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Abstract Wireless channel poses significant challenges to resource management
due to multipath fading. In this chapter, we review the impact of wireless channel
on the design of scheduling algorithms at the link and network layers. It has been
well recognized now that significant performance gains can be obtained by design-
ing channel aware scheduling algorithms. Various scheduling schemes catering to
different Quality of Service (QoS) objectives such as maximizing throughput, min-
imizing delay, or minimizing energy have been proposed in the literature. Most of
these algorithms can be formulated as control problems within the framework of
Constrained Markov Decision Processes. We examine some of the representative
work in this area with a specific focus on centralized scheduling in a single cell
scenario with single antenna system.

Over the past decade, there has been a large scale proliferation of wireless com-
munications technologies. While the first and second generation (1G and 2G) cel-
lular systems were driven primarily by voice based cellular telephony, the recent
years have witnessed a phenomenal increase in packet data applications like email,
web browsing, peer to peer and multimedia applications. These applications require
Quality of Service (QoS) guarantees in terms of rate, delay, packet loss etc. The
time varying nature of the wireless channel due to multipath fading poses signifi-
cant challenges to radio resource management for providing QoS. In this chapter,
we focus on packet scheduling aspect of resource management.

Recent results suggest that significant performance gains can be obtained by ex-
ploiting wireless channel characteristics for the design of scheduling algorithms at
the link and network layers. These algorithms are referred to as cross layer schedul-
ing. Cross layer scheduling algorithms can be formulated as optimization problems
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where the objective is to optimize a given utility function such as energy subject to
QoS constraints such as delay. The scheduler can be viewed as a controller where
the control action comprises of determining the user to be scheduled, its transmis-
sion rate and power depending upon the system state. These problems can often
be cast within the framework of Constrained Markov Decision Process (CMDP).
The computational approaches to determine the optimal policy comprises of dy-
namic programming, linear programming, function approximation, reinforcement
learning, stochastic approximation etc. In this chapter, we examine some of the rep-
resentative formulations to elucidate the nature of the problems being considered in
the literature. The focus of this chapter is centralized scheduling in a cellular system
with single antenna.

We first begin by reviewing the characteristics of wireless channel and its ca-
pacity. We then present a framework for cross layer scheduling algorithms, Finally,
we review some techniques in fair opportunistic, power optimal, throughput optimal
and delay optimal scheduling algorithms.

1 Wireless Channel Characteristics

Wireless channel is characterized by the decay of signal strength due to distance
(path loss), obstructions due to objects such as buildings and hills (shadowing) and
constructive and destructive interference caused by copies of the same signal re-
ceived over multiple paths (multipath fading). In this chapter we primarily focus on
multipath fading and its impact on the design of scheduling algorithms.

In multipath fading, multiple copies of the signal reach the receiver at various
instants of time depending on the length of the path over which the signal traverses.
The relative motion between the transmitter and receiver and/or movement of the re-
flecting objects results in random path length changes; consequently different mul-
tipath components have random amplitudes and phases. This results in time varying
amplitude and phase of the received signal.

The time varying characteristics of the wireless channel can be modeled as a
tapped delay line filter with each tap corresponding to a delay window during which
different multipath components arrive at the receiver. In this chapter, we limit our
discussion to flat fading channels where all the multipath components corresponding
to a symbol arrive within the symbol duration. In such a case, the channel can be
modeled using a filter with a single tap. Moreover, we also assume that this tap (or
channel) gain remains constant for a block of symbols and changes only over block
(termed as slot in this chapter) boundaries. This model is termed as Block Fading
Model.

Under this model, if a user transmits a signal χn in slot n, then the received signal
Yn is given by:

Yn = Hnχn +Zn, (1)
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where Hn corresponds to the time-varying channel (tap) gain due to fading and Zn is
the complex Additive White Gaussian Noise (AWGN) (with zero mean and variance
N0). Usually Hn is modeled as a zero mean complex Gaussian random variable.
Let σ2 denote the variance of Hn. Then |Hn| is a Rayleigh random variable and
Xn = |Hn|2 is an exponentially distributed random variable with probability density
function expressed as:

fX (x) =
1

σ2 exp(
−x2

2σ2 ), x≥ 0. (2)

This model is called Rayleigh fading model.
We refer to Xn as channel state in slot n. Note that the channel state Xn may

change from slot to slot either in an independent and identically distributed (i.i.d.)
fashion or in a correlated fashion (e.g. may follow a Markov model). Moreover, the
channel state Xn is a continuous (exponential) random variable. However, for the
scheduling problems considered later in this chapter, we assume that the channel
state Xn takes values from a finite discrete set X. This discretization can be achieved
by partitioning the channel state into equal probability bins with preselected thresh-
olds. For example, let x(1) < .. . < x(L) be these thresholds. Then the channel is
said to be in state xk if x ∈ [x(k),x(k + 1)), k = 1, . . . ,L. The channel state space X
can be represented as X = {x1, . . . ,xL}.

1.1 Capacity of Fading Channel

For a wireless channel, capacity analysis can be performed both in the presence as
well as absence of Channel State Information (CSI) at the transmitter. Throughout
this chapter, we assume that the transmitter has the knowledge of perfect CSI. In a
Time Division Duplex (TDD) system, due to channel reciprocity, it may be possible
for the transmitter to obtain the CSI through channel estimation based on the signal
received on the opposite link. In a Frequency Division Duplex (FDD) system, the
receiver has to estimate the CSI and feed this information back to the transmitter. In
practice, e.g., in IEEE 802.16 [26], the channel related information can be conveyed
using ranging request (RNG-REQ) messages. In this chapter, we do not take into
account the specific feedback mechanisms; rather, we assume that the transmitter
has the knowledge of perfect CSI.

