is full with only voice

users. Therefore, the blocking probability performances of these two schemes are similar.
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3.5.2.2 Total System Throughput Performance

Total system throughput performance comparison of different algorithms is illustrated in

Fig. 3.3b. In on-the-spot offloading, the average number of voice users in LTE increases

with λv, while the average number of data users in WiFi remains constant. Thus, the total

system throughput increases with λv. In the case of UMAA, with an increase in λv, the

blocking probability of voice users increases. Therefore, the fraction of voice users in the

system decreases, and the total system throughput increases. Besides, UMAA performs

a significant amount of load balancing under actions A4 (accept voice user in LTE with

data user offload to WiFi) and A5 (move data user to the RAT from where a user has

departed). With higher λv, load balancing actions are chosen more frequently. Thus, with

higher λv, UMAA exhibits a greater improvement over on-the-spot offloading algorithm.

The improvement in total system throughput varies from 1.22% (for λv = 0.01) to 10.32%

(for λv = 0.25). In Fig. 3.3b, we observe that CAA also performs better than on-the-

spot offloading. However, due to the presence of a constraint on the voice user blocking

probability, the performance improvement is lower than that of UMAA. For lower values

of λv (λv = 0.01, 0.07), the total system throughput of CAA is same as that of UMAA as

the optimal policy for the CMDP is same as that of the unconstrained MDP. On-the-spot

offloading algorithm blocks the voice users only when LTE reaches capacity. Typically,

in CAA also, blocking of voice users occurs when the LTE is full with a large number of

voice users. However, due to load balancing of data users, CAA outperforms the on-the-

spot offloading algorithm. With λv = 0.01, the improvement in total system throughput

is only 1.22% and with λv = 0.25, it becomes 7.60%. LTE-preferred scheme associates

both voice and data users to LTE. As λv increases, the probability that LTE reaches its

capacity, increases. Therefore, to accommodate the incoming voice users, existing LTE

data users are offloaded to WiFi. This increases the total system throughput when WiFi

load is low. However, both UMAA and CAA outperform the LTE-preferred scheme.

3.5.3 Data User Arrival Rate Variation

In this section, performances of the considered algorithms are compared for varying data

user arrival rates.
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Figure 3.4: Plot of blocking fraction of voice users and total system throughput for

different algorithms under varying λd.

3.5.3.1 Voice User Blocking Probability Performance

In on-the-spot offloading, voice and data users are accepted in LTE and WiFi, respectively.

Consequently, as observed in Fig. 3.4a, changes in λd do not affect the blocking probability

performance of voice users in LTE. In the case of UMAA, increase in λd associates more

number of data users with LTE since the optimal policy for data users is to associate

with LTE after the number of WiFi data users crosses a certain threshold. Therefore, the

number of free LTE resources for voice users reduces, eventually increasing the blocking

probability of voice users. The voice user blocking probability of UMAA is worse than that

of on-the-spot offloading and increases with λd. The blocking probability performance of

CAA and LTE-preferred scheme are similar to that of the on-the-spot offloading. Since

the voice users are blocked in the states where the only feasible action is blocking (say

state (C, 0, 0)), the decision epochs where voice users are blocked are almost same as that

of the on-the-spot offloading and the LTE-preferred scheme.

3.5.3.2 Total System Throughput Performance

In Fig. 3.4b, total system throughput for different algorithms are plotted as a function

of λd. In on-the-spot offloading, with an increase in λd, the number of WiFi data users

increases, and this increases the total system throughput. However, for a high λd, the
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effect of contention among data users reduces the rate of increment of the total system

throughput. In UMAA, as λd increases, more number of data users are served using

LTE. Since the throughput contribution of data users is more than that of voice users,

the blocking probability of voice users increases with λd. Thus, the fraction of voice

users in the system reduces, effectively causing more improvement in the total system

throughput. When λd = 0.1, the improvement in system metric is 25.22%, whereas for

λd = 0.6, the system metric almost doubles. In Fig. 3.4b, the total system throughput

values for CAA are smaller than the corresponding values for UMAA. The reduction in

blocking probability of voice users comes at a price of the reduction in the total system

throughput. Still, due to optimal association and load balancing decisions, CAA reduces

the effect of contention among data users in WiFi and hence performs better than the

on-the-spot offloading algorithm. For example, with λd = 0.1, the improvement in system

metric is about 22.96% and with λv = 0.6, it becomes almost 93%. Similar to Fig. 3.3b, in

case of the LTE-preferred scheme, as λd increases, more data users are offloaded to WiFi,

resulting in an improvement in total system throughput. Since the effect of contention in

the LTE-preferred scheme is lesser than that of the on-the-spot offloading, LTE-preferred

scheme outperforms the on-the-spot offloading under large λd. However, the performance

of LTE-preferred scheme is worse than both UMAA and CAA.

3.6 Conclusion

In this chapter, we have formulated the optimal association problem in an LTE-WiFi

HetNet as an MDP problem with an objective of maximizing the total system through-

put. Constrained MDP formulation has also been presented where maximizing the total

system throughput is subject to a constraint on the blocking probability of voice users.

Threshold structures on the optimal policy for the association of voice and data users

have been derived. Based on the structure of the optimal policies, we have proposed two

algorithms for the association and offloading of voice/data users in an LTE-WiFi HetNet.

The analysis indicates that the knowledge of threshold structures reduces the number

of feasible policies and hence reduces the computational complexity considerably (from

O(|A|C2W ) to O(C!CW )) in comparison to the policy iteration algorithm. Simulation re-
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sults have demonstrated that although the voice user blocking probability performance of

UMAA is worse than that of on-the-spot offloading, CAA performs as good as on-the-spot

offloading and LTE-preferred scheme. Moreover, the proposed algorithms perform better

than both on-the-spot offloading algorithm and LTE-preferred scheme in improving the

total system throughput.

However, the proposed algorithms require the knowledge of the statistics of the

arrival processes of voice and data users for the computation of the optimal policy. In

practice, these statistics may be difficult to obtain. In the next chapter, we propose RAT

selection algorithms that can operate without the knowledge of the statistics of the arrival

processes and hence, are practically implementable.





Chapter 4

Online Algorithms for Throughput

Efficient RAT Selection

In this chapter, an extension of the framework developed in Chapter 3 is considered.

In Chapter 3, we have determined the optimal RAT selection policy which maximizes

the total system throughput subject to a constraint on the blocking probability of voice

users. Although the proposed algorithms provide significant reductions in computational

complexity over the traditional policy iteration, they require the knowledge of the transi-

tion probabilities between different states associated with the underlying Markov chain.

Transition probabilities are governed by the statistics of the arrival processes of voice and

data users. Recent studies [50–52] on the characteristics of cellular traffic establish that

although the voice traffic can be predicted accurately, the current prediction schemes for

data traffic may not perform well. Therefore, obtaining real-time traffic statistics in to-

day’s cellular network is difficult. Performances achieved by different schemes are usually

obtained under an assumed distribution of the arrival processes. However, the assumed

model may be inaccurate since the parameters are difficult to obtain in practice. To

handle this problem, we propose a model unaware online RAT selection algorithm which

converges to the optimal policy in the long run. The proposed algorithm is based on

Q-learning [45] which is a well-known RL algorithm for MDP problems. One of the main

advantages of learning is that it avoids explicit estimation which may have high variance

or may be computationally prohibitive. It replaces the conditional averaging in an itera-

tive scheme for solving the DP equation by an actual evaluation at an observed transition

59
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and an incremental update which does the conditional averaging implicitly. The proposed

algorithm can be implemented without the knowledge of the statistics of the arrival pro-

cesses. Although [53] and [25] undertake Q-learning based approaches for RAT selection

and offloading for an LTE-based HetNet, contrary to our network-initiated approach,

these schemes are user-initiated in nature. The scheme in [25] uses network-provided in-

formation in taking RAT selection decisions without the possibility of offloading of data

users. In [53], distributed traffic offloading decisions are taken by users based on the

available local information, without any consideration of association strategies.

However, due to the associated exploration mechanism, Q-learning algorithm may

take a large number of iterations to converge. Furthermore, Q-learning algorithm needs

to store the value functions associated with every state-action pair, thus possessing a

significant storage complexity. To address these issues, in this chapter, we also propose

a Post-Decision State (PDS) learning algorithm which speeds up the learning process

by removing the action exploration. This approach is based on a reformulation of the

RVIA equation and can be implemented online in the SA framework. Furthermore, the

PDS learning algorithm has a lower space complexity than that of Q-learning because

instead of the state-action pair values, we need to store the value functions associated

with the states. We also prove the convergence of the PDS learning algorithm for RAT

selection to the optimality. Extensive simulations are conducted in ns-3 [44] to evaluate

the performances and convergence behaviors of the proposed association algorithms.

The rest of the chapter is organized as follows. Section 4.1 describes the system

model and the problem formulation within the CMDP framework. Section 4.2 discusses

the RL implementation for the problem described in Section 4.1 and proposes an online

Q-learning algorithm for RAT selection. We introduce the notion of PDS in Section 4.3.

Section 4.4 proposes the PDS learning algorithm for RAT selection. Section 4.5 presents

simulation results. We conclude in Section 4.6.

4.1 System Model & Problem Description

The system model and problem formulation adopted in this chapter has already been

introduced in Sections 3.1 and 3.2 of Chapter 3, respectively. Therefore, we do not repeat
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the system model and problem formulation in this chapter. However, for the sake of

completeness, we revisit the important aspects of our model and problem formulation.

4.1.1 System Model

We consider a system consisting of an LTE BS and a WiFi AP (as shown in Fig. 3.1 of

Chapter 3) where voice and data users are present. There is a common resource pool in

LTE for voice users and data users. All the users are stationary.

Voice and data user arrivals follow Poisson processes with means λv and λd, respec-

tively. Service times for voice and data users are exponentially distributed with means 1
µv

and 1
µd

, respectively. The state in the state-space S is denoted by a vector s = (i, j, k),

where i, j denote the number of voice and data users in LTE, and k denotes the number

of data users in WiFi, respectively. The set of events in the event space E are arrival of

a voice user in the system (E1), arrival of a data user in the system (E2), departure of

an existing voice user from LTE (E3), departure of an existing data user from LTE (E4)

and departure of an existing data user from WiFi (E5). The action space is denoted by

A. For the purpose of readability, we restate the details of the actions in A.

A =





A1, Block the arriving user or do nothing during departure,

A2, Accept voice/data user in LTE,

A3, Accept data user in WiFi,

A4, Accept voice user in LTE and offload one data user to WiFi,

A5, Move one data user to a RAT (from which departure has occurred).

Action A1 corresponds to blocking of an incoming user in the case of an arrival or

doing nothing at departure. Action A2 and A3 correspond to accepting an user in LTE and

WiFi, respectively. Under action A4, a voice user is accepted in LTE, and one data user is

offloaded to WiFi. Action A5 offloads one data user to a RAT from which a departure has

just occurred. From each state s, under an action a, the system makes a transition to a

different state s′ with a positive probability pss′(a). Description of transition probabilities

has been provided in Table 3.1 of Chapter 3. The reward and cost functions per unit time

for state s and action a are denoted by r(s, a) and c(s, a), respectively. The descriptions
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of reward rates and cost rates in state s = (i, j, k) for different events and actions have

been provided in Table 3.2 and Equation (3.1) of Chapter 3, respectively.

4.1.2 Problem Formulation & Solution Technique

As already stated in Chapter 3, our objective is to determine an association policy which

maximizes the total throughput of the system, subject to a constraint on the blocking

probability of voice users. As described in Section 3.2 of Chapter 3, this problem has

been formulated as a constrained continuous time MDP. The optimal policy is a mixture

of two pure policies with associated probabilities [73]. The optimality equation has been

described in Equation (3.5) of Chapter 3. Equations (3.6) and (3.7) of Chapter 3 have

described how the optimality equation can be solved using a combination of RVIA and

gradient descent approaches.

4.2 Reinforcement Learning

As discussed in the previous section, the optimal policy can be obtained by employing

RVIA, provided the transition probabilities pss′(a) are known beforehand. The knowledge

of transition probability in turn requires the knowledge of the parameters of the arrival

processes of voice and data users. In practice, these parameters may be difficult to

obtain. RL based techniques are good candidates in such scenarios. Typically, RL based

techniques learn which action to perform by trial-and-error and hence can work in a

model-free manner. We choose Q-learning [45] for its simplicity and popularity. However,

since the model considered in this chapter is a constrained continuous time MDP model

involving average reward, traditional Q-learning algorithm needs some modifications. We

describe the necessary modifications in the subsequent section.

4.2.1 Proposed Online Algorithm

The system moves through different states based on the arrival/departure of users and

various actions taken in different states. Let the Q-value, the expected long-term average

reward associated with a state s and an action π(s) as specified by the policy π, be denoted

by Qπ(s, π(s)). The objective is to determine an optimal policy π∗, which maximizes the
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Q-value associated with a state, as described in the equation below.

π∗(s) = arg max
a∈A

Qπ(s, a), ∀s, π. (4.1)

The theory of SA [78] enables us to remove the expectation operation in Equation (3.6)

of Chapter 3 and achieve optimality in policy by doing averaging over time. Let g(n) be

an update sequence which possesses the following properties,

∞∑

n=1

g(n) =∞;
∞∑

n=1

(g(n))2 <∞. (4.2)

Let h(n) be another update sequence which possesses the same properties as described in

Equation (4.2) along with the additional properties described below,

∞∑

n=1

(g(n) + h(n))2 <∞; lim
n→∞

h(n)

g(n)
→ 0. (4.3)

The key idea is to update the Q-value associated with one state-action pair at a time and

keep the other values unchanged. This scheme translates into the following equation.

Qn+1(s, a) = (1− g(n))Qn(s, a) + g(n)[r(s, a)− βc(s, a) + max
a′∈A

Qn(s′, a′)

−Qn(s∗, a∗)t(s, a, s′)];

Qn+1(s̃, ã) = Qn(s̃, ã), ∀(s̃, ã) 6= (s, a),

(4.4)

where t(s, a, s′) denotes the random transition time to move from state s to s′ under the

action a, and (s∗, a∗) is a fixed state-action pair. However, this scheme works for a fixed

value of LM β. To obtain the optimal value of β, β is to be iterated along the timescale

h(n), as specified below.

βn+1 = Λ[βn + h(n)(Bn −Bmax)], (4.5)

where the projection operator Λ ensures that the value of LM remains bounded in the

interval [0, L] for a large L > 0. The assumptions on g(n) and h(n) as specified in

Equations (4.2) and (4.3) guarantee that the two variables are updated on two different

timescales. In addition, the update of LM is done on a slower timescale than the update of

Q-value of state-action pair. From the slower LM timescale perspective, Q(s, a) appears

to be converged to optimality corresponding to the current LM value. From the faster

timescale perspective, LM appears to be almost fixed. g(n) and h(n) are two different
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learning rates which specify how much importance is to be given to the old Q-value over

the current reward.

At every decision epoch, i.e., upon every arrival or departure of users, the centralized

controller (as shown in Fig. 3.1 of Chapter 3) chooses an action. If the network receives

a high reward by selecting an action, it may prefer to exploit that action in future de-

cision epochs. However, the network needs to explore other actions as well with time in

order to observe whether they result in significant amounts of rewards. The aim of the

proposed algorithm is to exploit the actions with high reward with a sufficient number

of explorations. In this chapter, we adopt the ε-greedy [45] approach for exploration and

exploitation. At every decision epoch, if the network is in state s, the proposed algorithm

explores with a probability ε(s) and exploits the action having the highest Q-value with

a probability (1 − ε(s)). In the exploration phase, all the feasible actions in state s are

chosen with equal probabilities, and exploration is gradually reduced over time.

The proposed two timescale Q-learning algorithm is described in Algorithm 3. As

Algorithm 3 Constrained SMDP based two timescale Q-learning algorithm

1: Initialize number of iterations k ← 1, Q-values of state-action pairs Q(s, a)← 0, ∀s ∈ S, a ∈ A and

LM β ← 0.

2: while TRUE do

3: Determine the system state s.

4: if exploration phase then

5: Choose one of the feasible actions at random.

6: else

7: Choose action a = arg max
a

Q(s, a).

8: end if

9: Observe reward r(s, a;β) = r(s, a)− βc(s, a).

10: Go to next state s′.

11: Observe transition time to next state t(s, a, s′).

12: Update Q(s, a) according to Equation (4.4).

13: Update the LM according to Equation (4.5).

14: Update s← s′ and k ← k + 1.

15: end while

described in the algorithm, Q-values associated with different state-action pairs, the LM

and the number of iterations are initialized at the beginning. Based on a random event

(arrival or departure), the system state is initialized. When the system is in state s, it
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chooses exploration and exploitation with finite probabilities. In the exploration phase,

a random action is selected, while in the exploitation phase, the system chooses the

action with the highest Q-value. Based on the observed reward in that state and the

transition time to next state s′, Q(s, a) is updated along with the LM. This process is

thus continued for all decision epochs. Simulation results demonstrate that this algorithm

indeed converges in a reasonable number of iterations, provided the number of visits to

each state-action pair is sufficiently large, and the learning rates are slowly reduced to

zero, as specified in Equation (4.2).

However, due to the associated exploration mechanism, Q-learning algorithm may

take a large number of iterations to converge. Furthermore, Q-learning algorithm needs

to store the value functions associated with every state-action pair, thus possessing a

significant storage complexity. To address these issues, in this the next section, we propose

a PDS learning algorithm which speeds up the learning process by removing the action

exploration. This approach is based on a reformulation of the RVIA optimality equation

and can be implemented online in the SA framework. Furthermore, the storage complexity

of the PDS learning algorithm is lower than that of Q-learning.

Remark 7. If the assumptions on service times for voice and data users are relaxed,

i.e., these quantities can have any general distribution, then the problem converts into a

semi-Markov decision process problem. In this case also, a Q-learning based approach can

be devised. If the sojourn times in different states are bounded, then a scheme similar to

Equation (4.4) where the observed transition time is multiplied to the current Q-value of a

specified state-action pair, can be chosen. Note that the continuous time MDP considered

in this chapter is a special case of semi-Markov decision process where the service times

are exponentially distributed.

4.3 Post-Decision State Framework

In the next section, we propose a PDS learning algorithm which can operate without the

knowledge of the statistics of the arrival processes of voice and data users and can still

converge to the optimal solution. However, before describing the online algorithm, we

introduce the notion of the PDS in this section.
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PDS ŝ

(i, j, k + 1)

State s′

(i− 1, j, k + 1)

State s

(i, j, k)

Voice departure (E3)Action a = A3

Figure 4.1: Transition among PDSs and pre-decision states.

A PDS is defined to be an imaginary state of the system just after an action is

chosen and before the unknown system dynamics (noise) adds into the system. The

idea behind PDS is to factor the transition from one state to another into known and

unknown components. The known component consists of the effect of the action taken

in a state, whereas the unknown component comprises the unknown random dynamics of

the system (viz., the arrival and departure of voice and data users). Let us assume that

the state of the system is s = (i, j, k) ∈ S at some decision epoch. Based on the chosen

action, the system moves to the post-decision state ŝ = (̂i, ĵ, k̂) ∈ S. Based on the next

event, the system moves to the actual pre-decision state s′ = (i′, j′, k′) ∈ S. Throughout

this chapter, whenever we refer to a “state”, we always refer to a pre-decision state. An

example transition involving pre-decision states and PDSs is illustrated in Fig. 4.1. Under

action A3, the system makes a transition from state s = (i, j, k) to PDS ŝ = (i, j, k + 1).

Under the next event E3, the system moves from the PDS ŝ to the pre-decision state

s′ = (i− 1, j, k+ 1). In other words, the known information regarding the transition from

state s to s′ is incorporated in PDS ŝ. On the other hand, transition from PDS ŝ to state

s′ consists only of the unknown system dynamics which is not included in the PDS. Let

V̂ (ŝ) be the value function associated with the PDS ŝ ∈ S. Thus, we have,

V̂ (ŝ) = Es′ [V (s′)],

where the expectation Es′ is taken over all the pre-decision states which are reachable

from the post-decision state ŝ. Let the transition probability from PDS ŝ to pre-decision

state s′ be denoted by p(ŝ, s′). The post-decision Bellman equation for the post-decision

state ŝ = (x̂, ŷ, ẑ) ∈ S is

V̂ (ŝ) =
∑

s′

p(ŝ, s′) max
a

[r(s′, a; β) + V̂ (ŝ′)]− ρ, (4.6)

where ŝ′ is the post-decision state when action a in chosen in pre-decision state s′. Using
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Equation (4.6), the RVIA based update rule is as follows.

V̂n+1(ŝ) =
∑

s′

p(ŝ, s′) max
a

[r(s′, a; β) + V̂n(ŝ′)]− V̂n(ŝ∗),

V̂n+1(ŝ′′) =V̂n(ŝ′′) ∀ŝ′′ 6= ŝ,

(4.7)

where ŝ is the PDS associated with the nth decision epoch, and ŝ∗ is a fixed PDS. The

idea is to update one component at a time and keep the others unchanged. This idea is

translated into an online algorithm which updates the value function of the PDS associated

with the current decision epoch.

4.4 Online RAT Selection Algorithm

The system changes states based on different events, i.e., the arrival/departure of users

and various actions chosen in different states. Since we do not know the statistics of

arrival rates of voice and data users and the max operator occurs outside the averaging

operation with respect to the transition probabilities of the underlying Markov chain in

Equation (3.6) of Chapter 3, online implementation of the same is not feasible. However,

in Equation (4.7), the expectation operation which resides outside the max operation can

be replaced by averaging over time (which is same as the corresponding empirical measure)

to estimate the optimal value function of the PDSs. Using the theory of SA [78], we can

remove the expectation operation in Equation (4.7) and still converge to the optimality

in policy by doing averaging over time.

The key idea is to update the value function associated with one PDS at a time

and keep the other PDS values unchanged. Let Yn be the PDS which is updated at nth

iteration. Also, define γ(ŝ, n) =
∑n

m=0 I{ŝ = Yn}, i.e., number of times PDS ŝ is updated

till nth iteration. The scheme is as follows.

V̂n+1(ŝ) = (1−g(γ(ŝ, n)))V̂n(ŝ) + g(γ(ŝ, n)){max
a

[r(s′, a; β) + V̂n(ŝ′)]− V̂n(ŝ∗)},

V̂n+1(ŝ′′) =V̂n(ŝ′′) ∀ŝ′′ 6= ŝ.

(4.8)

However, the scheme (4.8) is a primal RVIA algorithm which solves a dynamic program-

ming equation for a fixed value of LM β. To obtain optimality in β, β is to be iterated

along the timescale h(n), as described below.

βn+1 = Λ[βn + h(n)(Bn −Bmax)]. (4.9)
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Therefore, the primal-dual RVIA can be described as follows.

If the system is at PDS ŝ at the nth iteration, then do the following.

V̂n+1(ŝ) = (1−g(γ(ŝ, n)))V̂n(ŝ) + g(γ(ŝ, n)){max
a

[r(s′, a; β) + V̂n(ŝ′)]− V̂n(ŝ∗)},

V̂n+1(ŝ′′) =V̂n(ŝ′′) ∀ŝ′′ 6= ŝ,

(4.10)

βn+1 = Λ[βn + h(n)(Bn −Bmax)]. (4.11)

The assumptions on g(n) and h(n) (Equations (4.2) and (4.3)) ensure that two

quantities are updated on two different timescales. The value of LM is updated on a

slower timescale than that of the value function. From the slower LM timescale point of

view, V̂ (ŝ) appears to be equilibrated in accordance with the current LM value, and from

the faster timescale view, LM appears to be almost constant. This two-timescale scheme

induces a “leader-follower” behavior. The slow (fast) timescale iterate does not interfere

in the convergence of the fast (slow) timescale iterate.

Theorem 1. The schemes (4.10)-(4.11) converge to (V̂ , β∗) almost surely (a.s.).

Proof. The proof is presented in Appendix A.3.

Based on the analysis presented above, the two timescale PDS online learning al-

gorithm is described in Algorithm 4. As described in the algorithm, value functions

Algorithm 4 PDS learning algorithm

1: Initialize number of iterations k ← 1, value function vector V̂ (ŝ)← 0, ∀ŝ ∈ S and the LM β ← 0.

2: while TRUE do

3: Determine the event (arrival/departure) in the current decision epoch.

4: Choose action a which maximizes the R.H.S expression in Equation (4.8).

5: Update the value function of PDS ŝ using (4.8).

6: Update the LM according to Equation (4.9).

7: Update ŝ← ŝ′ and k ← k + 1.

8: end while

associated with different states, the LM and the number of iterations are initialized at the

beginning. Based on a random event (arrival or departure of voice/data user), the system

state is initialized. When the current PDS of the system is ŝ, the system chooses an action

which maximizes the R.H.S expression in Equation (4.8). Based on the observed reward

in the current PDS ŝ′, V̂ (ŝ) is updated along with the LM. This process is repeated for

every decision epoch.
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Remark 8. Note that the proposed Q-learning algorithm stores the value functions for

every state-action pair, i.e., |S| × |A| values and updates the value function of one state-

action pair at a time. The PDS learning algorithm (see Equation (4.10)) requires storing

|S| PDS value functions and feasible actions in every state, i.e., |S| values. Clearly, there

is a significant reduction in storage complexity from O(|S| × |A|) to O(|S|).

4.5 Simulation Results

In this section, the proposed Q-learning and PDS learning algorithms are simulated in

ns-3 to observe the performance. Optimal policy obtained by solving the continuous time

MDP problem using RVIA, when the statistics of the arrival rates of voice and data

users are known, is also simulated in ns-3. It is observed that the Q-learning algorithm

converges to the optimal policy as the time progresses. Moreover, the performance of Q-

learning algorithm in terms of total system throughput is compared to the performance

of the optimal policy. We also provide a performance comparison of Q-learning algorithm

with PDS learning algorithm in terms of convergence speed to optimality.

4.5.1 Simulation Model and Evaluation Procedure

The simulation setup considered in this chapter is identical to the setup considered in

Section 3.5 of Chapter 3. The network model is simulated with a 3GPP LTE BS and an

IEEE 802.11g [13] WiFi AP. All users are assumed to be stationary. The AP is trusted

from the point of view of interworking and approximately 50 m away from the LTE BS.

Data users are assumed to be distributed uniformly within 30 m radius of the WiFi AP.

LTE and WiFi network parameters used in our simulation are based on 3GPP [76]- [77]

models and saturation throughput [72] of IEEE 802.11g WiFi model, respectively. They

have been summarized in Table 3.3 and 3.4 of Chapter 3. Although the system model

does not have any assumption on the scheduling strategy, for simulation purposes, we

consider proportional fair scheduling for the LTE BS. For the Q-value and LM updates,

we consider g(n) = 1
n0.6 and h(n) = 1

n
.
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Figure 4.2: Comparison of performance of the optimal policy and the Q-learning based

policy.
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4.5.2 Convergence Analysis of Q-learning Algorithm

Fig.(4.2a) and (4.2b) illustrate how the proposed Q-learning algorithm converges to the

optimal policy in terms of the total system throughput. It is evident that as the time

progresses, the total throughput of the system gradually becomes closer to the total

throughput under the optimal policy. However, in Fig.(4.2a), since the users are served at

rates which are faster than the corresponding arrival rates (λv < µv and λd < µd) and the

simulations start with an initially empty system, the average number of voice and data

users in the system at any point in time is less. As a result, all states in the state space

are not visited often. Even after a sufficient number of iterations, occasionally some new

states are visited, and the algorithm starts to learn the optimal policy in those states by

trial-and-error. Therefore, even after a sufficient amount of time, the total throughput

provided by the Q-learning algorithm is marginally lower (around 0.6 Mbps) than that of

the optimal policy. Nevertheless, the performance offered by the Q-learning algorithm is

very close to the optimal one in the long run.

On the contrary, in case of λv = λd = 1.0s−1 and µv = µd = 0.1s−1 (see Fig.(4.2b)),

since the arrival rates are higher than the service rates, the probability of visiting all states

in the state space is relatively higher. Hence, after a sufficient amount of time, almost all

the state-action pairs are visited reasonable number of times, resulting in the convergence

to the optimal policy. Fig.(4.2b) demonstrates that indeed optimality in total system

throughput is achieved after almost 200s. Except this small interval at the beginning of

the simulation, in most of the states, the action with the highest Q-value matches with

the action governed by the optimal policy.

In Fig.4.3, we demonstrate how the value of LM converges with the number of

iterations under different values of λv, λd, µv and µd. Upon every arrival and departure,

the value of LM is updated as specified in Algorithm 3, depending on the cost incurred.

