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Abstract

In this thesis, we consider a communication problem over a directed acyclic network of

unit capacity links having m sources and n terminals, where each terminal requires the

sum of symbols generated at all the sources. We assume that each source generates one

i.i.d. random process with uniform distribution over a finite alphabet having an abelian

group structure, and the different source processes are independent. We also assume

that each node in the network is capable of implementing network coding. We further

assume that all the links in the network are error-free and delay free. We call such a

directed acyclic network as a sum-network.

First, we consider the problem of rate-1 linear network code solutions over finite

fields. We construct two special classes of sum-networks. In the first constructed class,

for any finite set of primes, there exists a sum-network which has rate-1 linear network

code solutions for every code length only over finite fields of characteristics belonging to

the given set. In the second constructed class, for any finite set of primes, there exists

a sum-network which has rate-1 linear network code solutions for every code length

only over finite fields of characteristics, which do not belong to the given set. Then we

show that there exists a sum-network, where a scalar linear network code solution not

only depends on the characteristic of the finite field, but also on the size of the field.

We also show that there exist sum-networks where source-terminal pairs connectivity is

insufficient for a rate-1 network code solution for any code length.

Next, we show the solvable equivalence of sum-networks with other type of networks.

Specifically, we show that communicating the sum and communicating any linear func-

tion are solvably (respectively linear solvably) equivalent under fractional network cod-

ing (respectively fractional linear network coding) if the considered alphabet is a module

over a ring and the component linear functions are invertible. Then we show that there

exists a solvably (and linear solvably) equivalent sum-network for any multiple-unicast

network (and more generally, for any acyclic directed network where each terminal re-
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quires a subset of the symbols generated at all the sources). We also show that there

exists a linear solvably equivalent multiple-unicast network for any sum-network.

As a consequence of our solvable equivalence results, some important known results,

for multiple-unicast and directed acyclic networks where each terminal requires a subset

of the symbols generated at all the sources, also hold for sum-networks. Specifically,

we show that for any set of polynomials having integer coefficients, there exists a sum-

network which is scalar linear solvable over a finite field F if and only if the polynomials

have a common root in F. Then we show that there exists a solvable sum-network over a

finite alphabet whose reverse network is not solvable over any finite alphabet. However,

we show that a sum-network and its reverse sum-network are solvably equivalent under

fractional linear network coding. Similarly, we show the insufficiency of linear network

coding and unachievability of the network coding capacity for sum-networks.

Finally, we consider the network coding capacity of sum-networks over a finite field.

However, some of our results also hold over finite alphabets having more general algebraic

structures, such as a module over a ring. The network coding capacity of a sum-network

is upper bounded by the minimum of min-cut capacities of all source-terminal pairs over

any alphabet. We call this upper bound the min-cut bound. We show that the min-cut

bound is always achievable for sum-networks with min{m,n} = 1 over sufficiently large

finite fields. Moreover, scalar linear network coding is sufficient to achieve the min-cut

bound. For sum-networks with min{m,n} = 2, the network coding capacity over every

finite field is known to be equal to the min-cut bound, when the min-cut bound is 1.

For the min-cut bound greater than 1, we give a lower bound on the network coding

capacity. For sum-networks with min{m,n} ≥ 3, we show that there exist sum-networks

where the min-cut bound is not achievable over any alphabet. For this class, when the

min-cut bound is 1, we give a lower bound on the network coding capacity and show

that for sum-networks with min{m,n} = 3, the lower bound is tight. We conjecture

that the network coding capacity of a sum-network with m = n = 3 is either 0, 2/3 or

at least 1.
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Chapter 1

Introduction

The area of Information Theory began with landmark work by Shannon [1]. On the one

hand, Information Theory found applications in as diverse areas as Physics, Economics,

Biology [2, 3, 4, 5, 6, 7], on the other hand, in the area of Communications Engineering,

it laid bedrock for lossless and lossy data compression as well as error correcting codes

for reliable communication over noisy channels. We now have near Shannon capacity

achieving error correcting codes for various channel models [8, 9]. As the mode and means

for communications kept enhancing, the need for a comprehensive theory to address the

problems such as communication over shared channel, communication over a network

also kept increasing. Attempts have been made by researchers to extend the concepts of

Information Theory to address these problems. The branch of Information Theory that

deals with communication networks is known as Network Information Theory [10].

While Information Theory brought many successes for point-to-point single sender-

single receiver communication systems over 50 years of its emergence, it could not do the

same for communication networks. The counter part of the channel capacity in the case

of point-to-point single sender-single receiver is the capacity region (rate region) in the

case of communication networks. In fact, full characterization of capacity region is not

known even for fairly simple communication networks till date [10]. In most part of the

work related to Network Information Theory, communication links have been assumed

to be wireless links and thus erroneous. Please refer the survey paper [11] for more de-

tails about the development of Information Theory over 50 years of its emergence. Also

refer the survey paper, “Information Theory and Communication Networks: An Uncon-

summated Union,” by Ephremides et al. [12] for some of the issues in communication
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networks which have not been fully exploited.

Traditionally, information has been considered as a commodity which can only be

stored and forwarded by the intermediate nodes (nodes other than sources and terminals)

in a network. Consider a communication network having some sources, some terminals,

some intermediate nodes, and error-free links such that each link can carry up to a

fixed maximum amount of information flow/commodity flow. Each source generates one

random process over some finite alphabet. Further, consider that there are multiple

unique source-terminal pairs. A communication problem over such a network where

each terminal requires generated information from its corresponding source is termed as

multicommodity flow problem; and this network is called as a multiple-unicast network.

In a multicommodity flow problem, the task is to determine the maximum concurrent

flows in all the source-terminal pairs. Multicommodity flow problem is also termed as a

multiple-unicast problem in the literature. The special case of a multiple-unicast network

with single source and single terminal is called as a unicast network.

In a unicast network, the maximum amount of information flow/commodity flow

from the source to the terminal is same as the min-cut capacity between the source

and the terminal [13, 14]. The min-cut capacity between the source and the terminal

is defined as follows: all the nodes in a network are partitioned into two subsets such

that the first subset contains the source and the second subset contains the terminal.

In an undirected network, the cut capacity is defined as the sum of capacities of those

edges whose end nodes are in different partitions; while for the directed graphs, the cut

capcity is defined as the sum of capacities of the edges going from the first partition

to the second partition. Min-cut capacity is defined as the minimum of cut capacities

of all possible partitions. For the multicast networks, where there is a single source

and multiple terminals, and all the terminals require the same information generated at

the source, the maximum commodity flow problem is termed as “Steiner tree packing

problem”, which is proven to be NP-hard problem [15].

The seminal work by Alswede et al. [16] demonstrated that mixing information at the

intermediate nodes in a network may provide better throughput. Mixing of information

at the intermidiate nodes and sending it to outgoing links is referred as network coding.

For a multicast network, it has been shown that the capacity (maximum information

flow) under network coding is the minimum of the min-cut capacities between the source
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and each of the terminals [16]. This work caught immediate attention of researchers

from research areas, such as Information Theory, Graph Theory, Complexity Theory as

it showed a different method to attack the problems in Network Information Theory.

Since then, there has been very active research in the area of network coding for the

last 10 years. In fact, it is because of the excitement generated by the concept of

network coding and the hope that it may be useful in solving Network Information

Theory problems that in the editorial article [17], Cai et al. commented, “while the

union between networking and information theory is still not fully consummated, the

two fields do seem to be dating now.” A plethora of research papers have been published

in the area of network coding after its emergence. There has been a number of Ph.D.

thesis also in the area of network coding, such as [18, 19, 20, 21, 22, 23], just to mention

a few.

The problem of function computation over a network, where each terminal requires

certain function of the information generated at the sources, is the most generalized

form of communication problem over a network. Every communication problem over a

network can be modelled as a function computation problem by choosing appropriate

functions for the terminals.

In this thesis, we consider a simple case of the general function computation problem

over a network. We consider the problem of communicating the sum of symbols gen-

erated at all sources to all the terminals over a directed acyclic network using network

coding. We assume that each source generates one independent and identically dis-

tributed (i.i.d.) random process with uniform distribution over a finite alphabet, having

abelian group structure, and the different source processes are independent. We further

assume that all the links in the network are error-free and delay free. Before giving

a brief account of the related work, we present various definitions which will be used

throughout the thesis.

1.1 Definitions

1.1.1 Directed Acyclic Network

A directed acyclic network N is represented by a directed acyclic multigraph G = (V,E),

where V is a finite set of nodes and E ⊆ V × V ×Z+ is the set of edges in the network.
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For any edge e = (vi, vj , ϕ) ∈ E, the node vj is called the head of the edge and the

node vi is called the tail of the edge; and are denoted as head(e) and tail(e) respectively.

In the case of no ambiguity, we will represent an edge (vi, vj , ϕ) simply as (vi, vj). For

each node v, In(v) = {e ∈ E : head(e) = v} is the set of incoming edges to the node v.

Similarly, Out(v) = {e ∈ E : tail(e) = v} is the set of outgoing edges from the node v.

A sequence of nodes (v1, v2, . . . , vς) is called a path, denoted as v1 → v2 → · · · → vς , if

(vi, vi+1) ∈ E for i = 1, 2, . . . , ς − 1.

Among the nodes, a set of nodes S ⊆ V are sources and a set of nodes T ⊆ V are

terminals. We will denote the sources by s1, s2, . . . , s|S| and terminals by t1, t2, . . . , t|T |,

where |.| denotes the cardinality of a set. We assume that a source does not have any

incoming edge and a terminal does not have any outgoing edge. Each source generates a

set of random processes over an alphabet. In general, each terminal in the network may

have a requirement of some part of the symbols or their functions available at a specific

set of sources. Each edge in the network is assumed to be capable of carrying a symbol

from the alphabet in each use. Each edge is used once per unit time and is assumed to

be a error-free and delay-free communication channel.

Depending on the requirement of terminals in a network, we define some classes of

networks in the next section.

1.1.2 Types of Networks

Definition 1. A directed network with some sources and some terminals where each

source generates possibly multiple independent random processes and each terminal re-

quires to recover a set of the random processes generated by the sources is called a Type

I network.

Definition 2. A Type I network where each source generates one random process with all

the source processes being independent and each terminal requires to recover one source

process is called a Type IA network.

The widely studied classes of Multicast networks and Multiple-unicast networks [16,

26, 27, 28, 40, 41] are two subclasses of Type IA networks.

Definition 3. A directed network with some sources and some terminals where each
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source generates possibly multiple independent random processes and each terminal re-

quires to recover a function of the source random processes is called a Type II network.

Though Type II network is defined here for completeness, we will mostly deal with

simpler Type II networks in this thesis.

Definition 4. A Type II network where every source generates one random process and

all the terminals require to recover the same function of the random processes is called

a Type IIA network.

As a special case, we will consider a network having m sources and n terminals

where each source generates one i.i.d. random process with uniform distribution over

an alphabet which is an R-module A, where R is a ring. Let Xi ∈ A be the message

generated at source si for 1 ≤ i ≤ m. Each terminal requires a linear function of the

processes of the form

f(X1, X2, . . . , Xm) = f1(X1) + f2(X2) + . . .+ fm(Xm), (1.1)

where f1, f2, . . . , fm ∈ End(A), End(A) denotes the set of all R-endomorphism of A.

Such a network will be called a linear-network.

Example 1. An example of End(A) is a function f : X −→ MX, where X ∈ A = Rl

and M ∈ Rl×l. For such a function, a linear-network is defined as a network where all

the terminals in the network require a function f(X1, X2, . . . , Xm) = M1X1 + M2X2 +

. . .+MmXm, where X1, X2, . . . , Xm ∈ Rl and M1,M2, . . . ,Mm ∈ Rl×l.

Since a vector space over a field F is a special case of R-module A, a linear network

is defined over a vector space. Similarly, any ring and any field are special cases of an

R-module. So, a linear network is defined over these algebraic structure also. Moreover,

any abelian group is a module over the integer ring. Thus, a linear network is defined

over a Z-module, where Z is the ring of integers.

As a further special case, a linear network where functions f1, f2, . . . , fm in (1.1)

are identity maps will be called as a sum-network. In other words, a sum-network

is a network where all the terminals require to recover X1 + X2 + . . . + Xm, where

X1, X2, . . . , Xm ∈ A.
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A sum-network is defined over a vector space, a ring, a field, and a Z-module. In this

thesis, in the context of sum-networks, we will assume that the alphabet has an abelian

group structure. Further, in most works in this thesis, we will assume that the albhabet

has additional abgebraic structures together with the abelian group structure.

In this thesis, we focus on directed acyclic sum-networks. When we mention sum-

network, it will mean directed acyclic sum-network thoughout the thesis.

1.1.3 Network Coding

As mentioned previously, mixing of information at the intermidiate nodes and sending

it to outgoing links is referred as network coding. For any network, we assume that each

source generates one random process and each terminal has a requirement of only one

source process or a function of the source processes. Any network can be analyzed like

this by adding artificial sources and terminals in the original network. A network code

for a network is an assignment of an edge function for each edge and a decoding function

for each terminal. The most general form of network coding can be captured by a (k, l)

fractional network code over a finite alphabet A. In a (k, l) fractional network code over

A, an edge function fe for an edge e is defined as

fe : Ak → Al, if tail(e) ∈ S (1.2)

and

fe : Al|In(v)| → Al, if tail(e) /∈ S. (1.3)

A decoding function gv for a terminal v is defined as

gv : Al|In(v)| → Ak. (1.4)

A (k, l) fractional network code solution over a finite alphabet A is a (k, l) fractional

network code over A which fulfills the requirement of each terminal in the network k

times in l times uses of the network. The ratio k/l is the rate of a (k, l) fractional network

code. When k = l, a (k, k) fractional network code is referred as k-length network code

and k is referred as code length of the network code. When k = l = 1, a (1, 1) fractional
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network code is referred as scalar network code. When k = l, a (k, k) fractional network

code solution is referred as k-length network code solution. When k = l = 1, a (1, 1)

fractional network code solution is referred as scalar network code solution.

In the context of sum-networks, for clarity, we describe the concept of a (k, l) frac-

tional network code solution as follows. Consider a sum-network having m sources and

n terminals. Let k symbols generated from a finite alphabet, having an abelian group

structure, at each source be grouped to form m k-length vectors Xi = [Xi1Xi2 . . .Xik]
T

for 1 ≤ i ≤ m, where T denotes transpose. Let Rj be the message recovered by ter-

minal tj for 1 ≤ j ≤ n. A (k, l) fractional network code solution for the sum-network

would mean that all the n terminals receive Rj = [
∑m

i=1Xi1

∑m
i=1Xi2 . . .

∑m
i=1Xik]

T

for 1 ≤ j ≤ n.

In the following, we describe the concept of linear network coding.

1.1.3.1 Linear Network Code

A linear network code is a network code where all the edge functions and decoding

functions are linear. In most part of the literature related to network coding, linear

network codes are defined over finite fields [26, 27, 28, 29]. However, linear network

codes can be defined over more general algebraic structures. For example, Dougherty

et al. [34] considered linear network codes over R-modules. We describe linear network

codes over R-modules in terms of linear functions as follows.

Let Ye denotes the message transmitted through an edge e ∈ E and Rv denotes the

message recovered by the terminal v ∈ T . Let the alphabet be a finite module A over a

ring R, the message carried by an edge e using a (k, l)-fractional linear network code is

of the form

Ye =
∑

j:Xj generated at tail(e)

αj,eXj if tail(e) ∈ S, (1.5)

where Xj = Ak, Ye = Al and αj,e ∈ Rl×k.

Ye =
∑

e′:head(e′)=tail(e)

βe′,eYe′ if tail(e) /∈ S, (1.6)

where Ye, Ye′ = Al and βe′,e ∈ Rl×l.
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The message recovered by a terminal v is

Rv =
∑

e∈In(v)

γeYe, (1.7)

where γe ∈ Rk×l and Rv ∈ Ak.

αj,e, βe′,e and γe are called the local coding coefficients.

A (k, l) fractional linear network code solution for a sum-network is defined similar to

the (k, l) fractional network code solution except that now edge functions and decoding

functions are linear as described in (1.5), (1.6) and (1.7). The ratio k/l is the rate of a

(k, l) fractional linear network code. When k = l, a (k, k) fractional linear network code

is referred as k-length linear network code and k is referred as code length of the linear

network code. When k = l = 1, a (1, 1) fractional linear network code is referred as

scalar linear network code. When k = l, a (k, k) fractional linear network code solution

is referred as k-length linear network code solution. When k = l = 1, a (1, 1) fractional

linear network code solution is referred as scalar linear network code solution.

For a non-linear network code solution for a sum-network, the module structure of

the alphabet is irrelevant except for the (abelian) group structure which is necessary for

defining the problem (recovery of the sum at the terminals).

By a linear network code over a finite ring R, we will mean that the finite alphabet

is a finite ring R and the local coding coefficients are also from R.

A rate r is said to be achievable under a class of network codes over a finite alphabet

A if there exists a (k, l) fractional network code solution over A in that class such that

k/l ≥ r.

1.1.3.2 Network Coding Capacity

The network coding capacity of a network over a finite alphabet A is defined to be the

suppremum of the achievable rates under the class of all network codes over A.

It has been shown in [24] that network coding capacity is independent of the alpha-

bet for Type I networks. However, for communicating the arithmetic sum of symbols

generated at all sources to every terminal, network coding capacity may depend on the

alphabet [25]. For the class of linear network codes over a finite alphabet A (such as

a module over a ring), network coding capacity is referred as linear network coding ca-
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pacity over A. It has been shown in [34] that the linear network coding capacity may

depend on the alphabet.

1.1.3.3 Path Gain

Given a linear network code for a network,
∏ς−2

i=1 β(vi,vi+1),(vi+1,vi+2) is called the path gain

of the path v1 → v2 → · · · → vς where β(vi,vi+1,(vi+1,vi+2) for 1 ≤ i ≤ ς − 2 are the local

coding coefficients of the successive edge pairs.

1.1.3.4 Solvability

A network is said to be solvable over a finite alphabet A if it has a rate-1 network code

solution over A for some code length. For a network, existence of a rate-1 network code

solution over A for some code length is termed as solvability over A of the network.