Different notions of capacity of fading channels have been defined in the liter-
ature. The classical notion of Shannon capacity defines the maximum information
rate that can be achieved over the channel with zero probability of error. This notion
involves a coding theorem and its converse, i.e., that there exists a code that achieves
the capacity (information can be reliably transmitted using this code at a rate less
than or equal to the capacity) and that reliable communication is not possible if
information is transmitted at a rate higher than the capacity.

In this chapter, we consider ergodic capacity (also termed as throughput capacity
or expected capacity in the literature). This notion of capacity measures the rates



4 Nitin Salodkar and Abhay Karandikar

achievable in the long run averaged over the channel variations. Here, the channel is
assumed to vary sufficiently fast, yet the variations are slow enough such that ‘rea-
sonably’ long codes can be transmitted. We first derive an expression for the ergodic
capacity of a single user point-to-point link under an average power constraint and
then extend the notion to multiuser scenario.

1.1.1 Point-to-Point Capacity with Perfect Transmitter CSI

Consider a single user wireless channel depicted in Figure 1. We assume transmitter
has perfect knowledge of CSI. Let Pn denote the transmission power in slot n. Let
X1 = x1, . . . ,XM = xM be a given realization of channel states. We assume that the
transmitter has an average power constraint of P̄.

X

Feedback path with zero delay

Bits

Fig. 1 Point-to-point transmission model

The restriction on the average power expenditure makes the problem of achiev-
ing capacity to be a power allocation problem. Specifically, the problem is to deter-
mine the transmission power in each slot that maximizes the information rate (and
hence achieves capacity), while keeping the average power expenditure below the
prescribed limit. The problem can be stated as:

max
P1,...,PM

1
M

M

∑
n=1

log
(

1+
PnXn

N0

)
, (3)

subject to,
1
M

M

∑
n=1

Pn = P̄. (4)

This is a constrained optimization problem and can be solved using standard La-
grangian relaxation [8]. Let x+ denote max(0,x). A solution to the optimization
problem stated in (3) and (4) is a policy that determines the optimal power in nth

slot to be:
P∗n =

( 1
λ
− N0

Xn

)+
, (5)

where λ is a Lagrange Multiplier which satisfies:
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1
M

M

∑
n=1

( 1
λ
− N0

Xn

)+
= P̄. (6)

As M→ ∞, by ergodicity,

lim
M→∞

1
M

M

∑
n=1

( 1
λ
− N0

Xn

)+
= E

[( 1
λ
− N0

X

)+]
= P̄, (7)

where the expectation is taken with respect to the stationary distribution of the chan-
nel states. For a given realization of the channel state X = x, the optimal power
allocation can be expressed as:

P∗(x) =
( 1

λ
− N0

x

)+
. (8)

Figure 2 provides a pictorial description of the power allocation (termed as water-
filling) policy. It can be observed that the transmitter allocates more power when
the channel is good and less power when the channel is poor. This insight has been
used later while designing scheduling schemes at network layer in Section 4. Note
that the waterfilling power allocation is in contrast with the traditional power control
policy which attempts to invert the channel.

Time

2
oN

h

1
λ

*p *p *p*p*p

*p

Fig. 2 Waterfilling power allocation

Once the optimal power is known, the channel capacity with perfect CSI at the
transmitter can be expressed as:

C = E
[

log
(

1+
P∗(X)X

N0

)]
. (9)

Though a point-to-point or single user transmission system offers significant in-
sight for transmission over a fading channel, it represents a somewhat restricted
scenario. In the next section, we consider a more realistic multiuser scenario where
we review generalization of the single user waterfilling power allocation.
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1.1.2 Multiuser Capacity with Perfect Transmitter CSI on the Uplink

UserN

User1

User2

BS

X1

X2

XN

S

Scheduler

Bits

Bits

Bits

Fig. 3 Uplink transmission model, infinite backlog of bits at transmitters

In this section, our objective is to determine the ergodic capacity for a multiuser
(uplink) fading channel as depicted in Figure 3 where N users communicate with a
base station. With the block fading model, the signal Yn received by the base station
in slot n can be described in terms of the transmitted signals χ i

n, i = 1, . . . ,N as:

Yn =
N

∑
n=1

H i
nχ

i
n +Zn, (10)

where H i
n is the channel gain for user i in slot n. Let X i

1 = xi
1, . . . ,X

i
M = xi

M, i =
1, . . .N, be a given realization of the channel states. User i has an average power
constraint of P̄i (P̄ = [P̄1, . . . , P̄N ]T being the average power constraint vector), the
problem is to determine optimal power allocation for each user that maximizes the
sum capacity subject to maintaining each user’s average power expenditure below
its prescribed limit. This problem can be stated as:

max
Pi

n,i=1,...,N,n=1,...,M

1
M

M

∑
n=1

W log
(

1+ ∑
N
i=1 Pi

nX i
n

WN0

)
, (11)

subject to the per user power constraint:

1
M

M

∑
n=1

Pi
n = P̄i, i = 1, . . . ,N. (12)

We first consider symmetric scenario where all users have identical channel statis-
tics and power constraints (P̄i = P̄,∀i). For simplicity, instead of individual power
constraints as in (12), we consider the total power constraint:
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1
M

M

∑
n=1

N

∑
i=1

Pi
n = NP̄. (13)

It turns out that subject to the constraints expressed in (13), the sum capacity in
(11) is maximized by allowing only one user with the best channel state to transmit
in a slot. The power allocation is expressed as:

Pi∗n =

{(
1
λ
− WN0

xi
n

)+
if xi

n = max j x j
n,

0 otherwise,
(14)

where λ again is a Lagrange Multiplier and is chosen to satisfy the sum power
constraint (13) and i∗n is the index of the best user in slot n. Taking M→ ∞ and by
ergodicity of the fading process, we obtain the capacity-achieving power allocation
policy that allocates power Pi∗(x) to user i as a function of the joint channel state
vector x = (x1, . . . ,xN) where:

Pi∗(x) =

{(
1
λ
− WN0

xi

)+
if xi = max j x j,

0 otherwise,
(15)

where λ is chosen to satisfy the power constraint:

N

∑
i=1

E
[
Pi∗(X)

]
= NP̄. (16)

The resulting sum capacity is:

Csum = E

[
W log

(
1+

Pi∗X i∗

WN0

)]
, (17)

where X i∗ is the channel state of the best user indexed by i∗. Note that this result is
derived by imposing a total power constraint (13). However, because of symmetry
and independence between the user channel state processes, the power consumption
of all users is same under the optimal power allocation policy. Hence, the per user
power constraints in (12) are also satisfied.