It is observed that for the two cases that we consider, the LM converges approximately

after 500 and 1500 iterations, respectively. However, the actual time taken to achieve

convergence depends on the chosen values of arrival and service rates. Due to similar

reasons as observed in Fig.(4.2a) and (4.2b), the convergence behavior in the second case

is better than that of the first case. In the first case, since the users are served at rates

which are faster than the corresponding arrival rates, even after a sufficient number of
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Figure 4.3: Convergence of Lagrange multiplier.
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Figure 4.4: Plot of total system throughput vs. number of iterations (n) for different

algorithms.

iterations, occasionally some new states are visited, and the algorithm starts to learn the

optimal policy in those states by trial-and-error.

4.5.3 Performance Analysis of PDS learning Algorithm

In this subsection, we analyze the performance of PDS learning algorithm and compare

the performance with that of Q-learning. For the update of the PDS value functions and

LM, we consider g(n) = 1
(b n

1000
c+2)0.6

and h(n) = 10
n

.
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Figure 4.5: Plot of LM vs. number of iterations (n) for PDS learning algorithms.

Fig.(4.4a) and (4.4b) illustrate how the Q-learning and PDS learning algorithms con-

verge with increasing number of iterations (n). We keep λv = λd = 1. It is evident that

PDS learning algorithm outperforms Q-learning in terms of convergence speed. Contrary

to PDS learning, even after a considerable amount of iterations, Q-learning explores dif-

ferent actions with finite probabilities, thereby reducing its convergence speed. Fig.4.5

depicts the convergence of LM as n increases. It is evident that as the number of iteration

increases, LM converges.

4.6 Conclusions

In this chapter, we have considered the optimal RAT selection problem in an LTE-WiFi

HetNet where the statistics of arrival processes of voice and data users are not known. We

have proposed an online learning algorithm based on the paradigm of Q-learning. The

proposed algorithm does not require the knowledge of the statistics of arrival processes of

data and voice users and hence fits well for an online implementation under the paradigm
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of SA. To address the problem of slow convergence and high storage complexity asso-

ciated with Q-learning, we have also proposed a PDS learning algorithm which can be

implemented online without the knowledge of the statistics of the arrival processes. It has

been proved that the PDS learning algorithm converges to the optimal policy. Simulation

results have demonstrated that both the algorithms indeed converge to optimality after

a reasonable number of iterations. Moreover, it has been observed that the convergence

speed of PDS learning algorithm is better than that of Q-learning.

However, both the proposed algorithms do not exploit the optimality of threshold

policies derived in Chapter 3. If this result can be exploited in the learning framework,

intuitively, faster convergence may be achieved. This is due to the fact that the policies

which are not threshold in nature, can be eliminated from the search space while learn-

ing. Furthermore, the storage and computational complexity associated with the learning

process may also be reduced. In the next chapter, we consider the problem of exploitation

of the knowledge regarding the structure of the optimal policy in the learning framework

to achieve faster convergence to optimality.



Chapter 5

Structure-aware Learning for RAT

Selection

In this chapter, we consider an extension of the online learning framework developed in

Chapter 4. The algorithms proposed in Chapter 4 can operate without the knowledge of

the arrival processes of voice and data users and hence, can be implemented online. The

issue of slow convergence and high storage complexity associated with Q-learning has been

addressed in the PDS learning framework. However, the convergence speed, the storage

complexity and the computational complexity can be further improved if we exploit the

knowledge of the threshold structure of the optimal policy in the learning process. In

this chapter, we propose an online learning algorithm for RAT selection which exploits

the known threshold structure of the optimal policy to further reduce the computational

complexity and is one of the first attempts to do so.

We have shown in Chapter 3 that the optimal policy has a threshold structure,

wherein after a certain threshold on the number of WiFi data users, data users are served

using LTE. A similar property exists for the admission of voice users, where after a

certain threshold on the number of LTE data and voice users, voice users are blocked. In

this chapter, we exploit the threshold properties in Chapter 3 and propose a structure-

aware learning algorithm which, instead of the entire policy space, searches the optimal

policy only from the set of threshold policies. This reduces the convergence time as

well as the computational and the storage complexities in comparison to Q-learning and

PDS learning algorithms proposed in the last chapter. We prove that the threshold

75
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vector iterates in the proposed structure-aware learning algorithm indeed converge to

the globally optimal solution. Note that the analytical methodologies presented in this

chapter to learn the optimal threshold policy are developed independently and can be

applied to any learning problem where the optimal policy is threshold in nature. We

present a generalized framework of the proposed algorithm in Appendix B.

Although we make some simplifying assumptions to facilitate the analysis, perfor-

mance of the proposed scheme is studied in realistic conditions without the simplifying

assumptions. Extensive simulations are conducted in ns-3 [44] to characterize the perfor-

mance of the proposed algorithm and compare the performance with those of Q-learning

and PDS learning algorithms proposed in Chapter 4. Furthermore, we observe that the

proposed algorithm outperforms other benchmark algorithms under realistic network sce-

narios like channel fading, dynamic resource scheduling and user mobility.

The rest of the chapter is organized as follows. Section 5.1 describes the system

model and the problem formulation. Section 5.2 proposes a structure-aware learning

algorithm for RAT selection in an LTE-WiFi HetNet along with the proof of convergence.

A comparison of computational and storage complexities of the proposed algorithm with

those of Q-learning and PDS learning algorithms proposed in Chapter 4 is provided in

Section 5.3. Simulation results are presented in Section 5.4, followed by conclusions in

Section 5.5.

5.1 System Model & Problem Formulation

The system model and problem formulation are analogous to those of Chapters 3 and 4.

We have considered a system where an LTE BS and a WiFi AP are present. Voice and data

user arrivals follow Poisson processes with means λv and λd, respectively. Service times

for voice and data users are exponentially distributed with means 1
µv

and 1
µd

, respectively.

Details of the state space, action space, state transitions, reward and cost are described

in Section 3.1 of Chapter 3.

The problem formulation is similar to the problem formulation described in Section

3.2 of Chapter 3. We aim to determine an association policy which maximizes the total

system throughput subject to a constraint on the blocking probability of voice users.
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The problem has been formulated as a CMDP. We obtain the optimal policy for the

CMDP problem using the approach of obtaining the equivalent discrete-time MDP and

Lagrangian method, as described in Section 3.2 of Chapter 3.

5.2 Structure-aware Online RAT selection Algorithm

The optimal policy can be obtained by employing RVIA, provided the transition probabil-

ities pss′(a) associated with the state-action pairs are known beforehand. The knowledge

of transition probability in turn requires the knowledge of the statistics of the arrival

processes of voice and data users. These parameters may be difficult to obtain in reality.

In Chapter 4, we have proposed Q-learning and PDS learning algorithms which learn the

optimal policy by trial and error.

In this section, we propose a learning algorithm exploiting the threshold properties

of the optimal policy. The Q-learning and PDS learning algorithms proposed in Chapter 4

do not take into account the threshold nature of the optimal policy (derived in Chapter 3)

and hence optimizes over the entire policy space. However, utilizing the threshold nature

of the optimal policy, the feasible policy space can be reduced significantly. To this end,

we propose a structure-aware online learning algorithm which searches the optimal policy

only from the set of threshold policies, providing faster convergence than Q-learning and

PDS learning algorithms.

5.2.1 Gradient Based Online Algorithm

Before proceeding, we revisit the symbols which will be used in this section. As defined

in Chapter 3, i denotes the number of voice users in LTE. j and k denote the number of

data users in LTE and WiFi, respectively. Let the throughput increment in WiFi when

the number of WiFi users increases from k to (k + 1) be denoted by R̃W,D(k). Therefore,

R̃W,D(k) = (k + 1)RW,D(k + 1)− kRW,D(k). We assume the following.

Assumption 2. R̃W,D(k) is a non-increasing function of k. This assumption is in line

with the full buffer traffic model [72].

Summary of the structural properties of the optimal policy is as follows. Detailed

proofs of the structural properties can be found in Chapter 3.
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1. Upto a threshold on the number of WiFi data users (say kth), serve data users in

WiFi (A3) and then serve them using LTE (A2) until LTE is full. When LTE is

full, i.e., (i + j) = C, the optimal policy is to serve all data users using WiFi until

k = W , where an incoming data user is blocked.

2. For every state (i, j, k) such that k < kth(k ≥ kth) and (i, j) satisfies (i + j) < C,

upon a voice user arrival, A4(A2) is better than A2(A4).

3. For every state (i, j, k) such that (i, j) satisfies (i+j) < C, upon a voice user arrival,

if the optimal action in state (i, j, k) is blocking, then the optimal action in state

(i+ 1, j, k) is also blocking.

4. For every state (i, j, k) such that (i, j) satisfies (i+j) = C, upon a voice user arrival,

if the optimal action in state (i, j, k) is blocking, then the optimal action in state

(i+ 1, j − 1, k) is also blocking.

Using the first two properties, we can eliminate a number of suboptimal actions. In the

case of data user arrival (event E2) and departure of voice and data users (events E3, E4

and E5), a single decision is involved. This may provide improved convergence because

contrary to an online algorithm without any knowledge of the structural property, we

no longer need to learn optimal actions in some states. The only event where multiple

decisions are involved is the voice user arrival (event E1). As stated in Properties 3 and 4,

the value of the threshold on i, where the optimal action changes to blocking, is a function

of j and k. Thus, if we have the knowledge of the values of thresholds, we can characterize

the policy completely. The idea is to optimize over the threshold vector (say θ) using an

update rule, so that the value of the threshold vector θ converges to the optimal value.

Before proceeding further, we determine the dimension of θ using the succeeding analysis.

Using Properties 1 and 2, we can identify three regions.

1. 0 ≤ k < kth: Using Property 1, we have j = 0. For each value of k, we need to

know the value of the threshold which belongs to the set {0, 1, . . . , C}.

2. k = kth: Using Property 1, k = kth =⇒ j ≥ 0. Thus, it boils down to computing

a single threshold which belongs to the set {0, 1, . . . , C − j} (Property 3), for each
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value of j (0 ≤ j < C). Also, we need to compute a single threshold for (i+ j) = C

(Property 4).

3. W > k > kth: Using Property 1, k > kth =⇒ (i+ j) = C. Thus, using Property 4,

we need to obtain the threshold of blocking for (W − kth − 1) values of k.

Therefore the dimension of θ = (kth + C +W − kth)=(C +W ).

Thus, θ(0) corresponds to the value of threshold when k = 0. θ(0) belongs to the set

{0, 1, . . . , C}. Similarly, θ(1) corresponds to the value of threshold when k = 1 and so on.

Remark 9. When the state space becomes too large, then it becomes cumbersome to

represent a policy since this requires tabulating actions corresponding to each state. Due

to the threshold nature of the optimal policy, the representation using the threshold vector

becomes computationally efficient. Instead of storing the optimal action corresponding to

each state, we just need to store (C +W ) individual thresholds.

As assumed in Chapter 4, g(n) and h(n) are positive step-size sequences possessing

the properties described in Equations (4.2) and (4.3) of Chapter 4.

We consider a class of threshold policies which can be described in terms of the

threshold vector θ. The main idea behind the online algorithm is to compute the gradient

of the system metric, i.e., the average reward of the system, with respect to θ and improve

the policy by updating the value of θ in the direction of the gradient. Therefore, following

[74], one needs to compute the gradient of the system metric. To express the dependence

of the parameters associated with the underlying Markov chain on θ explicitly, we need

to redefine the notations. Let the transition probability associated with the Markov chain

{Xn} as a function of θ be given by

Pss′(θ) = P (Xn+1 = s′|Xn = s, θ).

Note that a given θ corresponds to a fixed threshold policy. In this case, the underlying

system dynamics becomes a Markov chain. The transition probabilities of the Markov

chain for a given θ are parameterized by the equation described above.

Assumption 3. We assume that for every s, s′ ∈ S, Pss′(θ) is a bounded, twice differen-

tiable function, and the first and second derivative of Pss′(θ) is bounded.
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Let the average reward of the Markov chain, steady state stationary probability of

state s, value function of state s (as a function of θ) be denoted by ρ(θ), π(s, θ) and

V (s, θ), respectively. The following proposition provides a closed-form expression for the

gradient of the average reward of the system. A proof for the same can be found in [74].

Although [74] considers a generalized case where the reward function depends on θ, in

our case the same proof holds with the exception that the gradient of the reward function

is zero.

Proposition 1. Under assumptions on Pss′(θ) as stated before, we have,

∇ρ(θ) =
∑

s∈S

π(s, θ)
∑

s′∈S

∇Pss′(θ)V (s′, θ). (5.1)

Hence, we can compute the value of ∇ρ(θ) (or ∇Pss′(θ)) to construct an incremental

scheme similar to a stochastic gradient algorithm for the threshold values, of the form

θn+1 = θn + h(n)∇ρ(θn), (5.2)

where θn represents the value of threshold vector in nth iteration on the slower timescale

h(n). Given a threshold θ, we assume that the state transition in state s = (i, j, k) is

given by P0(s
′|s), if i < θ(T ) and P1(s

′|s), otherwise, where θ(T ) denotes the component

of θ which corresponds to state s. Specifically,

T =




k + j, (i+ j) 6= C,

C + k, (i+ j) = C.

(5.3)

As an example, if the state of the system is s = (i, 0, 0), then since k = 0, we have T = 0.

Hence, we need to update the value of θ(0). Therefore, according to the two-timescale

gradient based learning framework, on the faster timescale, we have,

Vn+1(s, θ) = (1−g(γ(s, n)))Vn(s, θ) + g(γ(s, n))[r(s, a; β) + Vn(s′, θ)− Vn(s∗, θ)],

Vn+1(s
′′, θ) =V̂n(s′′, θ), ∀s′′ 6= s.

(5.4)

For example, if the current state is s = (i, 0, 0) and (i < θn(0)), then state transition is

determined by P0(s
′|s) (accept in LTE (A2)), i.e., s′ = (i + 1, 0, 0), else, s′ is determined

by P1(s
′|s) (blocking (A1)), i.e., s′ = (i, 0, 0). However, value functions corresponding to

other states are kept unchanged.
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Note that, the above scheme works for a fixed value of the threshold vector θ and

the LM β. To obtain the optimal value of θ, θ is to be iterated along the slower timescale

h(n). Note that, although individual components of the threshold take discrete values,

we interpolate them to the continuous domain to be able to apply the online update

rule. Since the threshold policy is a step function (governed by P0(s
′|s) up to a threshold

and P1(s
′|s), thereafter) defined at discrete points, Assumption 3 is not satisfied at every

point. Therefore we approximate the threshold policy in state s by a randomized policy

which is a function of θ (f(s, θ), say). We define

Pss′(θ) ≈ P1(s
′|s)f(s, θ) + P0(s

′|s)(1− f(s, θ)),

where f(s, θ(T )) =
e(i−θ(T )−0.5)

1 + e(i−θ(T )−0.5)
in state s = (i, j, k), provides a convenient approxi-

mation to the step function.

Remark 10. The rationale behind the choice of this function is the fact that it is contin-

uously differentiable, and the derivative is nonzero everywhere.

Remark 11. Another choice of f(s, θ(T )) could be the following.

f(s, θ(T )) = 0.I{i ≤ θ(T )}+ 1.I{i ≥ θ(T ) + 1}+ (i− θ(T )).I{θ(T ) < i < θ(T ) + 1}.

This function uses approximation only in the interval (θ(T ), θ(T ) + 1). Therefore, the

approximation error in this case is lesser than that of the sigmoid function considered

earlier. However, the convergence behavior may be worse because the derivative of the

function is nonzero only in the interval (θ(T ), θ(T ) + 1). Therefore, if the initial guesses

of the iterates are outside this interval, gradient becomes zero and the scheme fails to

converge. Therefore, better approximation may be flatter away from the threshold and

hence may spoil the convergence behavior. However, in general, this may not hold, and

one needs to analyze the convergence behavior in a case-by-case manner.

While designing an online update scheme for θ, instead of ∇ρ(θn) (See Equation

(5.2)), we can evaluate ∇Pss′(θ). The steady-state stationary probabilities inside the

summation inside Equation (5.1) can be omitted by performing averaging over time. We

have,

∇Pss′(θ) = (P1(s
′|s)− P0(s

′|s))∇f(s, θ). (5.5)
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In the right hand side of Equation (5.5), we incorporate a multiplication factor of 1
2

since multiplication by a constant term does not alter the online scheme. The physical

significance of this operation is that at any iteration, we have state transitions according to

P0(.|.) and P1(.|.) with equal probabilities. This operation is done to associate the notion

of a randomized policy with Equation (5.5). The update of θ in the slower timescale h(n)

is as follows.

θn+1(T ) = ∆T [θn(T ) + h(n)∇f(s, θn(T ))(−1)αnVn(s′, θn)],

θn+1(T
′) = θn(T ′) ∀T ′ 6= T,

(5.6)

where αn is a random variable which takes values 0 and 1 with equal probabilities. When

it takes the value 0, then s′ is determined by P1(s
′|s), otherwise by P0(s

′|s). The averaging

property of SA then leads to the effective drift (5.5). Depending on the state visited, the

T th component of the vector θ is updated as shown in Equation (5.6). For example, if the

current state is (1, 0, 0), then θn(0) is updated (see Equation (5.3)), and other components

are kept unchanged. The projection operator ∆T is a function which ensures that the

iterates remain bounded in the interval [0,M(T )], where

M(T ) =




C − (T − kth), if (kth + C) ≥ T ≥ kth,

C, else.

(5.7)

Therefore,

∆T (x) =





x, if 0 ≥ x ≥M(T ),

0, if 0 < x,

M(T ), else.

Similar to Algorithm 4, to obtain the optimal value of β, β is to be iterated along

the same timescale h(n), as specified below,

βn+1 = Λ[βn + h(n)(Bn −Bmax)], (5.8)

where the definition of Λ is provided alongside Equation (4.5). For the ease of the reader,

we restate the definition as follows:

Λ(x) =





x, if 0 ≥ x ≥ L,

0, if 0 < x,

L, else.



5.2. Structure-aware Online RAT selection Algorithm 83

Remark 12. The dynamics of the LM and the threshold vector are not dependent on each

other directly. However, both β and θ iterates depend on the value functions in the faster

timescale. Therefore θ is updated in the same timescale as that of β, without requiring a

third timescale.

Lemma 7. V̂N(i+ 1, j, k)− V̂N(i, j, k) is non-increasing in N .

Proof. The proof is provided in Appendix A.4.

Lemma 8. If (i, j) satisfies (i+j) = C, V̂N(i+1, j−1, k+1)−V̂N(i, j, k) is non-increasing

in N .

Proof. The proof is provided in Appendix A.5.

Lemma 9. ρ(θ) is unimodal in θ, where θ(T ) ∈ [0,M(T )] for T = 0, . . . , (C +W − 1).

Proof. The proof is provided in Appendix A.6.

Theorem 2. The iterates in Equations (5.4), (5.6) and (5.8) converge to optimal policy

a.s.

Proof. The proof is provided in Appendix A.7.

Note that the convergence result holds for the approximated system under the as-

sumption that the derivative of the approximation function is non-zero everywhere, as

stated before. Based on the analysis described above, the structure-aware online learning

algorithm is stated in Algorithm 5. As described in the algorithm, value functions asso-

Algorithm 5 Structure-aware learning algorithm

1: Initialize number of iterations k ← 1, value function V (s) ← 0, ∀s ∈ S, the LM β ← 0 and the

threshold vector θ ← 0.

2: while TRUE do

3: Choose action a given by the current value of threshold vector θ.

4: Update the value function of states s using Equation (5.4).

5: Update the LM according to Equation (5.8).

6: Update the threshold vector according to Equation (5.6).

7: Update s← s′ and k ← k + 1.

8: end while

ciated with different states, the LM, the threshold vector and the number of iterations
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are initialized at the beginning. When the current state of the system is s, the system

chooses the action which is given by the current value of the threshold vector. Based on

the observed reward, V (s) and θ are updated along with the LM. This process is repeated

for every decision epoch.

5.3 Comparison of Complexities of Learning Algo-

rithms

In this section, we provide a comparison of storage and computational complexities of Q-

learning and PDS learning algorithms proposed in Chapter 4 and structure-aware learning

algorithm proposed in this chapter. We summarize the storage and computational com-

plexities of these schemes in Table 5.1.

As discussed in Remark 8 of Chapter 4, the storage complexities of Q-learning and

PDS learning are O(|S| × |A|) and O(|S|), respectively. Q-learning updates the value

function of one state-action pair at a time. While updating the value function, Q-learning

evaluates |A| functions. While updating the PDS value function, PDS learning algorithm

also evaluates |A| functions, resulting in a per-iteration complexity of O(|A|).
In the case of structure-aware learning algorithm, we no longer need to store |S|

value functions. Rather, by virtue of the threshold nature of optimal policy, we consider

three cases.

1. 0 ≤ k < kth: Since we have j = 0, for each value of k, we need to store (C + 1)

value functions.

2. k = kth: k = kth =⇒ j ≥ 0. Thus, we need to store (C + 1 − j) value functions,

for each value of j (0 ≤ j ≤ C).

3. W ≥ k > kth: k > kth =⇒ (i+ j) = C. Therefore, we need to store value functions

of (C + 1) states for each value of k.

Therefore, the total number of value functions which need to be stored is (C + 1)kth +

(C+1)(C+2)
2

+ (C + 1)(W − kth), which is equal to (C+1)(C+2)
2

+ (C + 1)W . Note that,

this is a considerable reduction in storage complexity in comparison to the PDS learning
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scheme having a storage complexity of O(C2W ). For example, when W = C, the storage

complexity reduces from O(C3) to O(C2). Furthermore, feasible actions corresponding to

each state need not be stored separately since the threshold vector completely character-

izes the policy. The per-iteration computational complexity of this scheme (see Equation

(5.4)) is O(1). This scheme also involves updating a single component of the threshold

vector (Equation (5.6)) with a computational complexity of O(1).

Table 5.1: Computational and storage complexities of different algorithms.

Algorithm Storage complexity Computational complexity

Q-learning O(|S| × |A|) O(|A|)
PDS learning O(|S|) = O(C2W ) O(|A|)
Structure-aware O(C2 + CW ) O(1)

learning

5.4 Simulation Results

In this section, the structure-aware learning algorithm is simulated in ns-3 to characterize

the convergence behavior. Convergence rate of the proposed algorithm is compared with

those of PDS learning and Q-learning algorithms, as proposed in Chapter 4. Simulation

results establish that the proposed PDS learning algorithm provides improved convergence

than Q-learning. Furthermore, it is observed that the knowledge of the structural proper-

ties further reduces the convergence time. Therefore, the convergence rate of the proposed

structure-aware learning algorithm is the fastest among the considered algorithms.

5.4.1 Simulation Model and Evaluation Methodology

The simulation setup considered in this chapter is identical to the setup considered in

Section 3.5 of Chapter 3. The simulation setup comprises a 3GPP LTE BS and an IEEE

802.11g [13] WiFi AP. Data users are distributed uniformly within 30 m radius of the

WiFi AP which is approximately 50 m away from the LTE BS. LTE and WiFi network

parameters used in our simulation have been summarized in Table 3.3 and 3.4 of Chapter
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Figure 5.1: Plot of total system throughput vs. number of iterations (n) for different

algorithms.

3. For the update of the PDS value functions, the threshold vector and the LM, we

consider g(n) = 1
(b n

1000
c+2)0.6

and h(n) = 10
n

.

5.4.2 Convergence Analysis

Fig.(5.1a) and (5.1b) illustrate how the Q-learning, PDS learning and structure-aware

learning algorithms converge with increasing number of iterations (n). We keep λv =

λd = 1.

It is evident that both PDS learning and structure-aware learning algorithms outper-

form Q-learning algorithm in terms of convergence speed. Contrary to PDS learning, even

after a considerable amount of iterations, Q-learning explores different actions with finite

probabilities. This reduces the convergence speed of Q-learning algorithm. The knowledge

of structural properties reduces the feasible policy space. Therefore, the structure-aware

learning algorithm offers the fastest convergence to the optimal policy. Contrary to PDS

learning and Q-learning algorithms, we no longer need to learn the optimal actions in a

subset of states, where the optimal policy is determined using structural properties. As

observed in Fig.(5.1a) and (5.1b), the number of iterations before convergence reduces

from 2000 (for PDS learning algorithm) to 300 (for structure-aware learning algorithm)

and 1000 (for PDS learning) to 300 (for structure-aware learning algorithm), respectively.

Fig. 5.2 depicts the convergence of the LM as n increases, in the case of structure-
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Figure 5.2: Plot of LM vs. number of iterations (n) for structure-aware learning algorithm.

aware learning. It is evident that as the number of iteration increases, the LM converges.

5.4.3 Stopping Criteria

While simulating an online learning algorithm, in practical cases, we may not want to

wait till the actual convergence. Rather, we can observe the total system throughput

over a moving window of the sums of step sizes till the present iteration (
n∑
k=1

g(k)) and

calculate the ratio of maximum and minimum values of the total system throughput

over this window. We set the window size to be 100. If the ratio is more than 0.99,

then we conclude that stopping criteria is reached, i.e., the obtained policy is in a close

neighborhood of the optimal policy with high probability.

In Fig.(5.3a) and (5.3b), the total system throughput is plotted against
n∑
k=1

g(k).

Note that,
n∑
k=1

g(k) is chosen instead of n, to decouple the effect of diminishing step size,

while analyzing the convergence behavior of the schemes. In other words, this param-

eter is selected to establish that the convergences of the algorithms are indeed due to
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Figure 5.3: Plot of total system throughput vs. sum of step sizes till nth iteration (
n∑
k=1

g(k))

for different algorithms.

the convergence to the optimal policy and not due to very small values of step size g(n)

as n becomes large. We observe in Fig. (5.3a) and (5.3b) that the PDS learning al-

gorithm reaches the stopping criteria when
n∑
k=1

g(k) becomes 700, which corresponds to

approximately 1000 iterations. On the other hand, the structure-aware learning algorithm

reaches the stopping criteria when
n∑
k=1

g(k) becomes 300 which translates into almost 450

iterations.

5.4.4 Consideration of Realistic Scenarios

While the above simulation results provide significant insights into the convergence behav-

ior of the proposed algorithm over traditional Q-learning and PDS learning algorithms,

in this section, we evaluate the performance of the proposed algorithm in realistic sce-

narios. We compare the total system throughput and the voice user blocking probability

performance of the proposed algorithm with those of PDS learning algorithm, on-the-spot

offloading [57] and LTE-preferred schemes.

Although in the system model (see Section 5.1) we consider single resource block

allocation to LTE data users, in simulations we relax this assumption and consider pro-

portional fair scheduling for the LTE BS which dynamically assigns resources to the users

based on user bandwidth demands. Users randomly generate individual bandwidth de-
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mands. However, we assume that the maximum data rate achievable for a single data

user is 5 Mbps, and the bottleneck is in the access network. Furthermore, in the previous

subsections, there is no consideration of channel fading effects in LTE and WiFi. To

address that, whenever we choose an action involving offloading of a user from one RAT

to another (A4 and A5), the user with the worst channel is selected for offloading. For

example, whenever A4 is chosen and we offload a data user from LTE to WiFi, we always

choose the data user with the lowest SNR. Since, in general, a user with bad channel

provides bad throughput to the system, the user with the worst channel is chosen for of-

floading. We consider Extended Pedestrian A model [79] for fading in LTE and Rayleigh

fading for WiFi.

In on-the-spot offloading [57], data users always choose WiFi unless WiFi coverage is

not present. Therefore, in our system model, on-the-spot offloading always associates data

users with WiFi until capacity is reached in WiFi. Voice users are associated with LTE,

and when LTE reaches its capacity, voice users are blocked. In LTE-preferred scheme,

voice and data users are associated with LTE until LTE reaches its capacity. When LTE

reaches its capacity and a voice user arrives, the voice user is blocked if there is no data

user in LTE. Otherwise, one existing data user is offloaded to WiFi if capacity is available

in WiFi. Upon the departure of an existing voice or data user from LTE, an existing data

user in WiFi, if any, is offloaded to LTE. While offloading, we always choose the user with

the worst channel.

5.4.4.1 Voice User Arrival Rate Variation

Fig. (5.4a) depicts the blocking percentage of voice users for on-the-spot offloading, LTE-

preferred, PDS learning and structure-aware learning algorithms for varying λv. Since

on-the-spot offloading blocks voice users when LTE reaches its capacity, blocking proba-

bility of voice users increases with λv. Since PDS learning and structure-aware learning

algorithms learn in which states blocking is to be chosen as the optimal action, voice

user blocking probabilities corresponding to these algorithms converge to the same value.