A network is said to be solvable if it has a rate-1 network code solution over some

alphabet for some code length. For a network, existence of a rate-1 network code solution

over some alphabet for some code length is termed as solvability of the network.

A network is said to be scalar solvable over a finite alphabet A if it has a scalar

network code solution over A. For a network, existence of a scalar network code solution

over A is termed as scalar solvability over A of the network.

A network is said to be scalar solvable if it has a scalar network code solution over

some alphabet. For a network, existence of a scalar network code solution over some

alphabet is termed as solvability of the network.

Similarly linear solvable over A, linear solvability over A, linear solvable, linear solv-

ability, scalar linear solvable over A, scalar linear solvability over A, scalar linear solv-

able, and scalar linear solvability are defined for the case of linear network codes.

We note that a scalar network code solution (scalar linear network code solution

respectively) over a finite alphabet implies a k-length network code solution (k-length

linear network code solution respectively) over the same finite alphabet for every code

length k. However, a k-length network code solution for k greater than 1 (respectively

k-length linear network code solution for k greater than 1) over a finite alphabet does

not imply a scalar linear network code solution over the same finite alphabet [32].

We also note that a Type I network having k-length network code solution over a finite
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alphabet A, using non-linear network coding, has a scalar network code solution over any

finite alphabet of size |Ak|. However, this is true for sum-networks only when both A

and the finite alphabet of size |Ak| have an algebraic structure where the operation“sum”

is well defined.

1.1.3.5 Solvably Equivalent Networks

Two networks are said to be solvably equivalent under (k, l) fractional network coding

when the first network has a (k, l) fractional network code solution over a finite alphabet

if and only if the other network has a (k, l) fractional network code solution over the

same alphabet.

Two networks are said to be solvably equivalent when the first network has a rate-1

network code solution over a finite alphabet for some code length if and only if the other

network has a rate-1 network code solution over the same finite alphabet for the same

code length.

Two networks are said to be scalar solvably equivalent when the first network is scalar

solvable over some finite alphabet if and only if the other network is scalar solvable over

the same finite alphabet.

Similarly, the terms linear solvably equivalent under (k, l) fractional network coding,

linear solvably equivalent, and scalar linear solvably equivalent are defined for the case

of linear network codes.

1.1.3.6 Reversibility

Given a network N , its reverse network N ′ is defined as the network with the same set

of vertices, the edges reversed keeping their capacities same, and the roles of sources and

terminals interchanged.

A network N is said to be reversible under (k, l) fractional network coding when the

network N has a (k, l) fractional network code solution over some finite alphabet if and

only if its reverse network N ′ has a (k, l) fractional network code solution over the same

finite alphabet. Existence of a reversible network under (k, l) fractional network coding

is termed as reversibility under (k, l) fractional network coding for the network.

A network N is said to be reversible when the network N has a rate-1 network code
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solution over some finite alphabet for some code length if and only if its reverse network

N ′ has a rate-1 network code solution over the same finite alphabet for the same code

length. Existence of a reversible network is termed as reversibility for the network.

A network N is said to be reversible under scalar network coding when the network

N has a scalar network code solution over some finite alphabet if and only if its reverse

network N ′ has a scalar network code solution over the same finite alphabet. Existence

of a reversible network under scalar network coding is termed as scalar reversibility for

the network.

Similarly, the terms linearly reversible under (k, l) fractional linear network coding,

linear reversibility under (k, l) fractional linear network coding, linearly reversible, linear

reversibility, linearly reversible under scalar network coding, and scalar linear reversibility

are defined for the case of linear network codes.

1.2 Related Work

As we have mentioned earlier, the area of network coding began with seminal work by

Ahlswede et al. [16]. It has been shown by Li et al. [26] that scalar linear network

coding over a “sufficiently” large finite field is sufficient to achieve the capacity of a

multicast network. Koetter and Médard [27] have proposed an algebraic formulation

of the linear network coding problem and related the network coding problem with

determining roots of a set of polynomials. Jaggi et al. [28] have given a polynomial

time algorithm to construct a linear network code for a multicast network. Tracy Ho. et

al. [29] have shown that even when the local coding coefficients are chosen randomly and

in a distributed fashion, the multicast capacity can be achieved with high probability.

It is an open problem to find the capacity of an arbitrary multicast network where some

or all nodes are not capable to implement network coding.

Subsequent to the above works, some authors have considered more general networks

than multicast networks [30, 31, 32, 34, 34]. However, the requirements of the terminals

have been restricted largely to subsets of the source symbols/processes. In the following,

we outline some major results known till date.

Rasala Lehman et al. [30] have given a classification of the complexity of network

coding problems and have shown that there exists an instance of Type I network where
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determining a scalar linear network code solution is an NP-hard problem. Langberg et

al. [31] have shown that that there exists an instance of Type I network where deter-

mining a fractional linear network code solution is also an NP-hard problem.

It has been shown in [32] by construction that for Type I networks in general, scalar

linear network coding is not sufficient in the sense that there exists a rate-1 linear network

code solution of code length greater than 1 though there does not exists a scalar linear

network code solution over any finite alphabet. Similar result has also been reported by

Riis [33], showing the insufficiency of scalar linear network coding over binary alphabet

field for an example acyclic directed network.

It has been shown in [34] that even fractional linear network coding is insufficient

for Type I networks. They have also shown the insufficiency of fractional linear network

coding over more general alphabets such as a module over a ring as well as for more

general linear network codes [35]. It is an open problem to find necessary and sufficient

conditions for linear solvabilty of Type I networks. It has been shown in [36] that for

every set of integer polynomial equations, there exists a directed acyclic network which

is scalar linear solvable over a finite field if and only if the set of polynomial equations

has a solution over the same finite field. It has been shown in [24] that network coding

capacity is independent of the alphabet for Type I networks. Dougherty et al. [38] have

shown that there exists an instance of network coding problem where network coding

capacity is unachievable.

It has been shown in [39, 40] that if a multiple-unicast network is scalar linear

solvable over a finite alphabet then its reverse multiple-unicast network is also scalar

linear solvable over the same finite alphabet. It has also been shown in [40] that there

exists a multiple-unicast network which is scalar solvable over binary alphabet using

non-linear network coding but its reverse multiple-unicast network is not scalar solvable

over the binary alphabet. It has been shown in [41] that there exists a scalar solvable

multiple-unicast network whose reverse multiple-unicast network is not scalar solvable

over any finite alphabet. Necessary and sufficient conditions for scalar (linear) solvability

of multiple-unicast networks are not yet known. For further information related to

network coding, we refer interested readers to the following books [42, 43, 44, 45].

In this thesis, we consider a directed acyclic network with some sources and some

terminals where each terminal needs to recover the sum of the symbols generated by
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the sources. In general, recovery of a wide class of functions of the source symbols may

be of relevance in various applications. For instance, a sink node in a sensor network

may require the average temperature (or other parameters) sensed by the sensors; or

a network management node may require the average or maximum traffic at different

parts of the network that are measured by different local nodes.

The problem of function computation over a network in general has been addressed

in different contexts and in different flavours in the past. There are information theoretic

works to characterize the achievable rate-region of various small networks with correlated

sources [46, 47, 48, 49, 50]. A large body of work exists in determining the scaling laws

for communication requirements in computing functions over large networks (see, for

example, [51, 52, 53, 54, 55]).

Recently, there has been some work in the context of network coding for function

computation over a network. Ramamoorthy [56] has considered the problem of comput-

ing sum of symbols generated at sources by every terminal in a directed acyclic network

network. In such a network with only two sources or only two terminals, he has shown

that this problem is scalar linear solvable over every finite field if and only if every

source has a path to every terminal. There has also been some work by other authors

in parallel to the work in this thesis. Langberg et al. [57] have shown that for a directed

acyclic network having 3 sources and 3 terminals, if every source is connected with every

terminal by at least two distinct paths then it is possible to communicate the sum of

symbols generated at all sources to every terminal using scalar linear network coding.

Appuswami et al. [25, 58] have considered the problem of communicating more general

functions, for example, arithmetic sum (unlike sum as in finite fields), to one terminal.

1.3 Motivation for the Thesis

In any theoretical work, the motivation for it is driven by intellectual curiosity to study

structures, to generalize existing results, and to find analogous results in different prob-

lem set-ups. The motivation for the work in this thesis has been the same. Specifically,

the initial work in this thesis began with an attempt to generalize the work by Ra-

mamoorthy [56]. This is the first paper where a function (sum of the source symbols)

computation problem is addressed using network coding. The result in [56] is specific for
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directed acyclic networks having only two sources or two terminals. During the course

of investigation, it turned out that the result in [56] could not be generalized for directed

acyclic networks having more than two sources and more than two terminals. We then

investigated some structural properties of directed acyclic networks in the context of

communicating the sum of symbols generated at all sources to every terminal. Some

of the results in this thesis have been obtained as a result of that investigation. The

motivation for further work in this thesis has been to investigate analogous results to the

existing results for Type I and Type IA networks. The structural properties of directed

acyclic networks, in the context of communicating the sum of symbols generated at all

sources to every terminal, are not yet completely understood, and there are still a lot

of interesting open problems, to work on, along the lines of the work in this thesis. We

would like to explore these open problems in future.

1.4 Contributions of the Thesis

This thesis presents the following contributions.

• We construct two special classes of sum-networks. In the first class, for any finite

set of primes, we prove that there exists a sum-network which has a rate-1 linear

network code solution for every code length only over finite fields of characteristics

belonging to the given set. In the second class, for any finite set of primes, we

prove that there exists a sum-network which has a rate-1 linear network code

solution for every code length only over finite fields of characteristics which do

not belong to the given set. These results show that unlike sum-networks with

two sources or two terminal, where a rate-1 linear network code solution can be

found over every field (follows from [56]), a rate-1 linear network code solution

for sum-networks with more than two sources and more than two terminal may

depend on the characteristic of the field.

• It is known that for sum-networks having two sources or two terminal, source-

terminal pairs connectivity is a necessary as well as sufficient condition for a rate-

1 linear network code solution. We show that there exist sum-networks, with

more than two sources and more than two terminals, where it is not possible
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to communicate the sum of symbols generated at all sources to every terminal

using a rate-1 network code of any code length even though there is a path from

every source to every terminal. Thus the result for sum-networks with two sources

and two terminals can not be generalized for sum-networks having more than two

sources and more than two terminals.

• We show that the problem of communicating the sum of symbols generated at all

the sources to all the terminals is solvably equivalent (as well as linear solvably

equivalent) to communicating any linear function of the symbols if the considered

alphabet is a module over a ring and the component linear functions are invertible.

It is not known whether a sum-network and its corresponding linear-network, where

some of the component linear functions are not invertible, are solvably equivalent.

• We show by explicit construction that for any given directed acyclic Type I net-

work, there exists a sum-network which is solvable (linear solvable respectively)

over a finite alphabet if and only if the original network is solvable (linear solvable

respectively) over the same finite alphabet. Further, if the Type I network is a

multiple-unicast network, then the reverse of the equivalent sum-network is also

solvably equivalent (linear solvably equivalent respectively) to the reverse of the

multiple-unicast network.

• We show, again by construction, that for any sum-network, there exists a linear

solvably equivalent multiple-unicast network. It remains an open problem to prove

or disprove that for any sum-network, there exists a solvably equivalent multiple-

unicast network.

• Using our construction and an existing result for Type I networks, we prove that

for any set of polynomials having integer coefficients there exists a sum-network

which is scalar linear solvable over a finite field F if and only if the polynomials

have a common root over F.

• We propose a (k, n) fractional linear network code construction for the reverse

network of any network from a (k, n) fractional linear network code for the original

network and show that this construction provides a (k, n) fractional linear network

code solution for the reverse sum-network if and only if the original code provides
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a (k, n) fractional linear solution to the original sum-network. This code turns out

to be the same as the dual code defined in [39] for the special case of of reversibility

under scalar linear network coding. However, our treatment is more general and

description is more elementary.

• When non-linear codes are permitted, we show that there exists a sum-network

which is solvable over a finite alphabet even though the reverse network is not

solvable over any finite alphabet.

• We show that linear network coding is not sufficient by constructing a solvable

sum-network which does not have a rate-1 linear network code solution over any

alphabet for any code length.

• We show that there exists a sum-network whose network coding capacity is not

achievable.

• We investigate the network coding capacity of sum-networks. The exact charac-

terization of the network coding capacity seems to be difficult. We present some

bounds in terms of number of sources, number of terminals and minimum of min-

cut capacities of all source-terminal pairs. We show that, in some special cases,

our given bounds are tight.

1.5 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we consider the problem of

rate-1 linear network code solutions over a finite field. First, we construct sum-networks

where rate-1 linear network code solutions depend only on the characteristic of the finite

field. Then we show that there exists a sum-network where a scalar linear network code

solution not only depends on the characteristic of the finite field but also on the field

size. We also show that source-terminal connectivity is insufficient for the rate-1 network

code solution for sum-networks.

In Chapter 3, we show solvable equivalence of sum-networks with other type of

networks. Specifically, we show that communicating the sum and communicating any

linear function of the sources are solvably equivalent under fractional network coding

32



if the considered alphabet is a module over a ring and the component linear functions

are invertible. Then we show that there exists a solvably (and linear solvably) equiva-

lent sum-network for any multiple-unicast network (and more generally, for any Type I

networks). We also show that there exists a linear solvably equivalent multiple-unicast

network for every sum-network.

In Chapter 4, first, we show that for any set of polynomials having integer coefficients,

there exists a sum-network which is scalar linear solvable over a finite field F if and

only if the polynomials have a common root in F. Then we show that there exists a

solvable sum-network whose reverse network is not solvable. However, we show that

a sum-network and its reverse sum-network are solvably equivalent under fractional

linear network coding. We also show the insufficiency of linear network coding and

unachievability of the network coding capacity for sum-networks.

In Chapter 5, we consider the network coding capacity of sum-networks over a finite

field. We present some bounds on the network coding capacity in terms of number of

sources, number of terminals, and minimum of min-cut capacities of all source-terminal

pairs. In some cases, we show that the presented bounds are tight. We conjecture that

the network coding capacity of a sum-network with three sources and three terminals is

either 0, 2/3 or at least 1.

We summarize the thesis with directions for future work in Chapter 6.

33





Chapter 2

Rate-1 Network Code Solutions

In this chapter, we consider the problem of rate-1 network code solutions of sum-networks

over a finite field. We will be dealing mainly with rate-1 linear network code solutions

except in the Section 2.4 where we remove linearity restriction and consider non-linear

rate-1 network code solutions also. Recall that by solvability (linear solvability respec-

tively) of a network, we mean that the network has a rate-1 network code solution (rate-1

linear network code solution respectively) over some finite alphabet for some code length.

It has been shown in [56] that sum-networks with either two sources or two terminals,

the sum of symbols generated at all sources can be communicated to every terminal

using a scalar linear network code over every finite field if and only if there is at-least

one path from every source to every terminal. Note that the sum of symbols generated

at all sources can be communicated to every terminal using some non-zero rate network

code only if there is at least one path from every source to every terminal. The result

in [56] is a very strong result as it proves that the solvability of a sum-network having

either two sources or two terminals does not depend on the alphabet field, but only

depends on the source-terminal connectivity. The main contribution of this chapter is

the construction of sum-networks which are solvable only over finite fields of specific

characteristics.

We first address the problem of rate-1 linear network code solutions of sum-networks

having more than two sources and more than two terminals. We present two special

classes of sum-networks. In the first constructed class, for any finite set of prime numbers,

there exists a sum-network which has rate-1 linear network code solutions for every
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code length only over finite fields of characteristics from the given set. In the second

constructed class, for any finite set of prime numbers, there exists a sum-network which

has rate-1 linear network code solutions for every code length only over finite fields of

characteristics other than those from the given set. In the light of these results, a natural

question arises whether all rate-1 linear network code solutions of a sum-network depend

only on the characteristic of the finite field and not on the size of the finite field. We

answer this question in negation by constructing a sum-network where a scalar linear

network code solution not only depends on the characteristic of the finite field but also

on the size of the field.

Next, we deal with the question whether having a path from every source to ev-

ery terminal is sufficient for the linear solvability of sum-networks having more than two

sources and more than two terminals. We answer this question in negation by construct-

ing sum-networks which do not have a rate-1 linear network code solution over any field

for any code length even though there is a path from every source to every terminal.

Interestingly, we show that such sum-networks exist for every m > 2 and n > 2, where

m is the number of sources and n is the number of terminals. Thus the result in [56]

does not generalize for sum-networks having more than two sources and more than two

terminals in the case of linear network coding.

Finally, we show that having a path from every source to every terminal is not

sufficient even for the solvability of sum-networks having more than two sources and

more than two terminals. In this case also, there exist sum-networks for all m > 2 and

n > 2 which do not have a rate-1 network code solution over any finite alphabet for any

code length. Thus it follows that the result in [56] does not generalize even by using

non-linear network codes.

We conclude this chapter by giving a summary of the results in this chapter and

posing some open problems based on the work in this chapter.

In this chapter, we denote the finite field alphabet by Fq where q is the size of the

finite field. We drop the subscript q and denote the finite field by F in case we do not

specify the size of the finite field. Further, p, possibly with subscripts, will denote a

positive prime integer.
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2.1 Linear Network Code Solutions over Finite Fields

of Characteristics from a Finite Set of Prime

Numbers

vv

2 m

1 2

t1 t2 tm

u1 u2

s1 s sm−1 s

m−1t

m−1v

m−1u

Figure 2.1: The network Sm where m = p1p2 . . . pλ + 2. The sum-network Sm has

rate-1 linear network code solutions for every code length only over finite fields having

characteristics from the set {p1, p2, . . . , pλ}.

We show that for any finite set of positive prime numbers P, there exists a sum-network

of unit-capacity edges which has a rate-1 linear network code solution for every code

length over a finite field if and only if the characteristic of the finite field belongs to P.

We prove this result by constructing a network Sm shown in Fig. 2.1.

The network Sm
△
= (V (Sm), E(Sm)) has four layers of vertices V (Sm) = S∪U∪V ∪T .

