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Abstract—We consider the problem of communicating

the sum of m sources to n terminals in a directed acyclic

network. Recently, it was shown that for a network of

unit capacity links with either m = 2 or n = 2, the

sum of the sources can be communicated to the terminals

using scalar/vector linear network coding if and only if

every source-terminal pair is connected in the network.

We show in this paper that for any finite set of primes,

there exists a network where the sum of the sources can

be communicated to the terminals only over finite fields

of characteristic belonging to that set. As a corollary, this

gives networks where the sum can not be communicated

over any finite field using vector linear network coding

even though every source is connected to every terminal.

I. INTRODUCTION

The seminal work by Ahlswede et al. [1] showed that

in a multicast network, higher rates are achievable if the

intermediate nodes in the network perform some pro-

cessing of the incoming information before forwarding.

This has been popularly known as network coding since

then. Even though the multicast capacity of a network

under routing is difficult to compute or characterize in

general, the authors showed in [1] that under network

coding, the multicast capacity is given by the minimum

of the min-cut capacities to the individual terminals.

Li et al. [2] showed that the multicast capacity is also

achievable by linear network coding, i.e., with each

intermediate node computing linear combinations of the

incoming messages for transmitting on the outgoing

links. An algebraic formulation was presented in [3].

It was also shown that linear network codes can be

designed to be robust against link failure. Jaggi et al. [4]

gave a polynomial time algorithm for designing multicast

network codes.

Recently, the problem of communicating the sum of

sources to some terminals was considered by Ramamoor-

thy [5]. It was shown that if there are two sources or two

terminals in the network, then the sum of the sources can

be communicated to the terminals using scalar/vector

linear network coding if and only if every source is

connected to every terminal. Whereas this condition is

also necessary for any number of sources and terminals,

it may not be sufficient. Further, no necessary and

sufficient condition is known for arbitrary number of

sources and terminals.

The problem of distributed function computation in

general has been considered in different contexts in the

past. Distributed event detection and data aggregation

techniques in sensor network has been of significant

interest [6], [7] since the availability of cheap efficient

sensors. Distributed computation of the sum/parity of the

binary sources in a large network was first considered

by Gallager [8]. There has been significant interest in

computation of such functions over random geometric

graphs motivated by wireless sensor network, e.g., [9],

[10]. There is also significant interest in the computation

of such functions over arbitrary network graphs, e.g.,

[11].

In this paper, we consider a directed acyclic network.

We show that for every finite set of prime numbers, there

exists a directed acyclic network of unit-capacity links

with some sources and terminals so that the sum of the

sources can be communicated to all the terminals using

scalar/vector linear network coding if and only if the

characteristic of the alphabet field belongs to the given

set. As a corollary, we find a network of 3 sources and

3 terminals where the sum of the sources can not be

communicated to the terminals over any finite field using

vector linear network coding even though every source is

connected to every terminal in the network. This example

network was also independently found by Ramamoorthy

and Langberg [12].

In Section II, we introduce the system model. The

results of this paper are presented in Section III. We



conclude the paper with a discussion in Section IV.

II. SYSTEM MODEL

The network is represented by a directed acyclic graph

G = (V,E) where V is a finite set denoting the vertices

of the network, E ⊆ V × V is the set of edges. Among

the vertices, there are m sources s1, s2, · · · , sm ∈ V ,

and n terminals t1, t2, · · · , tn ∈ V in the network. Let

F denote the alphabet field. Throughout the paper, p,

possibly with subscripts, will denote a positive prime

integer. Each source is assumed to generate a symbol

from F in each symbol interval. Each link in the network

is assumed to be capable of carying a symbol from F in

each use. Each terminal requires to recover the sum (over

F) of the symbols generated at all the sources in each

symbol interval. For any edge e = (i, j) ∈ E, the node

j will be called the head of the edge and the node i will

be called the tail of the edge; and they will be denoted as

head(e) and tail(e) respectively. Each symbol interval

uses the channel once and this time is taken as the unit

time.