The above scheduling policy where the user with the best channel state is sched-
uled in a slot is called opportunistic scheduling. It takes advantage of multiuser
diversity in order to improve the sum rate (throughput), i.e., in a system with large
number of users having independent and diverse channel states, there exists a user
having good channel state with a high probability. Moreover, this probability in-
creases with the number of users. The implications of opportunistic scheduling have
been investigated in further detail in Section 3.

Let Cg(x,P(x)) denote the set of achievable rates under a policy allocation pol-
icy P(x). It can be expressed as:



8 Nitin Salodkar and Abhay Karandikar

Cg(x,P) =

{
R : ∑

i∈S
Ri ≤W log

(
1+ ∑i∈S xiPi

WN0

)
∀S ∈ {1, . . . ,N}

}
. (18)

A power allocation policy P is feasible if it satisfies the power constraints of all
users, i.e., E [P(X)] = P̄. Let F be the set of all feasible power allocation policies.
The throughput capacity region is defined as the union of the set of rates achievable
under all power control policies P ∈ F, i.e.,

C(P̄) =
⋃

P∈F
E [Cg(X,P(X))] . (19)

In a general case of asymmetric channels and power constraints, weighted rate
maximization is a more appropriate metric. Let γ = [γ1, . . . ,γN ]T be a vector of
weights assigned to the users. The weighted rate maximization problem can be ex-
pressed as:

max γ ·R, (20)

subject to the constraint that the rate vector lies in the capacity region:

R ∈ C(P̄). (21)

Using a Lagrangian formulation [8], it can be shown that the optimal power allo-
cation policy can be computed by solving, for each channel state vector X = x, the
following optimization problem:

max
R,P

γ ·R−λ ·P, (22)

subject to:
R ∈ Cg(X,P). (23)

The optimal solution to (22) thus provides a power allocation P(x) and a rate al-
location R(x) at channel state vector X = x. If the choice of λ = [λ 1, . . . ,λ N ]T

ensures that the power constraint is met then R∗ = E [R(X)] is an optimal solution
to (22). It can be shown that the optimal solution to (22) is a greedy successive de-
coding scheme where the users are decoded in an order that is dependent on the
interference experienced by them.

2 A Framework for Cross Layer Scheduling

In the above sections, we have discussed information theoretic capacity notions for
multiuser wireless system. These results indicate that significant performance gains
can be obtained at the link and network layers by exploiting physical layer infor-
mation. In this section, we discuss how information from physical layer can be ex-
ploited and opportunities created for making scheduling decisions in order to satisfy
certain QoS measures.
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2.1 Opportunistic Scheduling

As we have already studied, for the symmetric case, sum capacity is maximized by
scheduling the user with the best channel state in a time slot. This suggests that users
should transmit at opportunistic time. This leads to the foundation of opportunistic
scheduling. Since the radio channel conditions vary independently for each user, in
a given slot, there is a high probability of having a user whose channel state is near
its peak. Scheduling such a user leads to high sum throughput. The gains are larger
if the channel variations are larger which in turn are indeed larger if the number of
users is large. Thus, the traditional view that rapid variations in the wireless channel
pose a significant challenge for efficient communication has been converted into an
opportunity for exploiting multiuser diversity.

Thus, we have a scheduling scheme where the scheduler picks up the user in in
slot n such that

in = argmax
j

x j
n. (24)

This ‘pure’ opportunistic scheduling, though, maximizes overall sum throughput, is
not necessarily fair. It may starve the users who have poor average channel states.
For example in Figure 4, user 2 is starved. This problem can be addressed by impos-
ing fairness constraints in (24). We will review such algorithms later in the chapter.

Ch
an

ne
l s

ta
te

Time

User 1
User 2

Fig. 4 User with perennially poor channel condition may be starved by a pure opportunistic sched-
uler
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2.2 Energy Efficient Scheduling

Apart from maximizing throughput, energy efficiency is also an important concern
in wireless communications. As is evident from the foregoing discussion on capac-
ity, the power required for error free communication in Shannon’s sense at a rate u
when the channel state is x is given by

P(x,u) =
N0

x
(eu−1), (25)

where N0 is the thermal noise power spectral density. Note that for a giver x, the
transmission power is an increasing and strictly convex function of u.

Even for practical digital communication systems, the power required to transmit
at a rate u for a specified bit error rate (BER) is given by

P(x,u) =
N0

Γ (BER) x
(eu−1), (26)

where Γ (BER) denotes the signal to noise ratio (SNR) gap corresponding to a prac-
tical modulation and coding setting. Even in this case, the power is convex and
strictly increasing function of u.

The convex power-rate relationship implies that if we want to, say, double the
rate, we may have to transmit at more than double the power. Thus to transmit u
packets, the scheduler can transmit u

2 packets in one slot and u
2 packets in the next

slot instead of u packets in one slot (if the rate permits). This strategy saves the
power, albeit, at a cost of delay of one slot. This suggest that the scheduler should
transmit the data in opportunistic chunks for energy efficiency.