Since the both the algorithms may block voice users even when the LTE system does

not reach its capacity, the blocking probability values are marginally higher than that of

on-the-spot offloading. Voice users may be blocked to save LTE resources for future data
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Figure 5.4: Plot of voice user blocking fraction and total system throughput for different

algorithms. (a) Voice user blocking percentage vs. λv, (b)Total system throughput vs.

λv (λd = 1/20, µv = 1/60 and µd = 1/10). (c) Voice user blocking percentage vs. λd,

(d)Total system throughput vs. λd (λv = 1/6, µv = 1/60 and µd = 1/10).

user arrivals which have a higher throughput contribution to the system. LTE-preferred

scheme blocks a voice user when LTE system is full and there is no data user in LTE.

Therefore, on-the-spot offloading and LTE-preferred schemes provide similar blocking

probability performance.

Fig. (5.4b) illustrates the total system throughput performance of different algo-

rithms under varying λv. With an increase in λv, the average number of voice users in the

system increases while the number of WiFi data users remains the same. Therefore, in the

case of on-the-spot offloading, the total system throughput increases with λv. However,
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since the throughput of voice users is small compared to data users, the rate of increment

is very small. PDS learning and structure-aware learning algorithms learn the optimal

policy which does significant load balancing via actions A4 and A5. Also, while offloading,

they take the channel state of the users into account. Thus, these algorithms outperform

on-the-spot offloading in terms of the total system throughput with performance improve-

ments varying from 10.72% (for λv = 0.13) to 28.72% (for λv = 0.07). With increase in

λv, LTE-preferred scheme starts offloading data users to WiFi to accommodate incom-

ing voice users. Under low WiFi load, total throughput of the system increases. As

WiFi load increases, the rate of increment decreases. However, both PDS learning and

structure-aware learning algorithms perform better than LTE-preferred scheme.

5.4.4.2 Data User Arrival Rate Variation

As observed in Fig.(5.4c), since in on-the-spot offloading, data and voice users are served

using WiFi and LTE, respectively, changes in λd do not impact the blocking probability of

voice users. Performances of both PDS learning and structure-aware learning algorithms

are similar to that of on-the-spot offloading. Due to the presence of a constraint on the

voice user blocking probability, most of the voice users are blocked when the LTE system

reaches capacity. Therefore, PDS learning and structure-aware learning algorithms do

most of the blocking of voice users in the same decision epochs as that of on-the-spot

offloading. Since LTE-preferred scheme blocks voice users only when LTE does not have

any available capacity and there is no data user in LTE, the blocking probabilities of

LTE-preferred scheme and on-the-spot offloading are same.

Since on-the-spot offloading associates data user with WiFi, with increase in λd,

the load in WiFi increases. As a result, as λd (See Fig.(5.4d)) increases, the effect of

contention and channel fading reduces the rate of increment of total system throughput.

Both PDS learning and structure-aware learning algorithms perform better than on-the-

spot offloading by virtue of optimal RAT selection and load balancing actions which reduce

the effect of contention in WiFi. Also, while offloading, PDS learning and structure-aware

learning algorithms take channel state of users into account. Therefore, PDS learning and

structure-aware learning algorithms outperform on-the-spot offloading with performance

improvements varying from 20% (for λd = 0.1) to 54.6% (for λd = 0.5). As λd increases,
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Figure 5.5: Plot of total system throughput for different algorithms under user mobility.

(a) Total system throughput vs. λv (λd = 1/20, µv = 1/60 and µd = 1/10), (b) Total

system throughput vs. λd (λv = 1/6, µv = 1/60 and µd = 1/10).

LTE-preferred scheme starts offloading more data users to WiFi. Therefore, the total

system throughput increases. Under high λd, the effect of contention is lesser than that

of on-the-spot offloading, resulting in a better performance than on-the-spot offloading.

However, both PDS learning and structure-aware learning algorithms perform better than

LTE-preferred scheme.

5.4.5 Consideration of User Mobility

In this section, we evaluate how PDS learning and structure-aware learning algorithms

perform in comparison to on-the-spot offloading and LTE-preferred scheme in the face of

user mobility. In addition to ns-3 simulation settings described in the last section, we also

consider random waypoint model [80] for the mobility of voice and data users.

As evident from Fig. (5.5a) and Fig. (5.5b), although total system throughputs

provided by different algorithms change due to mobility, comparative performances of PDS

learning and structure-aware learning algorithms with respect to on-the-spot offloading

and LTE-preferred scheme remain the same.

Since mobility does not have any impact on the blocking probability of voice users,

the blocking probability performances of the considered algorithms are exactly the same

as that described in Fig. (5.4a) and (5.4c).
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5.5 Conclusions

In this chapter, an online learning algorithm, which exploits the threshold structure of

the optimal policy has been proposed. The knowledge of the threshold structure provides

improvements in computational and storage complexities and convergence time. The

proposed algorithm provides a novel framework that can be applied for designing online

learning algorithms for any general problem and is of independent interest. We have

proved that the structure-aware learning algorithm converges to the globally optimal

threshold vector. Simulation results have been presented to exhibit how the knowledge

of structural properties provides improvement in convergence time over traditional online

association algorithms. Simulation results establish that the proposed scheme outperforms

on-the-spot offloading and LTE-preferred scheme under realistic network scenarios.

The RAT selection algorithms proposed in Chapters 3, 4 and 5 aim to maximize the

total system throughput subject to a constraint on the blocking probability of voice users.

However, there is no consideration of channel states of users in the system model. Channel

states of users may play a vital role in RAT selection decisions. Also, the proposed schemes

in Chapters 3, 4 and 5 may induce excessive offloading of data users, leading to a huge

amount of backhaul control signaling. In the next chapter, we propose RAT selection

schemes which address these issues.





Chapter 6

Channel and Backhaul-aware RAT

Selection

In this chapter, we propose RAT selection algorithms based on extensions of the system

model and the problem formulation adopted in Chapters 3, 4 and 5. In the previous

three chapters, while optimizing the total system throughput subject to a constraint on

the blocking probability of voice users, we do not take into account the channel states

of users. In this chapter, we consider the channel states of users in our system model to

investigate the role of channel conditions in RAT selection decisions.

We consider an LTE-WiFi HetNet where users of different priorities are present. We

assume that high priority users (such as VoIP, live streaming) are always served using

LTE since WiFi may not provide the required QoS in terms of delay and packet loss.

Low priority users are best effort class of users which may be served using LTE or WiFi.

When a high priority user is served using LTE, a guaranteed rate is provided to the

high priority user. Therefore, high priority users are provided a fixed number of resource

blocks in LTE depending on their channel conditions. However, when a low priority user is

served using LTE, no rate guarantee is provided. We assume that we allocate the required

number of resource blocks in LTE to high priority users for providing the guaranteed bit

rate. After that, remaining resources blocks, if any, are equally distributed among the low

priority users. However, the rate obtained for individual low priority user may be different

depending on the channel condition of the user. A high priority user may be blocked if

it is not possible to provide the required QoS using LTE. The channel condition of the

95
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high priority user may also have an impact on the association decision. For example, a

high priority user with bad channel condition may be blocked, whereas a high priority

user with good channel condition may be admitted in LTE. When a high priority user

is admitted in LTE, an existing low priority user can be offloaded to WiFi. Moreover,

departure of a user from LTE (WiFi) may trigger the offloading of a low priority user to

LTE (WiFi).

As discussed in Chapter 3, maximizing the total system throughput may result

in excessive blocking of high priority users since their contribution towards the system

throughput is usually less than that of low priority users. Therefore, it is necessary to

consider a constraint on the blocking probability of high priority users. In general, low

priority users are best effort in nature, and no admission control is adopted for them.

Therefore, no QoS constraint in terms of blocking probability is required for low priority

users.

Maximizing the total system throughput subject to the blocking probability con-

straint, as considered in Chapters 3, 4 and 5, may lead to the following optimal policy.

Whenever a high priority user is admitted in LTE, a low priority user may be offloaded

to WiFi. However, if another high priority user departs from LTE, it may be optimal to

offload one existing WiFi user to LTE. As a result, it may happen that within a short

time interval, one user moves from LTE to WiFi and moves back to LTE again, thereby

leading to ping-pong kind of behavior. Similar instances can occur in case of departures

followed by arrivals also. This may generate additional control signaling in the backhaul.

To address this, along with the high priority user blocking probability constraint, we also

take into account the offloading probability (i.e., fraction of time traffic is offloaded) of

low priority users as a constraint. Therefore, we target to maximize the total system

throughput subject to constraints on the blocking probability of high priority users and

the offloading probability of low priority users. This problem is formulated as a CMDP

problem. We reduce the dimensionality of the action space by proving the suboptimal-

ity of different actions in different states of the system. However, the conventional DP

methods to solve the CMDP problem are computationally expensive in the face of even

moderately large state and action spaces. Furthermore, the computation of the optimal

policy requires the knowledge of the transition probabilities of the underlying model. The
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transition probabilities are governed by the statistics of the system dynamics, viz., the

arrival rates of high and low priority users, which are difficult to obtain in reality. To

address these issues, in this chapter, we propose two RAT selection algorithms which have

low computational complexities. Furthermore, the proposed algorithms do not require the

knowledge of the statistics of the system dynamics. These features make these algorithms

suitable for practical online implementation.

The rest of the chapter is organized as follows. Section 6.1 describes the system

model. In Section 6.2, the problem formulation within the framework of CMDP is de-

scribed. In Section 6.3, we derive the suboptimal actions and eliminate them from the

action space. We describe the proposed algorithms in Section 6.4 and demonstrate a com-

parison of computational and storage complexities in Section 6.5. Section 6.6 concludes

the chapter.

6.1 System Model

WiFiAP
LTE BS

Controller

Low Priority User
High Priority User

Figure 6.1: LTE-WiFi network with users of multiple priorities.

The system model considered in this chapter is similar to those of Chapters 3, 4 and

5. However, we have not considered the channel states and the priority of users in the

system model in these chapters. Therefore, for the sake of completeness, we describe the

system model considered in this chapter in details.

The system model consists of an LTE BS and a WiFi AP inside the coverage area

of the LTE BS, as shown in Fig. 6.1. The LTE BS and the WiFi AP are connected to

a centralized controller using high capacity lossless links. We assume that high and low
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priority users are present at any geographical point inside the coverage area of the LTE

BS. Low priority users which are present outside the dual coverage area of the LTE BS

and the WiFi AP, always get associated with the LTE BS. Without loss of generality, we

consider only those low priority users which are present in the common coverage area of

the LTE BS and the WiFi AP. Low priority users can be associated with either the LTE

BS or the WiFi AP. We assume that high and low priority users are allocated resources in

LTE from a common resource pool. We assume that in LTE, high and low priority users

can be of either “good” or “bad” channel state. We assume that based on the location

of users, the coverage area of an LTE BS is divided into two regions, viz., cell center and

cell edge regions. Since cell edge users are present in the vicinity of the cell boundary,

usually they receive weaker signal strength than that of the cell center users. Therefore,

it is assumed that users present in the cell center region have good channels, whereas

cell edge users have bad channels. Cell center/ cell edge region can be chosen based on

the average Channel Quality Indicator (CQI) experienced by the users in LTE. If the

average CQI of a user exceeds a certain threshold, then the user is called a cell center

user. Otherwise, it is called a cell edge user. Although this formulation considers binary

channel state, it can be extended easily to multiple channel state scenarios. Since RAT

selection decisions are made for a sufficiently long period of time, we assume that users

are distributed in cell edge/cell center region depending on their average radio conditions.

We assume that instantaneous fading effects are averaged out over the timescale in which

decisions are taken. We assume that the users are stationary, and the channel states do

not change with time once the user is admitted. The channel states of incoming users

are assumed to be known at the controller, however, the channel states are random with

finite probabilities. Since the coverage area of the WiFi AP is small, we assume that the

channel states of users in WiFi are always good.

We assume that high and low priority user arrivals are Poisson processes with means

λH and λL, respectively. The service times for high and low priority users are exponentially

distributed with means 1
µH

and 1
µL

, respectively. Assumptions on service times are in

accordance with [70].

Remark 13. We have considered a single LTE BS and a single WiFi AP for brevity of

notation. Nevertheless, the considered system model can be extended to multiple BSs and
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APs easily with small modifications.

6.1.1 State Space

The system can be modeled as a controlled continuous time stochastic process {X(t)}t≥0.
Any state s in the state space S is represented as s = (iG, iB, jG, jB, kG, kB), where iG, iB

denote the number of high priority users associated with the LTE BS with good and bad

channels in LTE, jG, jB denote the number of low priority users associated with the LTE

BS with good and bad channels in LTE, and kG, kB denote the number of low priority

users associated with the WiFi AP, however, with respect to LTE they have good and

bad channels, respectively. Note that we do not explicitly mention the channel states of

users in WiFi since the channel states of users in WiFi are always good. The arrivals and

departures of high and low priority users with good and bad channel states in LTE are

taken as decision epochs. It is easy to see that the system changes state only at these

decision epochs. Moreover, due to the Markovian nature of the system, it is sufficient to

observe the system state at these decision epochs and not at other points in time.

Whenever there is an arrival or a departure of user, we refer it as an event. The

system changes state whenever an event occurs. Let the set of all events be denoted by

E . The following events can occur.

• E1: Arrival of high priority user with good channel,

• E2: Arrival of low priority user with good channel,

• E3: Arrival of high priority user with bad channel,

• E4: Arrival of low priority user with bad channel,

• E5: Departure of high priority user with good channel from LTE,

• E6: Departure of high priority user with bad channel from LTE,

• E7: Departure of low priority user with good channel from LTE,

• E8: Departure of low priority user with bad channel from LTE,

• E9: Departure of a low priority user from WiFi with good channel in LTE,
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• E10: Departure of a low priority user from WiFi with bad channel in LTE.

Note that, the channel states of users in WiFi do not come into the picture in the event

space because we have assumed that the channel states of users in WiFi are always good.

At every decision epoch, the controller chooses a decision based on the current system

state and the event. Based on the decision chosen, the system makes a transition to a

state with a finite probability.

Let the LTE system be composed of CL resource blocks. We assume that s =

(iG, iB, jG, jB, kG, kB) ∈ S if (iG + 2iB) ≤ CL, (jG + 2jB) ≤ N and (kG + kB) < W ,

where N is a sufficiently large positive integer (N � CL). The first two conditions are

based on the assumption that a user with bad channel requires twice as many resource

blocks as required by a user with good channel. The first condition also signifies that the

admitted high priority user is provided the required number of resource blocks, whenever

resources are available. The quantity W signifies the maximum number of users that can

be supported in WiFi with a specified minimum per-user throughput guarantee. Note

that the per-user throughput of WiFi decreases monotonically with the number of WiFi

users [72]. Since high priority users require guaranteed bit rate (RL,H , say), a fixed number

of resource blocks are allocated to high priority users based on the channel condition of the

user. However, since low priority users are best-effort in nature, the remaining resources

in LTE are allocated uniformly among low priority users. Therefore, the rates obtained

by low priority users (which is a function of the channel state) depend on the number of

high priority users in the system. We assume that the bit rate obtained by a low priority

user with bad channel is 1
d
(d > 1) times that of a low priority user with good channel,

where d is a constant.

6.1.2 Action Space

Let the action space (set of all possible association decisions in case of arrivals and de-

partures) be denoted by A. The set of actions in A is listed below:
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• A1: Block arriving users/ do nothing at departure,

• A2: Accept high/low priority users in LTE,

• A3: Accept low priority users in WiFi,

• A4: Accept a high priority user in LTE and offload a low priority user with bad

channel in LTE to WiFi,

• A5: Offload a low priority user with bad (good) channel from LTE (WiFi) to WiFi

(LTE) upon the departure of a user from WiFi (LTE),

• A6: Accept a high priority user in LTE and offload a low priority user with good

channel in LTE to WiFi,

• A7: Offload a low priority user with good (bad) channel from LTE (WiFi) to WiFi

(LTE) upon the departure of a user from WiFi (LTE).

In case of high priority user arrivals, the feasible action set is {A1, A2, A4, A6}. In case of

low priority user arrivals, the feasible action set is {A2, A3}. In case of departures, the

feasible action set comprises A1, A5 and A7, respectively. However, some of the actions

may be infeasible in different states. Note that blocking is a feasible action for high

priority users only when the system is non-empty. On the contrary, low priority users are

blocked only when (jG + 2jB) becomes N .

6.1.3 Transition Probabilities

From each state s ∈ S and under each feasible action a ∈ S, the system moves to a state

s′ ∈ S with a positive probability pss′(a). Let the sum of arrival and service rates of users

in state s = (iG, iB, jG, jB, kG, kB) be denoted by v(iG, iB, jG, jB, kG, kB). Therefore,

v(iG, iB, jG, jB, kG, kB) = λH + λL + (iG + iB)µH + (jG + jB + kG + kB)µL.
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′
B ,j
′
G,j
′
B ,k
′
G,k
′
B)
, s′ = ŝ,

λL(1−pg)
v(i′G,i

′
B ,j
′
G,j
′
B ,k
′
G,k
′
B)
, s′ = ŝ,

i′GµH
v(i′G,i

′
B ,j
′
G,j
′
B ,k
′
G,k
′
B)
, s′ = ŝ− e1,

i′BµH
v(i′G,i

′
B ,j
′
G,j
′
B ,k
′
G,k
′
B)
, s′ = ŝ− e2,

j′GµL
v(i′G,i

′
B ,j
′
G,j
′
B ,k
′
G,k
′
B)
, s′ = ŝ− e3,

j′BµL
v(i′G,i

′
B ,j
′
G,j
′
B ,k
′
G,k
′
B)
, s′ = ŝ− e4,

k′GµL
v(i′G,i

′
B ,j
′
G,j
′
B ,k
′
G,k
′
B)
, s′ = ŝ− e5,

k′BµL
v(i′G,i

′
B ,j
′
G,j
′
B ,k
′
G,k
′
B)
, s′ = ŝ− e6,

where pg denotes the probability that the channel state of the arriving user in LTE is

good. Values of i′G, i
′
B, j

′
G, j

′
B, k

′
G, k

′
B as a function of different actions a (conditioned on

events El) are described in Table 6.1.

6.1.4 Rewards and Costs

Depending on the system state and the action chosen, a finite amount of reward is ob-

tained. In WiFi, the total throughput depends on the total load of WiFi comprising low

priority users with good and bad channels in LTE. As defined in Section 3.1 of Chapter

3, RW,D(k) denotes the per-user throughput of k users in WiFi under full buffer traffic

model [72]. RW,D(k) is a function of success and collision probabilities which arise due to

the contention-based medium access of WiFi users and slot times for idle, busy (due to

collision) and successful transmissions.

Let the reward rate in state s and under action a be denoted by r(s, a). The reward

rate is defined as the sum of throughput of all users in LTE plus the sum of throughput



6.1. System Model 103

Table 6.1: Transition probability table.

a|El (i′G, i
′
B, j

′
G, j

′
B, k

′
G, k

′
B)

A1|E ∩ (E2 ∪ E4)
{ (iG, iB, jG, jB, kG, kB)

A2|E1 (iG + 1, iB, jG, jB, kG, kB)

A2|E2 (iG, iB, jG + 1, jB, kG, kB)

A2|E3 (iG, iB + 1, jG, jB, kG, kB)

A2|E4 (iG, iB, jG, jB + 1, kG, kB)

A3|E2 (iG, iB, jG, jB, kG + 1, kB)

A3|E4 (iG, iB, jG, jB, kG, kB + 1)

A4|E1 (iG + 1, iB, jG, jB − 1, kG, kB + 1)

A4|E3 (iG, iB + 1, jG, jB − 1, kG, kB + 1)

A5|(E5 ∪ . . . ∪ E8) (iG, iB, jG + 1, jB, kG − 1, kB)

A5|(E9 ∪ E10) (iG, iB, jG, jB − 1, kG, kB + 1)

A6|E1 (iG + 1, iB, jG − 1, jB, kG + 1, kB)

A6|E3 (iG, iB + 1, jG − 1, jB, kG + 1, kB)

A7|(E5 ∪ . . . ∪ E8) (iG, iB, jG, jB + 1, kG, kB − 1)

A7|(E9 ∪ E10) (iG, iB, jG − 1, jB, kG + 1, kB)

of users in WiFi under an action. Let us define

R(iG, iB, jG, jB, kG, kB) = (iG + iB)RL,H +
(CL − iG − 2iB)

(jG + jB)
RL,L(jG +

jB
d

)

+ (kG + kB)RW,D(kG + kB),

(6.1)

where RL,L is the data rate corresponding to a single resource block in LTE for low priority

data users with good channel condition. The exhaustive description of reward rates in

state s under different event-action pairs is provided in Table 6.2.

We consider two types of cost functions, one due to blocking and another due to

offloading. Let the cost rates for blocking and offloading in state s under action a be

denoted by cb(s, a) and co(s, a), respectively. Whenever the controller blocks one high

priority user, cb(s, a) is unity, else it is zero. Therefore,

cb(s, a) =





1, if high priority users are blocked,

0, otherwise.
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Whenever the controller offloads one low priority user from one RAT to another, co(s, a)

is unity, else it is zero. Therefore,

co(s, a) =





1, if a = (A4|| . . . ||A7),

0, otherwise.

6.2 Problem Formulation & Solution Techniques

As discussed before, since high priority users provide smaller contributions to the system

throughput than those by low priority users, there exists an associated trade-off between

the total system throughput and the blocking probability of high priority users. Further-

more, maximizing the total system throughput may result in excessive offloading of low

priority users and hence, an increase in the associated control signaling in the backhaul.

Therefore, we consider a constraint on the offloading probability of low priority users as

well. We aim to determine a policy for the association of high and low priority users which

maximizes the total system throughput subject to constraints on the blocking probability

of high priority users and the offloading probability of low priority users. The consid-

ered problem can be formulated as a CMDP problem, where maximizing the total system

throughput is subject to constraints on the blocking probability of high priority users

and the offloading probability of low priority users. Since arrivals and departures of high

and low priority users can occur at any arbitrary time, the problem is continuous time in

nature. As discussed in Section 3.2 of Chapter 3, a stationary randomized optimal policy,

i.e., a mixture of pure policies with corresponding probabilities, exists [73].

6.2.1 Problem Formulation

Let the set of memoryless policies be denoted byM. We assume that the Markov chains

induced by memoryless policies are unichain which guarantees that the Markov chains

have unique stationary distributions. Let the average reward, the cost due to blocking of

high priority users and the cost due to offloading of low priority users over infinite horizon

under policy M ∈ M be denoted by V M , CB,M and CO,M , respectively. Let the total

reward, the cost due to blocking and the cost due to offloading till time t be denoted by
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R(t), CB(t) and CO(t), respectively. The CMDP problem can be described as follows.

Maximize: V M = lim
t→∞

1

t
EM [R(t)],

subject to: CB,M = lim
t→∞

1

t
EM [CB(t)] ≤ Bmax and

CO,M = lim
t→∞

1

t
EM [CO(t)] ≤ Omax,

(6.2)

where EM is the expectation operator under policy M , and Bmax, Omax denote constraints

on the blocking probability of high priority users and the offloading probability of low

priority users, respectively. Since the optimal policy is stationary, the limits in Equation

(6.2) exist.

6.2.2 Conversion to Discrete-Time MDP and Lagrangian Ap-

proach

The approach adopted in this subsection is analogous to the one adopted in Chapters

3, 4 and 5. However, due to the presence of an additional constraint in this chapter, we

describe the approach to capture the notational specificities associated with the additional

constraint.

Optimal policy can be obtained using RVIA [69]. However, before that, we need to

adopt the Lagrangian approach [73]. For fixed values of LMs βb and βo, the equivalent

unconstrained reward function is given by

r(s, a; βb; βo) = r(s, a)− βbcb(s, a)− βoco(s, a).

Using DP, the optimality equation for the considered CMDP ∀s, s′ ∈ S is

V (s) = max
a

[r(s, a; βb; βo) +
∑

s′

pss′(a)V (s′)− ρt̄(s, a)],

where V (s), ρ, t̄(s, a) denote the value function of state s ∈ S, the optimal average reward

of the system and the mean transition time from state s under action a, respectively. Since

the sojourn times are known to be exponential, this becomes a special case of continuous

time controlled Markov chain for which the following equation holds,

0 = max
a

[r(s, a; βb; βo)− ρ+
∑

s′

q(s′|s, a)V (s′)], (6.3)
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where q(s′|s, a) are controlled transition rates which satisfy q(s′|s, a) ≥ 0, for s′ 6= s and
∑

s′ q(s
′|s, a) = 0. Scaling the transition rates by a positive scalar quantity is equivalent

to time scaling. This scales the average reward for every policy including the optimal

policy without changing the optimal policy. Therefore, without loss of generality, we

assume that −q(s|s, a) ∈ (0, 1), ∀a. This implies that q(s′|s, a) ∈ [0, 1] for s′ 6= s. We add

V (s) to both sides of Equation (6.3) to obtain the following equation for an equivalent

discrete-time MDP ({Xn} say) with controlled transition probabilities pss′(a).

V (s) = max
a

[r(s, a; βb; βo)− ρ+
∑

s′

pss′(a)V (s′)], (6.4)

where pss′(a) = q(s′|s, a) for s′ 6= s and pss′(a) = 1 + q(s′|s, a) for s′ = s. For the rest

of the chapter, instead of the original continuous-time MDP, we focus on the equivalent

discrete-time MDP in Equation (6.4).

For fixed values of βb and βo, RVIA can be used to solve the unconstrained maxi-

mization problem (as described in Equation (6.4)) using the following equation,

Vn+1(s) = max
a

[r(s, a; βb; βo) +
∑

s′

pss′(a)Vn(s′)− Vn(s∗)], (6.5)

where Vn(s) is the value function estimate of state s after n iterations, and s∗ is a fixed

state. We aim to obtain the optimal values for βb and βo, viz., βb
∗ and βo

∗, which maximize

the average reward subject to cost constraints. The following equations describe gradient

descent routines to update the values of βb and βo in kth iteration.

βb,k+1 = βb,k +
1

k
(Bπβb,k −Bmax),

βo,k+1 = βo,k +
1

k
(Oπβo,k −Omax),

where βb,k, βo,k are the values of βb and βo in kth iteration, and Bπβb,k , Oπβo,k denote the

high priority user blocking probability and the low priority user offloading probability in

kth iteration, respectively.

Note that the optimal policy for the considered CMDP is a randomized policy with

randomizations in at most two states [75] where in each state, one of the two actions is

chosen randomly.
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6.3 Action Elimination

The DP equations (Equations (6.4) and (6.5)) are exploited to prove the suboptimality of

certain actions in different states. Using this, the number of feasible actions in different

states can be reduced. This fact is utilized in analyzing the computational complexities

of RAT selection algorithms described in the next section. The suboptimality of different

actions is established with the help of some lemmas.

6.3.1 Suboptimal Actions for Departures

The subsequent lemmas describe the suboptimality of certain actions in a subset of states.

Specifically, whenever a high/low priority user departs from LTE, A5 is better than A7.

Therefore, in this case, A7 is a suboptimal action. Similarly, in the case of a low priority

user departure from WiFi, A5 is better than A7. Therefore, in this case also, A7 is a

suboptimal action.

s1

s2

s3

s4

π1
(s1
, E

5
)

π
2 (s

1 , E
5 )

π
1 (s

2 , E
l )

π2
(s3
, E

l)

Figure 6.2: Sample paths under different policies.

Lemma 10. A5 is better than A7 in case of high/low priority user departure from LTE

(events E5, E6, E7, E8).
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Proof. We prove the lemma using sample path arguments. We consider the case of event

E5. Proofs for the other events follow in a similar manner. We assume that the system

starts at time t = 0. Suppose that the system is in state s1 = (iG, iB, jG, jB, kG, kB), when

eventE5 occurs at time t1. Consider a policy which choosesA7 in state (iG, iB, jG, jB, kG, kB)

and denote it by π1. Consider another policy (which may be a non-stationary pol-

icy) π2 which selects A5 in state (iG, iB, jG, jB, kG, kB). As illustrated in Fig. 6.2,

let us assume that under policies π1 and π2, the system moves from state s1 to state

s2 = (iG, iB, jG, jB + 1, kG, kB − 1) and s3 = (iG, iB, jG + 1, jB, kG − 1, kB), respectively.

Since we have considered a Markovian system, the inter-arrival times and service times

are same for the considered sample paths. We assume that based on the next event El

and following the policy π1, the system moves from state s2 to state s4. Suppose the

policy π2 is such that in response to event El, it chooses the same action as that of π1.