The first layer of nodes are the m sources S
△
= {s1, s2, . . . , sm}. The second and third

layers have m − 1 nodes each, and they are denoted as U
△
= {u1, u2, . . . , um−1} and

V
△
= {v1, v2, . . . , vm−1} respectively. The last layer consists of the m terminals T

△
=

{t1, t2, . . . , tm}. For every i = 1, 2, . . . , m − 1, there is an unit capacity edge from si to

ui, from ui to vi, and from vi to ti. That is, (si, ui), (ui, vi), (vi, ti) ∈ E(Sm) for each
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i = 1, 2, . . . , m− 1. For every i, j = 1, 2, . . . , m− 1, i 6= j, there is an unit capacity edge

from si to tj. Finally, for every i = 1, 2, . . . , m− 1, there is an unit capacity edge from

sm to ui and from vi to tm. So, the set of edges is given by

E(Sm) = ∪m−1
i=1 {(si, ui), (ui, vi), (vi, ti)}

∪{(si, tj) : i, j = 1, 2, . . . , m− 1, i 6= j}

∪{(sm, ui) : i = 1, 2, . . . , m− 1}

∪{(vi, tm) : i = 1, 2, . . . , m− 1}.

Theorem 1. For any finite, possibly empty, set P = {p1, p2, . . . , pλ} of positive prime

numbers, there exists a sum-network of unit-capacity edges which, for any k ≥ 1, has a

k-length linear network code solution over a finite field if and only if the characteristic

of the finite field belongs to P.

Proof. Define m = p1p2 . . . pλ + 2, where the empty product is assumed to be 1. We

prove that the network Sm satisfies the condition in the theorem. First, note that every

source-terminal pair in the network Sm is connected, which is obviously a necessary

condition for being able to communicate the sum of symbols generated at all sources to

each terminal over any field using any non-zero rate network code.

First we prove that if, for any code length k, it is possible to communicate the sum

of symbols generated at all sources using a k-length linear network code over Fq to all

the terminals in Sm, then the characteristic of Fq must be in P. Let the message carried

by an edge e be denoted by Ye. For i = 1, 2, . . . , m, the message vector generated by

the source si be denoted by Xi ∈ Fk
q . For i = 1, 2, . . . , m, terminal ti computes a linear

combination Ri of the received vectors.

Local coding coefficients used at different layers in the network are denoted by dif-

ferent symbols for clarity. The message vectors carried by different edges and the corre-

sponding local coding coefficients are as below.

Y(si,tj) = αi,jXi for 1 ≤ i, j ≤ m− 1, i 6= j, (2.1a)

Y(si,ui) = αi,iXi for 1 ≤ i ≤ m− 1, (2.1b)

Y(sm,ui) = αm,iXm for 1 ≤ i ≤ m− 1, (2.1c)

Y(ui,vi) = βi,1Y(si,ui) + βi,2Y(sm,ui) for 1 ≤ i ≤ m− 1. (2.1d)
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Here all the coding coefficients αi,j, βi,j, γi,j are k× k matrices over Fq, and the message

vectors Xi and the messages Y(.,.) carried by the links are length-k vectors over Fq.

The message vectors computed at terminals are as follows.

Ri =

m−1∑

j=1

j 6=i

γj,iY(sj ,ti) + γi,iY(vi,ti) for 1 ≤ i ≤ m− 1, (2.2a)

Rm =
m−1∑

j=1

γj,mY(vj ,tm). (2.2b)

Without loss of generality (w.l.o.g.), we assume that

Y(vi,ti) = Y(vi,tm) = Y(ui,vi).

By assumption, each terminal decodes the sum of all the sources. That is,

Ri =

m∑

j=1

Xj for i = 1, 2, . . . , m, (2.3)

for all values of X1, X2, . . . , Xm ∈ Fk
q .

From (2.1) and (2.2), we have

Ri =
m−1∑

j=1

j 6=i

γj,iαj,iXj + γi,iβi,1αi,iXi + γi,iβi,2αm,iXm, (2.4)

for i = 1, 2, . . . , m− 1, and

Rm =

m−1∑

j=1

γj,mβj,1αj,jXj +

m−1∑

j=1

γj,mβj,2αm,jXm. (2.5)

Since (2.3) is true for all values of X1, X2, . . . , Xm ∈ Fk
q , (2.4) and (2.5) imply

γj,iαj,i = I for 1 ≤ i, j ≤ m− 1, i 6= j, (2.6)

γi,iβi,1αi,i = I for 1 ≤ i ≤ m− 1, (2.7)

γi,iβi,2αm,i = I for 1 ≤ i ≤ m− 1, (2.8)

γi,mβi,1αi,i = I for 1 ≤ i ≤ m− 1, (2.9)
m−1∑

i=1

γi,mβi,2αm,i = I, (2.10)

where I denotes the k × k identity matrix over Fq. All the coding matrices in (2.6),

(2.7), (2.8), (2.9) are invertible since the right hand side of the equations are the identity
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matrices. Equations (2.7) and (2.8) imply βi,1αi,i = βi,2αm,i for 1 ≤ i ≤ m−1. So, (2.10)

gives

m−1∑

i=1

γi,mβi,1αi,i = I. (2.11)

Now, using (2.9), we get

m−1∑

i=1

I = I, (2.12)

⇒ (m− 1)I = I, (2.13)

⇒ (m− 2)I = 0. (2.14)

This is true if and only if the characteristic of Fq divides m− 2. So, the sum of symbols

generated at all sources can be communicated to all the terminals in Sm by a k-length

linear network code only if the characteristic of Fq belongs to P.

Now, if the characteristic of Fq belongs to P, then for any code length k, every coding

matrix in (1.2)-(1.6) can be chosen to be the identity matrix. The terminals then can

recover the sum of symbols generated at all sources by taking the sum of the incoming

messages, i.e., by taking γj,i = I for 1 ≤ j ≤ m − 1 and 1 ≤ i ≤ m in (1.5) and (1.7).

This completes the proof. �

Corollary 2. For any prime number p, the sum-network network Sp+2 has a rate-1

linear network code for every code length only over finite fields of characteristic p.

When the set P is empty, Theorem 1 gives, as a special case, a network where the

the sum of symbols generated at all sources can not be communicated to every terminal

using a rate-1 linear network code over any field for any code length even though every

source-terminal pair is connected.

Corollary 3. In the network S3 (see Fig. 2.2), the sum of symbols generated at all

sources can not be communicated to every terminal using a rate-1 linear network code

over any finite field.

It was proved in [56] that if m < 3 or n < 3, then any network where every source-

terminal pair is connected allows the sum of symbols generated at all sources to be

communicated to every terminal by scalar linear network coding. The network S3,
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shown in Fig. 2.2, is an example of a sum-network with m,n > 2 where the sum of

the sources can not be communicated to the terminals using any rate-1 linear network

code even though every source-terminal pair is connected. This example was also found

independently by Rammoorthy and Langberg [59].

v

1

2

u2

s2s3

u

s1

v1

t1 3t t2

Figure 2.2: A sum-network S3 which does not have any rate-1 linear network code

solution over any field for any code length even though every source-terminal pair is

connected.

Now we define a method of combining two networks to obtain a larger network. We

call this method crisscrossing. Let N1 be a directed acyclic network with some sources

S1 ⊆ V (N1) and some terminals T1 ⊆ V (N1). Similarly let N2 be a directed acyclic

network with some sources S2 ⊆ V (N2) and some terminals T2 ⊆ V (N2). We assume

that the nodes of N1 and N2 are labeled such that V (N1)∩V (N2) = φ. The crisscrossed

network N1 ⊲⊳ N2 has the node set V (N1 ⊲⊳ N2) = V (N1) ∪ V (N2), and the edge set

E(N1 ⊲⊳ N2) = E(N1) ∪ E(N2) ∪ (S1 × T2) ∪ (S2 × T1). That is, other than the edges

of N1 and N2, their crisscross has edges from the sources of N1 to the terminals of N2,

and from the sources of N2 to the terminals of N2.

We illustrate the idea of crisscrossing with an example. A complete bipartite graph

Km,n has m nodes in one partition and n nodes in the other. We assume that the

m nodes in one partition are sources and the n nodes in the other partition are the
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Figure 2.3: The network S4 ⊲⊳ K2,3.

terminals in the corresponding network. All the edges are assumed to be unit capacity

edges which are directed from the source partition to the terminal partition. Clearly,

in the network Km,n, each source can broadcast its message to all the terminals and

each terminal can thus recover any function of the source messages per network use. In

particular, each terminal can recover the sum of the source messages per network use.

In other words, sum-network Km,n is scalar linear solvable over every finite field. The

crisscross of the networks S4 and K2,3 is shown in Fig. 2.3.

Let P(N ) denotes the set of characteristics of fields such that the sum-network N

has a rate-1 linear network code solution for every code length only over a finite field

having characteristic from the set P(N ). We have the following results.

Theorem 4. For any two sum-networks N1 and N2,

P(N1 ⊲⊳ N2) = P(N1) ∩ P(N2).

Proof. For any two networks N1 and N2, and for any field F, the crisscrossed sum-

network N1 ⊲⊳ N2 has a rate-1 linear network code solution for every code length over F

if and only if the individual sum-networks N1 and N2 have a rate-1 linear network code

solution for every code length over F. So the result follows. �
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Corollary 5. For any sum-network N , and any positive integers m,n,

P(N ⊲⊳ Km,n) = P(N ).

For any positive integer m, let Π(m) denotes the set of prime factors of m. Then

Theorem 1 states that P(Sm) = Π(m− 2). Theorem 4 then gives

Corollary 6. For any two positive integers m and n,

P(Sm ⊲⊳ Sn) = Π(gcd(m− 2, n− 2)).

Theorem 4 together with the two corollaries allow construction of a large class of

sum-networks having arbitrary finite P(N ).

2.2 Linear Network Code Solutions over Finite Fields

of Characteristics from a Co-finite Set of Prime

Numbers

vv

2

t1 t2 tmm−1t

vm−11 2

m−1uu2u1

s1 s m−1s

Figure 2.4: The sum-network S∗
m where m = p1p2 . . . pλ + 2. The sum-network S∗

m has

rate-1 linear network code solutions for every code length only over finite fields whose

characteristics do not belong the set {p1, p2, . . . , pλ}.
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We show that for any finite set of positive prime numbers P, there exists a sum-network of

unit-capacity edges which has a rate-1 linear network code solution for every code length

over a finite field if and only if the characteristic of the finite field does not belong to P.

We prove this result by constructing a network S∗
m shown in Fig. 2.1. The description

of the network S∗
m is as follows. For m ≥ 3, the network S∗

m

△
= (V (S∗

m), E(S∗
m)) has four

layers of vertices V (S∗
m) = S ∪U ∪ V ∪ T . The first layer of nodes are the m− 1 sources

S
△
= {s1, s2, . . . , sm−1}. The second and third layers have m − 1 nodes each, and they

are denoted as U
△
= {u1, u2, . . . , um−1} and V

△
= {v1, v2, . . . , vm−1} respectively. The last

layer consists of the m terminals T
△
= {t1, t2, . . . , tm}. For every i = 1, 2, . . . , m − 1,

there is an unit capacity edge from si to ti, ui to vi, vi to ti, and from vi to tm. That

is, (si, ti), (ui, vi), (vi, ti), (vi, tm) ∈ E(S∗
m) for each i = 1, 2, . . . , m − 1. Also for every

i, j = 1, 2, . . . , m− 1, i 6= j, there is an unit capacity edge from si to uj. So, the set of

edges is given by

E(S∗
m) = ∪m−1

i=1 {(si, ti), (ui, vi), (vi, ti), (vi, tm)}

∪ {(si, uj) : i, j = 1, 2, . . . , m− 1, i 6= j}.

Theorem 7. For any finite set P = {p1, p2, . . . , pλ} of positive prime numbers, there

exists a sum-network of unit-capacity edges which, for any k ≥ 1, has a k-length linear

network code solution over a finite field if and only if the characteristic of the finite field

does not belong to P.

Proof. Consider the network S∗
m shown in Fig. 2.4 for m = p1p2 . . . pλ +2. We will show

that this network satisfies the condition of the theorem.

We note that every source-terminal pair in the network S∗
m is connected which is a

necessary condition for being able to communicate the sum of the source messages to

each terminal node over any field using any non-zero rate network code.

We now prove that if it is possible to communicate the sum of the symbols generated

at all sources using a k-length linear network code over Fq to all the terminals in S∗
m,

then the characteristic of Fq must not divide m− 2. Let the message carried by an edge

e is denoted by Ye. For i = 1, 2, . . . , m− 1, the message vector generated by the source

si is denoted by Xi ∈ Fk
q . Each terminal ti computes a linear combination Ri of the

received vectors.
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The message vectors carried by different edges and the corresponding local coding

coefficients are as below.

Y(si,ti) = αi,iXi for 1 ≤ i ≤ m− 1, (2.15a)

Y(si,uj) = αi,jXi for 1 ≤ i, j ≤ m− 1, i 6= j, (2.15b)

Y(ui,vi) =
m−1∑

j=1

j 6=i

βj,iY(sj ,ui) for 1 ≤ i ≤ m− 1, (2.15c)

and

Ri = γi,1Y(si,ti) + γi,2Y(vi,ti) for 1 ≤ i ≤ m− 1, (2.16a)

Rm =

m−1∑

j=1

γj,mY(vj ,tm). (2.16b)

Here all the coding coefficients αi,j, βi,j, γi,j are k× k matrices over Fq, and the message

vectors Xi and the messages carried by the links Y(.,.) are length-k vectors over Fq.

W.l.o.g., we assume that Y(vi,ti) = Y(vi,tm) = Y(ui,vi) and αi,i = αi,j = I for 1 ≤ i, j ≤

m− 1, i 6= j, where I denotes the k × k identity matrix.

By assumption, each terminal decodes the sum of all the source messages. That is,

Ri =

m−1∑

j=1

Xj for i = 1, 2, . . . , m (2.17)

for all values of X1, X2, . . . , Xm−1 ∈ Fk
q .

From (2.15) and (2.16), we have

Ri =
m−1∑

j=1

j 6=i

γi,2βj,iXj + γi,1Xi (2.18)

for i = 1, 2, . . . , m− 1, and

Rm =
m−1∑

i=1

γi,m




m−1∑

j=1

j 6=i

βj,iXj




=
m−1∑

j=1




m−1∑

i=1
i6=j

γi,mβj,i


Xj. (2.19)
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Since (2.17) is true for all values of X1, X2, . . . , Xm ∈ Fk
q , (2.18) and (2.19) imply

γi,2βj,i = I for 1 ≤ i, j ≤ m− 1, i 6= j, (2.20)

γi,1 = I for 1 ≤ i ≤ m− 1, (2.21)
m−1∑

i=1
i6=j

γi,mβj,i = I for 1 ≤ j ≤ m− 1. (2.22)

All the coding matrices in (2.20), (2.21) are invertible since the right hand side of the

equations are the identity matrices. Equation (2.20) imply βj,i = βo,i for 1 ≤ i, j, o ≤

m − 1, j 6= i 6= o. So, let us denote all the equal co-efficients βj,i; 1 ≤ j ≤ m − 1, j 6= i

by βi. Then (2.22) can be rewritten as

m−1∑

i=1
i6=j

γi,mβi = I for 1 ≤ j ≤ m− 1. (2.23)

Equation (2.23) implies

γi,mβi = γj,mβj for 1 ≤ i, j ≤ m− 1, i 6= j.

Then (2.23) gives

(m− 2)γ1,mβ1 = I

⇒ γ1,mβ1 = (m− 2)−1I. (2.24)

Equation (2.24) implies that the matrix γ1,mβ1 is a diagonal matrix and all the

diagonal elements are equal to (m − 2)−1. But the inverse of (m − 2) exists over the

finite field if and only if the characteristic of the field does not divide (m− 2). So, the

sum of the source messages can be communicated in S∗
m by a k-length linear network

code over Fq only if the characteristic of Fq does not divide (m− 2).

Now, if the characteristic of Fq does not divide (m − 2), then for any code length

k, every coding matrix in (2.15a)-(2.15c) can be chosen to be the identity matrix. The

terminals t1, t2, · · · , tm−1 then can recover the sum of the source messages by taking the

sum of the incoming messages, i.e., by taking γi,1 = γi,2 = I for 1 ≤ i ≤ m−1 in (2.16a).

Terminal tm recovers the sum of the source messages by taking γi,m, 1 ≤ i ≤ m − 1 in

(2.16b) as diagonal matrices having diagonal elements as inverse of (m−2). The inverse

of (m− 2) exists over Fq because the characteristic of Fq does not divide (m− 2). This

completes the proof. �
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Corollary 8. For any prime number p, the sum-network S∗
p+2 has a rate-1 linear network

code solution for every code length only over fields whose characteristic is different from

p.

Remark 1. We note that the alphabet field in Theorems 1 and 7 may also be an infinite

field of non-zero characteristic. In particular, the theorems also apply to the field of

rationals Fq(X) over Fq. So, the sum-network in Theorem 1 is also solvable using linear

convolutional network code over Fq if and only if the characteristic of Fq is in P and

the sum-network in Theorem 7 is also solvable using linear convolutional network code

over Fq if and only if the characteristic of Fq is not in P respectively. Please refer [35]

for the definition of convolutional network code.

2.3 Dependency on the Alphabet Size under Scalar

Linear Network Coding

In this section, we show that there exists a sum-network where a scalar linear network

code solution not only depends on the characteristic of the alphabet field but also on the

alphabet size. First we construct a sum-network X3 which does not admit a scalar linear

network code solution over F2, while it admits a scalar linear network code solution over

every other finite field. Then we show that sum-network S4 ⊲⊳ X3 has a scalar linear

network code solution if and only if the characteristic of the finite field is 2 and the size

of the finite field is 2k, where k is greater than 1. The network X3 is shown in Fig. 2.5.

The sum-network X3 has a set of vertices V (G1)
△
= ∪3

i=1{si, ui, vi, ti}. The sum-network

X3 has a set of unit capacity edges E(G1)
△
= {(ui, vi)|i = 1, 2, 3} ∪ {(si, uj), (vi, tj)|i, j =

1, 2, 3, i 6= j}. The nodes s1, s2, s3 are the sources and the nodes t1, t2, t3 are the terminals

in the network. The symbols generated at the sources are denoted by X,Z, and W

respectively. Ri is the recovered symbols at the terminal ti for 1 ≤ i ≤ 3.