For any edge e ∈ E, let Ye ∈ F denote the message

transmitted through e. In scalar linear network coding,

each node computes a linear combination of the incom-

ing symbols for transmission on an outgoing link. That

is,

Ye =
∑

e′:head(e′)=tail(e)

βe′,eYe′ (1)

when tail(e) is not a source. Here βe′,e ∈ F are called

the local coding coefficients. A source computes a linear

combination of some data symbols generated at that

source for transmission on an outgoing link, that is,

Ye =
∑

j:Xj generated at tail(e)

αj,eXj (2)

for some αj,e ∈ F if tail(e) is a source. We assume

that each source generates one symbol from F per unit

time. So, there is only one term in the summation in (2)

and αj,e can be taken to be 1 without loss of generality.

The decoding operation at a terminal involves taking a

linear combination of the incoming messages to recover

the required data.

In vector linear network coding, the data stream

generated at each source node is blocked in vectors of

length N . The coding operations are similar to (1) and

(2) with the difference that, now Ye, Ye′ ,Xj are vectors

from F
N , and βe′,e, αj,e are matrices from F

N×N . It is

known that scalar linear network coding may give better

throughput in some networks than that is achievable by

routing. Vector linear network coding may give further

improvement over scalar linear network coding in some

networks [13], [14], [15].

III. RESULTS

A complete bipartite graph Km,n has m nodes in

one partition and n nodes in the other. We will assume

that the m nodes in one partition are sources and the

n nodes in the other partition are the terminals in the

corresponding network. All the edges are assumed to

be directed from the source partition to the terminal

partition. Clearly, in the network Km,n, each source

can broadcast its message to all the terminals and each

terminal can thus recover any function of the source

messages. In particular, each terminal can recover the

sum of the source messages.

We now define a special class of networks.

We define a network Sm
△
= (V (Sm), E(Sm)) which

has four layers of vertices V (Sm) = S ∪ U ∪ V ∪ T .

The first layer of nodes are the m sources S
△
=

{s1, s2, . . . , sm}. The second and third layers have

m − 1 nodes each, and they are denoted as U
△
=

{u1, u2, . . . , um−1} and V
△
= {v1, v2, . . . , vm−1} re-

spectively. The last layer consists of the m terminals

T
△
= {t1, t2, . . . , tm}. For every i = 1, 2, . . . ,m − 1,

there is an edge from si to ui, from ui to vi, and from vi

to ti. That is, (si, ui), (ui, vi), (vi, ti) ∈ E(Sm) for each

i = 1, 2, . . . ,m − 1. For every i, j = 1, 2, . . . ,m − 1,
i 6= j, there is an edge from si to tj . Finally, for every

i = 1, 2, . . . ,m − 1, there is an edge from sm to ui and

from vi to tm. So, the set of edges is given by

E(Sm) = ∪m−1
i=1 {(si, ui), (ui, vi), (vi, ti)}

∪{(si, tj) : i, j = 1, 2, . . . ,m − 1, i 6= j}

∪{(sm, ui) : i = 1, 2, . . . ,m − 1}

∪{(vi, tm) : i = 1, 2, . . . ,m − 1}.

The network is shown in Fig. 1.

Now we define a method of combining two net-

works to obtain a larger network. We call this method

crisscrossing. Let N1 be a directed acyclic network

with some sources S1 ⊆ V (N1) and some terminals

T1 ⊆ V (N1). Similarly let N2 be a directed acyclic

network with some sources S2 ⊆ V (N2) and some

terminals T2 ⊆ V (N2). We assume that the nodes of

N1 and N2 are labeled such that V (N1) ∩ V (N2) = φ.

The crisscrossed network N1 ⊲⊳ N2 has the node set
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Fig. 1. The network Sm

V (N1 ⊲⊳ N2) = V (N1) ∪ V (N2), and the edge set

E(N1 ⊲⊳ N2) = E(N1)∪E(N2)∪(S1×T2)∪(S2×T1).
That is, other than the edges of N1 and N2, their

crisscross has edges from the sources of N1 to the

terminals of N2, and from the sources of N2 to the

terminals of N2. The crisscross of the networks S4 and

K2,3 is shown in Fig. 2 for example.