Note that packets (hence bits) arrive randomly and may be subjected to buffer-
ing. Hence to maximize throughput or to minimize energy, opportunistic or energy
efficient scheduling has to contend with network layer issues like fairness, packet
delay and queue stability. This leads to formulating the scheduling problem as a
control problem which exploits fading state information to maximize (or minimize)
a given utility function subject to some constraints such as fairness, delay, stability.
In the rest of the chapter, we focus on such formulations. We begin by discussing
the system model in more detail in the next section.

2.3 System Model for Centralized Scheduling

We consider a multiuser wireless system where N users communicate with a base
station. On the uplink, as depicted in Figure 5, users communicate with the base
station using TDMA, i.e., time is divided into slots of equal duration and only one
user can transmit in a slot. We assume that the slot duration is normalized to unity.
The base station is the centralized entity that makes the scheduling decision and the
user scheduled by the base station transmits in a slot.
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UserN

User1

User2

BS
X1

X2

XN

S

Scheduler

QN

Q2

Q1

Fig. 5 Uplink transmission model, finite buffer at each user

The channel state as discussed in Section 1.1.2 is assumed to remain constant for
the duration of a slot and to change in an i.i.d. manner across slots. We assume that
packets arrive randomly into the user buffer and are queued in the buffer until they
are transmitted.

UserN

User1

User2

BS

S

Scheduler

Q1

Q2
X2

XN

QN

X1

Fig. 6 Downlink transmission model, finite buffer for each user at base station

On the downlink, as depicted in Figure 6, we assume that the base station multi-
plexes the transmissions corresponding to N users using Time Division Multiplexing
(TDM). The base station maintains a queue for each user.

Let Ai
n ∈ A = {0, . . . ,A} denote the number of arrivals into user i buffer at the

beginning of slot n1. We also assume that the user’s packets are of equal size, say,
` bits. The packet arrival process is assumed to be stationary and is independent of
the channel fading and noise processes.

Let Qi
n ∈ Q denote the queue length corresponding to user i at the beginning of

slot n. Let U i
n be the number of packets transmitted from user i buffer in slot n. Since

the slot duration is normalized to 1, U i
n ∈U also denotes the transmission rate of user

1 Random variables are denoted with capital letters while their values are denoted with small letters.
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i in slot n. Let Ri
n ∈ U denote the number of packets that user i should transmit in

slot n if it is scheduled. Then U i
n = Ii

nRi
n, where Ii

n is an indicator variable that is set
to 1 if the user i is scheduled in slot n, otherwise it is set to 0.

The queue dynamics for user i can be expressed as (for U i
n):

Qi
n+1 = max(0,Qi

n +Ai
n+1− Ii

nRi
n). (27)

Since the scheduler can at most schedule all the bits in a buffer in any slot, U i
n ≤

Qi
n. Moreover, Qi

n+1 ≥ Ai
n+1, ∀n. We assume that the scheduler can choose U i

n based
on the queue length Qi

n, the channel state X i
n and the number of arrivals (source

arrival state) Ai
n. More generally, the scheduler can determine U i

n based on entire
history of queue lengths, channel states and source arrival states.

Different formulations make various assumptions on the arrival process {Ai
n} and

control action process {U i
n}. We state these assumptions later while formulating

different scheduling problems.
The average queue length of a user i can be expressed as:

Q̄i = limsup
M→∞

1
M

M

∑
n=1

Qi
n. (28)

Average delay D̄i can be treated to be equivalent to the average queue length Q̄i

because of the Little’s law (Chapter 3, [9]) as follows:

Q̄i = āiD̄i, (29)

where āi is the average packet arrival rate of user i. Due to this relationship, queue
length measure is usually considered to be synonymous with delay measure.

Similarly, the sum throughput over a long period of time can be expressed as:

T̄ = liminf
M→∞

1
M

M

∑
n=1

N

∑
i=1

Ii
nRi

n. (30)

The average power consumed by a user i over a long period of time can be ex-
pressed as:

P̄i = limsup
M→∞

1
M

M

∑
n=1

P(X i
n, I

i
nRi

n), (31)

where P(X i
n, I

i
nRi

n) is the power required by i when the channel state is X i
n and user

transmits Ii
nRi

n packets.
A number of scheduling algorithms have been proposed in the literature that fo-

cus on the above measures or variations of these measures. Broadly, these algorithms
can be classified into three types:

1. Maximize sum throughput subject to fairness constraint.
2. Maximize sum throughput subject to delay and queue stability constraint.
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3. Minimize average power subject to delay constraint.

We begin by first discussing fair scheduling algorithms.

3 Fair Scheduling

Exploiting multiuser diversity in an opportunistic manner by scheduling the user
with the best channel state might introduce unfairness. Users who are closer to the
base station might experience perennially better channel conditions and thereby ob-
tain a higher share of the system resources at the expense of users who are farther
away from the base station. On the other hand, scheduling users with poor channel
states results in a reduction in the overall throughput. Thus, there exists a fairness-
sum throughput tradeoff. One of the earliest systems to exploit this tradeoff in order
to improve the sum throughput is the Code Division Multiple Access/High Data
Rate (CDMA/HDR) system.

Different scheduling algorithms provide fairness over different time intervals. A
scheduling algorithm is long term fair if it provides a fair share of a certain quantity
such as fraction of time slots or throughput to all users over a long period of time.
As outlined earlier, the average throughput achieved by a user i over a long period
of time can be expressed as:

T̄ i = liminf
M→∞

1
M

M

∑
n=1

Ii
nRi

n. (32)

The fraction of slots allocated to a user in the long run can be expressed as:

Īi = liminf
M→∞

1
M

M

∑
n=1

Ii
n. (33)

Long term fair algorithms allocate the quantities such as T̄ i and Īi ∀i in a fair manner
over a long period of time.