Now we prove the following result.

Theorem 9. The sum-network X3 is scalar linear solvable over all fields other than F2.
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Figure 2.5: The network X3. X3 has a scalar linear network code solution over every

finite field over than F2.

Proof. The message carried by different edges and the corresponding local coding coef-

ficients are as below.

W.l.o.g, we assume

Y(s1,u2) = Y(s1,u3) = X, (2.25a)

Y(s2,u1) = Y(s2,u3) = Z, (2.25b)

Y(s3,u1) = Y(s3,u2) = W, (2.25c)

and

Y(u1,v1) = Y(s2,u1) + αY(s3,u1), (2.26a)

Y(u2,v2) = Y(s3,u2) + βY(s1,u2), (2.26b)

Y(u3,v3) = Y(s1,u3) + γY(s2,u3), (2.26c)

where α, β, γ ∈ Fq.
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Also, w.l.o.g, we assume that

Y(u1,v1) = Y(v1,t2) = Y(v1,t3), (2.27a)

Y(u2,v2) = Y(v2,t1) = Y(v2,t3), (2.27b)

Y(u3,v3) = Y(v3,t1) = Y(v3,t2). (2.27c)

Since there is only one path s2 → u3 → v3 → t1 from source s2 to terminal t1 and also

one path s3 → u2 → v2 → t1 from source s3 to t1 with path gains γ and 1 respectively,

the recovered symbol R1 at t1 must be

R1 = Y(v2,t1) + γ−1Y(v3,t1). (2.28a)

Similarly, the recovered symbols R2 and R3 must be

R2 = Y(v3,t2) + α−1Y(v1,t2), (2.28b)

R3 = Y(v1,t3) + β−1Y(v2,t3). (2.28c)

The coding coefficients are depicted in Fig. 2.5 for clarity.

From (2.25), (2.26), (2.27) and (2.28) it follows that

R1 = (β + γ−1)X + Z +W, (2.29a)

R2 = X + (γ + α−1)Z +W, (2.29b)

R3 = X + Z + (α + β−1)W. (2.29c)

Note that (2.29) requires that the coding coefficients α, β and γ be non-zero. This

requirement can also be seen as natural since if any of these coefficients is zero, then a

particular source-terminal pair will be disconnected.

Since all the terminals must recover the sum of symbols generated at all sources, i.e.,

R1 = R2 = R3 = X + Z +W , we have

β + γ−1 = γ + α−1 = α+ β−1 = 1. (2.30)

Now, over the binary field the values of α, β and γ must all be 1. Putting α = β = γ = 1

in (2.30), we have 1 = 0. This gives a contradiction. Thus it follows that, it is not

possible to communicate the sum of symbols generated at all sources to every terminal

in this network over the binary field F2 using scalar linear network coding.
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Now, we consider any other finite field Fq (q 6= 2). We show that over Fq, the

conditions in (2.30) are satisfied for some choice of α, β, and γ.

Since q > 2, let α ∈ Fq be any element other than 0 and 1. Also, take γ = 1 − α−1

and β = (1 − α)−1. Clearly, they satisfy (2.30). Hence, it is possible to communicate

the sum of symbols generated at all sources to every terminal over Fq. �

Remark 2. We note that though the sum of the symbols generated at all sources can not

be communicated to every terminal in this network by a scalar network code over F2, it is

possible to do so by a k-length linear network code over F2 using any code length k > 1.

This follows because it is possible to communicate the sum of the symbols generated at

all sources to all the terminals over the extension field F2k using a scalar linear network

code.

Now we have the following result for the sum-network S4 ⊲⊳ X3.

Theorem 10. The sum-network S4 ⊲⊳ X3 has a scalar linear network code solution if

and only if the field size is 2k for k > 1.

Proof. The theorem follows from Theorem 1, Theorem 9 and Theorem 4. �

2.4 Insufficiency of Source-Terminal Pairs Connec-

tivity for Solvability

We have already shown a sum-network S3 which does not have any rate-1 linear network

code solution over any finite field for any code length even though there is a path from

every source to every terminal. Now we present some other examples where source-

terminal pairs connectivity is not sufficient for any rate-1 linear network code solution

over any finite field for any code length.

Example 2. For any positive m,n > 3, one can construct a network by crisscrossing S3

with a complete bipartite network Km−3,n−3 to get a sum-network with m sources and n

terminals which does not have any rate-1 linear network code solution over any field for

any code length even though every source-terminal pair is connected. The sum-network

S3 ⊲⊳ Km−3,n−3 is shown in Fig. 2.6.
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Figure 2.6: The sum-network S3 ⊲⊳ Km−3,n−3 which does not admit a rate-1 linear

network code solution over any field for any code length.

Example 3. A sum-network constructed by crisscrossing sum-networks with disjoint P

does not have a rate-1 linear network code solution over any finite field for any code

length. For instance, for any number m ≥ 3, the sum-network Sm ⊲⊳ S∗
m does not have

a rate-1 linear network code solution over any finite field for any code length.

Now we remove linearity restriction. We are interested in the question whether having

a path from every source to every terminal is sufficient for a rate-1 network code solution

over any finite field for any code length for a sum-network. Langberg et al. [59, 57] have

shown that the network S3 shown in Fig. 2.2 does not have a rate-1 network code

solution for code length k = 1 (scalar network code solution) over any finite field. In

fact, as we prove in Chapter 5, the network coding capacity of sum-network S3 is 2/3

over every finite field.

The sum-network S ′
3 shown in Fig. 2.7 is also such a network which has network

coding capacity 2/3 over every finite field. We prove this result also in Chapter 5. These

results show that there exist sum-networks where having a path from every source to

every terminal is not sufficient for a rate-1 network code solution over any finite field for
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any code length. In fact, such sum-networks exist for the entire class of sum-networks

having more than two sources and more than two terminals. Sum-networks constructed

for any arbitrary number of sources m and any arbitrary number of terminals n by

crisscrossing S3 or S ′
3 with Km−3,n−3 do not have a rate-1 network code solution over

any finite field for any code length.

1
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s1 s3 s

uu1 u

2vv

t1 t t

2
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3 2

Figure 2.7: The sum-network S ′
3 which does not admit a rate-1 network code solution

over any alphabet for any code length.

2.5 Summary

In this chapter, we have constructed sum-networks which have a rate-1 linear network

code solution for every code length only over finite fields whose characteristics belong to

a given finite or co-finite set of prime numbers. We have then shown that the existence

of a sum-network where a scalar linear network code solution not only depends on the

characteristic of the finite field but also depends on the alphabet size. Finally, we have
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shown that source-terminal connectivity is insufficient for sum-networks to have a rate-1

network code solution over any finite field for any code length.

2.6 Open Questions

We pose the following questions based on the work in Sections 2.1, 2.2, and 2.3 of this

chapter.

• Does there exist a sum-network which has rate-1 linear network code solutions

only over finite fields of characteristics from a given set of prime numbers and only

for every non-zero integer multiple of a chosen code length k?

• Does there exist a sum-network which has rate-1 linear network code solutions only

over finite fields of characteristics other than from a given set of prime numbers

and only for every non-zero integer multiple of a chosen code length k?

These questions can be generalized as

• Does there exist a sum-network which has (k, l) fractional linear network code

solutions only over finite fields of characteristics from a given set of prime numbers

for every choice of k, l ∈ Z+?

• Does there exist a sum-network which has (k, l) fractional linear network code

solutions only over finite fields of characteristics other than from a given set of

prime numbers for every choice of k, l ∈ Z+?

We have constructed 3 sum-networks X3, S3, and S ′
3 having 3 sources and 3 terminals.

The sum-network X3 does not have a scalar linear network code solution over F2 while

it has a scalar linear network code solution over every other finite field. Sum-networks

S3 and S ′
3 do not have a rate-1 linear network code solution over any finite field for

any code length. Moverover, the sum-networks S3 and S ′
3 also do not have a non-linear

rate-1 network code solution. Recently, it is shown in [57] that a sum-network having 3

sources and 3 terminals has a scalar linear network code solution over every finite field if

there are two disjoint paths from every source to every terminal. While having two paths

from every source to every terminal is a sufficient condition for a scalar linear network
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code solution over every finite field, it is not a necessary condition. We can easily notice

various trivial instances where this is not a necessary condition, for example, any sum-

network having exactly one path from every source to every terminal. Based on these

observations, we pose the following questions for a sum-network having 3 sources and 3

terminals.

• What is the necessary and sufficient condition for a sum-network having 3 sources

and 3 terminals to have a scalar linear solution over every finite field?

• What is the necessary and sufficient condition for linear solvability for a sum-

network having 3 sources and 3 terminals?

• What is the necessary and sufficient condition for the solvability for a sum-network

having 3 sources and 3 terminals?

These question can be generalized for sum-networks with m ≥ 3, n ≥ 3.

• What is the necessary and sufficient condition for a sum-network withm ≥ 3, n ≥ 3

to have a scalar linear solution over every finite field?

• What is the necessary and sufficient condition for linear solvability for a sum-

network with m ≥ 3, n ≥ 3?

• What is the necessary and sufficient condition for the solvability for a sum-network

with m ≥ 3, n ≥ 3?

The above questions can be posed for specific finite fields also, namely,

• What is the necessary and sufficient condition for a sum-network withm ≥ 3, n ≥ 3

to have a scalar linear solution over a specific finite field F?

• What is the necessary and sufficient condition for linear solvability over a specific

finite field F for a sum-network with m ≥ 3, n ≥ 3?

• What is the necessary and sufficient condition for the solvability over a specific

finite field F for a sum-network with m ≥ 3, n ≥ 3?
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Chapter 3

Solvably Equivalent Networks

In this chapter, we investigate solvable equivalence of sum-networks with other classes

of networks. First, we show that linear-networks and sum-networks defined in Chapter 1

are solvably equivalent under fractional network coding if the component linear functions

are invertible, i.e., if the component linear functions are invertible, the sum of symbols

generated at all sources can be communicated to every terminal using a (k, l) fractional

network code over a finite alphabet if and only if such a linear function of symbols

generated at all sources can be communicated to every terminal using a (k, l) fractional

network code over the same finite alphabet. Then we construct a solvably equivalent

(also linear solvably equivalent) sum-network of any given multiple-unicast network.

We also show that the reverse sum-network of the constructed sum-network is solvably

equivalent (also linear solvably equivalent) to the corresponding reverse multiple-unicast

network. Next, we construct a solvably equivalent (also linear solvably equivalent) sum-

network of a directed acyclic Type I network. Finally, we construct a linear solvably

equivalent multiple-unicast network of a sum-network.

3.1 Equivalence of Linear-Networks and Sum-Networks

In this section, we show that linear-networks and sum-networks are solvably equivalent

under fractional network coding if the component linear functions are invertible.

We recall the definition of a linear-network form Chapter 1: consider a network

having m sources and n terminals where each source generates one i.i.d. random process
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with uniform distribution over an alphabet which is an R-module A, where R is a ring.

Let Xi ∈ A be the message generated at source si for 1 ≤ i ≤ m. Each terminal requires

a linear function of the processes of the form

f(X1, X2, . . . , Xm) = f1(X1) + f2(X2) + . . .+ fm(Xm), (3.1)

where f1, f2, . . . , fm ∈ End(A), End(A) denotes the set of all R-endomorphism of A.

Such a network is called a linear-network.

First, we claim that if the sum of symbols generated at all sources can be commu-

nicated to every terminal using a (k, l) fractional network code over A then any linear

function of the symbols generated at all sources, as mentioned in (3.1), can also be

communicated to every terminal using a (k, l) fractional network code. Clearly, if the

sum of symbols generated at all sources can be communicated to every terminal using a

(k, l) fractional network code over A, then any linear function of the symbols can also be

communicated to every terminal using the same network code if each source computes

its respective component linear function (see Fig. 3.1).

Next, we claim that if all the component linear functions in (3.1) are invertible, then

the sum of symbols generated at all sources can be communicated to every terminal

using a (k, l) fractional network code over A if the linear function of symbols generated

at all sources can be communicated to every terminal using a (k, l) fractional network

code over A. This is because, given a (k, l) fractional network code to communicate the

linear function of symbols generated at all sources, each source can compute the inverse

of its respective component linear function thereby enabling essentially the same (k, l)

fractional network code solution to communicate the sum of symbols generated at all

sources to every terminal (see Fig. 3.2).

We note that the equivalence between communicating the sum of symbols and com-

municating a linear function of symbols holds also under linear network coding.

We also note that it is not clear whether the existence of the inverses of all the

component functions is a necessary condition for the equivalence between communicating

the sum and communication a linear function. We have not investigated the possibility

of equivalence between the problem of communicating the sum of symbols and the

problem of communicating any linear function of symbols where some of component

functions do not have inverses. It might be possible to prove equivalence in this case by
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Figure 3.1: A linear function of the symbols can be communicated to every terminal by

computing component functions at the sources and by using the same (k, l) fractional
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changing the entire network code instead of only computing the respective component

functions/inverses of the component functions at the sources.

3.2 C1 : Construction of a Solvably Equivalent Sum-

Network to a given Multiple-Unicast Network

Consider a generic multiple-unicast network N1 shown in Fig. 3.3. N1 has m sources

w1, w2, . . . , wm and m corresponding terminals z1, z2, . . . , zm respectively. Fig. 3.4 shows

a sum-network N2 of which N1 is a part. In this network, there are m + 1 sources

s1, s2, . . . , sm+1 and 2m terminals {tLi
, tRi

|1 ≤ i ≤ m}. The reverse networks of N1 and

N2 are denoted by N ′
1 and N ′

2 (shown in Fig. 3.5) respectively. The set of vertices and

edges of N2 are respectively

V (N2) = v(N1) ∪ {s1, s2, . . . , sm+1}

∪{u1, u2, . . . , um} ∪ {v1, v2, . . . , vm}

∪{tL1
, tL2

, . . . , tLm
} ∪ {tR1

, tR2
, . . . , tRm

}

and

E(N2) = E(N1) ∪ {(si, wi)|i = 1, 2, . . . , m}

∪{(si, uj)|i, j = 1, 2, . . . , m, i 6= j}

∪{(sm+1, uj)|j = 1, 2, . . . , m}

∪{(si, tRi
)|i = 1, 2, . . . , m}

∪{(ui, vi)|i = 1, 2, . . . , m}

∪{(vi, tLi
)|i = 1, 2, . . . , m}

∪{(vi, tRi
)|i = 1, 2, . . . , m}

∪{(zi, tLi
)|i = 1, 2, . . . , m}.

The following theorem shows that the networks N1 and N2, as well as their reverse

networks, are solvably equivalent in a very strong sense. Here F denotes a field and G

denotes an abelian group.
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Figure 3.4: The construction (C1) of a sum-network N2 from

the multiple-unicast network N1

Theorem 11. (i) The sum-network N2 has a k-length linear network code solution over

F if and only if the multiple-unicast network N1 has a k-length linear network code

solution over F.

(ii) The sum-network N2 has a k-length network code solution over G if and only if the

multiple-unicast network N1 has a k-length network code solution over G.

(iii) The reverse sum-network N ′
2 has a k-length linear network code solution over F

if and only if the reverse multiple-unicast network N ′
1 a k-length linear network code

solution over F.

(iv) The reverse sum-network N ′
2 has a k-length network code solution over G if and only

if the reverse multiple-unicast network N ′
1 has a k-length network code solution over G.

Proof of part (i) First, we prove that if the multiple-unicast network N1 has

a k-length linear network code solution over F then the sum-network N2 also has a

k-length linear code solution over F. Let us assume that k generated symbols at the

source si be grouped to form a k-length vector Xi ∈ Fk for 1 ≤ i ≤ m. Let us consider

a k-length linear network code solution of N1 over F. Using such a network code, for

every i = 1, . . . , m, zi can recover Xi and forward through the edge (zi, tLi
). We now

extend the code for N1 to a k-length linear network code for N2 by taking all the local

coding coefficients and decoding coefficients at the terminals in the rest of the network

59



v2
z2

w2

u2

1 w

1z z

L

m

L1 R1 mR

v1 vm

um1

1 m m+1

m

m

w

s s

u

s s2

tR2ttL2t t t

Figure 3.5: The reverse network N ′
2 of N2

to be k × k identity matrices. Clearly this gives a required solution for N2.

Now, we prove the converse. We assume that the edge (zi, tLi
) carries a linear com-

bination of the source symbol vectors (X1, X2, . . . , Xm), i.e., Y(zi,tLi
) =

∑m
j=1 β

i
jXj for

1 ≤ i ≤ m where βi
j ∈ Fk×k. We note that sm+1 has no edge coming to the network N1.

So, each edge (zi, tLi
), for 1 ≤ i ≤ m, can not have any contribution from the source

symbol vector Xm+1.

We denote the message carried by the edge e by Ye as in (1.6) and (1.5) of Chapter

1. For brevity, we denote the decoded messages at the terminal nodes tLi
and tRi

for

i = 1, . . . , m by RLi
and RRi

respectively.

W.l.o.g., we assume that

Y(ui,vi) = Y(vi,tLi
) = Y(vi,tRi

) for 1 ≤ i ≤ m,

and Y(si,wi) = Xi for 1 ≤ i ≤ m.
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The message carried by different edges and the corresponding local coding coefficients

are as follows.

Y(sm+1,uj) = αm+1,jXm+1 for 1 ≤ j ≤ m, (3.2a)

Y(si,uj) = αi,jXi for 1 ≤ i, j ≤ m, i 6= j, (3.2b)

Y(si,tRi
) = αi,iXi for 1 ≤ i ≤ m, (3.2c)

Y(ui,vi) =

m+1∑

j=1

j 6=i

βj,iY(sj ,ui) for 1 ≤ i ≤ m, (3.2d)

Y(zi,tLi
) =

m∑

j=1

βi
jXj for 1 ≤ i ≤ m. (3.2e)

The decoded messages at the terminals are as follows.