Now we present our main result.

Theorem 1: For any finite, possibly empty, set P =
{p1, p2, . . . , pl} of positive prime numbers, there exists a

directed acyclic network of unit-capacity edges where it

is possible to communicate the sum of the sources to all

the terminals using scalar/vector linear network coding if

and only if the characteristic of the alphabet field belongs

to P.

Proof: Define m = p1p2 . . . pl + 2, where the empty

product is assumed to be 1. We prove that the network

Sm satisfies the condition in the theorem. First, it may

be noted that every source-terminal pair in the network

Sm is connected. This is clearly a necessary condition

for being able to communicate the sum of the sources to

each terminal over any field.

First we prove that if, for any N , it is possible to

communicate the sum of the sources by N -length vector

linear network coding over F to all the terminals in Sm,

then the characteristic of F must be from P. As in (1) and

(2), the message carried by an edge e is denoted by Ye.

For i = 1, 2, . . . ,m, the message vector generated by the

source si is denoted by Xi ∈ F
N . For i = 1, 2, . . . ,m,

terminal ti computes a linear combination Ri of the

received vectors.

Local coding coefficients used at different layers in

the network are denoted by different symbols for clarity.

The message vectors carried by different edges and the

corresponding local coding coefficients are as below.

Y(si,tj) = αi,jXi for 1 ≤ i, j ≤ m − 1, i 6= j,(3a)

Y(si,ui) = αi,iXi for 1 ≤ i ≤ m − 1, (3b)

Y(sm,ui) = αm,iXm for 1 ≤ i ≤ m − 1, (3c)

Y(ui,vi) = βi,1Y(si,ui) + βi,2Y(sm,ui)

for 1 ≤ i ≤ m − 1. (3d)

Here all the coding coefficients αi,j, βi,j , γi,j are N ×N

matrices over F, and the message vectors Xi and the

messages carried by the links Y(.,.) are length-N vectors

over F.

The message vectors computed at terminals are as

follows.

Ri =

m−1∑

j=1
j 6=i

γj,iY(sj ,ti) + γi,iY(vi,ti)

for 1 ≤ i ≤ m − 1, (4a)

Rm =

m−1∑

j=1

γj,mY(vj ,tm). (4b)

Without loss of generality (w.l.o.g.), we assume that

Y(vi,ti) = Y(vi,tm) = Y(ui,vi).

By assumption, each terminal decodes the sum of all the

sources. That is,

Ri =

m∑

j=1

Xj for i = 1, 2, . . . ,m (5)

for all values of X1,X2, . . . ,Xm ∈ F
N .

From (3) and (4), we have

Ri =

m−1∑

j=1
j 6=i

γj,iαj,iXj + γi,iβi,1αi,iXi + γi,iβi,2αm,iXm

(6)

for i = 1, 2, . . . ,m − 1, and

Rm =
m−1∑

j=1

γj,mβj,1αj,jXj +
m−1∑

j=1

γj,mβj,2αm,jXm. (7)
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Fig. 2. The network S4 ⊲⊳ K2,3

Since (5) is true for all values of X1,X2, . . . ,Xm ∈ F
N ,

(6) and (7) imply

γj,iαj,i = I for 1 ≤ i, j ≤ m − 1, i 6= j, (8)

γi,iβi,1αi,i = I for 1 ≤ i ≤ m − 1, (9)

γi,iβi,2αm,i = I for 1 ≤ i ≤ m − 1, (10)

γi,mβi,1αi,i = I for 1 ≤ i ≤ m − 1, (11)

m−1∑

i=1

γi,mβi,2αm,i = I. (12)

where I denotes the N×N identity matrix over F. All the

coding matrices in (8), (9), (10), (11) are invertible since

the right hand side of the equations are the identity ma-

trices. Equations (9) and (10) imply βi,1αi,i = βi,2αm,i

for 1 ≤ i ≤ m − 1. So, (12) gives

m−1∑

i=1

γi,mβi,1αi,i = I. (13)

Now, using (11), we get

m−1∑

i=1

I = I, (14)

⇒ (m − 1)I = I, (15)

⇒ (m − 2)I = 0. (16)

This is true if and only if the characteristic of F divides

m−2. So, the sum of the sources can be communicated

in Sm by vector linear network coding only if the

characteristic of F belongs to P.