On the other hand, a scheduling algorithm is short term fair if it provides a fair
allocation of a certain quantity such as fraction of time slots or throughput to all
users in an interval of M slots. The average throughput by a user i over a window of
M slots can be expressed as:

T i(M) =
1
M

M

∑
n=1

Ii
nRi

n. (34)

The fraction of slots allocated to a user i in a window of M slots can be expressed
as:

Ii(M) =
1
M

M

∑
n=1

N

∑
i=1

Ii
n. (35)
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Short term fair algorithms allocate the quantities such as T i(M) and Ii(M) ∀i in a
fair manner over a window of M slots.

3.1 Notions of Fairness

There are various fairness measures that have been considered in the literature. Let
φ = [φ 1, . . . ,φ N ]T be a weight vector associated with the users indicating their rela-
tive priorities.

• Minimum Allocation: Under this notion of fairness, the scheduling scheme at-
tempts to provide a certain minimum throughput or fraction of time slots to each
user. Let Ψ̄ = [Ψ̄ 1, . . . ,Ψ̄ N ]T be a vector indicating certain minimum throughput
that must be achieved by the users. Let ε̄ = [ε̄1, . . . , ε̄N ]T be a vector indicating
minimum fraction of time slots that must be allocated to a user. Then the scheme
is said to be fair if T̄ ≥ Ψ̄ (minimum throughput allocation) or Ī ≥ ε̄ (minimum
time slot allocation).

• Fair Relative Throughput/Time Slot Allocation: The system attempts to provide
equal weighted throughput/fraction of time slots to all users under this notion of
fairness. The scheme is said to be fair if T̄ i

φ i = T̄ j

φ j , ∀i, j (fair relative throughput

allocation) or Īi

φ i = Ī j

φ j , ∀i, j (fair relative time slot allocation).
• Proportional Fair Allocation: The fraction of slots allocated to a user is propor-

tional to the average channel state of that user. Better the channel state perceived
by a user on an average, higher is the fraction of slots allocated to such a user.
The proportional fair scheduling algorithm is discussed in the next section.

Note that each notion of fairness defined above can have a probabilistic extension,
where the system is allowed to be unfair with a certain probability.

3.2 Fair Scheduling Algorithms

Let T i
n be the average throughput of a user i in an exponentially averaged window of

length tc. The proportional fair scheduling algorithm schedules the user i in a slot n
where:

i = argmax
j

U j
n

T j
n

. (36)

The average throughput T j
n is updated using exponential averaging:

T j
n+1 =

{
(1− 1

tc
)T j

n +( 1
tc
)U j

n , j = i,
T j

n j 6= i.
(37)
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Users having the same channel statistics tend to have the same average through-
put and consequently the scheduling policy reduces to the opportunistic policy, i.e.,
in each slot, the user with the highest rate is scheduled. On the other hand, if the
channel statistics of the users are not identical, then the users compete for resources
based on their rates normalized by their respective throughputs. Note that the al-
gorithm schedules a user when its channel state is high relative to its own average
channel state over the time scale tc. The proportional fair scheduler has the following
property: For large tc, i.e., for tc→ ∞, the algorithm maximizes ∑

N
i=1 log T̄ i.

Another fair scheduling policy is to maximize the sum throughput while provid-
ing minimum fraction of time slots to the users. This optimization problem can be
expressed as:

max T̄ (38)

subject to:
Īi ≥ ε̄

i, i = 1, . . . ,N. (39)

One possible approach to designing such a scheduling policy can be based on
stochastic approximation where one determines the throughput maximizing time
slot allocation in an iterative fashion.

The opportunistic scheduling problem with short term fairness constraints (un-
der the minimum time slot allocation criterion) can be expressed as the following
optimization problem: in any window of M slots,

max
N

∑
i=1

T̄ i(M), (40)

subject to:
Īi(M)≥Mε̄

i. (41)

4 Power Optimal Scheduling

In this section, we discuss the problem of scheduling such that the average transmit
power is minimized under constraints on the delay. As already discussed, the power
required to transmit packets is a convex and increasing function of the rate (i.e.,
number of packets being transmitted in a slot). From an energy efficiency point of
view, the scheduler should transmit packets opportunistically, i.e. when the channel
condition is favorable. This leads to buffering the packets and consequent delay.
Average delay may be a QoS metric for some applications and the packets need to
be scheduled intelligently. We thus have the average cost scheduling problem where
the objective is to minimize average power subject to constraint on average delay.

The system model has been already discussed in Section 2.3. In this section, the
packet arrival process for each user {Ai

n} is assumed to be i.i.d. across users. Ai
n takes

values from a finite and discrete set A ∆= {0, . . . ,A}. Since we consider TDMA, only
one user can be scheduled in a slot. The scheduling problem is to determine the user
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to be scheduled in each time slot and also the number of packets that the user should
transmit (i.e., rate) such that the average power P̄i for each user i is minimized
subject to a constraint on individual queue length Q̄i. Thus the scheduling problem
can be stated as:

Minimize P̄i subject to Q̄i ≤ δ
i for i = 1, . . . ,N. (42)

Since the scheduling decision in a slot affects the buffer occupancy of all users,
these N problems are not independent.

Before we proceed with the multiuser case, we first consider the case of a point-
to-point link, i.e., there is only one transmitter.

4.1 Single User Scheduling

X

Feedback path with zero delay

Q

Fig. 7 Point-to-point transmission model with finite buffer

In this section, we assume that Q = {0, . . . ,B}. For the point to point link, the
queue evolution can be expressed as:

Qn+1 = Qn +An+1−Un. (43)

Since we consider a single user, we drop the superscript i in the notation in this sec-
tion. Let us define the state of the system in slot n by Sn

∆= (Qn,Xn,An), i.e., the state
comprises of queue length, channel state and source arrival state. The system state
space S = Q×X×A is finite and discrete. In each slot, the control or scheduling
action corresponds to the number of packets transmitted Un ≤ Qn. Un takes values
from a finite action space U = {0, . . . ,B}. Note that the channel state Xn is inde-
pendent of the action, queue and arrival state. Similarly, the source arrival state is
also independent of channel state and action. The control policy is a sequence of
functions {µ1,µ2, . . .}, where µn specifies Un (or the probability of taking action
Un) given the past history of the system state and control actions.