Additionally, it offloads one good user from LTE to WiFi and one bad user from WiFi to

LTE. Therefore, under the policy π2, the system moves from state s3 to s4. We construct

the policy π2 in such a way that here onwards, it chooses the same action as that of policy

π1. Therefore, from state s4 onwards, both the sample paths follow the same trajectory.

The difference of value functions of state s1 under policies π1 and π2 is given by

Vπ1(s1)− Vπ2(s1) =
(CL − iG − 2iB)

(jG + jB + 1)
RL,L(

1

d
− 1) < 0.

Therefore, policy π2 is strictly better than π1. Since the Markov chains under various

policies are recurrent in nature, state s1 is visited infinitely often. Upon each visit, action

A7 induced by policy π1 provides less reward than that of action A5 corresponding to

policy π2. Therefore, A5 is better than A7. This completes the proof of the lemma.

Lemma 11. A5 is better than A7 in case of low priority user departure from WiFi (events

E9, E10).

Proof. Similar to Lemma 10, we prove this lemma for event E9. Proof for event E10

follows in a similar way. Suppose the system is in state s1 = (iG, iB, jG, jB, kG, kB) when

event E9 occurs at time t1. Consider policies π1 and π2 which choose A5 and A7 in state

s1, respectively. We assume that under policies π1 and π2, the system moves from state

s1 to state s2 = (iG, iB, jG, jB − 1, kG, kB + 1) and s3 = (iG, iB, jG − 1, jB, kG + 1, kB),

respectively. We assume that based on the next event El and following the policy π1, the
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system moves from state s2 to state s4. Suppose the policy π2 is such that in response

to event El, it chooses the same action as that of π1, offloads one bad user from LTE to

WiFi and one good user from WiFi to LTE. Therefore, under the policy π2, the system

moves from state s3 to s4. We construct the policy π2 in such a way that here onwards,

it chooses the same action as that of policy π1. Therefore, from state s4 onwards, both

the sample paths follow the same trajectory. Therefore, the difference of value functions

of state s1 under policies π1 and π2 is given by

Vπ1(s1)− Vπ2(s1) =
(CL − iG − 2iB)

(jG + jB + 1)
RL,L(1− 1

d
) > 0.

Therefore, policy π1 is strictly better than π2. Due to the recurrent nature of the Markov

chain, similar to Lemma 10, A5 is better than A7.

The physical significance of Lemmas 10 and 11 is that whenever there is a departure

of user, if we choose to offload a low priority user to the RAT from which the departure

has taken place, it is always better to choose the user with good channel condition for

offloading to LTE and the user with bad channel condition for offloading to WiFi. Intu-

itively, since a bad user degrades the throughput of all other low priority users in LTE,

it is better to offload a bad user to WiFi. Since we have assumed that in WiFi, every

low priority user experiences good channel conditions, offloading a user with bad channel

condition in LTE to WiFi improves the total system throughput. Similar argument holds

for the offloading of a user with good channel condition to LTE.

6.3.2 Suboptimal Actions for Arrivals

In this section, we characterize the suboptimal actions in the case of high priority data

user arrivals. As described in the subsequent lemma, whenever there is a high priority

user arrival, then irrespective of the channel condition, action A4 is better than A6. In

other words, whenever a high priority user is accepted in LTE, and we decide to offload

an existing low priority user to WiFi, it is always better to choose a user with bad channel

condition rather than choosing one with good channel.

Lemma 12. A4 is better than A6 in case of high priority user arrivals (events E1, E3).

Proof. Proof is similar to Lemma 11.
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6.4 Proposed RAT Selection Algorithms

In Section 6.2, maximization of the total system throughput subject to constraints on the

high priority user blocking probability and the low priority user offloading probability is

formulated as a CMDP problem which can be solved using DP techniques. However, DP

based methods suffer from the curse of dimensionality. For example, in traditional policy

iteration [69], the computational complexity is O(|A||S|) which is exponential in the car-

dinality of the state space. Although elimination of suboptimal actions, as discussed in

Section 6.3, reduces the size of the action space, the complexity still remains exponential

in |S|. Furthermore, computation of the optimal policy requires the knowledge of state

transition probabilities which are governed by the statistics of the arrival processes of high

and low priority users. In practice, the statistics of the arrival processes may be unknown.

Although learning based approaches (as described in Chapter 4) which do not require the

knowledge of the statistics of the arrival processes may be adopted, usually their conver-

gence rates are very slow. To address these issues, we propose low-complexity algorithms

which are practically implementable. Moreover, they do not require the knowledge of the

statistics of the arrival processes.

6.4.1 Myopic with Constraint Satisfaction Algorithm

In this subsection, we propose an algorithm which is myopic in the sense that it only

optimizes based on the current reward and does not look into the future utility. However,

the proposed algorithm, called Myopic with Constraint Satisfaction Algorithm (MCSA),

satisfies the associated constraints on the blocking probability of high priority users and

the offloading probability of low priority users. The complete description of MCSA is

provided in Algorithm 6.

As discussed in Algorithm 6, we first determine the event in the current decision

epoch. Then, we determine the best action (denoted by a∗) based on the current reward

(Line 4). If the current event is low priority user arrival (events E2 and E4), then irre-

spective of the channel condition of the incoming user, we always choose the action a∗.

Since the feasible actions (A2 and A3) corresponding to a low priority user arrival affect

neither the blocking probability of high priority users nor the offloading probability of low
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Algorithm 6 Myopic with Constraint Satisfaction Association Algorithm.

Input: RL,H , RL,L, RW (.), Bmax, Omax.

1: Initialize number of high priority user arrivals AH ← 0, number of departures D ← 0, blocking

probability of high priority users BH ← 0 and offloading probability of low priority users OL ← 0,

FB ← 0, FO ← 0.

2: while TRUE do

3: Determine the event E in the current decision epoch.

4: Set a∗ ← arg max
a∈A

r(s, a).

5: if (E = E2||E4) then

6: Choose action a = a∗.

7: else if (E = E1||E3) then

8: AH ← AH + 1.

9: if BH > (Bmax − εB) then

10: procedure HP–Constraint–Violation

11: If OL < (Omax − εO) choose a = a∗.

12: Else choose a = A2.

13: F0 ← I{a=A4||A6}.

14: end procedure

15: else

16: Choose action a = A1.

17: end if

18: procedure Update–BP–OP

19: FB ← I{a=A1}.

20: BH ← BHAH+FB
(AH+1) .

21: OL ← OL(AH+D)+FO
(AH+D+1) .

22: end procedure

23: else

24: procedure Departure–Policy

25: D ← D + 1.

26: if OL < (Omax − εO) then

27: Choose action a = a∗.

28: else

29: Choose action a = A1.

30: end if

31: F0 ← I{a=A5||A7}.

32: OL ← OL(AH+D)+FO
(AH+D+1) .

33: end procedure

34: end if

35: end while
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priority users, we always act in a myopic manner in the case of low priority user arrivals.

However, if the current event is high priority user arrival (events E1 and E3), then we

initially increment the counter corresponding to the number of high priority user arrivals

(denoted by AH). If the current value of blocking probability (denoted by BH) is less

than the specified constraint Bmax, then we block the arriving high priority user (Line

16). Note that, we keep a small margin εB on the blocking probability constraint Bmax to

ensure that in the long run the system operates below Bmax. However, if BH is more than

Bmax− εB and the current value of the offloading probability of low priority users (denote

by OL) is less than the specified constraint Omax, then we always choose the action a∗

(Line 11). If the current value of OL violates the constraint, then A2 is selected (Line

12) since choosing A4 or A6 may further increase the value of OL. Similar to the case of

Bmax, we keep a small margin εO on Omax. Based on whether an action involving blocking

(A1) or offloading (A4 and A6) is chosen or not (denoted by FB and FO, respectively),

we update the current values of BH and OL (Line 20 and 21). Similar procedures are

followed in case of departures, where depending on the value of OL, actions are selected

(Line 25-29). Based on whether A5 or A7 is chosen, the value of OL is updated (Line 32).

Note that unlike DP methods, MCSA does not require the knowledge of the transition

probabilities of the underlying model, and hence, the knowledge of λH , λL and pg.

6.4.2 State-aware Myopic with Constraint Satisfaction Algo-

rithm

In this subsection, we describe the shortcomings of the proposed MCSA and propose a

State-aware Myopic with Constraint Satisfaction Algorithm (SMCSA) which addresses

these shortcomings.

Whenever the current value of the blocking probability is lower than the provided

constraint, the proposed MCSA blocks an incoming high priority user. Hence, when the

arrival rate of high priority users is small, it may lead to unnecessary blocking of high

priority users. On the other hand, the optimal policy may result in a lower value of

blocking probability of high priority users than that of MCSA, depending on Bmax. In

this case, the optimal policy corresponding to the unconstrained problem may result in

a high priority user blocking probability which is significantly lower than Bmax. Since
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there is a trade-off between the high priority user blocking probability and the total

system throughput, MCSA may result in higher total system throughput than that of

the optimal policy. However, the blocking probability corresponding to MCSA may be

higher than that of the optimal policy. Intuitively, MCSA blindly aims to satisfy the

constraints of the considered problem without a consideration of the system state. Thus,

MCSA always results in a high priority user blocking probability values which are close to

the given constraint, irrespective of λH and λL. Due to similar reasons, MCSA results in

a high value of offloading probability of low priority users which is always close to Omax,

irrespective of λH and λL.

To address this, we propose SMCSA which is described in Algorithm 7. The proce-

dures for low priority user arrivals are same as those of Algorithm 6. In the case of high

priority user arrival, when the constraints on the blocking probability and the offloading

probability are not satisfied, the procedure is exactly same as that of Algorithm 6 (Line

13). However, when the constraints on the blocking probability and the offloading proba-

bility are met, we modify the RAT selection strategy in the following way. We divide the

entire state space into regions based on the number of high and low priority users in the

system. Let us divide the entire state space into regions denoted by R1, R2, . . . RP . For a

given region Rn(1 ≤ n ≤ P ), let the probability of blocking and offloading be denoted by

q(n) and p(n) (0 ≤ q(n) ≤ 1, 0 ≤ p(n) ≤ 1), respectively, where q(n) and p(n) are increas-

ing functions of n, and q(P ) = p(P ) = 1. Whenever an event happens, we determine the

current state of the system and evaluate the region in which it falls. If it falls in Rn, we

block (choose A1) the user with probability q(n) and accept (choose A2) with probability

(1− q(n)) (Line 17). Similarly, if it falls in Rn and the optimal action involves offloading,

we offload with probability p(n) and choose the other action with probability (1− p(n))

(Line 11-12). Similar procedures are followed for the departures. If the constraint on OL

is met and the optimal action involves offloading, we offload with probability p(n) and

choose the other action with probability (1− p(n)) (Line 25-26). The procedures for the

update of BH and OL are same as that of Algorithm 6.

The key advantage of the proposed SMCSA is that when the value of λH is low,

we block the incoming high priority users with low probability. As λH increases and the

system gradually fills up with high priority users, the probability of blocking increases.
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Algorithm 7 State-aware Myopic with Constraint Satisfaction Association Algorithm.

Input: RL,H , RL,L, RW (.), Bmax, Omax.

1: Initialize AH ← 0, D ← 0, BH ← 0 and OL ← 0, FB ← 0, FO ← 0.

2: while TRUE do

3: Determine the event E in the current decision epoch and the region Rn in which the current state

s falls.

4: Set a∗ ← arg max
a∈A

r(s, a).

5: if (E = E2||E4) then

6: Choose a = a∗.

7: else if (E = E1||E3) then

8: AH ← AH + 1.

9: if BH > (Bmax − εB) then

10: procedure HP–Constraint–Violation–SA

11: If OL < (Omax − εO) and a∗ = (A4||A6)

12: Choose a = a∗(A2) w.p. p(n)(1− p(n)).

13: Else choose a = A2.

14: F0 ← I{a=A4||A6}.

15: end procedure

16: else

17: Choose a = A1(A2) w.p. q(n)(1− q(n)).

18: end if

19: procedure Update–BP–OP

20: See Algorithm 6.

21: end procedure

22: else

23: procedure Departure–Policy–SA

24: D ← D + 1.

25: if OL < (Omax − εO) and a∗ = (A5||A7) then

26: Choose a∗(A1) w.p. p(n)(1− p(n)).

27: else

28: Choose action a = A1.

29: end if

30: F0 ← I{a=A5||A7}.

31: OL ← OL(AH+D)+FO
(AH+D+1) .

32: end procedure

33: end if

34: end while
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Hence, effectively, the system observes less blocking probability than that of MCSA, when

λH is low. As λH increases, the blocking probability of high priority users increases since

q(n) is an increasing function of n. The performance of the resulting policy in the case of

SMCSA is closer to the optimal policy than that in the case of MCSA. This is because

unlike MCSA, the blocking is state-dependent. The blocking probability of high priority

users gradually increases with λH , similar to the optimal policy. Therefore, the problem

of high blocking probability (which is close to Bmax) for high priority users for all values

of λH , as seen in MCSA, does not arise in the case of SMCSA. Similar observation holds

in the case of the offloading probability of low priority users also. As λL grows, the

offloading probability of low priority users gradually rises. Similar to MCSA, SMCSA

does not require the knowledge of λH , λL and pg and hence, is practically implementable.

6.5 Comparison of Complexities

In this subsection, we analyze the computational and storage complexities associated with

the proposed algorithms and the optimal policy. We provide the details of the comparison

of complexities of MCSA and SMCSA in Table 6.3.

The optimal policy needs to store the optimal action corresponding to every state,

resulting in a storage complexity of O(|S|). Moreover, the computation of the optimal

policy using traditional policy iteration involves the worst case complexity of O(|A||S|)
since the total number of feasible policies is |A||S|. Therefore, it is very cumbersome to

compute the optimal policy using traditional DP methods.

In the case of MCSA, whenever an event occurs, we need to compute the best

action a∗. Therefore, the per-iteration computational complexity of MCSA is O(|A|). As

discussed in Section 6.3, action elimination reduces the effective cardinality of the action

space. Although this does not reduce the theoretical computational complexity of MCSA,

in practice, the computation time may reduce. MCSA requires to store the running values

of AH , D, BH and OL. However, it does not need to store any information regarding the

state space. Therefore, the resulting storage complexity is O(1).

The per-iteration worst case computational complexity of SMCSA is also O(|A|)
because when the current values of the constraints are below the specified value, we need
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to compute the best action. However, the complexity involved with the probabilistic

state-aware blocking and offloading is O(1) because no comparison among the actions

is present. Apart from AH , D, BH and OL, SMCSA needs to store the information

regarding the regions Rn, where 1 ≤ n ≤ P and the corresponding probabilities q(n) and

p(n). Therefore, the storage complexity of SMCSA is O(P ).

Remark 14. A well-studied approach for MDP problems is the investigation of structural

properties, see e.g., [81–83], which often leads to threshold-type optimal policy. In Chapter

3, which does not consider the offloading probability as a constraint, we have proved the

optimality of threshold policies. Although the computational complexity of the resulting

algorithm is lower than that of traditional policy iteration, the computational complexity

is still exponential in one of the parameter of the state space. The problem addressed in

this chapter does not result in a threshold based optimal policy. However, the proposed

algorithms provide significantly lower computational complexity compared to what would

have been achieved corresponding to a threshold structure.

Remark 15. The loss of threshold sturcture of the optimal policy after incorporating the

additional constraint on the offloading probability is due to the consideration of channel

states of users. Due to the consideration of channel states of users, the monotonicity of

the reward function as a function number of users no longer holds (See Equation (6.1)).

6.6 Conclusions

In this chapter, we have considered a RAT selection problem where we aim to maximize

the total system throughput subject to constraints on the high priority user blocking

probability and the low priority user offloading probability. This problem has been for-

mulated as a CMDP problem. We have reduced the dimensionality of the action space

by proving the suboptimality of different actions in various states. We have proposed two

low-complexity online heuristic algorithms for RAT selection. These algorithms do not

require the knowledge of the underlying transition probabilities of the model. Contrary

to the first algorithm where the blocking probability and the offloading probability do

not depend on the statistics of the arrival processes, in the second algorithm, blocking

and offloading is performed based on the system state. Implementation of the proposed
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algorithms in an ns-3 based software defined networking-compliant evaluation platform is

presented in the next chapter.
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Table 6.2: Reward rate table.

(a|El) r(s, a)

(A1|E1) R(iG, iB , jG, jB , kG, kB)

(A1|E3) R(iG, iB , jG, jB , kG, kB)

(A1|E5) R(iG, iB , jG, jB , kG, kB)

(A1|E6) R(iG, iB , jG, jB , kG, kB)

(A1|E7) R(iG, iB , jG, jB , kG, kB)

(A1|E8) R(iG, iB , jG, jB , kG, kB)

(A1|E9) R(iG, iB , jG, jB , kG, kB)

(A1|E10) R(iG, iB , jG, jB , kG, kB)

(A2|E1) R(iG + 1, iB , jG, jB , kG, kB)

(A2|E2) R(iG, iB , jG + 1, jB , kG, kB)

(A2|E3) R(iG, iB + 1, jG, jB , kG, kB)

(A2|E4) R(iG, iB , jG, jB + 1, kG, kB)

(A3|E2) R(iG, iB , jG, jB , kG + 1, kB)

(A3|E4) R(iG, iB , jG, jB , kG, kB + 1)

(A4|E1) R(iG + 1, iB , jG, jB − 1, kG, kB + 1)

(A4|E3) R(iG, iB + 1, jG, jB − 1, kG, kB + 1)

(A5|E5) R(iG, iB , jG + 1, jB , kG − 1, kB)

(A5|E6) R(iG, iB , jG + 1, jB , kG − 1, kB)

(A5|E7) R(iG, iB , jG + 1, jB , kG − 1, kB)

(A5|E8) R(iG, iB , jG + 1, jB , kG − 1, kB)

(A5|E9) R(iG, iB , jG, jB − 1, kG, kB + 1)

(A5|E10) R(iG, iB , jG, jB − 1, kG, kB + 1)

(A6|E1) R(iG + 1, iB , jG − 1, jB , kG + 1, kB)

(A6|E2) R(iG, iB + 1, jG − 1, jB , kG + 1, kB)

(A7|E5) R(iG, iB , jG, jB + 1, kG, kB − 1)

(A7|E6) R(iG, iB , jG, jB + 1, kG, kB − 1)

(A7|E7) R(iG, iB , jG, jB + 1, kG, kB − 1)

(A7|E8) R(iG, iB , jG, jB + 1, kG, kB − 1)

(A7|E9) R(iG, iB , jG − 1, jB , kG + 1, kB)

(A7|E10) R(iG, iB , jG − 1, jB , kG + 1, kB)

Table 6.3: Computational and storage complexities of different algorithms.

Algorithm Storage complexity Computational complexity

MCSA O(1) O(|A|)
SMCSA O(P ) O(|A|)



Chapter 7

Software Defined Networking based

Implementation of RAT Selection

Algorithms

In this chapter, we implement the RAT selection algorithms proposed in Chapter 6 in an

SDN based evaluation platform 1 developed using ns-3. Development of the evaluation

platform requires significant changes in the existing modules of ns-3. For the sake of com-

pleteness, we describe the details of the evaluation platform in this chapter. However, the

main contribution in this chapter is to implement the proposed RAT selection algorithms

(in Chapter 6) in the SDN based evaluation platform and investigate the practicality of

the proposed solutions.

With the 5G cellular mobile system [6,7] standardization in progress, it is expected

that the next generation networks will be a mixture of a large number of RATs. This

gives rise to the need for a unified framework which can control and manage multiple

RATs together. In existing networks, every RAT is controlled and managed by RAT-

specific elements. For example, LTE is controlled by control elements such as Mobility

Management Entity (MME) and Evolved NodeB (eNodeB), and WLAN is controlled by

WLAN controllers. Although the upcoming 5G network [6, 7] supports multiple RATs,

radio access related decisions are individually taken by RAT-specific elements. Due to this

1Ashish Sharma, Rohan Kharade and Abhishek Dandekar contributed towards the development of

the SDN based evaluation platform in ns-3.
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distributed nature of control and management of various RATs, a unified global view of the

entire network comprising different RATs is not present in the existing network. This leads

to a suboptimal utilization of resources in the network. However, a unified framework for

control and management related decisions can facilitate the optimal resource utilization

in a network. Therefore, it is necessary that the common functionalities supported by

diverse RATs such as admission control, flow control, mobility management are controlled

and managed in a unified manner. Emergence of SDN [41–43] paradigm may enable us

to achieve unified control and management of various RATs.

The basic idea behind SDN is the split of control and data plane elements and func-

tionalities in a network. While the control plane consists of control and management

protocols and elements, the data plane consists of protocols and elements for data trans-

fer. Using SDN, the control plane functionalities of different RATs can be decoupled

from the network elements of various RATs and aggregated in the control plane. The

interface which separates the control and data planes enables the configuration of data

plane elements using policy-based rules provided by control plane elements. Since the

control plane has a global view of the entire network, this approach allows us to design

these policy-based rules in an optimal manner. Therefore, optimal utilization of network

resources can be achieved contrary to distributed control in today’s network.

In this chapter, we implement the RAT selection algorithms presented in Chapter

6 in an SDN based LTE-WiFi network. To this end, we propose an SDN based network

architecture which unifies the control and management functionalities of LTE and WiFi

networks using an SDN controller. The LTE BS and the WiFi AP forward the radio

resource management messages to the SDN controller which takes control and manage-

ment decisions. Note that although we consider LTE BS and WiFi AP in the proposed

framework, the framework can be easily adopted for any RAT including 5G. The SDN

controller takes RAT selection and offloading decisions based on the implemented algo-

rithm. For implementation purposes, we develop an SDN based evaluation platform in

ns-3. Experimental results demonstrate that the algorithms proposed in Chapter 6 provide

near-optimal performances. Also, performances of the proposed algorithms in Chapter 6

are compared with other traditional RAT selection algorithms in the literature. We also

verify the robustness of our algorithms in the presence of user mobility and compare their
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performances with other algorithms.

The rest of the chapter is organized as follows. Section 7.1 describes the proposed

system architecture. In Section 7.2, we present the simulation results obtained by imple-

menting the RAT selection algorithms within the SDN based evaluation platform. Section

7.3 concludes the chapter.

7.1 Proposed SDN based System Architecture

WiFi AP

WiFi AP

LTE BS

LTE BS

Gateway

Gateway SDN Controller

Control Path 
Data Path

Internet

User
Data Flow

User

Figure 7.1: SDN based LTE-WiFi architecture.

In this section, we propose an overlay architecture that allows us to handle multiple

RATs together using an SDN controller. As demonstrated in Fig. 7.1, the SDN con-

troller handles all control and management related functionalities of different RATs. To

achieve that, the Radio Resource Management (RRM) unit of the LTE BS is moved to

the SDN controller. The LTE RRM consists of radio bearer control, radio admission con-

trol, connection mobility control, dynamic resource allocation and inter-cell interference

coordination. However, as considered in Chapter 6, we focus on aspects related to radio

bearer, admission and mobility control only. In effect, decision making related functional-

ities are implemented in the SDN controller which has a global view of the entire network.

RRM related control messages sent by the users in LTE are forwarded by the LTE BS to
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the SDN controller. For example, the Radio Resource Control (RRC) connection request

message reaches the SDN controller via the LTE BS. After that, the RRC connection

response message sent by the SDN controller is forwarded to the user via the LTE BS.

Similarly, the association request message is forwarded by the WiFi AP to the SDN con-

troller. However, control message exchanges which are not related to RRM, remain as it

is there in existing LTE network. This is due to the fact that the remaining functionali-

ties of RRC after the removal of RRM, remain in the LTE BS. In spite of the fact that

we have a single controller, scalability issues do not arise since only a small fraction of

control signals (which are RRM related) is handled by the SDN controller. Note that the

information regarding the channel conditions of users is needed for taking RAT selection

and offloading related decisions. For this purpose, channel condition information of users

are forwarded to the SDN controller at the time of association of users.

7.2 Simulation Results

In this section, we implement the RAT selection algorithms proposed in Chapter 6 in

an evaluation platform which is built according to the proposed SDN based LTE-WiFi

architecture in the last section. The evaluation platform is constructed by the modification

of existing components of ns-3 in such a manner that it is in agreement with the proposed

architecture. We observe performances of the proposed algorithms in terms of the blocking

probability of high priority users, the offloading probability of low priority users and the

total system throughput and compare with those of the optimal policy. We also compare

the performances of the proposed algorithms with the association scheme adopted in

existing network where SDN is not present. In the absence of SDN, the association scheme

results in on-the-spot offloading [57], where low priority users are always associated with

WiFi and high priority users are associated with LTE. However, when capacity is reached

in LTE, high priority users are blocked. We also evaluate the performances of the proposed

algorithms in the face of user mobility and establish that indeed the proposed algorithms

perform well in comparison to other algorithms under different realistic network scenarios.
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7.2.1 Simulation Setup and Methodology

We setup an evaluation platform (implemented in ns-3) which provides a framework to

simulate the SDN controller present in the proposed LTE-WiFi architecture in Section

7.1.

7.2.1.1 Description of Evaluation Platform

RRC Connection Request

Create Signaling bearer between LTE BS and UE (RRC Connection Reconfiguration)

RRC Connection Response

Other control Procedures

GatewaySDN
Controller

LTE BSUE

Create default data bearer between UE, LTE BS and Gateway

Data Flows

Figure 7.2: Association procedure in LTE.

In this section, we describe the details of the SDN based evaluation platform which

is implemented in ns-3. We create an SDN controller node which has two interfaces,

one towards the LTE BS and the other towards the WiFi AP, over IP connections. The

SDN controller consists of an LTE controller and a WiFi controller as logical entities. The

RRM functionalities present in the LTE BS are moved to the SDN controller. RRM related

control signals in LTE and control signals in WiFi are forwarded to the SDN controller.

Deep Packet Inspection (DPI) functionality present in Packet Data Convergence Protocol

(PDCP) layer of LTE is utilized to filter the control packets and route them to the SDN

controller. However, the data plane traffic is routed directly from the LTE BS to the

gateway. To enable communication between the LTE BS and the SDN controller, an
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Probe Request

 Probe Response

GatewaySDN
Controller

WiFi APUE

Data Flows

Association Request

Association Response

Figure 7.3: Association procedure in WiFi.

application is developed. This application sends the traditional control messages of LTE

encapsulated in other control messages with suitable headers. For example, the RRC

connection request message is forwarded by the LTE BS to the SDN controller, and the

RRC connection response message sent by the SDN controller is forwarded by the LTE

BS to the user. Similarly, association request message received by the MAC layer of WiFi

AP is forwarded to the SDN controller. The association response message sent by the

SDN controller is forwarded by the WiFi AP to the user. We describe this procedures

through the call flows in Fig. 7.2 and 7.3, respectively.

For the communication between the LTE BS/ WiFi AP and the SDN controller, we

define a control plane protocol which encapsulates the LTE and WiFi control messages

(such as RRC connection request and association request) by identifying them using

headers. The protocol works over TCP. The control packets are received in the SDN

controller, and appropriate response messages are sent to the LTE BS/WiFi AP. We create

a point-to-point link between the SDN controller and the WiFi AP. The SDN controller

listens to a specific port number for incoming control packets forwarded by the WiFi

AP. Then, routing paths are configured between the users and the controller for 1-hop

communication. Similarly, a point-to-point link is created between the SDN controller and

the LTE BS. The routing path between the user and the controller is configured then. In
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this case, the controller listens to a different port for receiving control packets forwarded by

the LTE BS. Whenever the controller receives a control message, then a callback function

is triggered. The callback function is responsible for identifying whether the association

message is generated by low priority or high priority users based on the size of the control

packet which is different for users of different priorities. After that, appropriate functions

which take the RAT selection decisions are triggered. Whenever an event (an arrival or

a departure of a user) occurs, a control packet is sent from the user to the BS/AP which

forwards the packet to the SDN controller. The SDN controller then triggers the function

which chooses an action in response to the event, following the algorithm implemented

in the controller. Based on the chosen action, the association of the user is made. If

the chosen action involves offloading of a low priority user, viz., actions A4, A5, A6, A7

(see Section 6.1 in Chapter 6), then the existing association is destroyed, and the user is

associated to the other RAT.