RLi
= γi,LY(zi,tLi

) + γ′i,LY(vi,tLi
) for 1 ≤ i ≤ m, (3.3a)

RRi
= γi,RY(si,tRi

) + γ′i,RY(vi,tRi
) for 1 ≤ i ≤ m. (3.3b)

Here all the coding coefficients are k × k matrices over F, and the messages carried

by the edges Y(.,.) are length k vectors over F.

W.l.o.g., we assume that

αm+1,i = αi,j = I for 1 ≤ i, j ≤ m.

where I denotes the k × k identity matrix.

From (3.2) and (3.3), we have

RLi
= γi,L

m∑

j=1

βi
jXj + γ′i,L

m+1∑

j=1

j 6=i

βj,iXj for 1 ≤ i ≤ m, (3.4a)

RRi
= γi,RXi + γ′i,R

m+1∑

j=1

j 6=i

βj,iXj for 1 ≤ i ≤ m. (3.4b)
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By assumption all the terminal nodes can recover the sum of source symbol vectors,

i.e. RLi
= RRi

=
∑m+1

j=1 Xj for 1 ≤ i ≤ m. So (3.4) implies

γ′i,Lβm+1,i = I for 1 ≤ i ≤ m, (3.5a)

γi,Lβ
i
i = I for 1 ≤ i ≤ m, (3.5b)

γi,Lβ
i
j + γ′i,Lβj,i = I for i, j = 1, 2, . . . , m, j 6= i, (3.5c)

γi,R = I for 1 ≤ i ≤ m, (3.5d)

γ′i,Rβm+1,i = I for 1 ≤ i ≤ m, (3.5e)

γ′i,Rβj,i = I for i, j = 1, 2, . . . , m, j 6= i. (3.5f)

All the coding matrices in (3.5a), (3.5b), (3.5d), (3.5e) and (3.5f) are invertible since

the right hand side of the equations are the identity matrices. Eq. (3.5a) and (3.5e)

together imply

γ′i,L = γ′i,R for 1 ≤ i ≤ m. (3.6)

By (3.5f) and (3.6), we have

γ′i,Lβj,i = I for 1 ≤ i, j ≤ m, j 6= i. (3.7)

By (3.5c) and (3.7), we have

γi,Lβ
i
j = 0 for 1 ≤ i, j ≤ m, j 6= i, (3.8)

where 0 denotes the all-zero k × k matrix.

Since γ′i,L is invertible by (3.5b), βi
j = 0 for 1 ≤ i, j ≤ m, j 6= i. By (3.5b), βi

i = 0

is an invertible matrix for 1 ≤ i ≤ m. So, we conclude that for every i = 1, . . . , m,

Yzi,tLi
= βi

iXi, i.e., the edge Y(zi,tLi
) carries only a scaled version of Xi. This implies

that for every i = 1, . . . , m, node zi recovers Xi; which in turn implies that the multiple-

unicast network N1 has a k-length linear network code solution over F. This completes

the proof of Part (i).

Proof of part (ii) Now we consider the case when nodes are allowed to do non-

linear network coding, i.e., nodes can send any function of the incoming symbols on an

outgoing edge. Let us assume that k generated symbols at the source si be grouped to
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form a k-length message vector Xi ∈ Gk for 1 ≤ i ≤ m. For the forward part, let us

assume that N1 has a k-length network code solution over G. Using such a network code,

for every i = 1, . . . , m, zi can recover Xi and forward through the edge (zi, tLi
). We now

extend the code for N1 to a network code for N2 where each intermediate/terminal node

adds all the incoming messages to compute any outgoing or recovered message. Clearly

this gives a required solution for N2.

Now we prove the “only if” part. Let RLi
and RRi

denote the messages computed

at the terminal nodes tLi
and tRi

respectively.

The message carried by different edges are as described below.

W.l.o.g., we assume

Y(sj ,ui) = Xj for 1 ≤ i, j ≤ m, j 6= i,

Y(sm+1,ui) = Xm+1 for 1 ≤ i ≤ m,

Y(si,tRi
) = Xi for 1 ≤ i ≤ m,

Y(si,wi) = Xi for 1 ≤ i ≤ m,

Y(ui,vi) = Y(vi,tLi
) = Y(vi,tRi

) for 1 ≤ i ≤ m.

Further, we assume that

Y(ui,vi) = f i
1(Xi, . . . , Xi−1, Xi+1, . . . , Xm, Xm+1) for 1 ≤ i ≤ m, (3.9a)

Y(zi,tLi
) = f i

2(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xm) for 1 ≤ i ≤ m. (3.9b)

The decoded messages at the terminals are given by.

RRi
= gi

1(Y(vi,tRi
), Y(si,tRi

)), (3.10a)

RLi
= gi

2(Y(vi,tLi
), Y(zi,tLi

)). (3.10b)

Here all the symbols carried by the links Y(.,.) are from Gk.

We need to show that for every i = 1, 2, . . . , m, communicating the sum of symbols

generated at all sources to the terminals tLi
and tRi

is possible only if f i
2 is an 1 − 1

function only of the symbol Xi and it does not depend on the other variables.

By (3.10), for every i = 1, 2, . . . , m, functions f i
1, f

i
2, g

i
1 and gi

2 must satisfy the

following conditions.

gi
1(f

i
1, Xi) = X1 + · · · +Xi−1 +Xi +Xi+1 + · · ·+Xm +Xm+1, (3.11a)

gi
2(f

i
1, f

i
2) = X1 + · · · +Xi−1 +Xi +Xi+1 + · · ·+Xm +Xm+1. (3.11b)
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Now we prove the following claims for the functions gi
1, g

i
2, f

i
1, f

i
2 for 1 ≤ i ≤ m.

Claim 1. For every i = 1, 2, . . . , m, f i
1 is bijective on each variable Xj, for 1 ≤ j ≤

m+ 1, j 6= i, when the other variables are fixed.

Proof: Let us consider any j 6= i. For any fixed values of {Xk|k 6= j}, (3.11a)

implies that gi
1(f

i
1(., Xj , .), .) is a bijective function of Xj. This in turn implies that f i

1

is a bijective function of Xj for fixed values of the other variables.

Claim 2. For every i = 1, 2, . . . , m, gi
1(., .) is bijective on each argument for any fixed

value of the other argument.

Proof: For any element ofGk, by claim 1, there exists a set of values for {Xj|j 6= i}

so that the first argument f i
1(.) of gi

1 takes that value. For such a set of fixed values of

{Xj|j 6= i}, gi
1(., Xi) is a bijective function of Xi by (3.11a). Now, consider any j 6= i

and fix some values for {Xk|k 6= j}. Again by (3.11a), gi
1(f

i
1(., Xj, .), .) is a bijective

function of Xj . This implies that gi
1 is a bijective function of its first argument for any

fixed value of the second argument.

Claim 3. For every i = 1, 2, . . . , m, f i
1 is symmetric, i.e., interchanging the values of

any two variables in its arguments does not change the value of f i
1.

Proof: For some fixed values of all the arguments of f i
1, suppose the value of f i

1

is c1. We also fix the value of Xi as c2. Suppose gi
1(c1, c2) = c3. Now we interchange the

values of the variables Xj and Xk where j 6= i 6= k. Then it follows from Claim 2 and

(3.11a) that the value of f i
1 must remain the same.

Claim 4. For every i = 1, 2, . . . , m, f i
2 is a bijective function of Xi for any fixed values

of {Xj|j = 1, 2, . . . , m, j 6= i}.

Proof: For any fixed values of {Xj|j = 1, 2, . . . , m, j 6= i} andXm+1, g
i
2(., f

i
2(., Xi, .))

is a bijective function of Xi by equation (3.11b). This implies that f i
2 is a bijective func-

tion of Xi for any fixed values of the other arguments.

Claim 5. For every i = 1, 2, . . . , m, gi
2(., .) is bijective on each argument for any fixed

value of the other argument.
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Proof: By equation (3.11b), gi
2(f

i
1(., Xm+1), f

i
2(.)) and gi

2(f
i
1(.), f

i
2(., Xi, .)) are both

bijective functions of Xm+1 and Xi respectively for any fixed values of the omitted

variables. This implies that gi
2 is a bijective function of the first and the second argument

for the other argument fixed.

Now to prove that for every i = 1, 2, . . . , m, the value of f i
2(X1, . . . , Xm) does not

depend on {Xj|j = 1, . . . , m; j 6= i}, it is sufficient to prove that for any set of fixed

values X1 = a1, . . . , Xm = am, changing the value of Xj (j 6= i) to any bj ∈ Gk does

not change the value of f i
2. Let us assign Xm+1 = bj . By (3.11b), the value of gi

2 does

not change by interchanging the values of Xj and Xm+1. Also, the value of f i
1 does not

change by this interchange by Claim 3. So, by Claim 5, the value of f i
2 also does not

change by this change of value of Xj from aj to bj .

Now using Claim 4, it follows that f i
2 is a bijective function of only the variable Xi.

This completes the proof of part (ii) of the theorem.

Proof of part (iii) First we prove that if the network N ′
1 has a k-length linear

network code solution over F then the network N ′
2 has also a k-length linear network

code solution over F. Let us consider a k-length linear network code solution of N ′
1 over

F. Using such a network code, for every i = 1, . . . , m, wi can recover XLi
and forward

through the edge (wi, si). We now extend the network code for N ′
1 to a k-length linear

network code for N ′
2 by taking all the local coding coefficient matrices and decoding

coefficient matrices at the terminals in the rest of the network N ′
2 to be k × k identity

matrices over F. Clearly this gives a required solution for N ′
2.

Now, we prove the “only if” part. We assume that for every i = 1, 2, . . . , m, the edge

(wi, si) carries a linear combination

Y(wi,si) =
m∑

j=1

βi,jXLj
, (3.12)

where βi,j ∈ Fk×k.

W.l.o.g., we assume that

Y(vj ,uj) = Y(uj ,sm+1) = Y(uj ,si) for 1 ≤ j, i ≤ m, j 6= i.
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The messages carried by different edges and the corresponding local coding coeffi-

cients are as below.

Y(tLj
,zj) = α′

L,jXLj
for 1 ≤ j ≤ m, (3.13a)

Y(tLj
,vj) = αL,jXLj

for 1 ≤ j ≤ m, (3.13b)

Y(tRj
,vj) = αR,jXRj

for 1 ≤ j ≤ m, (3.13c)

Y(tRj
,sj) = αjXRj

, for 1 ≤ j ≤ m, (3.13d)

Y(vj ,uj) = βL,jY(tLj
,vj) + βR,jY(tRj

,vj) for 1 ≤ j ≤ m. (3.13e)

For 1 ≤ i ≤ m+ 1, the decoded message Ri at the terminals si are the following.

Ri =

m∑

j=1

j 6=i

γj,iY(uj ,si) + γi,iY(tRi
,si) + γiY(wi,si) for 1 ≤ i ≤ m, (3.14a)

Rm+1 =

m∑

j=1

γj,m+1Y(uj ,sm+1). (3.14b)

Here all the coding coefficients and decoding coefficients are k × k matrices over F,

and the messages carried by the links Y(.,.) are k-length vectors over F.

W.l.o.g., we assume that

α′
L,j = αL,j = αR,j = αj = I for 1 ≤ j ≤ m,

where I denotes the k × k identity matrix.

By (3.13) and (3.14), we have

Ri =

(
m∑

j=1

j 6=i

γj,i(βL,jXLj
+ βR,jXRj

) + γi,iXRi

)
+ γi

m∑

j=1

βi,jXLj

for 1 ≤ i ≤ m, (3.15a)

and Rm+1 =
m∑

j=1

γj,m+1(βL,jXLj
+ βR,jXRj

). (3.15b)

By assumption, all the terminals recover the sum of symbols generated at all sources,

i.e., for every i = 1, 2, . . . , m,

Ri = Rm+1 =
m∑

j=1

(XLj
+XRj

). (3.16)
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By (3.15) and (3.16), we have

γi,i = I for 1 ≤ i ≤ m, (3.17a)

γj,m+1βL,j = γj,m+1βR,j = I for 1 ≤ j ≤ m, (3.17b)

γj,iβR,j = I for 1 ≤ i, j ≤ m, j 6= i, (3.17c)

γj,iβL,j + γiβi,j = I for 1 ≤ i, j ≤ m, j 6= i, (3.17d)

γiβi,i = I for 1 ≤ i ≤ m. (3.17e)

All the coding matrices in (3.17a), (3.17b), (3.17c) and (3.17e) are invertible since

the right hand side of the equations are the identity matrix. Equations (3.17b), (3.17c)

and (3.17d) imply

γiβi,j = 0 for 1 ≤ i, j ≤ m, j 6= i, (3.18)

where 0 is the k × k all-zeros matrix.

Since γi is an invertible matrix by (3.17e) for 1 ≤ i ≤ m, we have

βi,j = 0 for 1 ≤ i, j ≤ m, j 6= i. (3.19)

So, for every i = 1, 2, . . . , m, the edge (wi, si) must carry only a scaled version of XLi
,

which is possible only if the reverse multiple-unicast network N ′
1 has a k-length linear

network code solution over F. Further, a k-length linear network code solution F of N ′
2

also gives a k-length linear code solution over F of N ′
1 as a part of it. This completes

the proof of part (iii).

Proof of part (iv) First, we prove that if the reverse multiple-unicast network N ′
1

has a k-length network code solution G, then the sum-network N ′
2 has also a k-length

network code solution. Consider any k-length network code solution, possibly non-linear,

of N ′
1 over G. Using such a network code, for every i = 1, . . . , m, wi can recover XLi

and

forward it on the edge (wi, si). We now extend the code for N ′
1 to a network code for

N ′
2 where each intermediate/terminal node adds all the incoming messages to compute

any outgoing or recovered message. Clearly this gives a required solution for N ′
2.

Now we prove the converse. Consider any k-length network code solution over G for

N ′
2 where the terminal si computes

Ri =
m∑

i=1

(XLi
+XRi

) for i = 1, 2, . . . , m+ 1. (3.20)
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The messages carried by different edges are as below.

W.l.o.g., we assume that

Y(vi,ui) = Y(ui,sj) for 1 ≤ i ≤ m, 1 ≤ j ≤ m+ 1, i 6= j. (3.21a)

Y(tRi
,si) = XRi

for 1 ≤ i ≤ m, (3.21b)

Y(tLi
,vi) = XLi

for 1 ≤ i ≤ m, (3.21c)

Y(tRi
,vi) = XRi

for 1 ≤ i ≤ m. (3.21d)

We further assume that

Y(vi,ui) = fi(XLi
, XRi

) for 1 ≤ i ≤ m, (3.21e)

Y(wi,si) = f ′
i(XL1

, XL2
, . . . , XLm

), for 1 ≤ i ≤ m. (3.21f)

The decoding operations are denoted as following.

Ri = gi(Y(wi,si), Y(u1,si), . . . , Y(ui−1,si), Y(ui+1,si), . . . , Y(um,si), Y(tRi
,si))

for 1 ≤ i ≤ m, (3.22a)

Rm+1 = gm+1(Y(u1,sm+1), . . . , Y(um,sm+1)). (3.22b)

Now we state some claims which can be proved using similar arguments as in the

proof of part (ii) of the theorem. We omit the proof of these claims.

1. As a function of the variables XLi
, XRi

; i = 1, 2, . . . , m, gm+1 is bijective in each

variable for fixed values of the other variables.

2. The function gm+1 is bijective in each variable Y(ui,sm+1) for fixed values of the

other variables.

3. For i = 1, 2, . . . , m, fi(XLi
, XRi

) is a bijective function of each variable for a fixed

value of the other variable.

4. For i = 1, 2, . . . , m, fi(XLi
, XRi

) is symmetric on its arguments.

5. For i = 1, 2, . . . , m, gi is bijective on each of its arguments for fixed values of the

other arguments.

Now we prove that f ′
i is a bijective function of only XLi

, and it is independent of

the other variables. Fix a k 6= i. It is sufficient to prove that for any fixed values of

XLj
, j = 1, 2, . . . , m, j 6= k, the value of f ′

i does not change if the value of XLk
is changed

from, say, a to b. Let us fix XLk
= a. Let us further fix XRk

= b and the variables XRj
for
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j 6= k to arbitrary values. Now, by interchanging the values of XLk
and XRk

, the value

of gi does not change, since the sum of the variables does not change. Further, all the

arguments of gi other than f ′
i does not change since fk is symmetric on its arguments.

So by claim 5, the value of f ′
i also does not change by this interchange. But this means

that the value of f ′
i does not change by the change of value of XLk

from a to b. This

completes the proof of part (iv). �

Remark 3. A. Though parts (i) and (iii) are stated for a finite field, the same results

can be shown to hold over any finite ring R with identity, R-module with annihilator

{0}, and for more general forms of linear network codes defined in [35].

B. In parts (ii) and (iv), solvability is not restricted by linear network codes, but

includes non-linear coding. The alphabet is restricted to an abelian group simply for

defining the sum of the sources.

For the case of k = 1, Theorem 11 gives the following Corollary.

Corollary 12. (i) The sum-network N2 has a scalar linear network code solution over F

if and only if the multiple-unicast network N1 has a scalar linear network code solution

over F.

(ii) The sum-network N2 has a scalar network code solution over G if and only if the

multiple-unicast network N1 has a scalar network code solution over G.

(iii) The reverse sum-network N ′
2 has a scalar linear network code solution over F

if and only if the reverse multiple-unicast network N ′
1 has a scalar linear network code

solution over F.

(iv) The reverse sum-network N ′
2 has a scalar network code solution over G if and

only if the reverse multiple-unicast network N ′
1 has a scalar network code solution over

G.

Remark 4. The construction C1 is not the most efficient construction of a solvably

equivalent sum-network in terms of the required number of extra nodes and edges. A few

extra nodes and edges are added for the neat presentation and visualization. Node si can

be combined with the node wi for 1 ≤ i ≤ m without changing the result. Similarly, node

tLi
can be combined with the node zi for 1 ≤ i ≤ m without changing the result. By

doing this, a solvably equivalent sum-network can be constructed from a multiple-unicast
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network having m source-terminal pairs by adding 3m+ 1 nodes and m2 + 4m edges to

the multiple-unicast network.