We consider the arrivals to be i.i.d. across slots, in such a case, the state of the
system simplifies to Sn = (Qn,Xn).
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Let cp(Sn,Un) = P(Xn,Un) be the ‘immediate’ cost in terms of power required

in transmitting Un packets when the state is Sn. Let cq(Sn,Un)
∆= Qn denote the

‘immediate’ cost due to buffering. Let µ = {µ1,µ2, . . .} be the control policy. We
would like to determine the policy µ that minimizes

P̄ = limsup
N→∞

1
N

E
N

∑
n=1

cp(Sn,Un), (44)

subject to

Q̄ = limsup
N→∞

1
N

E
N

∑
n=1

cq(Sn,Un)≤ δ̄ . (45)

It can be easily argued that this is a CMDP with average cost and finite state and
action spaces. For average cost CMDP with finite state and action space, it is well
known that a optimal stationary randomized policy exists. Let P̄∗ denote the optimal
cost i.e.,

P̄∗ = min
µ

P̄µ , (46)

where P̄µ is the cost (44) under policy µ .
Let µ(·|s) : s ∈ F be the probability measure on U. For each state s, µ(·|s) spec-

ifies the distribution with which the control in that state is applied. We assume that
{Sn} is an ergodic Markov chain under such policies and thus has a unique station-
ary distribution ρµ .

Let Eµ denote the expectation with respect to (w.r.t.) ρµ . Under a randomized
policy µ , the costs in (44) can be expressed as:

P̄µ ∆= Eµ

[
cp(Sn,µ(Sn))

]
= ∑

u,s
ρ

µ(s)µ(u|s)cp(s,µ(s)), (47)

and,
Q̄µ ∆= Eµ

[
cq(Sn,µ(Sn))

]
= ∑

u,s
ρ

µ(s)µ(u|s)cq(s,µ(s)), (48)

respectively. Then the scheduler objective can be stated as:

Minimize P̄µ subject to Q̄µ ≤ δ . (49)

We now demonstrate that the optimal average cost and policy can be determined
using an unconstrained Markov Decision Process (MDP) problem and Lagrangian
approach.

4.1.1 The Lagrangian Approach

Let λ ≥ 0 be a real number. Define c : R+×S×U→ R as follows,

c(λ ,s,u) = cp(s,u)+λ (cq(s,u)−δ ). (50)
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Note that the function c(·, ·,u) is a strictly convex function of u (as the power re-
quired to transmit u packets is a strictly convex function of u). The unconstrained
problem is to determine an optimal stationary policy µ∗(·) that minimizes

L(µ,λ ) = Eµ

[
c(λ ,Sn,µ(Sn))

]
, (51)

for a particular value of λ called the Lagrange Multiplier (LM). L(·, ·) is called the
Lagrangian.

Let p(s,u,s′) be the probability of reaching state s′ upon taking action u in state
s. Let V (s) denote the optimal value function (i.e. expected cost) for a state s. The
following dynamic programming equation provides the necessary condition for op-
timality of the policy.

V (s) = min
u

[
c(λ ,s,u)−β +∑

s′
p(s,u,s′)V (s′)

]
, s′ ∈ S, (52)

where β ∈ R is uniquely characterized as the corresponding optimal cost (power)
per stage. If we impose V (s0) = 0 for any pre-designated state s0 ∈ S, then V is
unique. Furthermore, an optimal policy µ∗ must satisfy,

support(µ
∗(·|s))⊆ argmin

[
c(λ ,s,u)−β +∑

s′
p(s,u,s′)V (s′)

]
∀s ∈ S. (53)

It follows that the constrained problem has a stationary optimal policy which is also
optimal for the unconstrained problem considered in (51) for a particular choice of
λ = λ ∗ (say). In general, this optimal policy may be a randomized policy. In fact, it
can be shown that the optimal stationary policy is deterministic for all states but at
most one s, i.e., there exists a unique u∗(s) such that µ∗(u∗(s)|s) = 1 and u∗ is the
solution to the following equation,

u∗(s) = argmin
[
c(λ ∗,s,u)−β +∑

s′
p(s,u,s′)V (s′)

]
∀s ∈ S. (54)

Furthermore, for the single (if any) state s for which this fails, µ(·|s) is supported on
exactly two points. The optimal average cost β gives the minimum power consumed
P̄∗ subject to the specified queue length constraint δ . Moreover, the following saddle
point condition holds:

L(µ
∗,λ )≤ L(µ

∗,λ ∗)≤ L(µ,λ ∗). (55)

4.1.2 Structural Properties of the Optimal Policy

Before we discuss the computational issues in determining the optimal policy
through dynamic programming equation (52), we discuss some structural proper-
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ties of the optimal policy. The result for i.i.d. arrival and channel state processes can
be stated as:

Theorem 1. The optimal policy µ∗(s) = µ∗(q,x) is non decreasing in channel state
x and non-decreasing in queue length q.

The proof of this theorem is based on supermodularity and increasing differences
properties of the value function. These properties establish the monotonicity of the
optimal policy in channel state and buffer occupancy.

The structural results imply that the optimal decision is to transmit a certain num-
ber of packets in a given slot where this number is an increasing function of the
current queue length and channel state. Thus for a fixed channel state, the greater
the queue length, the more will be the number of packets that will be transmitted.
Similarly, for a fixed queue length, the better the channel, the more will be the num-
ber of packet transmissions. Thus, the optimal policy always transmits at the highest
rate when channel condition is the most favorable and queue length is the largest.