7.2.2 Description of Simulation Scenario

The network model consists of a 3GPP LTE BS and an IEEE 802.11g WiFi AP inside

the coverage area of the LTE BS. Users are assumed to be stationary. We consider that

the radius of the coverage area of the WiFi AP is approximately 30 m. The WiFi AP

is approximately 50 m away from the LTE BS. Data users are uniformly distributed

inside the coverage area of the WiFi AP. We assume that the WiFi AP is deployed

by the cellular operators, and hence, the interworking is trusted in nature. LTE and

WiFi network parameters are summarized in Tables 7.1 and 7.2. Note that LTE and

WiFi network parameters are chosen based on 3GPP [76]- [77] models and saturation

throughput [72] IEEE 802.11g WiFi [13] model, respectively. In simulations, we assume

that the maximum data rate which a low priority user can obtain is 10 Mbps due to

the bottleneck in the access network. We set Bmax = Omax = 0.05, εB = εO = 0.01 (see

Chapter 6). As described in Chapter 6, in the case of SMCSA, we divide the entire state

space into two regions, viz., R1 and R2. We keep q(1) = p(1) = 0 and q(2) = p(2) = 1.
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Table 7.1: LTE network model.

Parameter Value

Maximum high priority user capacity 4 users

Bit rate of a single high priority user 20 kbps

Voice packet payload 50 bits

Data packet payload 600 bits

Tx power for BS and UE 46 dBm and 23 dBm

Noise figure for BS and UE 5 dB and 9 dB

Antenna height for BS and UE 32 m and 1.5 m

Antenna parameter for BS and UE Isotropic Antenna

Path loss (R in kms) 128.1 + 37.6 log(R)

Multi-path fading Extended Pedestrian A model [79]

0.1 0.2 0.3 0.4 0.5
0

5

10

15

High priority user arrival rate (λH)(s−1)

H
ig
h
p
ri
o
ri
ty

u
se
r
b
lo
ck
in
g
fr
a
ct
io
n
(%

)

Optimal policy
MCSA

SMCSA (Case I)

SMCSA (Case II)
non-SDN

Figure 7.4: High priority user blocking percentage vs. λH (λL = 1, µH = 1 and µL = 1).

7.2.3 High Priority User Arrival Rate Variation

Fig. 7.4 describes the blocking probability of high priority users of the proposed algo-

rithms, optimal policy and on-the-spot offloading (existing non-SDN scenario) as a func-

tion of λH . As λH increases, the blocking probability of the optimal policy increases. This
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Table 7.2: WiFi network model.

Parameter Value

Channel bit rate 54 Mbps

UDP header 224 bits

Packet payload 1500 bytes

Slot duration 20 µs

SIFS 10µs

DIFS 50µs

Minimum acceptable per-user throughput 4.5 Mbps

Tx power for AP 23dBm

Noise figure for AP 4 dB

Antenna height for AP 2.5 m

Antenna parameter Isotropic antenna

Path loss (R in kms) 140.3 + 36.7 log(R)

Fading Rayleigh fading
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Figure 7.5: Low priority offloading percentage vs. λH (λL = 1, µH = 1 and µL = 1).
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Figure 7.6: Total system throughput vs. λH (λL = 1, µH = 1 and µL = 1).

happens because as λH increases, more number of high priority users having low contribu-

tions to the system throughput arrive in the system and are blocked in order to maximize

the total system throughput. Since MCSA blocks the high priority users based on Bmax

without considering λH , the blocking probability is same for all λH . SMCSA is designed

in such a way that it blocks high priority users only when the system reaches region R2.

We consider two cases, viz., R1 : (iG + 2iB) ≤ CL − 2, and R1 : (iG + 2iB) ≤ CL − 1,

respectively. The high priority user blocking probability of SMCSA gradually increases

with λH , similar to the optimal policy. This happens because when the value of λH is

low, we block the incoming high priority users with low probability. As λH increases and

the system gradually fills up with high priority users, the probability of blocking increases

as q(n) is an increasing function of n. Since the size of region R1 is smaller in the first

case, the blocking probability in the second case is lower than that of the first case. In

the absence of SDN, high priority user blocking probability gradually rises with λH . Since

in this case, blocking happens only when the system reaches the capacity, the blocking

probability values are lower than those of other algorithms.

In Fig. 7.5, we plot the low priority user offloading fractions for the considered

algorithms. In the absence of SDN, offloading from one RAT to another is not possible.

The low priority user offloading fractions provided by MCSA and SMCSA are similar

for all values of λH since the value of λL is fixed. Changes in λH do not have much
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impact on the offloading probability of low priority users. However, the low priority

user offloading fraction of the optimal policy gradually rises with λH . This happens

because with increasing λH , actions involving offloading (A4, A5, A6, A7) are selected more

frequently.

The total system throughput provided by MCSA is very close to the total system

throughput of the optimal policy, as observed in Fig. 7.6. The total throughput of

SMCSA in both the cases are slightly lower than that of MCSA. This happens because

MCSA blocks more fraction of high priority users than SMCSA. Since there is a trade-off

between the total system throughput and the high priority user blocking probability, the

total system throughput is higher in the case of MCSA. All these algorithms outperform

on-the-spot algorithm. Since low priority users are always associated with WiFi in the non-

SDN scenario, no load balancing mechanism is present. Moreover, the total throughput

in WiFi degrades due to the contention among low priority users. Hence, the throughput

performance of on-the-spot offloading is the worst among all the algorithms.

7.2.4 Low Priority User Arrival Rate Variation

Fig. 7.7 describes the high priority user blocking probability performance of the proposed

algorithms, optimal policy and on-the-spot algorithm as a function of λL. As observed

from the figure, similar to Fig. 7.4, MCSA provides a blocking probability which is close

to Bmax for all λL. SMCSA is designed in such a way that it blocks high priority users

and offloads low priority users only when the system reaches region R2. We consider two

cases, viz., R1 : (iG + 2iB) ≤ CL − 2, (kG + kB) ≤ 4, (jG + jB) ≤ 2 and R1 : (iG + 2iB) ≤
CL−2, (kG+kB) ≤ 4, (jG+jB) < 2, respectively. The performance of SMCSA for the first

case is close to that of the optimal policy. In the second case, the blocking probabilities

are slightly higher than those of the first case. This happens because region R1 is smaller

in the second case.

In Fig. 7.8, we plot the offloading probability of low priority users as a function of

λL. The offloading probability of the optimal policy grows with λL. MCSA provides an

offloading probability which is close to the given constraint for all values of λL. In case of

SMCSA, offloading probability grows with λL, similar to the optimal policy. The reason

behind this is that the offloading probability p(n) is an increasing function of n. The
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Figure 7.7: High priority user blocking percentage vs. λL (λH = 0.2, µH = 1 and µL = 1).
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Figure 7.8: Low priority offloading percentage vs. λL (λH = 0.2, µH = 1 and µL = 1).
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Figure 7.9: Total system throughput vs. λL (λH = 0.2, µH = 1 and µL = 1).

offloading probability in in the second case is slightly better than in the first case since

region R1 is smaller in the second case. Since offloading is not possible when SDN is not

present, in the non-SDN case, the offloading probability of low priority users is always

zero.

In Fig. 7.9, we observe that the performances of both MCSA and SMCSA are

close to optimal, outperforming on-the-spot offloading algorithm. Though the proposed

algorithms take into account only the instantaneous rewards while optimizing, these algo-

rithms facilitate load balancing between LTE and WiFi RATs. The total system through-

put of on-the-spot offloading does not increase much with λL due to contention among

users in WiFi. Fig. 7.9 demonstrates that indeed our proposed algorithms provide near-

optimal performances.

7.2.5 Consideration of multiple channel states in WiFi

Throughout this chapter, we have assumed that channel states of users in WiFi are always

good. In this section, we evaluate the performance of our proposed algorithms considering

multiple channel states of users in WiFi. We consider two types of low priority users. As

assumed previously, users present within the coverage area of the WiFi AP are taken to

be users with good channel states in WiFi. Users present outside the coverage area of
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Figure 7.10: Total system throughput for different algorithms under varying λH and λL.

the WiFi AP are assumed to be users with bad channel states in WiFi. Such users are

always associated with LTE, irrespective of their channel states in LTE. We also assume

that separate resources are reserved in LTE for users having bad channel states in WiFi.

In Fig. 7.10a, we plot the total system throughputs for the considered algorithms as a

function of λH . As observed from the figure, both the proposed algorithms perform better

than on-the-spot offloading. The throughput performance of MCSA is slightly better than

that of SMCSA. However, the performances of SMCSA and on-the-spot offloading are

very close to each other. This is due to the fact that for users with bad channel in WiFi,

both on-the-spot offloading and the proposed algorithms work in a similar fashion since

all these algorithms associate them with the LTE BS. Therefore, performance benefits

corresponding to the proposed algorithms are achieved only due to users which do not

have bad channels with respect to the WiFi AP. Since separate resources are reserved

in LTE for low priority users outside the coverage area of the WiFi AP, the blocking

probabilities and the offloading probabilities are identical to those of Figs. 7.4 and 7.5.

Similarly, in Fig. 7.10b, we illustrate the comparative performances of MCSA, SM-

CSA and on-the-spot offloading in terms of the total system throughput as a function

of λL. Clearly, both MCSA and SMCSA outperform on-the-spot offloading. As λL in-

creases, the performance gap between the proposed algorithms and on-the-spot offloading,

increases. The blocking probabilities and the offloading probabilities are identical to those
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of Figs. 7.7 and 7.8.

7.2.6 Consideration of Mobility

In this section, we evaluate the performances of the algorithms in the presence of user

mobility. In the simulation setting, we consider random waypoint model [80] for user

mobility. In this model, each user waits for a random interval and then chooses a random

waypoint and a random speed. The user moves towards the waypoint with the chosen

speed. After reaching the destination, the user waits and then chooses another random

waypoint and random speed. The process continues thereafter. We set the user speed

uniformly and randomly in the range [0, 40] km/h. We deterministically set the random

variable which signifies the wait time to be always zero. The initial positions of low and

high priority users are allocated using the random rectangle position allocator where the

x-axis and y-axis coordinates are chosen uniformly randomly between two given values.

We choose these values in such a way that the low and high priority users remain within

the coverage area of the LTE BS and the WiFi AP, respectively. Similar to the previ-

ous scenario, we use the extended pedestrian A model for multipath fading in LTE and

Rayleigh fading in WiFi. However, the channel gains are not fixed anymore since the dis-

tances of the users to the LTE BS/ WiFi AP vary due to the mobility of users. The path

loss models adopted in these scenarios are same as those of listed in Table 7.1 and Table

7.2, respectively. We classify the channel states of high priority users in LTE as good or

bad depending on their locations (cell center/cell edge) at the time of their arrivals (See

Section 6.1). However, the channel state of a user may change from good to bad or vice

versa depending on the location of the user.

In general, due to high mobility associated with the users, the users in the system

may be offloaded frequently from one RAT to another. This may increase the offloading

probability associated with the overall system. Since the algorithms are designed in such

a way that the offloading probability satisfies the associated constraint, a user with high

mobility may significantly increase the offloading probability of the system. As a result, it

may happen that the low mobility users get very less number of offloading opportunities.

Furthermore, a user with high mobility is expected to drain a lot of battery due to

excessive offloading from one RAT to another. To take into account these factors, we
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Figure 7.11: Plot of total system throughput for different algorithms under varying λH

and λL.

modify the algorithms in the following way. Apart from the constraint on the overall

offloading probability of low priority users, we consider the offloading profile of individual

low priority users while offloading. To be precise, whenever an action involving offloading

of low priority users (A4, A5, A6, A7) is chosen, we choose a user which has not been

offloaded till now. If no such user is present, then we choose the user which has been

offloaded the earliest before.

In 7.11a, we observe that both MCSA and SMCSA outperform on-the-spot offloading

in terms of the total system throughput for all values of λH . Similar observation is made

in Fig. 7.11b for different values of λL. We do not demonstrate the blocking probability

and the offloading probability performances in the presence of mobility since they are

exactly same as those of Fig. 7.4, 7.7, 7.5 and 7.8.

7.3 Conclusions

In this chapter, we have implemented the proposed RAT selection algorithms in Chapter 6

in an ns-3 based evaluation platform. The evaluation platform has been built according to

an SDN based LTE-WiFi network architecture proposed by us. The propose architecture

unifies the control and management functionalities of LTE and WiFi networks using an
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SDN controller. Experimental results have demonstrated that the proposed RAT selection

algorithms outperform the traditional algorithm and provide near-optimal performances.

We have also verified that the proposed algorithms provide better performances than that

of the traditional algorithm, even in the face of user mobility.





Chapter 8

Summary of Results and Future

Directions

8.1 Summary of Results

In this thesis, we have addressed the optimal RAT selection problem in a heterogeneous

network. To cope up with an unprecedented growth in data traffic, mobile data traffic

offloading from LTE to WiFi has been proposed in 3GPP Release 12 specifications. As

discussed in Chapter 2, there are two kinds of approaches for RAT selection and offloading

in the literature, viz., user-initiated and network-initiated approaches. In user-initiated

approaches, users take individual RAT selection decisions to maximize their own utilities.

In this thesis, we have adopted network-initiated approaches for RAT selection so that

the overall system performance can be optimized. Although our proposed RAT selection

and offloading solutions take into account LTE and WiFi as representative RATs, the

framework proposed by us is generic enough so that it can be modified easily to consider

other RATs as well.

Whenever a user arrives in the LTE-WiFi system, it is necessary to choose the RAT

selection strategy governed by the optimal association policy. Furthermore, offloading of

active users from one RAT to another may be triggered by the optimal policy during the

association and the departures of users. As discussed in Chapter 2, few network-initiated

solutions in the literature have addressed the issue of RAT selection and offloading, sep-

arately. However, in this thesis, for the first time, we have addressed the issue of joint
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RAT selection and offloading for an LTE-WiFi HetNet in a dynamic environment where

users arrive and depart from the system. Furthermore, no other work in the literature

has considered the trade-off between the total system throughput and the blocking prob-

ability of voice users for an LTE-WiFi HetNet within an optimization framework. The

objective of this thesis is to determine the optimal RAT selection algorithms such that the

total system throughput can be maximized while satisfying various constraints on desired

factors such as the blocking probability of voice users and the offloading probability of

low priority users.

These optimization problems of determining the optimal policy can be formulated

within the framework of Markov Decision Process (MDP). MDP problems can in general

be solved using DP based schemes like Value Iteration Algorithm (VIA), policy iteration

[69]. Often these solution techniques suffer from the curse of dimensionality where the

computational complexities of these schemes become exponential in the size of the state

space. Hence, they encounter practical implementation issues. Moreover, these techniques

require the knowledge of the underlying transition probabilities between the states of the

associated Markov chain which are governed by the statistics of the system dynamics such

as the arrival rates of users. In reality, these may be difficult to gather. To address this

issue, we usually make simplifying assumptions regarding the model. However, in practice,

these assumptions may be inaccurate. Even if the initial guess about the statistics of the

system dynamics are accurate, they tend to become worse with time since the system

may change with time. We have addressed these issues in this thesis.

To summarize, we have devised optimal (or sub-optimal) algorithms which bring

about reductions in computational and storage complexities compared to traditional

schemes of determining the optimal policy. To achieve that, we have utilized the op-

timality of threshold policies which has been established in this thesis. Moreover, we have

focused on developing model-unaware Reinforcement Learning (RL) schemes which can

be implemented online without the knowledge of the statistics of the arrival processes

of the users. We have also exploited the knowledge of the optimality of threshold poli-

cies in the RL framework to provide significant reductions in computational and storage

complexities in comparison to traditional RL schemes. We have proposed low-complexity

algorithms which aim at maximizing the total system throughput subject to constraints
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on the blocking probability of high priority users and the offloading probability of low

priority users. The proposed algorithms are implemented in a practical ns-3 based SDN-

compliant evaluation platform. We now describe the major contributions of the thesis in

detail.

In Chapter 3, we have considered the problem of optimal RAT selection in an LTE-

WiFi network where we aim to maximize the total system throughput. Additionally, we

have considered another formulation where maximizing the total system throughput is

subject to a constraint on the voice user blocking probability. These problems have been

formulated within the frameworks of MDP and Constrained MDP (CMDP), respectively.

Traditional VIA and policy iteration algorithms to determine the optimal policy are com-

putationally prohibitive. This has inspired us to look for structural properties that reduce

the number of feasible policies. We have established the existence of a threshold structure

of the optimal policy. A policy search over the entire policy space may become compu-

tationally inefficient. Therefore, we have proposed algorithms which search the optimal

policy only from the set of threshold policies in order to determine the optimal RAT

selection policy. We have demonstrated that the proposed algorithms provide significant

improvements in computational and storage complexities over the traditional policy it-

eration algorithm. ns-3 simulation results have established that the algorithms proposed

by us perform better than other state-of-the-art schemes in terms of the total system

throughput and the blocking probability of voice users.

However, the proposed algorithms in Chapter 3 require the knowledge of the statis-

tics of the arrival processes of voice and data users for the computation of the optimal

policy. In practice, these statistics may be difficult to obtain. To address this, an on-

line algorithm for optimal RAT selection has been proposed in Chapter 4 based on a

two timescale Q-learning approach. The proposed algorithm can be implemented with-

out any explicit knowledge of the statistics of the arrival processes of voice and data

users. The value functions are updated in the faster timescale and the Lagrange Mul-

tiplier (LM) in the slower one. The proposed scheme converges to the optimal policy.

The proposed approach utilizes an online implementable version of Relative Value Itera-

tion Algorithm (RVIA) within the frameworks of RL [45] and Stochastic Approximation

(SA) [78]. Simulation results have demonstrated the convergence behavior of the pro-
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posed scheme. Although the proposed Q-learning algorithm asymptotically converges to

the optimality, it needs to learn iteratively the value functions for all state-action pairs.

Hence, the Q-learning algorithm possesses a high storage complexity. Moreover, due to

the associated exploration mechanism, the convergence rate is slow.

To address this issue, in Chapter 4, we have proposed a two timescale PDS learning

algorithm which speeds up the learning process by removing the requirement of action

exploration mechanism prevailing in the Q-learning algorithm. This approach is based

on the reformulation of the RVIA by introducing the notion of the Post-Decision State

(PDS). The proposed algorithm has a nice structure, and therefore, it can be implemented

online within the SA framework. Instead of the state-action pair values in the case of

Q-learning, we need to store only the value functions of the states. Therefore, the storage

complexity of the PDS learning algorithm is lower than that of the Q-learning algorithm.

We have proved that the PDS based learning algorithm indeed converges to the optimality.

ns-3 simulation results have been presented to illustrate the convergence behaviors of the

Q-learning and the PDS learning algorithms.

Q-learning and PDS learning approaches in Chapter 4 have been popular and ob-

served to perform well in practice. The convergence speed and the storage complexity

of these approaches can be further improved if the underlying threshold structure of the

optimal policy can be exploited. To this end, in Chapter 5, we have proposed a novel

two timescale structure-aware online learning algorithm which reduces the feasible policy

space, thereby offering lesser storage and computational complexity and faster conver-

gence. The main idea behind this algorithm is to compute the gradient of the system

metric, i.e., the average reward of the system, with respect to the threshold vector and

improve the policy by updating the threshold vector in the direction of the gradient. Since

the dynamics of the LM and the threshold vector are not dependent on each other directly,

we update the value of the LM and the threshold vector in the same slower timescale. We

have proved the convergence of the proposed algorithm to the globally optimal threshold

policy. Contrary to the existing learning algorithms where the computational complexity

scales linearly with the cardinality of the action space, the proposed algorithm provides a

computational complexity of O(1). Simulation results have demonstrated how the knowl-

edge of structural properties affects the convergence speed, when compared to traditional



8.1. Summary of Results 141

learning schemes. Furthermore, we have observed through simulations that the proposed

algorithm outperforms other RAT selection algorithms in the literature in the presence

of various realistic network conditions such as channel fading, user mobility and dynamic

resource allocation.

The arguments for the proofs of convergences of the proposed learning algorithms to

the optimality are developed on the basis of the standard Ordinary Differential Equation

(ODE) approach of analyzing SA algorithms [84] as a noisy discretization of a limiting

ODE. We have utilized the idea of the two timescale approach [78] in proving the conver-

gence of the coupled iterations of the value functions, the LM and the threshold vector

iterates to the optimal policy. While the proofs of convergences of the algorithms are

asymptotic in nature, we have demonstrated through simulations that in practice, con-

vergences to close neighborhoods of the optimal policy are achieved in reasonable numbers

of iterations.

In Chapters 3, 4 and 5, RAT selection solutions lack the consideration of few practical

network aspects, viz., the channel states of users and the control traffic in the backhaul

generated due to mobile data offloading. In Chapter 6, we have considered an LTE-WiFi

HetNet where users of different priorities are present. We have addressed the problem of

optimal RAT selection to maximize the total system throughput subject to constraints

on the blocking probability of high priority users and the offloading probability of low

priority users. The offloading probability of low priority users is taken into account to

accommodate the issue of extra control signaling in the backhaul due to offloading of

users from one RAT to another. We have also considered the channel states of users in

the system model. We have formulated the optimal RAT selection problem as a CMDP.

Furthermore, we have reduced the dimensionality of the action space by eliminating the

provably sub-optimal actions using sample path arguments. To address the curse of

modeling and the curse of dimensionality associated with the computation of the optimal

policy, we have proposed two online heuristic algorithms, namely Myopic with Constraint

Satisfaction Algorithm (MCSA) and State-aware Myopic with Constraint Satisfaction

Algorithm (SMCSA), for RAT selection. Although greedy in nature, these algorithms

are tuned to satisfy the associated constraints. In MCSA, the blocking probability of

high priority users and the offloading probability of low priority users do not depend on
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the statistics of the arrival processes. To address this issue, in SMCSA, blocking and

offloading are performed based on the system state. Hence, the blocking probability

and the offloading probability gradually rise with increments in arrival rates, similar

to the optimal policy. The proposed algorithms have low computational and storage

complexities. Moreover, they do not require the knowledge of the statistics of system

dynamics and hence, are practically implementable.

In Chapter 7, RAT selection algorithms proposed in Chapter 6 have been imple-

mented in an SDN based evaluation platform developed in ns-3. We have proposed an

SDN based network architecture which unify the radio resource management related func-

tionalities of LTE and WiFi networks and modified the existing elements of ns-3 in ac-

cordance with the proposed architecture. Experimental observations have indicated that

the performances of MCSA and SMCSA are close to optimal. Furthermore, MCSA and

SMCSA outperform other traditional RAT selection algorithms under realistic network

conditions. Modifications to MCSA and SMCSA have been suggested in Chapter 7 so

that user mobility can be handled. We have also provided performance comparisons with

other RAT selection algorithms in the literature in the presence of user mobility.

The main theme of this thesis has been the development of computationally efficient

and storage-efficient RAT selection algorithms that aim at counteracting the curse of

dimensionality and the curse of modeling. While we have addressed the optimal RAT

selection problem and investigated the role of LTE-WiFi offloading in RAT selection,

several extensions of the considered algorithms and scenarios are possible. In the next

section, we provide a discussion on the possible extensions for the future work.

8.2 Future Directions

For the online learning algorithms proposed in Chapters 4 and 5, we have established the

proofs of convergence in an asymptotic sense. However, in future, theoretical convergence

rates of these algorithms can be analyzed. This will provide us an insight into the numbers

of iterations required after which the algorithms converge to close vicinity of the optimal

policy. This aspect directly translates into the practical utilities of these algorithms.

Furthermore, investigation of the effects of arrival rates and other system parameters
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on the convergence rate can be performed. Based on that, we can propose adaptive

schemes which take up different learning strategies based on the system parameters. In

the proposed learning schemes in this thesis, we have considered decreasing step-size

schedules. Often, in practice, constant step size parameter is adopted due to its ease of

implementation. One future direction may be the investigation of convergence aspects of

the proposed algorithms with the consideration of constant step-size schedule.

In this thesis, we have focussed on maximizing the total system throughut subject

to certain constraints. However, the proposed framework can be extended to maximize

some other utility functions such as fairness (which is a concave function of long-term

throughput) subject to the chosen constraints. Extension of our proposed framework to

this case may not be straightforward.

In Chapter 6, we have proposed RAT selection algorithms which are implemented

in an ns-3 based SDN-compliant evaluation platform in Chapter 7. In future, different

aspects of the SDN system can be incorporated in the system model to investigate how

they affect the RAT selection decisions. The aspects may include latency and packet loss

between the LTE BS/ WiFi AP and the SDN controller. However, optimization problems

involving these parameter require indpendent investigation since the system model and

solution technique may be entirely different. For example, the optimization problem

involving delay and power is a challenging problem [85], even without the consideration

of data user offloading.

In this thesis, we have considered the total system throughput, the blocking proba-

bility and the offloading probability as the QoSs of interest. However, various other QoS

attributes such as delay, packet loss rate and energy efficiency can be considered in future.

As we have discussed in Chapter 1, with the emergence of future 5G system, next

generation networks are expected to consist of a number of RATs with varying character-

istics. The RAT selection frameworks and the problem formulations considered by us are

in general applicable to any RAT including 5G. In future, optimal RAT selection strategy

for a 5G-4G HetNet using the proposed framework can be investigated.

We believe that the algorithms proposed in this thesis hold great promises towards

practical implementation purposes since they address the issues related to the curse of

dimensionality and the curse of modeling. However, different extensions of the proposed
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algorithms in various other prevalent scenarios in next generation wireless networks can

be investigated in future.
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Appendix A

Selected Proofs in Thesis

A.1 Proof of Lemma 5

Let Di be the difference operator which is defined as DiV (i, j, k) = V (i+1, j, k)−V (i, j, k).

Similarly, we define the second difference operator as Dii(.) = Di(Di(.)).

To prove this lemma, we consider two cases, (1) k ≥ kth and (2) k < kth. We prove

the lemma for the first case. Proof of the second case follows in a similar manner. From

Lemma 4, we know that for k ≥ kth, A2 is better than A4. Thus, for k ≥ kth, the choice is

between A1 and A2. To prove this lemma, we first prove that the value function V (i, j, k)

is concave in i. In Lemma 1 and 2, we have already derived the structure of the optimal

policy for data user arrival and departure of voice and data users. Now, for k ≥ kth, with

the aid of this, the optimality equation is as follows.

V (i, j, k) = λvδmax{f(i, j, k)− β + V (i, j, k), f(i+ 1, j, k) + V (i+ 1, j, k)}

+ λdδ
(
f(i, j + 1, k) + V (i, j + 1, k)

)
+ iµvδ

(
f(i− 1, j + 1, k − 1) + V (i− 1, j + 1, k − 1)

)

+ jµdδ
(
f(i, j, k − 1) + V (i, j, k − 1)

)
+ kµdδ

(
f(i, j, k − 1) + V (i, j, k − 1)

)

+
(
1− v(i, j, k)

)
V (i, j, k). (A.1)

Let the components in Equation (A.1) be denoted by V 1(i, j, k), V 2(i, j, k), V 3(i, j, k),

V 4(i, j, k),V 5(i, j, k) and V 6(i, j, k), respectively. We prove the concavity of V (i, j, k)

component-wise. Start the VIA with V0(i, j, k) = 0. Hence, V0(i, j, k) is concave in i. Let

us assume that V1,n(i, j, k) = max{f(i, j, k) − β + Vn−1(i, j, k), f(i + 1, j, k) + Vn−1(i +

1, j, k)}. Equivalently, V1,n(i, j, k) = max{−β + Vn−1(i, j, k), RL,V + Vn−1(i+ 1, j, k)}. Let
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us define the function V1,n(i, j, k, a) as follows.

V1,n(i, j, k, a) =




−β + Vn−1(i, j, k), a = A1,

RL,V + Vn−1(i+ 1, j, k), a = A2.

By definition,

V1,n(i, j, k) = max
a∈{A1,A2}

V1,n(i, j, k, a).

Thus, we have,

V 1(i, j, k) = lim
n→∞

V1,n(i, j, k).

Let us define DiV (i, j, k, a) = V (i+ 1, j, k, a)− V (i, j, k, a).

DiV1,n(i, j, k, a) =




DiVn−1(i, j, k), a = A1,

DiVn−1(i+ 1, j, k), a = A2.

DiiV1,n(i, j, k, a) =




DiiVn−1(i, j, k), a = A1,

DiiVn−1(i+ 1, j, k), a = A2.

Since Vn−1(i, j, k) is concave in i, V1,n(i, j, k, a) is concave in i.

Now, we need to prove that V1,n(i, j, k) is concave in i. In other words, we need to

prove that V1,n(i+2, j, k)+V1,n(i, j, k) ≤ 2V1,n(i+1, j, k). Let us assume that a1 ∈ {A1, A2}
and a2 ∈ {A1, A2} are the maximizing actions in states (i+2, j, k) and (i, j, k), respectively.