3.3 C2 : Construction of a Solvably Equivalent Sum-

Network to a given Type I Network

First, we should note that it is possible to construct a solvably equivalent Type IA

network from a Type I network by the following two-steps procedure.

1. Consider all the independent random processes generated by the sources in the

original Type I network. In the new network, construct one source for each process

and add an edge from each constructed source to all the sources in the given Type

I network which generate that process. The original sources of the given Type I

network are not considered as sources in the constructed network.

2. For every terminal in the original Type I network, construct one terminal for

each process required by the original terminal and add an edge from the original

terminal to these constructed terminals. The terminals of the original network are

not considered as terminals of the new network.

Now, given a Type IA network, Fig. 3.7 shows a sum-network of which the given

network is a part. The outer dashed box shows the Type IA network constructed from a

Type I network N3 in the inner dashed box by the above two-steps method. The Type IA

network has the sources w1, w2, . . . , wm generating independent random processes, and

for i = 1, 2, . . . , m, each of the terminals zi
1, z

i
2, . . . , z

i
ni

requires the process generated by

wi. In the constructed sum-network N4, there are m + 1 sources s1, s2, . . . , sm+1, and

(m+
∑m

i=1 ni) terminals {t1, t2, . . . , tm} ∪ {tij|1 ≤ i ≤ m, 1 ≤ j ≤ ni}.

The proof of the following theorem is similar to the proof of Theorem 11(i), (ii), and

is omitted.

Theorem 13. (i) The sum-network N4 has k-length linear network code solution over

a finite field F if and only if the Type I network N3 has a k-length linear network code

solution over F.
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(ii) The sum-network N4 has a k-length network code solution over an abelian group

G if and only if the network N3 has a k-length network code solution over G.

Restricting to k = 1, Theorem 13 gives the following corollary.

Corollary 14. (i) The sum-network N4 has a scalar linear network code solution over

a finite field F if and only if the network N3 has a scalar linear network code solution

over F.

(ii) The sum-network N4 has a scalar network code solution over an abelian group

G if and only if the network N3 has a scalar network code solution over G.

Now, we consider the network coding capacity of sum-networks obtained by con-

structions C1 and C2. First, we prove the following theorem for the network coding

capacity of any sum-network.

Theorem 15. The network coding capacity of a sum-network is upper bounded by the

minimum of min-cut capacities of all source-terminal pairs. That is,

network coding capacity ≤ mini,j(min-cut capacity (si − tj)).

Proof. For any source si of the sum-network, let us fix the source processes of the other

sources to the all-zero (”zero” being the identity element of the alphabet group) sequence.
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Then the problem of communicating the sum of symbols reduces to the multicast problem

from the source si to all the terminals, and the network coding capacity of this problem is

the minimum of the min-cut capacities from si to all the terminals. The overall network

coding capacity of the sum-network must be less than or equal to each of these multicast

capacities for different i. �

In the construction C1, the min-cut capacity from source sm+1 to every tRi
for 1 ≤ i ≤

m is 1. So, the network coding capacity of the constructed sum-network by construction

C1 is upper bounded by 1 over any finite alphabet. Similarly, the network coding capacity

of the constructed sum-network by construction C2 is also upper bounded by 1 over any

finite alphabet.

Though the construction C2 (and in particular C1) gives a solvably equivalent sum-

network, the constructed sum-network may have a (k, n) fractional network code solution

for k ≤ n, even though the original network does not have a (k, n) fractional network

code solution. So the network coding capacity of the constructed network may be differ-

ent from the network coding capacity of the original network. For instance, consider the

multiple-unicast network where m source-terminal pairs are connected through a single

bottleneck link. The multiple-unicast network and the sum-network constructed from it

by using construction C1 are shown in Fig. 3.8. The multiple-unicast network has net-

work coding capacity 1/m, whereas the constructed sum-network has a (1, 2) fractional

linear network code solution. In the first time-slot, the bottle-neck link in the multiple

unicast network can carry the sum X1 +X2 + . . .+Xm which is then forwarded to all the

m left terminals of the sum network. The links (ui, vi) carry only Xm+1 in the first time-

slot. So, by using one time-slot, the left terminals recover the sum X1 +X2 + . . .+Xm+1.

In the second time-slot, the network can obviously be used to communicate the sum

X1 +X2 + . . .+Xm+1 to the right terminals since there is exactly one path between any

source and any right terminal.

Even though Construction C1 does not preserve the network coding capacity, the

following results show the relation between the capacity of the sum-network and the

capacity of the original network. Here N denotes a Type-I network, C2(N ) denotes the

sum-network constructed from N using construction C2, and Capacity(N ) denotes the

network coding capacity of the network N .
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Construction C1 gives a sum-network of network coding capacity ≥ 1/2

Lemma 16. For some k ≤ n, if a network N has a (k, n) fractional network code (resp.

fractional linear network code) solution, then the sum-network C2(N ) also has a (k, n)

fractional network code (resp. fractional linear network code) solution.

Proof. The proof is obvious. �

Theorem 17.

min(1, Capacity(N )) ≤ Capacity(C2(N )) ≤ 1

Proof. The first inequality follows from the preceding lemma. The second inequality

follows from the fact that the network coding capacity of C2(N ) is upper bounded by

1. �

Corollary 18. If the network N has capacity 1, then the capacity of C2(N ) is also 1.
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3.4 C3 : Construction of a Linear Solvably Equiva-

lent Multiple-Unicast Network to a given Sum-

Network

Consider a generic sum-network N shown in the dashed box in Fig. 3.9. The sum-

network has m sources w1, w2, . . . , wm and n terminals z1, z2, . . . , zn. The figure shows

a multiple-unicast network C3(N ) of which the given sum-network is a part. In this

multiple-unicast network, the source-terminal pairs are

{(si, ti)|i = 1, 2, . . . , m} ∪ {(sij, tij)|1 ≤ i ≤ m, 2 ≤ j ≤ n}.

The lower half of the figure is constructed using a method used in [41]. It consists of

m chains each with n copies of the network shown in Fig. 3.10 in series. This component

network shown in Fig. 3.10 has the property [41] that if t2 wants to recover the message

generated by s3, and t1 wants to recover an independent message X1, then s1 and s2

both must send X1 on the outgoing links.

Theorem 19. The multiple-unicast network C3(N ) has a k-length linear network code

solution over a finite field F if and only if the sum-network N is k-length linear network

code solution over F.

Proof. First, if the sum-network N in the dashed box has a k-length linear network

code solution over F, then it is clear that the code can be extended to a code that

solves the multiple-unicast network C3(N ). Next, we assume that the multiple-unicast

network C3(N ) has a k-length linear network code solution over F, and prove that the

sum-network N has also a k-length linear network code solution over F. It can be seen

by similar arguments as used in the proof of [41, Theorem II.1] that all the terminals

can recover the respective source symbols if and only if each of the intermediate nodes

rji; j = 1, 2, . . . , n, i = 1, 2, · · · , m can recover Xi. So, for any given k-length linear

network code solution for C3(N ), the intermediate nodes rji recover the respective Xi.

If m = 2 or n = 2, then it means that there is a path from each source wi to each

terminal zj in the sum-network. Then by the results in [56], the sum-network is scalar

linear solvable over any field. Now let us assume m,n ≥ 3.
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W.l.o.g., we assume that

Y(si,uj) = Xi for 1 ≤ i, j ≤ m, i 6= j,

Y(si,wi) = Xi for 1 ≤ i ≤ m,

Y(ui,vi) = Y(vi,rji) for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

Y(zi,v′i)
= Y(v′i,rij) for 1 ≤ i ≤ n, 1 ≤ i ≤ m.

Let us also assume that

Y(ui,vi) =

m∑

j=1

j 6=i

βjiY(sj ,ui) for 1 ≤ i ≤ m, (3.23)

Y(zi,v′i)
=

m∑

j=1

ηijXj for 1 ≤ i ≤ n, (3.24)

where βij, ηij ∈ Fk×k.

Let us assume that the symbols recovered at the nodes rij for forwarding on the

outgoing links are

Rij = γ′ijY(v′i,rij) + γijY(vj ,rij)

= γ′ij

m∑

l=1

ηilXl + γij

m∑

l=1
l 6=j

βljY(sl,uj)

= γ′ij

m∑

l=1

ηilXl + γij

m∑

l=1
l 6=j

βljXl

= γ′ijηijXj +

m∑

l=1
l 6=j

(γ′ijηil + γijβlj)Xl

(3.25)
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for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Since the node rij recovers Xj , we have

γ′ijηij = I for 1 ≤ i ≤ n, 1 ≤ j ≤ m, (3.26a)

γ′ijηil + γijβlj = 0 for 1 ≤ i ≤ n, 1 ≤ l, j ≤ m, l 6= j. (3.26b)

It follows from (3.26a) that the matrices γ′ij, ηij are invertible for all i, j. Then it also

follows from (3.26b) that the matrices γij, βlj are also invertible for i, j, l in their range

with l 6= j.

We will now prove that Y(zi,v′i)
for different i are scaled versions of each other. That

is, the terminals of the sum-network recover essentially the same linear combination of

the sources. For this, we need to prove that for any l, l′, η−1
il ηil′ is independent of i. Let

us take a j 6= l, l′. This is possible since m > 2. Eq. (3.26b) gives

ηil = −γ′−1
ij γijβlj,

ηil′ = −γ′−1
ij γijβl′j .

These equations give

η−1
il ηil′ = β−1

lj βl′j,

(3.27)

and so this is independent of i. This proves that it is possible to communicate a fixed

linear combination of the sources through the sum-network in the figure, where each

linear coefficient matrix is invertible. If the sources themselves pre-multiply the source

messages by the inverse of the respective linear coefficient matrix, then the terminals

can recover the sum of the sources. This completes the proof. �

3.5 Summary

In this chapter, we have shown that linear-networks and sum-networks are solvably

equivalent under (k, l) fractional network coding if the component linear functions are

invertible. Then we have shown that there exists a solvably equivalent (also linear

solvably equivalent) sum-network for every multiple-unicast network. We have proved

this result by constructing a sum-network using a generic multiple-unicast network as

a part of the sum-network. We have also shown that the reverse sum-network of the

77



constructed sum-network is solvably equivalent (also linear solvably equivalent) to the

corresponding reverse multiple-unicast network. Then we have shown that there exists

a solvably equivalent (also linear solvably equivalent) sum-network for every directed

acyclic Type I network. Finally, we have shown that there exists a linear solvably

equivalent multiple-unicast network for every sum-network.

3.6 Open Questions

In Section 3.1, we have shown the solvable equivalence of sum-networks and linear net-

works under fractional linear network coding in restricted sense, namely, we have shown

that solvable equivalence under fractional linear network coding holds if all the compo-

nent linear functions are invertible. We pose the following question by removing this

restriction.

• Is the problem of communicating the sum of symbols and the problem of commu-

nicating a linear function of symbols solvably equivalent under fractional network

coding even when some of the component linear functions are not invertible?

This question is important in the sense that a positive result would mean that the re-

sults for sum-networks, in this thesis, are not only directly applicable for linear-networks

whose all component linear functions are invertible but also for linear-networks whose

some component linear functions are not invertible.

We have considered the solvable equivalence in Sections 3.2 and 3.3. We can gener-

alize the considered problems in these sections as:

• Does there exist a linear solvably equivalent sum-network under (k, l) fractional

linear network coding for any multiple-unicast network for every choice of k and

l?

• Does there exists a solvably equivalent sum-network under (k, l) fractional network

coding for any multiple-unicast network for every choice of k and l?

• Does there exist a linear solvably equivalent sum-network under (k, l) fractional

linear network coding for any Type I network for every choice of k and l?
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• Does there exist a solvably equivalent sum-network under (k, l) fractional network

coding for any Type I network for every choice of k and l?

• Does there exist a linear solvably equivalent sum-network under (k, l) fractional

linear network coding for any multiple-unicast network such that their reverse

networks are also linear solvably equivalent under (k, l) fractional linear network

coding for every choice of k and l?

• Does there exist a solvably equivalent sum-network under (k, l) fractional network

coding for any multiple-unicast network such that their reverse networks are also

solvably equivalent under (k, l) fractional network coding for every choice of k and

l?

In Section 3.4, we have proved that there exists a linear solvably equivalent multiple-

unicast network for any sum-network. We could not prove some counterpart results of

the Section 3.2, namely,

• Does there exist a solvably equivalent multiple-unicast network for any sum-network?

• Does there exist a linear solvably equivalent multiple-unicast network for any sum-

network such that their reverse networks are also linear solvably equivalent?

• Does there exist a solvably equivalent multiple-unicast network for any sum-network

such that their reverse networks are also solvably equivalent?

These problems can be generalized into the following problems.

• Does there exist a linear solvably equivalent multiple-unicast network under (k, l)

fractional linear network coding for any sum-network for every choice of k and l?

• Does there exist a solvably equivalent multiple-unicast network under (k, l) frac-

tional network coding for any sum-network for every choice of k and l?

• Does there exist a linear solvably equivalent multiple-unicast network under (k, l)

fractional linear network coding for any sum-network such that their reverse net-

works are also linear solvably equivalent under (k, l) fractional linear network cod-

ing for every choice of k and l?
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• Does there exist a solvably equivalent multiple-unicast network under (k, l) frac-

tional network coding for any sum-network such that their reverse networks are

also solvably equivalent under (k, l) fractional network coding for every choice of

k and l?
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Chapter 4

System of Polynomial Equations,

Reversibility, Insufficiency of Linear

Network Codes and Unachievability

of Network Coding Capacity

In this chapter, we prove some results for sum-networks, most of whose counterparts have

been previously proved for multiple-unicast networks and/or Type I networks. Using

solvable equivalence results in the last chapter, we prove the following results. First,

we show that for any set of polynomials having integer coefficients, there exists a sum-

network which a scalar linear network code solution over a finite field F if and only if

the polynomials have a common root in F. Next, we show that there exists a solvable

sum-network whose reverse sum-network network is not solvable, i.e., there exists a sum-

network which is not reversible. Next, we show that there exists a sum-network where

linear network codes are insufficient to achieve a rate which is achievable by using non-

linear network coding. Next, we show that there exists a sum-network whose network

coding capacity is not achievable.

We also present some new results for multiple-unicast networks which are counterpart

of the results for sum-networks, proved in Chapter 2. Here, we use linear solvable

equivalence result of the Section 3.4.

We also prove one result where we have not used the solvable equivalence result of
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the last chapter, namely, reversibility of sum-networks and multiple-unicast networks

under fractional linear network coding.

4.1 System of Polynomial Equations

It was shown in [27] that for every directed acyclic network, there exists a polynomial

collection such that the network is scalar linear solvable over a finite field F if and

only if the polynomials have a common root in F. More interestingly, the converse

is also true [36]. It was shown in [36] that for any collection of polynomials having

integer coefficients, there exist a directed acyclic network which is scalar linear solvable

over F if and only if the polynomials have a common root in F. It is known that for

any directed acyclic network, there exists a (scalar) linear solvably equivalent multiple-

unicast network [41]. Thus, for any collection of polynomials having integer coefficients,

there exists a directed acyclic multiple-unicast network which has a scalar linear network

code solution over F if and only if the polynomials have a common root in F [36].

For a specific class of networks, for example multicast networks, there may not exist

a network corresponding to a given set of polynomial equations. For example, for the

class of multicast networks, there is no network which is scalar linear solvably equivalent

to the polynomial equation 2X = 1. This is because, the polynomial equation has a

solution only over fields of characteristic not equal to 2. Whereas, if a multicast network

is scalar linear solvable over any field, then it is also scalar linear solvable over large

enough fields of characteristic 2.

We claim that the class of sum-networks is broad enough in the sense that for any set

of integer polynomial equations, there exists a sum-network which is solvably equivalent

under scalar linear network coding. This is simply because, given a system of integer

polynomial equations, one can construct a multiple-unicast network, or a Type I network

in general, which is solvably equivalent to the integer polynomial equations under scalar

linear network coding. Then one can construct, using Construction C1 or C2, a sum-

network which is in turn scalar linear solvably equivalent to the constructed multiple-

unicast network. So, we have the following result.

Theorem 20. For any set of integer polynomial equations, there exists a sum-network
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Figure 4.1: A scalar linear solvably equivalent sum-network to the polynomial P (x) = 2.

which has a scalar linear network code solution over a finite field F if and only if the set

of integer polynomial equations has a solution in F.

Example 4. The sum-network shown in Fig. 4.1 has a scalar linear network code

solution if and only if the constant polynomial P (x) = 2 has a root. The sum-network

is constructed using Construction C2 from a Type I network which has a scalar linear

network code solution over F if and only the polynomial P (x) = 2 has a root in F. This

Type I is taken from [36] and shown in dashed box. The polynomial P (x) = 2 has a

solution only over finite fields of characteristic 2. This implies that this sum-network in

Fig. 4.1 has a scalar linear network code solution only over finite fields of characteristic

2.

It is known that any set of integer polynomials has solutions only over fields having

characteristics from a finite set or co-finite set of prime numbers [37, 36]. This result and

the fact that every directed acyclic Type I network has a scalar linear solvably equivalent

polynomial collection (which follows from [27]) imply that, a directed acyclic Type I

network has a scalar linear network code solution only over fields whose characteristics
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belong to a finite set or co-finite set of primes. Then, Theorem 19 implies that a sum-

network has a scalar linear network code solution only over fields having characteristics

from finite set or co-finite set of primes. So, we have the following result.

Theorem 21. A sum-network has a scalar linear network code solution only over fields

whose characteristics belong to a finite set or co-finite set of primes.

This result resembles with our results for sum-networks Sm and S∗
m in Chapter 2.

However, a scalar linear network code solution only over fields having characteristics

from finite set or co-finite set of primes does not imply a k-length linear network code

solution for code length k > 1 only over the same fields. The restriction of fields having

characteristics from finite set or co-finite set of primes under scalar linear network coding

may in general be relaxed for k-length linear network code solution for code length k > 1.

While Theorem 20 and Theorem 21 present more generalized result for the case of scalar

linear network coding, the sum-networks Sm and S∗
m are special in the sense that for

these networks, the restriction of finite fields having characteristics from finite set or

co-finite set of primes does not depend on the code length.