Similar structural results also hold for Markovian arrivals and Markovian channel
state and continuous state processes. However, for these general state spaces, the
dynamic programming equation (52) for the long run average cost problem requires
to be rigorously justified. See bibliographic notes and [1] for a discussion of this.

4.1.3 Learning Algorithm for Scheduling

In this section, we discuss the computation of optimal policy discussed in the pre-
ceding section. For a fixed λ , the Relative Value Iteration Algorithm (RVIA) can
be used for solving the dynamic programming equation in an iterative fashion. The
average cost RVIA for determining the value function such that (52) is satisfied can
be written as:

Vn+1(s) = min
u∈U(s)

[c(λ ,s,u)+∑
s′

p(s,u,s′)Vn(s′)]−Vn(s0), (56)

where s,s′,s0 ∈ S and s0 is any fixed state. Vn(·) is an estimate of the value function
after n iterations for a fixed LM λ .

Due to the large size of the state space S, solution of this algorithm is computa-
tionally expensive. One approach for addressing this issue is to utilize the structural
properties of the optimal policy outlined above to develop efficient heuristics that
are computationally less expensive and hence can be implemented in a practical sys-
tem. In [54], one such approach has been discussed. Techniques based on function
approximation can also be employed for dimensionality reduction. The structural
results of the policy may be used to choose the basis functions in function approxi-
mation.

Another technique is to use ‘primal-dual’ type approach with conventional iter-
ation schemes for the value function (primal) and Lagrange multiplier (dual) [13].
However, even with this approach (and for that matter, with all other approaches dis-
cussed above for computing (56)), one major issue is that it requires the knowledge
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of transition probabilities p(s,u,s′). Note that p(s,u,s′) depends upon the chan-
nel state and packet arrival distributions. Both these distributions are unknown. In
practice, it is usual to assume packet arrivals to be Poisson and channel state to be
exponential (assuming Rayleigh fading as discussed in Section 1) but these are only
modeling assumptions and it is difficult to obtain accurate information even about
the parameters of these distributions. Reinforcement Learning (RL) algorithms are
useful in such scenarios. We present here one such approach.

Let ζ be the law for the arrivals and κ(·|·) the transition probability function
for the channel state process2. To address the issue of these unknown probability
laws, we can employ stochastic approximation to perform averaging in real time
w.r.t unknown laws. Unfortunately, however, RVIA (56) is not amenable to real
time implementation because of the occurrence of min operator outside the averag-
ing operation. This problem is addressed by rewriting RVIA in a novel manner as
discussed below.

We define post-decision state to be the virtual state of the system immediately
after taking a decision but before the action of the noise (arrivals). If the transmitter
transmits U = u packets in a slot, then the post-decision state denoted by s̃, s̃ ∈ S
is (q− u,x). We rewrite RVIA (56) in the form of post-decision state. Thus Ṽ (i.e,
the value function based on the post decision state) satisfies the following dynamic
programming equation: for s̃ = (q,x),

Ṽ (s̃) = ∑
a,x′

ζ (a)κ(x′|x)( min
u≤q+a

[c(λ ,(q+a,x′),u)+Ṽ (q+a−u,x′)])−β . (57)

From (56) and (57), we get the following RVIA:

Ṽn+1(s̃) = ∑
a,x′

ζ (a)κ(x′|x)( min
u≤q+a

[c(λ ,(q+a,x′),u)+Ṽn(q+a−u,x′)])−Ṽn(s̃0);

Ṽn+1(s̃′′) = Ṽn(s̃′′) ∀ s̃′′ 6= s̃. (58)

The important thing to note here is that we update only the s̃-th component, not the
rest. Note (58) has a useful structure in the sense that the averaging operation has
been moved outside of the min operator. We can now employ stochastic approxima-
tion to perform averaging in real time.

We set up ‘primal-dual’ iterations for the value function (of RVI (58)) and LM.
To solve both value function and LM iteratively, let us first choose the sequences
{ fn} and {en} that have the following properties,

∑
n

( fn)2, ∑
n

(en)2 < ∞, (59)

∑
n

fn = ∞, ∑
n

en = ∞, (60)

lim
n→∞

en

fn
→ 0. (61)

2 Here we allow the channel state process to be Markovian also.
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The complete primal-dual RVI algorithm can be expressed as: for Sn = s̃ = (q,x),

Ṽn+1(s̃) = Ṽn(s̃)+ fn

{
min

u
[c(λn,(q+An+1,Xn+1),u)+Ṽn((q+An+1−u,Xn+1))]

−Ṽn(s̃)−Ṽn(s̃0)
}
, (62)

Ṽn+1(s̃′′) = Ṽn(s̃) ∀ s̃′′ 6= s̃, (63)
λn+1 = Λ [λn + en (Qn−δ )], (64)

where we use the projection operator Λ to project the LM onto interval [0,L]
for large enough L > 0, to ensure boundedness of the LM. These iterations can be
performed in real time at every slot.

The sequences fn and en are chosen appropriately to ensure that the sequences
converge to 0 neither too fast nor too slow. Since we have assumed limn→∞

en
fn
→ 0,

it induces two time scales, a fast one for (62) and a slow one for (64). Using the
theory of two time scale stochastic approximation, it can be proved that these iterates
indeed converge to optimal values.

The convergence of value function and LM is analyzed by first freezing λn ≈ a
constant λ i and then proving that the value function converges to its optimal value
Ṽ , i.e., Ṽn→ Ṽ .

Let h(Ṽ ) = [hq,x(Ṽ )] be given by:

hq,x(Ṽ )=∑
a,x′

ζ (a)κ(x′|x)×min
u

[c(λ ,q+a,x,u)+ Ṽ (q+a−u,x′)−Ṽ (q0,x0)],

where (q0,x0) is any pre-designated state. The limiting o.d.e. for (62) is given by

˙̃V (t) = Λ(t)(h(Ṽ (t))−Ṽ (t)), (65)

where Λ(t) is a diagonal matrix with nonnegative elements summing to 1 on the
diagonal. Then the following Lemma can be proved.