Therefore,

2V1,n(i+ 1, j, k) ≥ V1,n(i+ 1, j, k, a1) + V1,n(i+ 1, j, k, a2)

= V1,n(i+ 2, j, k, a1) + V1,n(i, j, k, a2)−DiV1,n(i+ 1, j, k, a1) +DiV1,n(i, j, k, a2).

Let us take X = DiV1,n(i, j, k, a2) − DiV1,n(i + 1, j, k, a1). To prove that V1,n(i, j, k) is

concave in i, we need to prove that X ≥ 0. There are four cases as described below.

Case 1 : a1 = a2 = A1,

X = DiVn−1(i, j, k)−DiVn−1(i+ 1, j, k) = −DiiVn−1(i, j, k) ≥ 0.

Case 2 : a1 = A1, a2 = A2,

X = DiVn−1(i+ 1, j, k)−DiVn−1(i+ 1, j, k) = 0.
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Case 3 : a2 = a2 = A2,

X = DiVn−1(i+ 1, j, k)−DiVn−1(i+ 2, j, k) = −DiiVn−1(i+ 1, j, k) ≥ 0.

Case 4 : a1 = A2, a2 = A1,

X = DiVn−1(i, j, k)−DiVn−1(i+ 2, j, k) = −DiiVn−1(i, j, k)−DiiVn−1(i+ 1, j, k) ≥ 0.

Thus, it is proved that V1,n(i, j, k) is concave in i. Since this holds for every n and every

β, V 1(i, j, k) is concave in i.

Similarly, in the case of the second component, let V2,n(i, j, k) = f(i + 1, j, k) +

Vn−1(i, j + 1, k). Thus, DiiV2,n(i, j, k) = DiiVn−1(i, j + 1, k). Therefore, V2,n(i, j, k) is

concave in i. Similarly, other components also can be proved to be concave in i. Therefore,

V (i, j, k) is concave in i.

Let us define x(i, j, k) = −β − RL,V . In order to prove this lemma, we know that

if state (i, j, k) is blocking, then V (i + 1, j, k) − V (i, j, k) ≤ x(i, j, k). Due to concavity

of V (i, j, k), V (i + 2, j, k) − V (i + 1, j, k) ≤ V (i + 1, j, k) − V (i, j, k). Now, x(i, j, k) =

x(i + 1, j, k). As a consequence, V (i + 2, j, k) − V (i + 1, j, k) ≤ x(i + 1, j, k). Thus, it is

proved that if the state (i, j, k) is blocking, then the state (i+ 1, j, k) is also blocking.

To prove that if the state (i, j, k) is blocking, then the state (i, j+1, k) is also blocking,

we first need to prove that the value function is submodular in (i, j). In other words, we

need to prove that Vn(i+ 1, j, k) + Vn(i, j + 1, k) ≥ Vn(i, j, k) + Vn(i+ 1, j + 1, k). Similar

to the previous proof, we prove the above statement component-wise. Let us assume that

a1 and a2 are the maximizing actions in states (i, j, k) and (i + 1, j + 1, k), respectively.

Start the VIA with V0(i, j, k) = 0. Therefore, V0(i, j, k) is submodular in (i, j). In other

words, DijV0(i, j, k) ≤ 0. We have,

V1,n(i+ 1, j, k) + V1,n(i, j + 1, k) ≥ V1,n(i+ 1, j, k, a1) + V1,n(i, j + 1, k, a2)

= V1,n(i, j, k, a1) + V1,n(i+ 1, j + 1, k, a2) +DiV1,n(i, j, k, a1)−DiV1,n(i, j + 1, k, a2).

Now, we consider four possible cases.

Case 1 : a1 = a2 = A1,

DiV1,n(i, j, k, a1)−DiV1,n(i, j + 1, k, a2) = DiVn−1(i, j, k)−DiVn−1(i, j + 1, k)

= −DijVn−1(i, j, k) ≥ 0.
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Case 2 : a1 = a2 = A2,

DiV1,n(i, j, k, a1)−DiV1,n(i, j + 1, k, a2) = DiVn−1(i+ 1, j, k)−DiVn−1(i+ 1, j + 1, k)

= −DijVn−1(i+ 1, j, k) ≥ 0.

Case 3 : a1 = A1, a2 = A2,

DiV1,n(i, j, k, a1)−DiV1,n(i, j + 1, k, a2) = DiVn−1(i, j, k)−DiVn−1(i+ 1, j + 1, k)

= DiVn−1(i, j, k)−DiVn−1(i, j + 1, k) +DiVn−1(i, j + 1, k)−DiVn−1(i+ 1, j + 1, k)

= −DijVn−1(i, j, k)−DiiVn−1(i, j + 1, k) ≥ 0.

Case 4 : a1 = A2, a2 = A1,

V1,n(i+ 1, j, k) + V1,n(i, j + 1, k) ≥ V1,n(i+ 1, j, k, a2) + V1,n(i, j + 1, k, a1)

= −β + Vn−1(i+ 1, j, k) +RL,V + Vn−1(i+ 1, j + 1, k)

= V1,n(i, j, k, 2) + V1,n(i+ 1, j + 1, k, 1)

= V1,n(i, j, k) + V1,n(i+ 1, j + 1, k).

Thus, it is proved that V1,n(i, j, k) is submodular in (i, j).

Similarly, in the case of the second component, we have, V2,n(i, j, k) = f(i, j+1, k)+

Vn(i, j+1, k). Therefore, we have, DijV2,n(i, j, k) = DijVn(i, j+1, k) ≤ 0. Similarly, other

components also can be proved to be submodular in (i, j). Therefore, the value function

is submodular in (i, j).

Now, if the state (i, j, k) is blocking then we have, V (i+1, j, k)−V (i, j, k) ≤ x(i, j, k).

Again, we have, x(i, j, k) = x(i, j + 1, k). Due to submodularity, we have V (i + 1, j +

1, k) − V (i, j + 1, k) ≤ V (i + 1, j, k) − V (i, j, k) ≤ x(i, j, k) = x(i, j + 1, k). Thus, in the

case of voice arrival, if A1 is optimal in the state (i, j, k), then in the state (i, j + 1, k)

also, A1 is optimal.

Proof of (ii) follows directly from the proof of part (i).

A.2 Proof of Lemma 6

Let Ei be another difference operator defined as EiV (i, j, k) = V (i + 1, j − 1, k + 1) −
V (i, j, k). We define the second difference operator as Eii(.) = Ei(Ei(.)). Similarly, we

define FiV (i, j, k) = V (i+ 1, j − 1, k)− V (i, j, k).
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To prove this lemma, we consider two cases, (1) k ≥ kth and (2) k < kth. We

demonstrate the proof of the lemma for the first case. Proof for the second case follows

in similar manner. To prove this lemma, we first need to prove that for (i + j) = C,

the difference of value functions V (i + 1, j − 1, k + 1) − V (i, j, k) is decreasing in i. For

(i+ j) = C and k ≥ kth, the optimality equation can be described as

V (i, j, k) = λvδmax{f(i, j, k)− β + V (i, j, k), f(i+ 1, j − 1, k + 1) + V (i+ 1, j − 1, k + 1)}

+ λdδ
(
f(i, j, k + 1) + V (i, j, k + 1)

)
+ iµvδ

(
f(i− 1, j + 1, k − 1) + V (i− 1, j + 1, k − 1)

)

+ jµdδ
(
f(i, j, k − 1) + V (i, j, k − 1)

)
+ kµdδ

(
f(i, j, k − 1) + V (i, j, k − 1)

)

+
(
1− v(i, j, k)

)
V (i, j, k).

Let us assume that V1,n(i, j, k, a) = max{f(i, j, k)−β+Vn−1(i, j, k), f(i+1, j−1, k+

1) + Vn−1(i+ 1, j − 1, k + 1)}.
Equivalently, V1,n(i, j, k, a) = max{−β + Vn−1(i, j, k), RL,V − RL,D + R̃W,D(k) + Vn−1(i +

1, j − 1, k + 1)}.
In other words,

V1,n(i, j, k, a) =




−β + Vn−1(i, j, k), a = A1,

RL,V −RL,D + R̃W,D(k) + Vn−1(i+ 1, j − 1, k + 1), a = A4.

We prove the above claim component-wise. Start the VIA with V0(i, j, k) = 0. Therefore,

V0(i+1, j−1, k+1)−V0(i, j, k) is decreasing in i. We also have, EiFiV0(i, j, k) ≤ 0. Now,

Let us define EiV (i, j, k, a) = V (i + 1, j − 1, k + 1, a) − V (i, j, k, a) and FiV (i, j, k, a) =

V (i+ 1, j − 1, k, a)− V (i, j, k, a).

EiV1,n(i, j, k, a) =




EiVn−1(i, j, k), a = A1,

EiVn−1(i+ 1, j − 1, k + 1), a = A4.

Therefore, EiFiV1,n(i, j, k, a) ≤ 0.

EiiV1,n(i, j, k, a) =




EiiVn−1(i, j, k), a = A1,

EiiVn−1(i+ 1, j − 1, k + 1), a = A4.

Therefore, V1,n(i+ 1, j − 1, k + 1, a)− V1,n(i, j, k, a) is decreasing in i.

Now, we need to prove that V1,n(i + 1, j − 1, k + 1) − V1,n(i, j, k) is decreasing in i. In
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other words, we need to prove that V1,n(i+ 2, j − 2, k + 1) + V1,n(i, j, k) ≤ V1,n(i+ 1, j −
1, k + 1) + V1,n(i + 1, j − 1, k). Let us assume that a1 ∈ {A1, A4} and a2 ∈ {A1, A4} are

the maximizing actions in states (i+ 2, j − 2, k + 1) and (i, j, k), respectively. Therefore,

V1,n(i+ 1, j − 1, k + 1) + V1,n(i+ 1, j − 1, k)

≥ V1,n(i+ 1, j − 1, k + 1, a2) + V1,n(i+ 1, j − 1, k, a1)

= V1,n(i, j, k, a2) + V1,n(i+ 2, j − 2, k + 1, a1)

− EiV1,n(i+ 1, j − 1, k, a1) + EiV1,n(i, j, k, a2).

Let us take Y = EiV1,n(i, j, k, a2)−EiV1,n(i+ 1, j − 1, k, a1). To prove that V1,n(i+ 1, j −
1, k + 1) − V1,n(i, j, k) is decreasing in i, we need to prove that Y ≥ 0. There are four

cases as described below.

Case 1 : a1 = a2 = A1,

Y = EiVn−1(i, j, k)− EiVn−1(i+ 1, j − 1, k) = −EiFiVn−1(i, j, k) ≥ 0.

Case 2 : a1 = A4, a2 = A1,

Y = EiVn−1(i, j, k)− EiVn−1(i+ 2, j − 2, k + 1)

= −EiiVn−1(i, j, k)− EiFi(i+ 1, j − 1, k + 1) ≥ 0.

Case 3 : a2 = a2 = A4,

Y = EiVn−1(i+ 1, j − 1, k + 1)− EiVn−1(i+ 2, j − 2, k + 1)

= −EiFiVn−1(i+ 1, j − 1, k + 1) ≥ 0.

Case 4 : a1 = A1, a2 = A4,

V1,n(i+ 1, j − 1, k + 1) + V1,n(i+ 1, j − 1, k)

≥ V1,n(i+ 1, j − 1, k + 1, a1) + V1,n(i+ 1, j − 1, k, a2)

= −β + Vn−1(i+ 1, j − 1, k + 1) +RL,V −RL,D + R̃W,D(k) + Vn−1(i+ 2, j − 2, k + 1)

= V1,n(i+ 2, j − 2, k + 1, 1) + V1,n(i, j, k, 4)

= V1,n(i+ 2, j − 2, k + 1) + V1,n(i, j, k).

Thus, it is proved that V1,n(i+ 1, j − 1, k + 1)− V1,n(i, j, k) is decreasing in i. Since this

holds for every n and every β, V 1(i + 1, j − 1, k + 1) − V 1(i, j, k) is decreasing in i. Let

V2,n(i, j, k) = f(i, j, k + 1) + Vn−1(i, j, k + 1). Thus, EiiV2,n(i, j, k) = EiiVn−1(i, j, k + 1).
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Therefore, V2,n(i+1, j−1, k+1)−V2,n(i, j, k) is decreasing in i. Similarly, other components

can be proved to be decreasing in i. Therefore, V (i+1, j−1, k+1)−V (i, j, k) is decreasing

in i.

Similar to Lemma 5, using this property it can be proved that if the optimal action

for voice user arrival in the state (i, j, k) is blocking, then the optimal action in the state

(i+ 1, j − 1, k) is also blocking.

Proof of (ii) follows directly from the proof of part (i).

A.3 Proof of Theorem 1

The idea of the proof is similar to that of the online algorithm in [85]. The arguments are

developed on the basis of the standard Ordinary Differential Equation (ODE) approach

[78, Chapter 2] of analyzing stochastic approximation algorithms, which can be considered

as a noisy discretization of a limiting ODE. Learning parameters are considered as discrete

time steps and iterates, when linearly interpolated, are compared with the trajectory of

the ODE. Standard assumptions on step-sizes, viz., Equations (4.2) and (4.3), ensure that

the discretization error and error due to noise is asymptotically negligible. Therefore, the

iterates track the behavior of the associated ODEs asymptotically and hence, converge to

the globally asymptotically stable equilibrium a.s. However, for the sake of completeness,

we restate the details of the proof for the proposed algorithm.

We rewrite the update of fast and slow timescale as

V̂n+1(ŝ) = V̂n(ŝ) + g(γ(ŝ, n)){max
a

[r(s′, a; β) + V̂n(ŝ′)]− V̂n(ŝ∗)− V̂n(ŝ)},

V̂n+1(ŝ′′) =V̂n(ŝ′′) ∀ŝ′′ 6= ŝ.

(A.2)

and

βn+1 = Λ[βn + h(n)(Bn −Bmax)]. (A.3)

Due to the condition
h(n)

g(n)
→ 0, we have a two-timescale leader-follower behavior. The

PDS value functions are updated in the faster timescale and the LM in the slower one.

Let H1 : R|S| → R|S| be a map defined by (for ŝ ∈ S),

H1(ŝ) =
∑

s′

p(ŝ, s′) max
a

[r(s′, a; β) + V̂n(ŝ′)]− V̂n(ŝ∗). (A.4)
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Note that the knowledge of p(ŝ, s′) is not required for this algorithm. We consider them

in Equation (A.4) for the sake of analysis. Following the two time-scale analysis in [78,

Section 6.1], we analyze Equation (A.2) first keeping the LM constant. This translates

into analyzing the following limiting ODE which tracks Equation (A.2).

˙̂
V (t) = H1(V̂ (t))− V̂ (t). (A.5)

Following [86], as t → ∞, V̂ (t) converges to the unique fixed point of H1(.), i.e., V̂ such

that

H1(V̂ ) = V̂ .

Note that, this scheme is similar to [86,87].

Lemma 13. The PDS value function iterates and the LM iterates are bounded a.s.

Proof. Consider a mapping H0 : R|S| → R|S| as follows.

H0(ŝ) =
∑

s′

p(ŝ, s′)[max
a
V̂n(ŝ′)− V̂n(ŝ∗)]. (A.6)

Note that Equation (A.6) corresponds to Equation (A.4) with zero immediate reward.

Now, we have, lim
b→∞

H1(bV̂ )

b
= H0(V̂ ). Also, the globally asymptotically stable equilibrium

of the limiting ODE
˙̂
V (t) = H0(V̂ (t))− V̂ (t), which is a scaled limit of the original ODE

(A.5), is the origin (Using arguments of [85, Lemma 1]). The boundedness of V̂ follows

from [84].

The physical interpretation of this approach, as stated in [78], is as follows. If the

iterates of the PDSs become unbounded along a subsequence, then a suitably scaled

version of the original ODE approximately follows the limiting ODE. Since the origin is

the globally asymptotically stable equilibrium of the scaled ODE, the scaled ODE must

return towards the origin. Therefore, the original PDS iterates also begin to move towards

a bounded set, ensuring stability of the iterates.

The iterates of β are bounded since they are constrained to remain in [0, L], by

definition.

Lemma 14. We have V̂n → V̂ βn a.s., where V̂ βn is the value function of the PDS for

β = βn.
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Proof. It can be seen that the LM is varied on a much slower timescale than V̂ . Therefore,

the V̂ iterations consider LM to be almost constant. Therefore, the β iterations can be

written as βn+1 = βn + γ(n), where γ(n) = O(h(n)) = o(g(n)). Thus, the limiting ODEs

associated with the iterates are
˙̂
V (t) = H1(V̂ (t))− V̂ (t) and β̇(t) = 0. Since β̇(t) = 0, for

analyzing the V̂ (.) iterates, it is sufficient to consider the ODE
˙̂
V (t) = H1(V̂ (t))− V̂ (t),

for a fixed value of the LM β. The rest of the proof follows from [88].

The lemma presented next proves that the LM iterates converge to the optimal LM

β∗ and hence, (V̂n, βn) converges to (V̂ , β∗).

Lemma 15. LM iterates converge to β∗.

Proof. The proof outline is similar to that of [85]. Note that in Equations (4.10) and

(4.11), the iterations for the PDSs determine the maximum of a Lagrangian for the policy

keeping the LM almost constant. Therefore, the limiting ODE for the LM iterations

is same as a gradient descent for the Lagrangian which minimizes over the PDS value

functions. The result follows from “envelope theorem” [88], which allows the interchange

of min and gradient operator.

For each fixed policy, the reward is linear in β with negative slope. Thus V̂ (.),

which is by standard argument, the upper envelope, is piecewise linear with finitely many

linear pieces and convex in β for each component. Let the stationary randomized policy

M has a unique stationary distribution ηM . Let EM [.] denote the expectation under

a stationary randomized policy M . Let L(M,β) = EM [r(Xn, Zn) − βc(Xn, Zn)] and

I(β) = max
M
L(M,β), where the controlled Markov chain {Xn} on a finite state space S

is controlled by a control process {Zn} taking values in a finite action space. Therefore,

I is piecewise linear and convex. Define z(β) =
∑

s,a η
Mβ

(s)[r(s, a)− βc(s, a)], where Mβ

is an optimal stationary randomized policy when multiplier β is used. The limiting ODE

is

β̇(t) = z(β(t)).

According to the results in [78, Section 10.2], stochastic gradient descent for a convex

function tracks this ODE and hence converges to the optimal β∗. Thus, the desired β∗ is

the global minimum, as there is no local minimum which is not a global minimum.
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A.4 Proof of Lemma 7

Let us denote DN V̂ (i, j, k) = V̂N(i+1, j, k)− V̂N(i, j, k). Therefore, we need to prove that

DN+1V̂ (i, j, k) ≤ DN V̂ (i, j, k), ∀N . We prove this using induction arguments on VIA.

When N = 0, V̂N(i, j, k) = 0. Thus, D0V̂ (i, j, k) = 0. We have,

V̂N+1(i, j, k) = λv max{f(i, j, k)− β + V̂N(i, j, k), f(i+ 1, j, k) + V̂N(i+ 1, j, k),

f(i+ 1, j − 1, k + 1) + V̂N(i+ 1, j − 1, k + 1)}+ λd max{f(i, j + 1, k) + V̂N(i, j + 1, k),

f(i, j, k + 1) + V̂N(i, j, k + 1)}+ iµv max{f(i− 1, j, k) + V̂N(i− 1, j, k), f(i− 1, j + 1, k − 1)+

V̂N(i− 1, j + 1, k − 1)}+ jµd max{f(i, j − 1, k) + V̂N(i, j − 1, k), f(i, j, k − 1) + V̂N(i, j, k − 1)}

+ kµd max{f(i, j, k − 1) + V̂N(i, j, k − 1), f(i, j − 1, k) + V̂N(i, j − 1, k)}

+ (1− v(i, j, k))V̂N(i, j, k),

where f(i, j, k) = iRL,V + jRL,D + kRW,D(k).

For k ≥ kth, we prove the claim component wise. Proof for k < kth follows in a similar

way. Let us denote the pth component of V̂N(i, j, k) by V̂ p
N(i, j, k), for p = 1, 2, . . . , 6.

Therefore, we have,

V̂ 1
1 (i, j, k) = max{f(i, j, k)− β + V̂0(i, j, k), f(i+ 1, j, k)+

V̂0(i+ 1, j, k), f(i+ 1, j − 1, k + 1) + V̂0(i+ 1, j − 1, k + 1)}.

We know, for k ≥ kth, A4 is suboptimal (Property 2). Therefore, subtracting f(i, j, k)

from the rewards corresponding to both actions,

V̂ 1
1 (i, j, k) = max{−β + V̂0(i, j, k), RL,V + V̂0(i+ 1, j, k)}.

Therefore, D1V̂
1(i, j, k) = 0. Again, we have,

V̂ 2
1 (i, j, k) = max{f(i, j + 1, k) + V̂0(i, j + 1, k), f(i, j, k + 1) + V̂0(i, j, k + 1)}.

Or, equivalently,

V̂ 2
1 (i, j, k) = max{RL,D + V̂0(i, j + 1, k), R̃W,D(k) + V̂0(i, j, k + 1)}.

We know, for k ≥ kth, A2 is optimal. Thus,

V̂ 2
1 (i, j, k) = RL,D + V̂0(i, j + 1, k).
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Therefore, D1V̂
2(i, j, k) = 0. Similarly, other components can be proved to be equal to

zero. Therefore, D1V̂ (i, j, k) ≤ D0V̂ (i, j, k).

Now, assume that the claim holds for arbitraryN , i.e., DN+1V̂ (i, j, k) ≤ DN V̂ (i, j, k).

Now, we need to prove that DN+2V̂ (i, j, k) ≤ DN+1V̂ (i, j, k). Similar to the case of

N = 0, we have, DN+2V̂
p(i, j, k) −DN+1V̂

p(i, j, k) = DN+1V̂ (i, j, k) −DN V̂ (i, j, k) ≤ 0,

p 6= 1. Therefore, it remains to prove that DN+2V̂
1(i, j, k) − DN+1V̂

1(i, j, k) ≤ 0. Let

a0, a1 ∈ {A1, A2} be the maximizing actions in PDSs (i, j, k) and (i+ 1, j, k), respectively,

at (N+2)th iteration. Let b0, b1 ∈ {A1, A2} be the maximizing actions in PDSs (i, j, k) and

(i+1, j, k), respectively, at (N+1)th iteration. Now, it is not possible to have a1 = A2 and

b0 = A1. This is because if b0 = A1, we have, DN V̂ (i, j, k) ≤ −β −RL,V . Using concavity

with respect to i (shown in Chapter 3), we must have DN V̂ (i + 1, j, k) ≤ −β − RL,V .

However, if a1 = A2, we have DN+1V̂ (i + 1, j, k) ≥ −β − RL,V , which contradicts the

inductive assumption. Therefore, we consider three cases as follows. In every case, given

values of a1 and b0, if the inequality holds for any chosen values of a0 and b1, then the

inequality must hold for maximizing actions a0 and b1.

1) If a1 = b0 = A1, then we can choose a0 = b1 = A1, resulting in

DN+2V̂
1(i, j, k)−DN+1V̂

1(i, j, k) = DN+1V̂ (i, j, k)−DN V̂ (i, j, k) ≤ 0.

2) If a1 = b0 = A2, then we can choose a0 = b1 = A2, and the inequality satisfies due to

same reasoning as above.

3) If a1 = A1 and b0 = A2, then we can choose a0 = A2 and b1 = A1. In this case,

DN+2V̂
1(i, j, k)−DN+1V̂

1(i, j, k) = −β + V̂N+1(i+ 1, j, k)

−RL,V − V̂N+1(i+ 1, j, k) + β − V̂N(i+ 1, j, k) +RL,V +

V̂N(i+ 1, j, k) = 0.

Thus, we have, DN+2V̂ (i, j, k) ≤ DN+1V̂ (i, j, k).

A.5 Proof of Lemma 8

Let us denote EN V̂ (i, j, k) = V̂N(i+1, j−1, k+1)−V̂N(i, j, k). Therefore, we need to prove

that EN+1V̂ (i, j, k) ≤ EN V̂ (i, j, k). When N = 0, V̂N(i, j, k) = 0. Thus, E0V̂ (i, j, k) = 0.
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We have,

V̂ 1
1 (i, j, k) = max{−β + V̂0(i, j, k), RL,V −RL,D + R̃W,D(k) + V̂0(i+ 1, j − 1, k + 1)}.

Now, we have the following cases.

1) If −β ≥ RL,V − RL,D + R̃W,D(k), then using Assumption 2, we have −β ≥ RL,V −
RL,D + R̃W,D(k + 1). Therefore, E1V̂

1(i, j, k) = 0.

2) If−β ≤ RL,V−RL,D+R̃W,D(k+1), then we have E1V̂
1(i, j, k) = R̃W,D(k+1)−R̃W,D(k) ≤

0 (using Assumption 2).

3) If R̃W,D(k) > −β−RL,V +RL,D > R̃W,D(k+ 1) , we have E1V̂
1(i, j, k) = −β− (RL,V −

RL,D + R̃W,D(k)) < 0.

Similar to Lemma 7, other components can be proved to be equal to zero. Therefore,

E1V̂ (i, j, k) ≤ E0V̂ (i, j, k).

Now, assume that the claim holds for arbitrary N , i.e., EN+1V̂ (i, j, k) ≤ EN V̂ (i, j, k).

Now, we need to prove that EN+2V̂ (i, j, k) ≤ EN+1V̂ (i, j, k). Similar to the case of

N = 0, we have, EN+2V̂
p(i, j, k) − EN+1V̂

p(i, j, k) = EN+1V̂ (i, j, k) − EN V̂ (i, j, k) ≤ 0,

p 6= 1. Therefore, it remains to prove that EN+2V̂
1(i, j, k) − EN+1V̂

1(i, j, k) ≤ 0. Let

a0, a1 ∈ {A1, A4} be the maximizing actions in PDSs (i, j, k) and (i + 1, j − 1, k + 1),

respectively, at (N + 2)th iteration. Let b0, b1 ∈ {A1, A4} be the maximizing actions in

PDSs (i, j, k) and (i + 1, j − 1, k + 1), respectively, at (N + 1)th iteration. Therefore, we

consider four cases as follows.

1) If a1 = b0 = A1, we choose a0 = b1 = A1, resulting in

EN+2V̂
1(i, j, k)− EN+1V̂

1(i, j, k) = EN+1V̂ (i, j, k)− EN V̂ (i, j, k) ≤ 0.

2) If a1 = b0 = A4, then we can choose a0 = b1 = A4, and the inequality satisfies due to

same reasoning as above.

3) If a1 = A1 and b0 = A4, then we can choose a0 = A4 and b1 = A1. Similar to Case 3

in Lemma 7, EN+2V̂
1(i, j, k)− EN+1V̂

1(i, j, k) = 0.

4) If a1 = A4 and b0 = A1, then we can choose a0 = A1 and b1 = A4.

EN+2V̂
1(i, j, k)− EN+1V̂

1(i, j, k) = [EN+1V̂ (i+ 1, j − 1, k + 1) + EN+1V̂ (i, j, k)]−

[EN V̂ (i+ 1, j − 1, k + 1) + EN V̂ (i, j, k)] ≤ 0.

Thus, we have EN+2V̂ (i, j, k) ≤ EN+1V̂ (i, j, k) .
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A.6 Proof of Lemma 9

We prove this lemma componentwise, i.e., we prove that the average reward is unimodal

with respect to each θ(T ), hence proving unimodality with respect to θ. Consider value

Iteration Algorithm (VIA). Let the value function of PDS (i, j, k) at N th iteration be

denoted by V̂N(i, j, k). We consider both the cases, where after a certain threshold on i,

the optimal action changes from (1) A2 to A1 and (2) A4 to A1, respectively.

Proof of (1): We know that if the optimal action in PDS (i, j, k) is A1, then we have,

V̂ (i + 1, j, k) − V̂ (i, j, k) ≤ −β − RL,V . Since VIA converges to the threshold policy

with threshold θ∗, there exists an integer N1 such that for all N ≥ N1, V̂N(i + 1, j, k) −
V̂N(i, j, k) ≤ −β − RL,V for i ≥ θ∗(T ) and V̂N(i + 1, j, k) − V̂N(i, j, k) ≥ −β − RL,V for

i < θ∗(T ). Let us assume UN for N ≥ 1 to be

UN = min{i ∈ N0 : V̂N(i + 1, j, k) − V̂N(i, j, k) ≤ −β − RL,V }. If UN is empty, then

we assume UN = M(T ). Hence, UN can be referred to as the optimal threshold at N th

iteration of VIA. Now, since V̂N(i + 1, j, k) − V̂N(i, j, k) ≤ −β − RL,V implies V̂N+1(i +

1, j, k) − V̂N+1(i, j, k) ≤ −β − RL,V (using Lemma 7), UN monotonically decreases with

N . Also, limN→∞ UN = θ∗(T ).