In the following, we construct scalar linear solvably equivalent sum-networks of sum-

networks Sm and S∗
m respectively. These constructions use the construction method

given in [36] for Type I networks and Construction C2.

Example 5. We construct a sum-network which has scalar linear network code solution

only over finite fields whose characteristics belong to the set of primes (p1, p2, . . . , pλ) by

using the construction method given in [36] and Construction C2, described in the last

chapter. The constructed sum-network is shown in Fig. 4.2. First, we construct a scalar

linear solvably equivalent Type I network to the polynomial P (x) = p1p2 · · · pλ by using

construction method given in [36]. This Type I network is shown in the dashed box.

The sum-network is then obtained using Construction C2 from this Type I network. The

constructed sum-network has scalar linear network code solutions only over finite fields

where the polynomial P (x) = p1p2 · · · pλ has solutions. Since the polynomial P (x) =

p1p2 · · · pλ has solutions only over finite fields whose characteristics are from the set

(p1, p2, . . . , pλ), the constructed sum-network in Fig. 4.2 also has scalar linear network

code solutions only over finite fields whose characteristics are from the set (p1, p2, . . . , pλ).

This sum-network is scalar linear solvably equivalent to Sm, where m = p1p2 · · ·pλ + 2.
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Figure 4.2: A sum-network equivalent to P (x) = p1p2 · · · pλ under scalar linear network

coding.

Example 6. We construct a sum-network which has scalar linear network code so-

lution only over finite fields whose characteristics do not belong to the set of primes

(p1, p2, . . . , pλ). We construct this sum-network by using the construction method given

in [36] and Construction C2. The constructed sum-network is shown in Fig. 4.3.

First, we construct a scalar linear solvably equivalent Type I network to the polynomial

P (x) = (p1p2 · · · pλ)x − 1 by using construction method given in [36]. This Type I net-

work is shown in the dashed box. The sum-network is then obtained using Construction

C2 from this Type I network. The constructed sum-network has scalar linear network

code solutions only over finite fields where the polynomial P (x) = (p1p2 · · ·pλ)x− 1 has

solutions. Since the polynomial P (x) = (p1p2 · · ·pλ)x − 1 has solutions only over finite

fields whose characteristics do not belong to the set (p1, p2, . . . , pλ), the constructed sum-

network in Fig. 4.3 also has scalar linear network code solutions only over finite fields

whose characteristics do not belong to the set (p1, p2, . . . , pλ). This sum-network is scalar

linear solvably equivalent to S∗
m, where m = p1p2 · · ·pλ + 2.
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Figure 4.3: A sum-network which has scalar linear network code solutions only over

finite fields where the polynomial P (x) = (p1p2 . . . pλ)x− 1 has solutions.

4.2 Reversibility of Sum-Networks

Recall that, given a network N , its reverse network N ′ is defined to be the network with

the same set of vertices, the edges reversed while keeping their capacities same, and

the role of sources and terminals interchanged. For a sum-network, since N may have

unequal number of sources and terminals, the number of sources (resp. terminals) in N

and that in N ′ may be different. First, we prove that a sum-network has a (k, n) fraction

linear network code solution over a finite alphabet if and only if its reverse network has

a (k, n) fractional linear network code solution over the same finite alphabet. Then, we

show that there exists a non-reversible sum-network.

4.2.1 Reversibility under Linear Network Codes

In the following, for a given network code for a network, we construct a simple cor-

responding network code for the reverse network and investigate the properties of this

new code. We will represent a process generated at a source by an incoming edge at the

source, and a process recovered at a terminal by an edge outgoing from the terminal.

For any edge (or a source process or a process recovered at a terminal) e, let us denote
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the corresponding edge in the opposite direction in N ′ by ẽ. If e is a source process,

then in N ′, ẽ denotes a recovered process at that terminal, and vice versa. Consider any

(k, l) fractional linear network code C for N . Let the local coding coefficient for any two

adjacent edges e, e′ be denoted by αe,e′. Note that the local coding coefficient for any two

adjacent edges is a l × l matrix; for a source node, the local coding coefficient between

a source process and an outgoing edge is a l × k matrix; and for a terminal node, the

local coding coefficient between an incoming edge and a recovered process is a k× l ma-

trix. Let us consider a path P = e1, e2, . . . , et in N , and the corresponding reverse path

P̃ = ẽt, . . . , ẽ2, ẽ1 in N ′. In N , e1 may also denote a source process which is imagined as

an incoming edge to the source, and et may be a recovered process at a terminal which

is imagined as an outgoing edge from the terminal. The product αet−1,et
· · ·αe2,e3

αe1,e2

is the gain GP of this path. The gain GP is a matrix of dimension l × l if both e1 and

et are internal edges of the network, k × l if e1 is an internal edge and et is a recovered

process at a terminal, and l × k if e1 is a source process and et is an internal edge.

Consider the code C′ for N ′ given by the local coding coefficients βẽ′,ẽ = αT
e,e′, where

‘T ’ denotes transpose. We call this code as the canonical reverse code of C. Under this

code, the path gain of P̃ is

G eP = αT
e1,e2

αT
e2,e3

· · ·αT
et−1,et

= GT
P . (4.1)

This code can be shown to be the same as the dual code defined by Koetter et al. in

[39] under scalar linear network coding. They used this code to show the equivalence of

linear solvability and reversibility of multiple-unicast networks and multicast-networks.

Though their suggested application for the reverse-multicast network was the centralized

detection of an event sensed by exactly one of the many sensors deployed in an area,

this is obviously a special application of the resulting sum-network. As explained below,

this code is a linear network code solution for the reverse-sum network if the original

code is a linear network code solution to the original sum-network.

Consider two cuts χ1 and χ2 in N . The first cut may include edges to the sources

which correspond to the source processes, and the second cut may include edges out of

the terminals corresponding to the recovered processes. Let the edges in χ1 and χ2 be

e11, e12, . . . , e1m1
and e21, e22, . . . , e2m2

respectively. The transfer matrix Tχ1χ2
between
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the two cuts relates the messages carried by the two cuts as



Ye21

Ye22

...

Ye2m2




= Tχ1χ2




Ye11

Ye12

...

Ye1m1



. (4.2)

Note that for each i, j, Yeij
is itself a column vector of dimension l or k depending on

whether it is an internal edge or an edge for a source process or a process recovered at a

terminal. The transfer matrix has appropriate dimension depending on the dimensions

of the column vectors on the left hand side and right hand side. It is convenient to view

Tχ1χ2
as a m2 ×m1 matrix of blocks of appropriate sizes. The (i, j)-th block element of

the matrix has dimension dim(Ye2i
) × dim(Ye1j

). The (i, j)-th block is the sum of gains

of all the paths in the network from e1j to e2i. By (4.1), each path gain is transposed

in the reverse network under this code. So, it is clear that the transfer matrix from the

cut χ2 to the cut χ1 for the code C′ for N ′ is given by

T̃χ2χ1
= T T

χ1χ2
. (4.3)

XX X m1

R1 R2 R

t

S

t1 t

2

s1 s ms2

2

n

nt

Figure 4.4: The source-cut and the terminal-cut of a generic sum-network.

Consider a generic sum-network N depicted in Fig. 4.4. Consider the cuts χs and

χt shown in the figure. We call these cuts, the source-cut and the terminal-cut of
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the sum-network respectively. The transfer matrix from χs to χt is an n × m block

matrix Tχsχt
with each block of size k × k over the alphabet field. It relates the vectors

X = (XT
1 , X

T
2 , . . . , X

T
m)T and R = (RT

1 , R
T
2 , . . . , R

T
n )T as R = Tχsχt

X. Here Xi, Rj are

all column vectors of length k. The (i, j)-th element (‘block’ for fractional linear network

coding) of the transfer matrix is the sum of the path gains of all paths from Xj to Ri.

A (k, l) network code provides a rate k/l solution for the sum network if and only if this

transfer matrix is the all-identity matrix, i.e., if

Tχsχt
=




Ik Ik · · · Ik

Ik Ik · · · Ik
...

...
. . .

...

Ik Ik · · · Ik




nk×mk

. (4.4)

Clearly transposition of this transfer matrix preserves the same structure. For a multiple-

unicast network on the other hand, a (k, l) fractional linear network code solution exists

if and only if the transfer matrix between the source cut and the terminal cut is

Tχsχt
=




Ik 0k · · · 0k

0k Ik · · · 0k

...
...

. . .
...

0k 0k · · · Ik




mk×mk

, (4.5)

where 0k denotes the k×k all-zero matrix. This matrix is symmetric, and so is invariant

under transposition.

Lemma 22. A sum-network N has a (k, l) fractional linear network code solution if and

only if the reverse network N ′ also has a (k, l) fractional linear network code solution.

Proof. Consider a given (k, l) fractional linear network code solution for N . By (4.3) and

(4.4), the canonical reverse code for the reverse network N ′ also gives a (k, l) fractional

linear network code solution for N ′. �

For the case k = l, Lemma 22 gives the following Corollary.

Corollary 23. A sum-network N has a k-length linear network code solution if and

only if the reverse network N ′ has a k-length linear network code solution.
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Theorem 24. A sum-network and its reverse network have the same linear network

coding capacity.

As an alternative to the technique used in this section, one may view (k, l) fractional

coding as scalar coding over the “fattened” network obtained by replacing each internal

edge by l parallel edges, each link incoming to a source corresponding to a source process

by k links signifying k symbols, and each link outgoing from a terminal corresponding

to a recovered process by k links signifying k recovered symbols. Then again one may

use the same transfer function approach to conclude the same results.

Lemma 22 shows that a sum-network and its reverse network are solvably equivalent

under fractional linear network coding. The same result also follows for multiple-unicast

network from (4.3) and (4.5), and this was proved in [39, 40].

4.2.2 Nonreversible Sum-Network

If non-linear coding is allowed, then it was shown in [41] that there exists a solvable

multiple-unicast network (shown in the dashed box in Fig. 4.5) whose reverse multiple-

unicast network is not solvable over any finite alphabet. The network in Fig. 4.5 is

obtained by using Construction C1 on this network. By the properties of Construction

C1, Theorem 11 (ii) and (iv) to be precise, it follows that the network in Fig. 4.5 allows

a nonlinear coding solution whereas its reverse sum-network does not have a solution.

So, we have,

Theorem 25. There exists a solvable sum-network whose reverse network is not solvable

over any finite alphabet.

4.3 Insufficiency of Linear Network Codes

Linear codes are proven to be sufficient to achieve the capacity for multicast networks

[26, 27, 28]. However, It has been shown that scalar linear network coding is insufficient

for Type I networks in the sense that there exists a Type I network which does not admit

a scalar linear network code over any finite alphabet while it has a k-length network code
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Figure 4.5: A nonreversible sum-network. The fat arrows incoming to the nodes ui

denote connections from all the sources except si. The non-reversible multiple-unicast

network in the dashed box is taken from [41]. The sum-network is constructed from this

multiple-unicast network using Construction C1.

solution for code length k = 2 [32]. It has also been shown in [34] that even fractional

linear network coding is not sufficient for Type I networks in the sense that a rate

may be achievable by nonlinear network coding even though the same rate may not be

achievable by linear network coding. In this section, first, we show that scalar linear

network coding is insufficient for sum-networks. Then, we show that fractional linear

network code is also insufficient for sum-networks.

4.3.1 Insufficiency of Scalar Linear Network Codes

We construct a sum-network which does not admit a scalar linear network solution over

any finite alphabet while it has a k-length linear network code for code length k = 2.
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Figure 4.6: A sum-network which has a k-length linear network code solution for code

length k = 2 while it does not have a scalar linear network code solution over any finite

alphabet. This sum-network is constructed using a Type I network given in [32] and

using Construction C2.

We use the Type I network given in [32] and Construction C2 to construct such a sum-

network. The constructed sum-network is shown in Fig. 4.6. The Type I network is

shown in the dashed box. This Type I network does not admit a scalar linear network

code solution over any alphabet but has a k-length linear network code solution for code

length 2 over every finite alphabet. By Corollary 14, we have the following result.

Theorem 26. There exists a sum-network which admits a k-length linear network code

solution for code length k = 2 over a finite alphabet while it does not have a scalar linear

network code solution over any finite alphabet.
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Figure 4.7: A sum-network for which linear network coding is insufficient.

4.3.2 Insufficiency of Fractional Linear Network Codes

Now we construct a sum-network where linear network code itself is insufficient. Specif-

ically, we construct a sum-network which does not have a rate-1 linear network solution

for any code length which it has a rate-1 non-linear network code solution. This sum-

network is shown in Fig. 4.7. We construct this sum-network using a Type I network

presented in [34] and Construction C2. The Type I network is shown in the dashed box

in Fig. 4.7. It was proved in [34] that for this Type I network, there is a rate-1 non-linear

network code solution over the ternary alphabet even though there is no rate-1 linear

network code solution over any finite field for any code length. By Theorem 13, this

network has a rate-1 nonlinear network code solution over F3, but it does not have any

rate-1 linear network code solution over any finite field for any code length. So over

F3, rate-1 is achievable using non-linear network coding but not using linear network

coding.

This gives us the following result.
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Figure 4.8: A sum-network whose network coding capacity is unachievable

Theorem 27. There exists a solvable sum-network with the sum defined over a finite

alphabet which is not linear solvable over any finite field.

It was also shown in [34] that the network in the dashed box in Fig. 4.7 is not solvable

using linear network coding even over R-module, or by using more general forms of the

linear network codes defined in [35]. The same results hold for the sum-network in Fig.

4.7.

4.4 Unachievability of Coding Capacity

It is known that the network coding capacity of a Type I network is independent of the

alphabet [24]. It was shown in [38] that there exists a directed acyclic network whose

network coding capacity is not achievable over any finite alphabet. In this section,
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we show that there also exists a sum-network whose network coding capacity is not

achievable over any finite module over a commutative ring with identity. Now consider

the sum-network shown in Fig. 4.8. The network in the dashed box is taken from [38].

It was shown in [38] that the network coding capacity of this network in the dashed box

is 1 and is not achievable. The sum-network in Fig. 4.8 is constructed from this network

using the Construction C2. By Corollary 18, the coding capacity of the sum-network

over any field is 1. On the other hand, by Theorem 13 Part (ii), rate-1 is not achievable

for the sum-network over any field. This gives the following theorem.

Theorem 28. There exists a sum-network whose network coding capacity is not achiev-

able.

Even though the network coding capacity of a sum-network can be approached arbi-

trarily close by using sufficiently long message dimensions and network usase, Theorem

28 shows that for some sum-networks, the network coding capacity might not be exactly

achievable by any network code.

4.5 New Results for Multiple-Unicast Networks

In Chapter 2, we have presented sum-networks Sm and S∗
m. As we have mentioned

earlier, these sum-networks are special in the sense that for these sum-networks, a rate-1

linear network code solution depends only on the characteristics of the field. By using

Theorem 19, we have the following results for multiple-unicast networks.

Theorem 29. For any finite, possibly empty, set P = {p1, p2, . . . , pλ} of positive prime

numbers, there exists a multiple-unicast network so that for any k ≥ 1, it has a k-length

linear network code solution over a finite field if and only if the characteristic of the

finite field belongs to P.

Theorem 30. For any finite set P = {p1, p2, . . . , pλ} of positive prime numbers, there

exists a multiple-unicast network so that for any k ≥ 1, it has a k-length linear network

code solution over a finite field if and only if the characteristic of the finite field does not

belong to P.
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To the best of our knowledge, these are new results for multiple-unicast networks.

Every acyclic directed Type I network has a scalar linear solution only over fields whose

characteristics belong to finite or co-finite set of primes. However, this result may not

hold for k-length linear network code for code length k > 1. Theorems 29 and 30 show

the existence of multiple-unicast networks whose rate-1 linear network code solutions

depend only on the characteristics of fields and not on the code length.

4.6 Summary

In this chapter, first, we have shown that there exists a scalar linear solvable equivalent

sum-networks for any set of integer polynomial equations. Then, we have shown that a

sum-network is reversible under fractional linear network coding. Next, we have shown

the existence of a non-reversible sum-network. Then, we have shown the insufficiency of

scalar linear network coding as well as linear network coding in general for sum-networks.

We have also shown that there exists a sum-network whose network coding capacity is

unachievable. Finally, we have given some new results for multiple-unicast networks.
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Chapter 5

Bounds on Network Coding

Capacity

In this chapter, we consider the problem of determining the network coding capacity of

sum-networks. It has been shown that network coding is crucial for multicast networks

to achieve the upper bound on network coding capacity [16]. The maximum throughput

in a network using only routing is termed as routing capacity in the literature. There

exist multicast networks whose routing capacity is strictly less than the network coding

capacity. However, the network coding capacity of Type I netwoks, in general, is not

known [19, 31]. For sum-networks, the network coding capacity is upper bounded by

the minimum of min-cut capacities of all source-terminal pairs (Theorem 15). We call

this upper bound as min-cut bound.

First, we show that for a sum-network having either one source or one terminal, min-

cut bound is achieved by linear network coding. Then, we give various lower bounds on

the network coding capacity of sum-networks having more than one source and more than

one terminal. In a special class of sum-network having either 3 sources or 3 terminal, we

show that our given lower bound is tight. We present these bounds in different sections

dealing with various numbers of sources and terminals. We also show that there exists

sum-networks having more than two sources and more than two terminals where the

min-cut bound is not achievable over any finite alphabet. In this chapter, m and n will

denote the number of sources and the number of terminals respectively.
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5.1 The case of min{m,n} = 1

In Chapters 3 and 4, we have considered the reverse sum-network of a sum-network. We

have shown that if a sum-network has a (k, n) fractional linear network code solution,

then from such a network code, one can also construct a (k, n) fractional linear network

code solution of the reverse sum-network. This means that the linear network coding

capacity of the reverse sum-network is the same as the linear network coding capacity

of the original sum-network (Lemma 16).

The min-cut bound on the network coding capacity may not be achievable in general.

A special case arises when there is only one source or one terminal in the sum-network.