Now, if the characteristic of F belongs to P, then

for any block length N , in particular for scalar network

coding for N = 1, every coding matrix in (3a)-(3d) can

be chosen to be the identity matrix. The terminals then

can recover the sum of the sources by taking the sum

of the incoming messages, i.e., by taking γj,i = I for

1 ≤ j ≤ m − 1 and 1 ≤ i ≤ m in (4a) and (4b). �

When the set P is a singleton, Theorem 1 gives, as a

special case, the following corollary.

Corollary 2: For any prime number p, the sum of the

sources can be communicated to all the terminals by

vector linear network coding in the network Sp+2 only

over fields of characteristic p. Moreover, over fields of

characteristic p, the sum can be communicated in this

network by scalar network coding.

When the set P is empty, Theorem 1 gives, as a special

case, a network where the the sum of the sources can

not be communicated using scalar/vector linear network

coding over any field even though every source-terminal

pair is connected.

Corollary 3: In the network S3 (see Fig. 3), the sum

of the sources can not be communicated to the terminals

using scalar/vector linear network coding over any finite

field.

It was proved in [5] that if m < 3 or n < 3, then any

network where every source-terminal pair is connected

allows the sum of the sources to be communicated to

the terminals by scalar/vector linear network coding.

The network S3, shown in Fig. 3, is an example of a

network with m,n ≥ 3 where the sum of the sources can



not be communicated to the terminals by vector linear

network coding even though every source-terminal pair

is connected. This example was also found independently

by Rammoorthy and Langberg [12].

Let P(N ) denote the set of characteristics of fields

over which the sum of the sources can be communicated

to the terminals by scalar/vector linear network coding

in the network N . We have the following results.

Theorem 4: For any two networks N1 and N2,

P(N1 ⊲⊳ N2) = P(N1) ∩ P(N2).

Proof: For any two networks N1 and N2, and for any

field F , it is possible to communicate the sum of the

sources to the terminals in the crisscrossed network

N1 ⊲⊳ N2 by scalar/vector linear network coding over

F if and only if it is possible to communicate the sum

of the sources to the terminals in the individual networks

N1 and N2 by scalar/vector linear network coding over

F . So the result follows. �

Corollary 5: For any network N , and any positive

integers m,n,

P(N ⊲⊳ Km,n) = P(N ).

For any positive integer m, let Π(m) denote the set of
prime factors of m. Then Theorem 1 states that P(Sm) =
Π(m − 2). Theorem 4 then gives

Corollary 6: For any two positive integers m and n,

P(Sm ⊲⊳ Sn) = Π(gcd(m − 2, n − 2)).

Theorem 4 together with the two corollaries allow

construction of a large class of networks having arbitrary

finite P(N ) and arbitrary size. For example, for any

positive m,n > 3, one can construct a network by

crisscrossing S3 with an appropriate complete bipartite

network to get a network with m sources and n terminals

where the sum of the sources can not be communicated

to the terminals by scalar/vector linear network coding

over any field. Such networks can also be constructed

by crisscrossing networks with disjoint P. For instance,

for any two prime numbers p1 and p2, the sum of

the sources can not be communicated to the terminals

using scalar/vector linear network coding in the network

Sp1+2 ⊲⊳ Sp2+2.

IV. DISCUSSION

We have constructed networks where the sum of the

sources can be communicated by scalar/vector linear

network coding only over fields of a specified finite set

v1
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3s 2ss1
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Fig. 3. The network S3

of characteristics. A necessary and sufficient condition

for being able to communicate the sum of the sources

over a field to all the terminals is still not known. Such a

condition for alphabet fields of non-zero as well as zero

characteristic is of interest. Communication of the sum

over fields of zero characteristic like R and C are of

interest, for example, in sensor networks where the real

measurement values are transmitted as analog values.

Many other functions of the source messages may also

be of practical interest.
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