Given a threshold θ1(T ) (θ∗(T ) < θ1(T ) ≤M(T )), we consider a re-defined problem

where blocking is not allowed at any state with i < θ1(T ), i.e., the action in these states

is to always accept in LTE. In this case also, V̂N(i + 1, j, k) − V̂N(i, j, k) ≤ −β − RL,V

implies V̂N+1(i + 1, j, k)− V̂N+1(i, j, k) ≤ −β − RL,V . Let in this case, Nθ1(T ) = min{N :

UN ≤ θ1(T )}. That is, Nθ1(T ) is the first iteration of VIA at which the threshold drops

to θ1(T ). Therefore, Nθ1(T ) must be finite, because for N < Nθ1(T ), the value function

iterates take exactly the same values as that of the original problem. The fact that

blocking is not allowed for i < θ1(T ) makes no difference (for N < Nθ1(T )) since blocking

is never chosen as the optimal action in these states upto N th
θ1(T )

iteration in the original

problem. Since the original problem converges to the threshold θ∗(T ), at N th
θ1(T )

iteration

we have, V̂N+1(θ1(T ) + 1, j, k)− V̂N+1(θ1(T ), j, k) ≤ −β − RL,V , and the same inequality

holds for this redefined problem. Since V̂N(i + 1, j, k) − V̂N(i, j, k) ≤ −β − RL,V implies

V̂N+1(i+ 1, j, k)− V̂N+1(i, j, k) ≤ −β−RL,V (Lemma 7), the same inequality holds for all

N ≥ Nθ1(T ). Hence, the VIA converges to the policy with threshold θ1(T ) in the redefined

problem, which implies that θ1(T )-threshold policy is superior to θ1(T ) + 1-threshold
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policy. Since this argument holds for any threshold θ1(T ), we can claim that the average

reward is monotonically decreasing with θ1(T ), for θ1(T ) > θ∗(T ).

Therefore, if we have ρ(θ(T )) ≥ ρ(θ(T ) + 1), we must have θ(T ) ≥ θ∗(T ). Thus, we

have, ρ(θ(T ) + 1) ≥ ρ(θ(T ) + 2). This completes the proof of unimodality for (1).

Proof of (2): In this case, if the optimal action in PDS (i, j, k) is blocking, we have

V̂ (i + 1, j − 1, k + 1) − V̂ (i, j, k) ≤ −β − RL,V + RL,D − R̃W,D(k). Rest of the proof is

similar to (1) (Using Lemma 8).

A.7 Proof of Theorem 2

Proof approach is similar to the approach adopted in the proof of Theorem 1. We describe

the arguments which are specific to this proof. We rewrite the updates of the iterates as

Vn+1(s, θ) = Vn(s, θ) + g(γ(s, n)){[r(s, a; β) + Vn(s′, θ)− Vn(s∗, θ))− Vn(s, θ)]},

Vn+1(s
′′, θ) =Vn(s′′, θ) ∀s′′ 6= s,

(A.7)

θn+1(T ) = ∆T [θn(T ) + h(n)∇f(s, θn(T ))(−1)αnVn(s′, θn)],

θn+1(T
′) = θn(T ′) ∀T ′ 6= T,

(A.8)

βn+1 = Λ[βn + h(n)(Bn −Bmax)]. (A.9)

Similar to Theorem 1, following the two timescale analysis [78], we analyze Equation (A.7)

keeping the threshold vector θ and LM β constant. Therefore, it can be argued that as

t→∞, V̂ converges to the asymptotically stable equilibrium of the associated ODE.

Lemma 16. The value functions, LM and the threshold vector iterates are bounded a.s.

Proof. The boundedness of value functions and LM follows in an approach similar to

Lemma 13. Also, the iterates of the threshold vector are bounded (See Equation (5.7)).

Lemma 17. We have Vn → V βn,θn a.s., where V βn,θn is the value function of states for

β = βn, θ = θn.

Proof. Since the iterations of the threshold vector θ can be expressed as θn+1 = θn+ δ(n),

where δ(n) = o(g(n)), the proof approach is similar to that of Lemma 14.
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Convergence of LM follows immediately from Lemma 15. The only thing left to

prove is the convergence of threshold vector iterations θn to the optimal threshold vector

θ∗ and hence, the convergence of (Vn, βn, θn) to (V, β∗, θ∗). However, before that, we need

to prove the following lemma which establishes the unimodality of the average reward

attained under a threshold policy with threshold θ (which is ρ(θ)), with respect to θ.

Lemma 18. The threshold vector iterates θn → θ∗.

Proof. The limiting ODE for the threshold vector iterations (Equation (A.8)) is same as

a gradient ascent of the form

θ̇(t) = ∇ρ(θ(t)).

Since the average reward is known to be unimodal in θ (Lemma 9), there does not exist

any local maxima which is not a global maxima. Therefore, θn → θ∗.

Contrary to Theorem 1, convergence of the threshold vector iterates does not require

individual clocks for every state, as long as all components are updated comparably often,

i.e., the relative frequencies of their update remain bounded away from zero. This is true

in general for stochastic gradient schemes, see [78, Chapter 7].

This completes the proof of Theorem 2.





Appendix B

A Structure-aware Online Learning

Algorithm for Markov Decision

Processes

The framework of Markov Decision Process (MDP) [69] is used in modeling and opti-

mization of stochastic systems with temporal decision making. An MDP is a controlled

stochastic process on a state space with an associated control process of ‘actions’, where

the transition from one state to the next depends only on the current state-action pair

and not on the past history of the system (known as the controlled Markov property).

Each state transition is associated with a reward. The MDP problem aims to maximize

the average reward and provides an optimal policy as a solution. A policy is a mapping

from a state to an action describing which action is to be chosen in a state. An optimal

policy maximizes the average reward.

A common approach for solving MDP problems is Dynamic Programming (DP) [69].

In this appendix, we consider an MDP problem and prove that the optimal policy has

a threshold structure using DP methods. In other words, we prove that up to a certain

threshold in the state space, a specific action is preferred and thereafter another action is

preferred.

Classical iterative methods for DP are computationally inefficient in the face of

large state and action spaces. This is known as the curse of dimensionality. Moreover,

the computation of the optimal policy using DP methods requires the knowledge of the

163
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state transition probability matrix which is often governed by the statistics of unknown

system dynamics. For example, in a telecommunication system, transition probabilities

between different states are determined by the statistics of the arrival rates of users.

This is known as the curse of modeling. In practice, it may be difficult to gather the

knowledge regarding the statistics of the system dynamics beforehand. When we do not

have any prior knowledge of the statistics of the system dynamics, a popular approach

is Reinforcement Learning (RL) techniques which learn the optimal policy iteratively by

trial and error [45]. Examples of RL techniques include TD(λ) [45], Q-learning [89],

actor-critic [88], policy gradient [90] and Post-Decision State (PDS) learning [85, 91].

Consider, e.g., Q-learning and PDS learning. Q-learning [89] is one of most popular

learning algorithms. Q-learning iteratively computes the Q-function associated with every

state-action pair using a combination of exploration and exploitation. Since Q-learning

needs to learn the optimal policy for all state-action pairs, the storage complexity of the

scheme is of the order of the cardinality of the state space times the cardinality of the

action space. In many cases of practical interest, the state and action spaces are large

which renders Q-learning impractical. Furthermore, due to the presence of exploration,

the convergence rate of Q-learning is generally slow. The idea of PDS [85, 91] learning

obtained by reformulating the Relative Value Iteration Algorithm (RVIA) [69] equation

is adopted in literature for various problems. The main advantage of PDS learning is

that it circumvents the action exploration, thereby improving the convergence rate. Also,

there is no need of storing the Q functions of state-action pairs. Instead, it requires only

storing the value functions associated with the states. Therefore the storage complexity

of the PDS learning scheme is lower than that of Q-learning.

A common drawback of the learning schemes described above is that they do not

exploit any known properties related to the structure of the optimal policy, but search

over the entire policy space. In application areas such as communications and operations

research, examples abound where properties such as convexity/ concavity, submodularity/

supermodularity, monotonicity of the value function can be leveraged to prove additional

structure for optimal policy such as threshold structure or index rule. Also, one may

achieve reduction of the effective state space by rendering certain states transient or

unreachable under the optimal policy, see, e.g., [92,93]. This can in principle be exploited
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to reduce the search space and the computational budget of the learning scheme.

In this appendix, we propose a Structure-Aware Learning (SAL) algorithm which

exploits the threshold nature of the optimal policy and searches the optimal policy only

from the set of threshold policies. In other words, it only learns the threshold in the state

space where the optimal action changes. Based on the gradient of the average reward of

the system, the threshold is updated on a slower timescale than that of the value function

iterates. As a result, the convergence time of the proposed algorithm reduces along

with reductions in computational and storage complexities in comparison to traditional

schemes such as Q-learning and PDS learning. We prove that the proposed scheme indeed

converges to the optimal policy. In general, the proposed technique is applicable to a

large variety of optimization problems where the optimal policy is threshold in nature,

e.g., [81, 92, 94–96]. Simulation results are presented where the proposed technique is

employed on a well-known problem from queuing theory [95] to demonstrate that the

proposed algorithm indeed offers faster convergence than traditional learning algorithms

like Q-learning and PDS learning.

There are a few works in the literature [97–99] which exploit the structural proper-

ties [93] in the learning framework. In [98], an online learning algorithm which approx-

imates the value functions using piecewise linear functions is proposed. However, there

is a trade-off between the complexity and the approximation accuracy in this scheme.

In [97], authors propose a variant of Q-learning where the value function iterates are

projected in such a manner that they preserve the monotonicity in system state. Similar

model is adopted in [99]. Although there is an improvement in convergence rate over the

conventional Q-learning, not much gain in computational complexity is achieved. Unlike

us, none of these works consider the threshold as a parameter in the learning framework.

Therefore they are computationally less efficient than our solution.

The rest of the appendix is organized as follows. The system model and problem

formulation are described in Section B.1. In Section B.2, the optimality of threshold

policy is established. In Section B.3, the structure-aware learning algorithm is proposed.

We also provide a proof of convergence of the proposed algorithm to the optimality in this

section. We provide a comparison of computational and storage complexities of different

RL schemes in Section B.4. Simulation results are provided in Section B.5. Sections B.6
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discusses possible future extensions of the problem. We provide the conclusions in Section

B.7.

B.1 System Model & Problem Formulation

We consider a controlled time-homogeneous Discrete Time Markov Chain (DTMC) and

denote it by {Xn}n≥0, which takes values from the finite state space S. Without loss of

generality, we assume that S = {0, 1, 2, . . . , N}, where N is a fixed positive integer. For

the sake of simplicity, we assume that each state i ∈ S is associated with an action space

A. Let the action space A consists of two actions, viz., A1 and A2. Let the transition

probability of going from state i ∈ S to state j ∈ S under action a ∈ A be denoted as

pij(a). Therefore, we have, pij(a) ∈ [0, 1] ∀i, j, a and
∑
j

pij(a) = 1. Let the action process

be denoted by Zn, n ≥ 0. Therefore, the evolution of Xn can be described by

P (Xn+1 = j|Xm, Zm,m ≤ n,Xn = i) = pij(Zn), n ≥ 0.

Let us assume that whenever A1 is chosen in state i ∈ S, no reward is obtained, and

the system remains in the same state with probability p and goes to state (i − 1)+ with

probability (1−p), where (i)+ = max{i, 0}. We further assume that whenever the system

is in state i ∈ S and A2 is chosen, a non-negative fixed reward r is obtained and the system

moves to state (i + 1) with probability p and moves to state (i − 1)+ with probability

(1− p). Note that the A2 is not feasible in state N .

We have used this model for sake of specificity and because it does arise in practice.

Analogous schemes can be developed for other models that naturally lead to a threshold

structure.

We aim to obtain a policy which maximizes the average expected reward of the

system. Let Q be the set of memoryless policies where the decision rule at time t depends

only on the state of the system at time t and not on the past history. Under the assumption

of unichain nature of the underlying Markov chain which guarantees the existence of

unique stationary distribution, let the average reward of the system over infinite horizon

under policy Q ∈ Q be independent of the initial condition and be denoted by σQ. We

intend to maximize

σQ = lim
H→∞

1

H

H∑

h=1

EQ[r(Xh, Zh)], (B.1)
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where r(Xh, Zh) denotes the reward function in state Xh under action Zh, and EQ denotes

the expectation operator under policy Q. The limit in Equation (B.1) may be taken to

exist because the optimal policy is known to be stationary. The DP equation depicted

below provides the necessary condition for optimality ∀i ∈ S.

V (i) = max
a∈A

[
r(i, a) +

∑

j∈S

pij(a)V (j)− σ
]
, (B.2)

where V (i) and σ denote the value function of state i ∈ S and the optimal average

reward, respectively. The arg max above yields the optimal policy, i.e., optimal action as

a function of current state. RVIA can be used to solve this problem using the iterative

scheme described below.

Vn+1(i) = max
a∈A

[
r(i, a) +

∑

j∈S

pij(a)Vn(j)− Vn(i∗)

]
, (B.3)

where Vn(.) is the value function estimate in nth iteration of RVIA, and i∗ ∈ S is a fixed

state.

B.2 Structure of Optimal Policy

In this section, we investigate the structure of the optimal policy. We prove the structural

properties using the ‘non-increasing difference’ property of the value function in the lemma

described next.

Lemma 19. V (i+ 1)− V (i) is non-increasing in i.

Proof. We rewrite the optimality equation for the value function as

V (i) = pmax{V (i), r + V (i+ 1)}+ (1− p)V ((i− 1)+).

Let the value function of state i in nth iteration of Value Iteration Algorithm (VIA) be

denoted by vn(i). Start with v0(i) = 0. Hence, v0(i+ 1)− v0(i) is non-increasing in i. We

have,

vn+1(i) = pmax{vn(i), r + vn(i+ 1)}+ (1− p)vn((i− 1)+). (B.4)

Using Equation (B.4), v1(i+ 1)− v1(i) is non-increasing in i. Now, we assume that

vn(i + 1) − vn(i) is non-increasing in i. We need to prove that vn+1(i + 1) − vn+1(i) is
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non-increasing in i. Let us define v′n+1(i, a) as follows.

v′n+1(i, a) =




vn(i), a = A1,

r + vn(i+ 1), a = A2.

Also define v′n(i) = max
a∈A

v′n(i, a). Let us define Dvn(i) = vn(i+ 1)− vn(i). Therefore,

Dv′n+1(i, a) =




Dvn(i), a = A1,

Dvn(i+ 1), a = A2.

D2v′n+1(i, a) =




D2vn(i), a = A1,

D2vn(i+ 1), a = A2.

Since vn(i+1)−vn(i) is non-increasing in i, v′n+1(i+1, a)−v′n+1(i, a) is non-increasing

in i, ∀a ∈ A. Let a1 ∈ A and a2 ∈ A be the maximizing actions in states (i + 2) and i,

respectively.

2v′n+1(i+ 1) ≥ v′n+1(i+ 1, a1) + v′n+1(i+ 1, a2)

= v′n+1(i+ 2, a1) + v′n+1(i, a2) +Dv′n+1(i, a2)−Dv′n+1(i+ 1, a1).

Let B = Dv′n+1(i, a2) − Dv′n+1(i + 1, a1). For proving that v′n+1(i + 1) − v′n+1(i) is non-

increasing in i, we need to prove B ≥ 0. Let us consider four cases as follows.

• a1 = a2 = A1

B = Dvn(i)−Dvn(i+ 1) = −D2vn(i) ≥ 0.

• a1 = A1, a2 = A2

B = Dvn(i+ 1)−Dvn(i+ 1) = 0.

• a1 = a2 = A2

B = Dvn(i+ 1)−Dvn(i+ 2) = −D2vn(i+ 1) ≥ 0.

• a1 = A2, a2 = A1

B = Dvn(i)−Dvn(i+ 2) = −D2vn(i)−D2vn(i+ 1) ≥ 0.
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Since v′n+1(i+1)−v′n+1(i) and vn(i+1)−vn(i) are non-increasing in i, vn+1(i+1)−vn+1(i)

is non-increasing in i (Using Equation (B.4)). Since V (.) = lim
n→∞

vn(.), V (i+ 1)− V (i) is

non-increasing in i.

The following theorem describes that the optimal policy is of threshold type where

A2 is optimal only upto a certain threshold.

Theorem 3. The optimal policy has a threshold structure where the optimal action

changes from A2 to A1 after a certain threshold in i ∈ S.

Proof. If A1 is optimal in state i, then r+V (i+1) ≤ V (i). Using Lemma 19, V (i+1)−V (i)

is non-increasing in i. Therefore, it follows that there exists a threshold such that A2 is

optimal only below the threshold, A1 thereafter.

B.3 Structure-aware Online RL Algorithm

In this section, we propose a learning algorithm by exploiting the threshold properties of

the optimal policy. Unlike the traditional RL algorithms which optimize over the entire

policy space, our algorithm searches the optimal policy only from the set of threshold

policies. As a result, the proposed algorithm converges faster than traditional RL algo-

rithms like Q-learning, PDS learning. Also, the computational complexity and the storage

complexity of learning is reduced as argued later.

B.3.1 Gradient Based RL Framework

Since we know that the optimal policy is threshold in nature where the optimal action

changes from A2 to A1 after a certain threshold, if we know the value of the threshold, we

can specify the optimal policy completely. However, the value of the threshold depends on

the transition probabilities (i.e., p) between different states. Therefore, in the absence of

knowledge regarding p, instead of learning the optimal policy from the set of all policies,

we only learn the the optimal value of the threshold. We target to optimize over the

threshold using an update rule so that the value of threshold converges to the optimal

threshold.
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We consider the set of threshold policies and describe them in terms of the value of

parameter threshold (T , say). The approach we adopt in this appendix is to compute the

gradient of the average expected reward of the system with respect to the threshold T and

improve the threshold policy in the direction of the gradient by updating the the value

of T . Before proceeding, we need to explicitly indicate the dependence of the associated

MDP on T by redefining the notations in the context of threshold policies.

Let the steady state stationary probability of state i, the value function of state i

and the average reward of the Markov chain in terms of threshold parameter T be denoted

by π(i, T ), V (i, T ) and σ(T ), respectively. Let the transition probability from state i to

state j under threshold T be denoted as Pij(T ). Therefore,

Pij(T ) = P (Xn+1 = j|Xn = i, T ).

We later embed the discrete parameter T into a continuous valued one. With this in

mind, we make the following assumptions regarding Pij(T ).

Assumption 4. Pij(T ) is a twice differentiable function of T with bounded first and

second derivatives. Moreover, Pij(T ) is bounded.

The proposition described below provides a closed-form expression for the gradient

of the average reward σ(T ).

Proposition 2. Under Assumption 4,

∇σ(T ) =
∑

i∈S

π(i, T )
∑

j∈S

∇Pij(T )V (j, T ).

Proof. Detailed proof can be found in [74].

The system model considered by us is a special case of the model considered in [74],

with the exception that unlike in [74], the reward function in our case does not have any

dependence on T .

B.3.2 Online RL Algorithm

Optimal policy can be obtained using RVIA if the transition probabilities between dif-

ferent states are known beforehand. In the absence of knowledge regarding transition
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probabilities, we can use the theory of Stochastic Approximation (SA) [78] to remove the

expectation operation in Equation (B.3) and converge to the optimal policy by averaging

over time. Let g(n) be a positive step-size sequence having the following properties.

∞∑

n=1

g(n) =∞;
∞∑

n=1

(g(n))2 <∞. (B.5)

Let h(n) be another step-size sequence with similar properties as in Equation (B.5) along

with the following additional property.

lim
n→∞

h(n)

g(n)
→ 0. (B.6)

In order to learn the optimal policy, we adopt the following strategy. We update the value

function of one state at a time and keep others unchanged. Let Sn be the state whose

value function is updated at nth iteration. Let η(i, n) denote the number of times the

value function of the state i is updated till nth iteration. Symbolically,

η(i, n) =
n∑

m=0

I{i = Sm}.

The scheme for the update of value function can be described as follows.

Vn+1(i, T ) = (1− g(η(i, n)))Vn(i, T ) + g(η(i, n))[r(i, a) + Vn(j, T )− Vn(i∗, T )],

Vn+1(i
′, T ) = Vn(i′, T ),∀i′ 6= i,

(B.7)

where Vn(i, T ) denotes the value function of state i at the nth iteration on the faster

timescale when the current value of threshold is T . The scheme (B.7) solves a dynamic

programming equation for a fixed value of threshold T , referred to as primal RVIA. To

obtain the optimal threshold value, T has to be iterated in a separate timescale h(n).

Intuitively, in order to learn the value of the optimal threshold, we can determine the

value of ∇σ(T ) based on the current value of threshold Tn at the nth iteration and then

update the value of threshold in the direction of the gradient. This is similar to a stochastic

gradient scheme which can be expressed as

Tn+1 = Tn + h(n)∇σ(Tn). (B.8)

The assumptions described in Equations (B.5) and (B.6) guarantee that value function

and threshold parameter are updated in two separate timescales without interfering in
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each other’s convergence behavior. The value functions are updated in a faster timescale

than that of the threshold. From the faster timescale, the value of threshold appears to

be fixed. From the slower timescale, the value functions seem to be equilibrated according

to the current threshold value. This behavior is commonly known as “leader-follower”

scheme.

Given a threshold T , we assume that the transition from state i is determined by

the rule P 1(j|i), if i < T and by the rule P 0(j|i), otherwise. For example, consider that

the system is in state i and i < T . Then the next state to which the system moves is

governed by the rule P 1(j|i) for action A2. Therefore, the system moves to the state

(i+ 1). However, if i ≥ T , then the state transition is given by the rule P 0(j|i) for action

A1. Therefore, the system remains in state i. This scheme is applied to Equation (B.7)

for a fixed value of threshold T .

To update the threshold, we need to interpolate the value of threshold which takes

discrete values, to continuous domain so that the online rule can be applied. Since the

threshold policy can be described as a step function which takes discrete non-negative

values as input and follows P 1(j|i) upto a threshold and P 0(j|i) thereafter, the derivative

does not exist at all points (See Assumption 4). Therefore, we propose an approximation

to the threshold policy using a randomized policy. The randomized policy is a mixture of

two policies depicted by P 0(j|i) and P 1(j|i) with corresponding probabilities f(i, T ) and

(1− f(i, T )). To be precise,

Pij(T ) ≈ P 0(j|i)f(i, T ) + P 1(j|i)(1− f(i, T )). (B.9)

Note that the function f(., .) which decides how much importance is to be given to re-

spective policies, is a function of state i and the current value of threshold T . For a

convenient approximation, f(i, T ) should be an increasing function of i. The idea is

to provide comparable importances to both P 0(j|i) and P 1(j|i) near the threshold and

reduce the importance of P 0(.|.) (P 1(.|.)) away from the threshold in the left (right) di-

rection. We choose the following function owing to its nice properties such as continuous

differentiability and the existence of non-zero derivative everywhere.

f(i, T ) =
e(i−T−0.5)

1 + e(i−T−0.5)
. (B.10)

This does not satisfy Assumption 1 at T = i, i−1, but that does not affect our subsequent
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analysis if we take right or left derivatives at these points.

Remark 16. Another choice of f(i, T ) could be the following.

f(i, T ) = 0.I{i ≤ T}+ 1.I{i ≥ T + 1}+ (i− T ).I{T < i < T + 1}.

Since this function exactly replicates the step function nature of the optimal policy in

the interval [0, T ] and [T + 1, N ] and uses approximation only in the interval (T, T + 1),

the approximation error in this case is less than that of Equation (B.10). However, the

derivative of the function is nonzero only in the interval (T, T + 1). Therefore, if the

initial guess of the threshold is outside this range, then the proposed learning scheme may

not converge to the optimal threshold as the gradient becomes zero.

Note also that having a continuous valued threshold does not create any issue. The

state space remains discrete, and only an ordinal comparison separates the two action

choices.

While devising an update rule for the threshold, we evaluate ∇Pij(T ) as a represen-

tative of ∇σ(T ) and use that in Equation (B.8). From Equation (B.9), we get,

∇Pij(T ) = (P 0(j|i)− P 1(j|i))∇f(i, T ). (B.11)

Since multiplication by a constant factor does not impact the online update of the pro-

posed scheme, we incorporate an extra multiplicative factor of 1
2

to the right hand side

of Equation (B.11). This operation can be described in the following manner. In every

iteration, we choose transition according to P 0(.|.) and P 1(.|.) with equal probabilities.

∇f(i, T ) is a state-dependent term which denotes how much importance is to be given to

the value function of the state. Therefore, the update of T in the slower timescale h(n)

is as follows.

Tn+1 = Λ[Tn + h(n)∇f(i, Tn)(−1)γVn(k, Tn)],

where γ is a random variable which takes values 0 and 1 with equal probabilities. If

γ = 0, then the transition is determined by the rule P 0(.|.), else by P 1(.|.). Therefore,

k ∼ P̃ik where P̃ik = γP 0(k|i)+(1−γ)P 1(k|i). The averaging effect of SA scheme enables

us to obtain the effective drift in Equation (B.11). The projection operator is defined

as Λ : x 7→ 0 ∨ (x ∧ N) ∈ [0, N ]. Λ is introduced to guarantee that the iterates remain

bounded in [0, N ].
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Therefore, the online RL scheme where the value functions are updated in the faster

timescale and the threshold parameter in the slower one, can be summarized as

Vn+1(i, T ) = (1− g(η(i, n)))Vn(i, T ) + g(η(i, n))[r(i, a) + Vn(j, T )− Vn(i∗, T )];

Vn+1(i
′, T ) = Vn(i′, T ),∀i′ 6= i,

(B.12)

Tn+1 = Λ[Tn + h(n)∇f(i, Tn)(−1)γVn(k, Tn)]. (B.13)

The transitions in (B.12) from i to j correspond to a single run of a simulated chain as

is common in RL. For each current state i, the k in (B.13) is generated separately as per

P̃ik.

Theorem 4. The schemes (B.12) and (B.13) converge to optimality almost surely (a.s.).

Proof. Proof methodologies adopted in this appendix are similar to that of [85]. The

idea of adoption of Ordinary Differential Equation (ODE) approach for analyzing SA

algorithms by considering them as a noisy discretization of a limiting ODE [78], is con-

sidered. Step size parameters are considered as discrete time steps, and if the discrete

values of the iterates are linearly interpolated, they closely follow the trajectory of the

ODE. Assumptions on step sizes, viz., (B.5) and (B.6) are made to guarantee that the

discretization error and error due to noise are negligible asymptotically. As a result, in

the asymptotic sense, the iterates closely follow the trajectory of the ODEs and converge

a.s. to the globally asymptotically stable equilibrium.

Update rules for value functions and threshold in the faster and slower timescale,

respectively, are as follows.

Vn+1(i, T ) = (1− g(η(i, n)))Vn(i, T ) + g(η(i, n))[r(i, a) + Vn(j, T )− Vn(i∗, T )];

Vn+1(i
′, T ) = Vn(i′, T ),∀i′ 6= i,

(B.14)

Tn+1 = Λ[Tn + h(n)∇f(i, Tn)(−1)γVn(k, Tn)]. (B.15)

Following the two timescale analysis adopted in [78], we consider Equation (B.14)

first keeping threshold T fixed. Let M1 : R|S| → R|S| be a map given by

M1(s) =
∑

j

Pij(T )[r(i, a) + Vn(j, T )]− Vn(i∗, T ). (B.16)
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The knowledge of Pij(T ) is required only for the sake of analysis. However, the proposed

algorithm can operate without the knowledge of Pij(T ). Since T is kept constant, this

gives rise to the following limiting ODE which tracks Equation (B.14).

V̇ (t) = M1(V (t))− V (t). (B.17)

As t→∞, V (t) converges to the fixed point of M1(.) (i.e., M1(V ) = V ) [86], which is the

asymptotically stable equilibrium of the ODE. Similar approaches are adopted in [86,87].

The lemma presented next establishes the boundedness of value functions and thresh-

old iterates.

Lemma 20. The value function and the threshold iterates are bounded a.s.