If the sum-network has only one source, then the network is a multicast network. Note

that a multicast network is a special case of sum-network with only one source, and its

reverse network is a sum-network with only one terminal. The network coding capacity

of a multicast network is known to be equal to the minimum of the min-cuts of the source-

terminal pairs, and thus the network coding capacity achieves the min-cut bound [16].

Moreover, this network coding capacity is achieved by scalar linear network codes if

alphabet is a finite field [26].

Now, over a finite field, for the case of n = 1, let us consider the reverse sum-

network network of a sum-network obtained by reversing the direction of the edges

and interchanging the role of the sources and the terminals. The reverse network is a

multicast network and thus has linear network coding capacity equal to the minimum of

the min-cut capacities of the source-terminal pairs. So the linear network coding capacity

of the original one-terminal sum-network is the minimum of the min-cut capacities of

the source-terminal pairs. Since the network coding capacity is also upper bounded by

the min-cut bound, the coding capacity of a one-terminal sum-network is the minimum

of the min-cuts of the source-terminal pairs. So we have

Theorem 31. The network coding capacity (and the linear network coding capacity)

of a one-source or one-terminal sum-network is the minimum of the min-cuts of all

source-terminal pairs.

There exists a polynomial time algorithm to design a scalar linear network code to

achieve the linear network coding capacity for multicast networks [28]. By using this
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polynomial time algorithm, we can design a network coding capacity achieving scalar

linear network code for the reverse sum-network (which is a multicast network) of a

sum-network having only one terminal. Now, by the canonical reverse code construction

presented in Section 4.2.1, a network coding capacity achieving scalar linear network

can be designed for the sum-network.

We mention that the result in Theorem 31 has also been proved in Theorem 5 in [39]

using the concept of dual code. However, our treatment is more elementary.

5.2 The case of min{m,n} = 2

It was proved in [56] that for a network with min{m,n} = 2 where every source-terminal

pair is connected, it is possible to communicate the sum of symbols generated at all

sources to every terminal terminal by using a scalar linear network code over every finite

field. Which means that for min{m,n} = 2, network coding capacity ≥ 1 if the min-cut

bound is at least 1. So, the min-cut bound is tight in this case if the min-cut bound is

1. However, if the min-cut bound is greater than 1, then it is not known if this min-cut

bound is achievable. However, we can always achieve the half of the min-cut bound

by time-sharing. For example, for m = 2, each source can communicate its symbols

to all the terminals in one time slot at the rate of min-cut bound and then after two

time-slots, the terminals can add the symbols received from the two sources. Similarly,

for n = 2, the sum of the symbols generated at all the sources can be communicated to

each terminal in one time slot at the rate of min-cut bound. So, we have

Theorem 32. For min{m,n} = 2, the network coding capacity of a sum-network is

bounded as

network coding capacity ≥ max {min{1, mini,j(min-cut (si − tj))},

0.5 ×mini,j(min-cut (si − tj))} .

If the min-cut bound is 1, the lower bound in Theorem 32 is tight and follows from

[56]. Our contribution in Theorem 32 is essentially for the case of min-cut bound greater

than 1.
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5.3 The case of m = n = 3

The case of m = n = 3 is intriguing. On one hand, these are the smallest values of m,n

for which there is a sum-network (called S3 in Chapter 2 and shown again in Fig. 5.1)

where every source-terminal pair is connected, but still does not have a rate-1 linear

network code solution for any code length (Chapter 2) or a non-linear rate-1 network

code solution [57]. So, these are the smallest parameters for which the min-cut bound

is known to be not achievable. (Though it is still not clear at this point if the min-cut

bound may still be achievable in the limit as the suppremum of achievable rates.) On

the other hand, from elaborate investigation of possible networks with these parameters,

there seems to be very limited types of networks. The S3 and its extensions (essentially

the sum-network S ′
3 in Chapter 2 and shown again in Fig. 5.2) seem to be the only

”non-solvable” sum-networks for m = n = 3. The sum-network X3 shown in Fig. 5.3

has been presented in Chapter 2 and has been shown to be solvable by scalar linear code

over all fields except the binary field F2.

v

1

2

u2

s2s3

u

s1

v1

t1 3t t2

Figure 5.1: The network S3
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Figure 5.2: The network S ′
3

First, we give a generic lower bound on the network coding capacity of any sum-network

with min{m,n} = 3 and with min-cut bound ≥ 1.

Theorem 33. The linear coding capacity of any sum-network with min{m,n} = 3 with

min-cut bound ≥ 1 is at least 2/3.

Proof. W.l.o.g., let us assume that the number of terminals is 3 (otherwise consider

the reverse network). Let us consider two symbols at each source: Xi1, Xi2 at si for

i = 1, 2, . . . , m. Let the two sums be denoted as Sum1 =
∑m

i=1Xi1 and Sum2 =
∑m

i=1Xi2. If we take two terminals at a time, the resulting network has a network

coding capacity ≥ 1 as discussed in Section 5.2 using scalar linear network coding as

proposed in [56]. Now, the two sums Sum1 and Sum2 can be communicated to all the

terminals in three time slots. In the first time slot, Sum1 is communicated to t1 and

t2. In the second time slot, Sum2 is communicated to t2 and t3. In the third time slot,

Sum1 + Sum2 =
∑m

i=1(Xi1 +Xi2) is communicated to t1 and t3. Having received Sum1

(respectively Sum2) and Sum1 + Sum2, the terminal t1 (respectively t3) can recover

Sum2 (respectively Sum1) as well. So all the terminals recover the two sums in three

time slots, thus achieving a rate 2/3 using linear network coding. �
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Figure 5.3: The network X3

It was proved in [57] that if a sum-network with m = n = 3 has two edge-disjoint

paths between any source-terminal pairs, then the network is linearly solvable, that is,

rate-1 is achievable by scalar linear coding. This gives the following bound.

Proposition 34. The linear network coding capacity of any sum-network with m = n =

3 with min-cut ≥ 2 is at least 1.

Now we show that the sum-network S3 and its extension S ′
3 both have network coding

capacity exactly 2/3 whereas their min-cut bound is 1. So, there is a gap between the

network coding capacity capacity and the min-cut upper bound.

Theorem 35. The network coding capacity and linear network coding capacity of S3

and S ′
3 is 2/3.

Proof. Clearly, the sum-network S ′
3 is obtained from S3 by adding one direct edge from

s1 to t1, and subdividing the edge (s2, t1) and adding one edge into it from s1. So, the

network coding capacity and the linear network coding capacity of the sum-network S ′
3

is at least that of S3. By the previous theorem, the rate 2/3 is achievable by linear

network coding in S ′
3. Now we will show that the network capacity of S ′

3 is bounded
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from above by 2/3. This will prove that both the sum-networks have the same network

coding capacity and linear network coding capacity and that these are both 2/3.

Consider any (k, l) fractional network code solution of S ′
3. Let X1, X2, X3 ∈ Fk be

the message blocks generated at the three sources, where F is a finite field. Let the edges

(u1, v1) and (u2, v2) carry the functions φ(X1, X3)and ψ(X2, X3) respectively. For any

fixed values of X1 and X2, the set of messages received by the terminal t1 should be a

one-one function of X3 since the terminal can recover the sum X1 +X2 +X3 which is a

one-one function of X3. Since the messages on (s1, t1) and (u3, t1) are fixed by the values

of X1 and X2, the message on (v1, t1) and thus φ(X1, X3) must be a one-one function of

X3 for a fixed value of X1.

Now clearly, for t2 to be able to recover the sum, the function ψ should be such that

one can recover X2 +X3 from ψ(X2, X3). Since t3 recovers the sum X1 +X2 +X3, and it

can recover X2 +X3 from the message on (v2, t3), it can also recover X1 by subtracting.

Now, t3 receives φ(X1, X3) on (v1, t3) (W.l.o.g.) and this is a one-one function of X3

for any given X1. So, having recovered X1, t3 can recover X3 from φ(X1, X3). Then by

using ψ(X2, X3) received on (v2, t3) and the value of X3, t3 can also recover X2. So, t3

can recover all the original messages X1, X2, X3. Now (X1, X2, X3) takes a total of |F |3k

possible values as a triple. On the other hand {(u1, v1), (u2, v2)} is a cut between the

sources and t3, and this cut can carry at most |F |2l possible different message-pairs. So,

we have |F |2l ≥ |F |3k ⇒ k/l ≤ 2/3. �

The following observations lead us to believe that the sum-network S ′
3 is essentially

the only maximal extension of S3 which has the same network coding capacity.

1. Further subdividing (u3, t1) and adding an edge from it to t2 makes the sum-

network X3 a subgraph of the resulting network, and thus the network coding

capacity of the sum-network increases to 1.

2. Also subdividing (s1, t2) and adding an edge from it into t1 does not change its

network coding capacity since there is already an edge (s1, t1) and the new edge

can not carry any extra information to t1.

3. Also subdividing (s1, t2) and adding an edge to it from s2 gives a strictly richer

network than X3, and thus the network coding capacity of the network increases
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to 1.

4. Instead of the edge (s1, t1), if an edge (s2, t2) is added, then the resulting network

(shown in Fig. 5.4) is strictly richer than X3 because the edges (s1, t2) and (s2, t2)

can jointly carry more information than an edge from u3 to t2. So the resulting

network has network coding capacity 1 even though it does not have a binary

scalar solution (like X3).

These observations also lead us to believe that

Conjecture 36. The network coding capacity of a sum-network with m = n = 3 is

either 0, 2/3 or at least 1.

s s3 s

u1 u3 u2

21

v1 2v

t1 t3 t2

Figure 5.4: The network X ′
3

5.4 The case of m,n > 3

This is the most ill-understood class of sum-networks. We only have what we suspect to

be a very loose lower bound on the capacity of this class of networks. This lower bound

is obtained by similar coding by time-sharing scheme as in the proof of Theorem 33.
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Theorem 37. The linear coding capacity of a sum-network with min{m,n} ≥ 2 and

min-cut ≥ 1 is at least 2/min{m,n}.

Proof. The case of min{m,n} = 2 follows from Theorem 32. For min{m,n} > 2, without

loss of generality, let us assume that n ≤ m. For even n, we can group the terminals into

n/2 pairs and in each time slot communicate the sum of the source symbols to one pair

of terminals. So, in n/2 time slots we can communicate one sum of the source symbols to

all the terminals thus achieving a rate 2/n. For odd n, we can group the terminals into

(n − 3)/2 pairs and one triple. We can communicate one sum to each pair in one time

slot. So, we can communicate two sums to all the pairs in (n− 3) slots. Then using the

same scheme as in the proof of Theorem 33, we can communicate two sum to the group

of three terminals in three time slots. So, in overall n time slots, we can communicate

two sums to all the terminals in the network. This gives us a rate 2/n = 2/min{m,n}.

�

If the min-cut bound is 1 and min{m,n} = 2, the lower bound in Theorem 37 is tight

and follows from [56]. Our contribution in Theorem 37 is for the case of min{m,n} > 2.

Remark 5. For the case m = 3, n ≥ 3 or m ≥ 3, n = 3, the lower bound by Theorem 37

is 2/3. We claim that this bound is tight. We prove this claim by using the construction

S3 ⊲⊳ Km−3,n−3. Now, for the sum-network S3 ⊲⊳ Km−3,n−3, by taking m = 3, n ≥ 3 or

m ≥ 3, n = 3, our claim follows from Theorem 35.

Remark 6. The results by Lemma 33, Theorem 35, and Theorem 37 also follow for

alphabets having more general algebraic structures such as a module over a ring.

We believe that the bound in Theorem 37 is very loose and there is scope for im-

provement. Even though we failed to come up with any achievable scheme of higher

rate, we also failed to construct a network satisfying the bound with equality.

We suspect a decreasing degree of tightness in these bounds as the numbers of sources

and terminals increase. We summarize the bounds in Table 5.1 to bring out this obser-

vation. We have given lower bounds for the min-cut bound > 1 by using time shared

multicasting and the result that a sum-network is reversible under fractional linear net-

work coding. The parenthetic comments in the table entries indicate the tightness of
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Solvability Network coding capacity

min-cut bound min-cut bound min-cut bound min-cut bound

= 1 > 1 = 1 > 1

min{m, n} = 1 Solvable Solvable = 1 = min-cut bound

min{m, n} = 2 Solvable Solvable = 1 ≥ min-cut bound/2

(loose/tight?)

m = n = 3 Network dependent Solvable ≥ 2/3 (tight) ≥ max{1, min-cut bound/3}

(loose!)

min{m, n} = 3 Network dependent ? ≥ 2/3 (tight) ≥ min-cut/3 (loose!)

min{m, n} > 3 Network dependent ? ≥ 2/ min{m, n} (loose!) ≥ min-cut bound/ min{m, n}

(loose!)

Table 5.1: Solvability and bounds on the capacity

the bound as known or conjectured (indicated with an exclamation (!) mark.) The

interrogation (?) mark as an entry indicates that nothing is known about the case.

5.5 Summary

In this chapter, we have made an attempt to explore the network coding capacity of the

sum-networks. We have shown that the network coding capacity of a sum network with

either one source or one terminal is equal to min-cut bound and is achievable using linear

network coding. Then we have presented lower bounds for sum-networks depending on

number of sources, number of terminals, and min-cut bound. We have shown that for

the case m = 3, n ≥ 3 or m ≥ 3, n = 3, the lower bound is tight.

5.6 Open Questions

For the class of multiple-unicast network, for any rational number, one can easily con-

struct a multiple-unicast network which has network coding capacity equal to that ratio-

nal number. One can also easily construct a multiple-unicast network which has linear

network coding capacity equal to that rational number. It is not clear if this is pos-

sible for the class of sum-networks. Based on this observation, we pose the following

questions. In the following, Q+ represents the set of positive rational numbers.

• Does there exist a sum-network which has a chosen network coding capacity C for

every choice of C ∈ Q+?
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• Does there exist a sum-network which has a chosen linear network network coding

capacity C for every choice of C ∈ Q+?

The above questions can be generalized for real numbers. In the following, R+

represents the set of positive real numbers.

• Does there exist a sum-network which has a chosen network coding capacity C for

every choice of C ∈ R+?

• Does there exist a sum-network which has a chosen linear network coding capacity

C for every choice of C ∈ R+?

It would be interesting to prove or disprove the tightness of lower bounds given in

this chapter, namely,

• Is the lower bound given in Theorem 32 tight?

• Is the lower bound given in Theorem 37 tight?

107





Chapter 6

Summary and Directions for Future

Work

In this thesis, we have considered a communication problem over a directed acyclic

network where every terminal wants to recover the sum of symbols generated at all

the sources. We have assumed that each source generates one i.i.d. random process

with uniform distribution over a finite alphabet, having abelian group structure, and

different source processes are independent. We have also assumed that all the links in

the network are unit capacity links which are error-free and delay free. We have referred

such a directed acyclic network as a sum-network.

First, we have considered rate-1 linear network code solutions over finite fields. We

have constructed two special classes of directed acyclic networks. In the first constructed

class, for any finite set of primes, the problem of communicating the sum of symbols

generated at all sources to all the terminals has rate-1 linear network code solutions over

a finite field if and only if the characteristic of the finite field belong to the given set. In

the second constructed class, for any finite set of primes, the problem of communicating

the sum of symbols generated at all sources to all the terminals has rate-1 linear network

code solutions over a finite field if and only if the characteristic of the finite field does not

belong to the given set. In these two classes, rate-1 linear network code solutions depends

only on the characteristics of the finite fields. Then we have shown that there exists a

directed acyclic network where a scalar linear network code solution for communicating

the sum of symbols not only depend on the characteristic of the finite field but also on
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the size of the finite field. Then we have shown that source-terminal pairs connectivity is

insufficient for the solvability over any finite alphabet for the problem of communicating

the sum of symbols over a directed acyclic network with more than two sources and

more than two terminals.

Then we have constructed some equivalent networks. We have shown that the prob-

lem of communicating the sum of the symbols over a acyclic directed network and the

problem of communicating a linear function of the symbols over the same acyclic directed

network are solvably equivalent under (k, l) fractional network coding if the component

linear functions are invertible. Then we have constructed a solvably equivalent (also lin-

ear solvably equivalent) sum-network to any given multiple-unicast network. We have

also shown that the reverse sum-network of the constructed sum-network is solvably

equivalent (also linear solvably equivalent) to the corresponding reverse multiple-unicast

network. Next we have constructed a solvably equivalent (also linear solvably equivalent)

sum-network to any given directed acyclic Type I network. Finally, we have constructed

a linear solvably equivalent multiple-unicast network to any given sum-network.

Using equivalent network constructions, we have shown that for any set of poly-

nomials having integer coefficients, there exists a sum-network which is scalar linear

solvable over a finite field F if and only if the polynomials have a common root in F.

We have also shown that there exists a solvable sum-network whose reverse network is

not solvable. However, we have shown that a sum-network and its reverse sum-network

are solvably equivalent under fractional linear network coding. Then we have shown

that linear network codes are insufficient to achieve a rate which is achievable by using

non-linear network codes by constructing an example sum-network. We have also shown

unachievability of the network coding capacity for sum-networks.

Finally, we have investigated on the network coding capacity of sum-networks. We

have presented some bounds in terms of min-cut bound, and the numbers of sources and

terminals.

6.1 Directions for Future Work

We have mentioned specific open questions at the end of Chapters 2, 3 and 5 based on

the work in those chapters. Here, we mention some broad directions for future work.
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1. In this thesis, we have assumed that different source processes are independent. It

would be intersting to consider the problem of communicating the sum of symbols

when different source processes are correlated.

2. In this thesis, we have considered sum-networks which are directed acyclic net-

works. It would be interesting to consider sum-networks which are directed net-

works with cycle. It would also be intersting to consider sum-networks which are

undirected networks.

3. It would be interesting to consider the problem of communicating the modulo-sum

of symbols. Consider a sum-network having m sources and n terminals. In this

problem setup, for 1 ≤ i ≤ m, source si generates a symbol Xi from the alphabet

{0,1,. . . ,p-1}, where p ∈ Z; and each terminal requires (X1+X2+. . .+Xm) mod p.

4. In this thesis, all the link are assumed to be wireline and error-free links. It would

be intersting to consider erroneous wireless links.
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