Proof. Let M0 : R|S| → R|S| be a map given by

M0(s) =
∑

j

Pij(T )Vn(j, T )− Vn(i∗, T ). (B.18)

Note that Equation (B.16) reduces to Equation (B.18) if the immediate reward is zero.

Now, lim
b→∞

M1(bV )
b

= M0(V ). Consider the limiting ODE

V̇ (t) = M0(V (t))− V (t). (B.19)

Observe that the globally asymptotically stable equilibrium of the ODE (B.19) is the

origin. Also, notice that the ODE (B.19) is a scaled limit of the ODE (B.17). Boundedness

of V (.) follows [84].

Boundedness of iterates of T follows from (B.13).

The physical interpretation behind the proof is as follows. If the iterates of the value

functions become unbounded along a subsequence, then a scaled version of the original

ODE follows the ODE approximately. Since we have shown that the scaled ODE must

globally asymptotically converge to the origin, the scaled ODE must return to the origin.

Therefore, the value function iterates must also move towards a bounded set. This ensures

the stability of the value function iterates.

Lemma 21. Vn−V Tn → 0 a.s., where V Tn is the value function of the states for T = Tn.
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Proof. We know that the threshold is varied on a slower timescale than that of V . There-

fore, the value function iterates treat the threshold value as a constant. Therefore, T

iterations can be viewed as Tn+1 = Tn + α(n), where α(n) = O(h(n)) = o(g(n)). Thus,

the limiting ODEs associated with value function and threshold iterates are V̇ (t) =

M1(V (t)) − V (t) and Ṫ (t) = 0, respectively. Since Ṫ (t) = 0, it is sufficient to con-

sider the ODE V̇ (t) = M1(V (t)) − V (t), for a fixed value of T . The rest of the proof is

similar to [88].

The subsequent lemmas prove that the average reward under a threshold T (σ(T ))

is unimodal in T , and hence the threshold iterations Tn converge to the optimal threshold

T ∗. Therefore, (Vn, Tn) converges to (V, T ∗).

Lemma 22. vn(i+ 1)− vn(i) is non-increasing in n.

Proof. We need to prove that Dvn(i) is non-increasing in n. We prove using induction.

When n = 0, v0(i) = 0 and Dv0(i) = 0. We have,

vn+1(i) = pmax{vn(i), r + vn(i+ 1)}+ (1− p)vn((i− 1)+).

v′n+1(i) = max{vn(i), r + vn(i+ 1)}.

Let v′′n+1(i) = vn((i− 1)+). Then Dv′1(i) = 0 and Dv1(i) ≤ Dv0(i).

Now, assume that the claim holds for any n, i.e., Dvn+1(i) ≤ Dvn(i). We need to

prove that Dvn+2(i) ≤ Dvn+1(i). It is easy to see that Dv′′n+2(i) ≤ Dv′′n+1(i). Therefore,

to complete the proof, we need to prove that Dv′n+2(i) ≤ Dv′n+1(i). Let a0, a1 ∈ {A1, A2}
be the maximizing actions in states i and i + 1, respectively, at (n + 2)th iteration. Let

b0, b1 ∈ {A1, A2} be the maximizing actions in states i and i+ 1, respectively, at (n+ 1)th

iteration. Now, it is impossible to have a1 = A2 and b0 = A1. If b0 = A1, we have,

Dvn(i) ≤ −r. From Lemma 19, we must have Dvn(i + 1) ≤ −r. If a1 = A2, we have

Dvn+1(i + 1) ≥ −r. This contradicts the inductive assumption. Therefore, we consider

three cases as follows. For a given value of a1 and b0, if the inequality holds for any values

of a0 and b1, then the inequality will hold for maximizing actions as well.

1) a1 = b0 = A1, then choose a0 = b1 = A1. We have,

Dv′n+2(i)−Dv′n+1(i) = Dv′n+1(i)−Dv′n(i) ≤ 0.
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2) If a1 = b0 = A2, then we choose a0 = b1 = A2, and the inequality satisfies similar to

the previous case.

3) If a1 = A1 and b0 = A2, then we choose a0 = A2 and b1 = A1.

Dv′n+2(i)−Dv′n+1(i) = vn+1(i+ 1)− r − vn+1(i+ 1)− vn(i+ 1)

+ r + vn(i+ 1) = 0.

Thus, we have, Dvn+2(i) ≤ Dvn+1(i).

Lemma 23. σ(T ) is unimodal in T .

Proof. We know that if the optimal action in state i is A1, then V (i + 1) − V (i) ≤ −r.
Since VIA converges to the policy with threshold T ∗, ∃N0 > 0 such that ∀n ≥ N0, vn(i+

1)− vn(i) ≤ −r ∀i ≥ T ∗ and vn(i+ 1)− vn(i) ≥ −r ∀i ≤ T ∗. Let tn, n ≥ 1 be the optimal

threshold at nth iteration of VIA. Symbolically, tn = min{i ∈ N0 : vn(i+1)−vn(i) ≤ −r}.
If for no values of i, the inequality holds, then tn is taken as N . Using Lemma 22, tn must

monotonically decrease with n and lim
n→∞

tn = T ∗.

Consider a modified problem where A1 is not permitted in any state i < T̂ , for a

given threshold T̂ (T ∗ < T̂ ≤ N). Lemma 22 holds for this modified problem too. Let nT̂

be the first VIA iteration where the threshold drops to T̂ . The value function iterates for

the modified and the original problem are same for n < nT̂ because A1 is never chosen

as the optimal action for i < T̂ in the original problem in these iterations. Therefore,

nT̂ must be finite and the following inequality holds for both original and the modified

problem after nT̂ iterations.

vn(T̂ + 1)− vn(T̂ ) ≤ −r. (B.20)

Using Lemma 22, Equation (B.20) holds ∀n ≥ nT̂ . Therefore, in the considered modified

problem, tn converges to T̂ . This implies that the threshold policy with threshold T̂ is bet-

ter than that of T̂ + 1. Since T̂ can be chosen arbitrarily, average reward is monotonically

decreasing with T̂ , ∀T̂ > T ∗.

Now, if we have σ(T ) ≥ σ(T + 1), we must have T ≥ T ∗. Therefore, σ(T + 1) ≥
σ(T + 2). Thus, σ(T ) is unimodal in T .

Lemma 24. The threshold iterates Tn → T ∗.
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Proof. The limiting ODE for Equation (B.15) is the gradient ascent

Ṫ = ∇σ(T ),

with inward pointing gradient at 0, N . Using Lemma 23, there does not exist any local

maximum other than the global maximum T ∗. Therefore Tn → T ∗.

Remark 17. In general, in an MDP problem with a threshold structure, unimodality of

average reward may not hold. In such cases, the threshold iterates may converge to a local

maximum only.

We describe the resulting two-timescale SAL algorithm in Algorithm 8 . As described

Algorithm 8 Two-timescale SAL algorithm

1: Initialize number of iterations n← 1, value function V (i)← 0,∀i ∈ S and the threshold T ← 0.

2: while TRUE do

3: Choose action a governed by the current value of T .

4: Update the value function of state i using Equation (B.12).

5: Update threshold T using Equation (B.13).

6: Update i← j and n← n+ 1.

7: end while

in Algorithm 8, the number of iterations, value functions and the threshold are initialized

at the beginning. On every decision epoch, we choose the action which is specified by the

current value of threshold. Based on the reward obtained, the value function of states

and the value of threshold are updated in faster and slower timescale, respectively. The

rules for the updates are provided in Equation (B.12) and (B.13), respectively.

Remark 18. Even if the optimal policy in an MDP problem does not have a threshold

structure, the methodologies presented in this appendix which is guaranteed to converge to

the optimal (at least locally) threshold policy, can be used. In general threshold policies are

easy to implement and have low storage complexity. Besides, often a well chosen threshold

policy provides a good performance.
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B.4 Computational and Storage Complexity

In this section, we provide a comparative study of computational and storage complexities

associated with traditional learning algorithms such as Q-learning, PDS learning and the

SAL algorithm. The comparison is summarized in Table B.1.

Table B.1: Computational and storage complexities of various RL algorithms.

Algorithm Storage Computational

complexity complexity

Q-learning [45,89] O(|S| × |A|) O(|A|)
PDS learning [85,91] O(|S|) O(|A|)
SAL O(|S|) O(1)

As described in Table B.1, Q-learning algorithm needs to store the value function

associated with every state-action pair. Thus, the storage complexity associated with

Q-learning is O(|S| × |A|). PDS learning algorithm needs to store the value functions

associated with only the PDSs along with feasible actions in every state, thereby requiring

O(|S|) storage. The SAL algorithm proposed by us needs to store the value functions of

all the states and the value of threshold. We no longer need to store feasible actions

corresponding to every state since the value of threshold completely specifies the policy.

Therefore, the storage complexity of SAL algorithm is O(|S|). However, for all practical

purposes, once the algorithm converges, it is sufficient to store only the value of threshold

instead of optimal actions associated with every state, as required by Q-learning and PDS

learning.

Q-learning algorithm updates the value function associated with a state-action pair in

every iteration by evaluating |A| functions and choosing the best one. Therefore, the per-

iteration complexity associated with Q-learning is O(|A|). In the case of PDS learning,

each iteration involves the evaluation of |A| functions, thereby having a per-iteration

complexity of O(|A|). As evident form Equations (B.12) and (B.13), single iteration of

the proposed algorithm involves updating the value function of a state and the value of

threshold. Therefore, the computational complexity of our proposed algorithm is O(1).

This is a considerable reduction in computational complexity in comparison to Q-learning
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and PDS learning.

B.5 Simulation Results

In this section, we demonstrate the advantages offered by the proposed algorithm in

terms of the convergence speed with respect to other traditional algorithms such as Q-

learning [45] and PDS learning [85]. We adopt a simple queuing model from [95] and

exhibit that the SAL algorithm converges faster than other RL algorithms. In general,

the proposed learning technique is applicable to models involving threshold structure of

the optimal policy, such as [81,92,94,96].

The authors in [95] consider a single queue where the service time is exponentially

distributed (with parameter 1
µ
, say), and the arrival process is Poisson. The system

incurs a constant cost upon blocking a user. Additionally, there is a holding cost which

is a convex function of the number of customers in the system. The authors prove that

it is optimal to admit a user only below a threshold on the number of customers. We

conduct ns-3 simulations of SAL algorithm to exploit the threshold structure of optimal

policy in [95] and compare the convergence performance with those of Q-learning and

PDS learning algorithms.

B.5.1 Convergence Analysis

As illustrated in Fig. B.1a and B.1b, SAL algorithm converges faster than both Q-

learning and PDS learning. Due to the absence of exploration mechanism, PDS learning

has better convergence behavior than Q-learning. However, SAL algorithm outperforms

both Q-learning and PDS learning due to the fact that it operates on a smaller policy

space (set of threshold policies only) than other algorithms. On the other hand, for both

Q-learning and PDS learning, the policy at any given iteration may be non-threshold in

nature. This increases the convergence time to optimality. As observed in Fig. B.1a, while

PDS learning requires around 200 iterations for convergence, SAL algorithm requires only

100 iterations. These iterations take 219 s and 108 s, respectively. Similarly, in Fig. B.1b,

the number of iterations for convergence reduces from 600 in PDS learning to 450 in

SAL algorithm. The approximate times taken for convergence in PDS learning and SAL
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Figure B.1: Plot of average cost vs. number of iterations (n) for different algorithms.
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algorithms are 638 s and 480 s, respectively. In both the cases, even after a sufficient

number of iterations, Q-learning does not converge to the optimal value. However, the

gap to optimality reduces with the number of iterations. Note that we omit initial 20

burn-in period iterates for better representation of the convergence behaviors.

However, for practical purposes, even if we do not converge to the optimal policy, if

the average cost of the system does not change much over a window of iterations, we can

say that the stopping criterion is reached. In other words, the current policy is close to the

optimal policy with a high probability. Instead of a window of iterations, we consider the

sum of step sizes till the present iteration as the parameter of choice to eliminate the effect

of declining step size in convergence. We choose the window size equal to 50 and observe

in Fig. B.2a that convergences for Q-learning, PDS learning and SAL algorithm are

achieved approximately in 500, 175 and 50 iterations, respectively. Similarly, we observe

in Fig. B.2b that number of iterations required for practical convergence reduces from

750 and 400 (which correspond to 790 and 444 s) in Q-learning and PDS learning to 200

(which corresponds to 219 s) in SAL algorithm.

B.6 Possible Extensions

In this section, we describe the possible extensions of the techniques proposed in this

appendix. Although the techniques employed in this appendix are primarily focused

towards solving MDP problems, the techniques can be employed for learning problems

involving Constrained MDP (CMDP) problem also. Due to the presence of constraints,

usually a two-timescale learning approach is adopted [78], where the value functions are

updated in one timescale and the associated Lagrange Multiplier (LM) in another. The

consideration of structure-aware learning may introduce another timescale where the value

of threshold is updated. However, since the iterates for the LM and the threshold are not

dependent on each other, they can be updated in the same timescale.

The proposed learning technique can also be extended to MDP/ CMDP problems

parameterized by a set of threshold parameters rather than only one. In the slower

timescale, one threshold parameter can be updated in a single iteration based on the

visited state and rest can be kept fixed. Since the update of threshold parameters follows
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Figure B.2: Plot of average cost vs. sum of step sizes till nth iteration for different

algorithms.
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a stochastic gradient scheme, contrary to value function iterates, the threshold parameter

iterates do not need individual local clocks for convergence. However, for the scheme to

work, the relative frequencies of the update of individual threshold parameters have to

be bounded away from zero [78]. Yet another future direction is to develop RL schemes

for restless bandits wherein threshold policies often lead to simple index-based policies,

see [100] for a step towards this.

B.7 Conclusions

In this appendix, we have considered an MDP problem and proved the optimality of

threshold policies. We have proposed an RL algorithm which exploits the threshold

structure of the optimal policy while learning. Contrary to traditional RL algorithms,

the proposed algorithm searches the optimal policy only from the set of threshold policies

and hence provides faster convergence. We have proved that the proposed scheme indeed

converges to the globally optimal threshold policy. Analysis has been presented to exhibit

the effectiveness of the proposed technique in reducing the computational and storage

complexities. Simulation results demonstrate the improvement in convergence behavior

of the proposed algorithm in comparison to those of Q-learning and PDS learning.



Appendix C

Overview of Markov Decision

Process, Reinforcement Learning

and Stochastic Approximation

In this appendix, we describe the basics of Markov Decision Process (MDP), Reinforce-

ment Learning (RL) and Stochastic Approximation (SA). We describe the results related

to the average reward MDP since we have considered average reward MDP and constrained

MDP (CMDP) throughout the thesis. The standard results on MDP follow [69,73]. Fur-

thermore, we describe the RL fundamentals following [45, 89, 101]. Finally, we introduce

the SA technique and discuss the approaches for proving the convergence of SA algorithms.

The description is based on the analysis provided in [78,101,102].

C.1 Markov Decision Process

The framework of MDP is used for controlling dynamic stochastic systems. The system

state is a collection of parameters which can describe the system. The state of the system

can change based on the chosen action. Each action is associated with a reward (or

cost). Based on the current state of the system and the chosen action, the state transition

probabilities to different states can be determined. The transitions to different states are

probabilistic because the effect of an action on the system state is coupled with a noise.

An MDP follows the Markovian property which states that given the current system state

185
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and the action, the past and future states are independent.

C.1.1 Optimality Criteria and Dynamic Programming

In a discrete time MDP, the state of the system is observed at discrete points in time.

If the length of the observation window is infinite, then the problem is called an infinite

horizon MDP problem. Consider a slotted system where decisions are to be chosen at

every slot n. Let the system is described by a stochastic process {Xn}n≥0 which takes

values from the finite state space S. Let the action process be denoted by Zn, n ≥ 0

which takes entries from the action space A. Let p(Xn, Zn, X
′
n) represent the transition

probability from state Xn to X ′n under the action Zn. Let r(Xn, Zn) denote the immediate

reward obtained by taking action Zn in state Xn. Note that we have assumed that the

transition probabilities and the reward functions do not change with time.

A decision rule πn : S → A is defined as a mapping from the state space to the action

space at nth decision epoch (slot). A policy is a sequence of decision rules {π1, π2, . . .}
taken at consecutive decision epochs. A stationary policy is a policy where the decision

rules are independent of time and depends only on the current state of the system. An

MDP is said to be unichain if the Markov chain induced by a policy contains a single

ergodic class. For an average reward MDP problem, the objective is to maximize the

average expected reward over infinite horizon. Let Q be the set of memoryless policies

where the decision rule at time t depends only on the state of the system at time t and not

on the past history. Under the assumption of unichain nature of the underlying Markov

chain which guarantees the existence of unique stationary distribution, let the average

reward of the system over infinite horizon under policy Q ∈ Q be independent of the

initial condition and be denoted by σQ. We intend to maximize

σQ = lim inf
H→∞

1

H

H∑

h=1

EQ[r(Xh, Zh)],

where H is the length of the horizon, and EQ denotes the expectation operator under

policy Q.

The following Dynamic Programming (DP) equation is known as the Bellman equa-
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tion which describes the necessary condition for optimality.

V (s) = max
a∈A

[
r(s, a) +

∑

s′∈S

p(s, a, s′)V (s′)− σ
]
,

where V (s) and σ denote the value function of state s ∈ S and the optimal average reward,

respectively. Relative Value Iteration Algorithm (RVIA) is a well-known algorithm which

can be used to solve this problem using the iterative scheme as follows.

Vn+1(s) = max
a∈A

[
r(s, a) +

∑

s′∈S

p(s, a, s′)Vn(s′)− Vn(s∗)

]
, (C.1)

where Vn(.) is the value function estimate in nth iteration of RVIA, and s∗ ∈ S is a

fixed state. It is well known that for a unichain MDP, Vn(.) → V (.) and Vn(s∗) → σ.

Furthermore, the optimal policy is a pure policy where the optimal action in every state

is deterministic.

C.1.2 Constrained Markov Decision Process

In the case of CMDP, we aim to maximize an objective function subject to constraints

on other average costs. Let us assume that there are K constraints. Let c̄ : S ×A → RK

denote the cost function associated with the constraints. The objective for the CMDP

problem can be summarized as follows:

maximize

σQ = lim inf
H→∞

1

H

H∑

h=1

EQ[r(Xh, Zh)],

subject to

lim sup
H→∞

1

H

H∑

h=1

EQ[c̄(Xh, Zh)] ≤ ω̄,

where ω̄ is a K dimensional vector.

Let β̄ ∈ RK
+ be a vector with K dimensions. The approach to solve the CMDP prob-

lem is to convert the constrained problem into an unconstrained one using the Lagrangian

approach. We define r(s, a; β̄) as

r(s, a, β̄) = r(s, a)− β̄T c̄(s, a).

The idea is to solve the unconstrained problem with the modified reward function r(s, a; β̄)

for a fixed value of β̄ which is known as the Lagrange Multiplier (LM).
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A randomized stationary policy is a policy where there exist more than or equal

to one state where the optimal action is randomized between more than one actions. It

is well known that for a CMDP problem with K constraints, there exists a stationary

optimal policy with at most K randomizations.

C.2 Reinforcement Learning

In RL, a learning agent takes certain actions, observes the rewards obtained and by trial-

and-error learns the optimal policy in order to maximize a certain objective function.

Note that the RVIA introduced in the last section relies on the knowledge of the state

transition probabilities in order to compute the optimal policy. These transition proba-

bilities depend on the knowledge of the unknown system dynamics which may be difficult

to gather in reality. This is known as the curse of modeling. However, RL algorithms can

operate without such knowledge. In addition, DP algorithms face the curse of dimen-

sionality where the DP algorithms become computationally prohibitive for a large state

space. However, RL algorithms are computationally efficient and can operate without

the knowledge of the system dynamics. We show the efficacy of RL algorithms using

an example. We study the well known Q-learning algorithm due to its simplicity and

popularity.

C.2.1 Q-learning

In Q-learning, let the Q-value, the expected long-term average reward associated with a

state-action pair (s, a) be Q(s, a). The aim of Q-learning is to learn the optimal policy,

i.e., the optimal Q-value for each state-action pair. The RVIA based iterative equation

for Q-learning can be expressed as:

Qn+1(s, a) = (1− ρ)Qn(s, a) + ρ[r(s, a) + max
a′∈A

Qn(s′, a′)−Qn(s∗, a∗)];

Qn+1(s̃, ã) = Qn(s̃, ã) ∀(s̃, ã) 6= (s, a),

(C.2)

where Qn(s, a) is the Q-value associated with state s and action a at the nth iteration,

ρ(0 < ρ < 1) is the learning rate, and (s∗, a∗) is a fixed state-action pair. Based on the

chosen action a, the system moves from state s to state s′. The idea is to update the

value of one state-action pair at a time.
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Note that Equation (C.2) does not need the knowledge of the transition probabilities

p(s, a, s′). It updates the Q-value associated with a state-action pair by observing the

actual transition using simulations. Since we learn the Q-values one state at a time, the

Q-learning algorithm is computationally efficient. Note that if ρ = 0, then the agent does

not learn. If ρ = 1, then the most recent Q-value is considered. If the learning rates are

slowly reduced to zero and each state-action pair is visited a reasonable number of times,

then Q-learning iterates converge to the optimal Q-values. Therefore, depending on the

cardinality of the state space and the learning rate schedule, the convergence time to the

optimality may vary.

C.3 Stochastic Approximation

RVIA can be employed to solve the Bellman equation iteratively (see Equation (C.1)).

However, in some cases, the observed values of different variables are noisy. SA algorithms

are iterative algorithms which can function well even in the presence of noise. In general,

SA algorithms are used to solve various optimization problems.

C.3.1 Iterative SA algorithms

In general, SA algorithms can be used to solve a system of equations. Consider an example

where we want to solve a system of equation

Y = g(Y ), (C.3)

where Y is a d-dimensional variable and g(.) : Rd → Rd is a function of Y .

The following scheme can be used to solve Equation (C.3):

Yn+1 = Yn + ag(Yn),

where a is a small step size. We consider the scenario where the exact measurement of

g(.) is difficult to obtain. However, we have an a noisy version of g(.) in hand. Let us

denote the noisy version as g(Yn) +Mn+1, where Mn+1 is a random noise. In the presence

of noise, the iterative scheme can be written as:

Yn+1 = Yn + a(n)(g(Yn) +Mn+1),



190
Appendix C. Overview of Markov Decision Process, Reinforcement Learning and

Stochastic Approximation

where a(n) is a step size schedule. Specifically, a(n) needs to satisfy the following equation:

∞∑

n=1

a(n) =∞;
∞∑

n=1

(a(n))2 <∞. (C.4)

While the first condition guarantees that the entire timescale is covered, the second con-

dition ensures that the noise is asymptotically negligible.

Ordinary Differential Equation (ODE) method of analyzing the asymptotic conver-

gence of SA algorithms is popular in the literature. Under the assumption that

E[Mn+1|Mm, Ym,m ≤ n] = 0, ∀n,

we compute the cumulative noise as

Cn =
n−1∑

i=0

a(i)Mi+1, n ≥ 1.

Cn satisfies the following property

E[Cn+1|Mm, Ym,m ≤ n] = Cn,∀n.

Therefore, Cn can be viewed as a martingale process. We make the assumptions that

supn E[||Mn||] ≤ ∞ and supn ||Yn|| ≤ ∞ (iterates are stable). Under the first assumption

and using the martingale convergence theorem, we obtain the almost sure (a.s.) conver-

gence of Cn. Now, consider the well-posed ODE

ẏ(t) = g(y(t)). (C.5)

We assume that the globally asymptotically stable attractor set of this ODE is L. Let

Lε denote an ε-neighborhood of L for some ε > 0. Let p(.) : [0,∞] → Rd be a bounded

function. p(.) is a (T, δ) perturbation of Equation (C.5) for T, δ > 0 if we can determine

lim
n→∞

Tn →∞ under the condition that Tn+1−Tn ≥ T,∀n and solutions of Equation (C.5)

yn(t), where t ∈ [Tn, Tn+1] such that the following condition holds.

sup
t∈[Tn,Tn+1]

||yn(t)− p(n)|| < δ.

The theorem described next can be used to establish the convergence of SA algorithms.

Theorem 5. Given ε > 0 and T > 0, there exists δ̂ > 0 such that for every δ < δ̂, if we

have a (T, δ) perturbation of Equation (C.5), then the perturbation converges to Lε.

The interpolated iterates can be viewed as (T, δ) perturbations of Equation (C.5),

and the convergence of the iterates to the optimality follows immediately.
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C.3.2 Two timescale SA algorithms

In some cases, one needs to solve two systems of equations in order to estimate two

variables which depend on each other. Consider the following example

X = g1(X, Y );Y = g2(X, Y ),

where the measurements of g1(., .) and g2(., .) are noisy. In such a scenario, the SA scheme

can be stated as:

Xn+1 = Xn + a(n)(g1(Xn, Yn) + M̂n+1),

Yn+1 = Yn + b(n)(g2(Xn, Yn) + M̃n+1),

where {M̂} and {M̃} are Martingale noise sequences. The system of iterates can be

viewed as two subroutines where the outer subroutine can be updated after the inner

subroutine nearly converges. However, in principle, the same effect can be obtained by

performing simultaneous update of both the variables on two different timescales. The

variable corresponding to the faster timescale forms the inner subroutine, whereas the

variable on the slower timescale constitutes the outer subroutine. This is ensured by

imposing the following condition on the step size parameters along with the conditions

introduced in Equation (C.4).

lim
n→∞

a(n)

b(n)
→ 0.

The inner subroutine views the slow component as quasi-static, whereas the outer sub-

routine views the fast component as almost equilibrated. Convergence of the joint scheme

to the corresponding optimalities follows from the standard ODE approach.
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[67] A. Raschellà, F. Bouhafs, G. Deepak, and M. Mackay, “QoS aware radio access

technology selection framework in heterogeneous networks using SDN,” Journal of

Communications and Networks, vol. 19, no. 6, pp. 577–586, 2017.

[68] D. Harutyunyan, S. Herle, D. Maradin, G. Agapiu, and R. Riggio, “Traffic-aware

user association in heterogeneous LTE/WiFi radio access networks,” in IEEE/IFIP

NOMS, pp. 1–8, 2018.

[69] M. L. Puterman, Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons, 2014.

[70] T. Bonald and J. W. Roberts, “Internet and the Erlang formula,” ACM SIGCOMM

Computer Communication Review, vol. 42, no. 1, pp. 23–30, 2012.

[71] A. Kumar, “Discrete event stochastic processes,” Lecture Notes for Engineering

Curriculum, 2012.



200 Bibliography

[72] G. Bianchi, “Performance analysis of the IEEE 802.11 distributed coordination func-

tion,” IEEE Journal on selected areas in communications, vol. 18, no. 3, pp. 535–

547, 2000.

[73] E. Altman, Constrained Markov decision processes. CRC Press, 1999.

[74] P. Marbach and J. N. Tsitsiklis, “Simulation-based optimization of Markov reward

processes,” IEEE Transactions on Automatic Control, vol. 46, no. 2, pp. 191–209,

2001.

[75] F. J. Beutler and K. W. Ross, “Optimal policies for controlled Markov chains with

a constraint,” Journal of mathematical analysis and applications, vol. 112, no. 1,

pp. 236–252, 1985.

[76] 3GPP TR 36.814 v9.0.0, “Further Advancements for E-UTRA Physical Layer As-

pects,” 2010. [Online]. Available: https://portal.3gpp.org/desktopmodules/

Specifications/SpecificationDetails.aspx?specificationId=2493.

[77] 3GPP TR 36.839 v11.1.0, “Mobility Enhancements in Heterogeneous Net-

works,” 2012. [Online]. Available: https://portal.3gpp.org/desktopmodules/

Specifications/SpecificationDetails.aspx?specificationId=2540.

[78] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint. Cambridge

University Press, 2008.

[79] 3GPP TS 36.104 V10.2.0, “Base Station (BS) Radio Transmission and Recep-

tion,” 2011. [Online]. Available: https://portal.3gpp.org/desktopmodules/

Specifications/SpecificationDetails.aspx?specificationId=2412.

[80] D. B. Johnson and D. A. Maltz, “Dynamic source routing in Ad Hoc wireless net-

works,” in Mobile computing, pp. 153–181, Springer, 1996.

[81] G. A. Brouns and J. Van Der Wal, “Optimal threshold policies in a two-class pre-

emptive priority queue with admission and termination control,” Queueing Systems,

vol. 54, no. 1, pp. 21–33, 2006.

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2493
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2493
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2540
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2540
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2412
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2412


Bibliography 201
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