Lemma 1. If the diagonal elements of Λ(t) remain uniformly bounded away from
zero, Ṽ i

n→ Ṽ .

Note that the above analysis treats λn ≈ a constant, so what this Lemma states is
that {Ṽn} closely tracks {Ṽ λn}, where Ṽ λ is Ṽ with its λ -dependence made explicit.
Note that the Ṽn and λn iterations are primal-dual iterations. The primal iterations
perform relative value iteration and determine a minimum of the Lagrangian (51)
with respect to the policy for an almost constant LM.

To prove the convergence of λn, we consider the limiting o.d.e of (64). It can be
shown that the limiting o.d.e. for the λn’s is a steepest ascent for the Lagrangian
minimized over the primal variables. By standard results for stochastic gradient as-
cent for concave functions, it can be proved that this o.d.e converges to the optimal
LM λ ∗. We thus have the following lemma.

Lemma 2. The LM iterates λn converge to optimal value λ ∗.
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Lemmas 1 and 2 imply that (Ṽn,λn)→ (Ṽ ,λ ∗) as required.
In practice, the power optimal scheduling algorithm can be implemented using

the above primal-dual online algorithm. In each time slot, the scheduler observes the
channel state x and determines u, the number of packets to be transmitted, that mini-
mizes the right hand side of (62). The value function and LM are updated as in (62),
(64) and the algorithm proceeds. Though, the convergence results are asymptotic,
for most practical systems, it has been observed that the algorithm converges in rea-
sonable number of iterations (time slots). The readers are referred to references in
bibliographic notes for details of the implementation.

In the next section, we consider multiuser scheduling where a centralized sched-
uler has the responsibility of determining the user to be scheduled in a slot in addi-
tion to determining the number of bits (or packets) to be transmitted and the corre-
sponding transmission power.

4.2 Multiuser Uplink Scheduling

As outlined earlier in (42), the multiuser power optimal scheduling problem is to
design an algorithm that minimizes the average power expenditure of each user
subject to a constraint on the individual queuing delay. This problem is an opti-
mization problem with N objectives and N constraints and can also be formulated
within the framework of CMDP. Let Qn and Xn denote the vectors [Q1

n, . . . ,Q
N
n ]

and [X1
n , . . . ,XN

n ] respectively. The system state is then defined by Sn = (Qn,Xn).
Since we consider TDMA where only one user is scheduled in a slot, control action
comprises of the index of the user and its transmission rate.

However, since the system state consists of vector of queue lengths and channel
states of all users, even for moderate number of users, the size of the state space is
very large. Thus numerical approaches for determining the optimal policy are com-
putationally infeasible. Moreover, to compute the optimal policy, the base station
needs to know the queue length information of each user. This requires significant
communication overhead on the uplink where each user needs to communicate its
queue length. Finally, as discussed in point to point link case, even the packet ar-
rival and channel state distributions are unknown. One, therefore, has to consider
suboptimal, albeit, efficient approaches.

One such strategy to solve this problem consists of decomposing the problems
into N dependent single user problems and a base station problem. In a user prob-
lem, each user i determines a rate at which it should transmit in a slot as if it were
being controlled by a single user policy. Since the channel and arrival statistics are
not known, each user employs learning algorithm described in Section 4.1 (rate de-
termination algorithm). The users’ rates are then conveyed to the base station. The
base station schedules the user with the highest rate (user selection algorithm). The
rationale behind choosing the highest rate is that this strategy will favor the user
either with good channel condition or large queue length. The queue length of a
user, who is not scheduled for a while, will keep increasing thereby increasing its
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rate requirement as well. This will ensure that the user will eventually be scheduled.
It can be shown that the algorithm indeed converges to equilibrium and the delay
constraints are satisfied. The complete strategy is explained below.

4.2.1 Rate Determination Algorithm

Each user implements the single user algorithm ((62)–(64)) discussed in Section
4.1 Thus user i determines its rate Ri

n (or the number of packets it should transmit)
that maximizes the r.h.s of primal value function iteration (62). Note that the value
function iteration (62) considers the following power cost:

P̄i
e = limsup

M→∞

1
M

M

∑
n=1

P(X i
n,R

i
n). (66)

This is the same cost as discussed for the point to point link (44) (in this case U i
n is

replaced by Ri
n since U i

n in multiuser case now refers to the packets actually trans-
mitted by user i). User i transmits at this rate if the channel is allocated to it by the
base station otherwise it is unable to proceed with the transmission. Thus the queue
evolution equation for user i is given by,

Qi
n+1 = Qi

n +Ai
n+1− Ii

nRi
n, (67)

where Ii
n = 1 if user i is scheduled in a slot n by the base station, else, Ii

n = 0. The
control variables are In, Rn = [R1

n, . . . ,R
N
n ]. Note that users independently choose

the corresponding components of Rn and the base station chooses In subject to the
constraints that Ii

n ∈ {0,1} and ∑i Ii
n = 1.

The actual average power consumed by user i is given by,

P̄i = limsup
M→∞

1
M

M

∑
n=1

P(X i
n, I

i
nRi

n). (68)

The relative value iteration is performed not for the actual power cost (68) but
exactly as discussed in single user case. However, the difference is reflected in the
queue length update (67) (and thereby the LM update (64)) that depends on whether
a user is scheduled in a slot or not. It can be proved that value function iteration will
converge to the single user optimum rate required for the current quasi-static value
of the LM. The difference with the single user case comes from the fact that the
relative value iteration for each user is coupled through LM iterations also and the
LM updates are indeed affected by the actual transmission through queue length.
The convergence of LM would imply that the delay constraints are satisfied.



24 Nitin Salodkar and Abhay Karandikar

4.2.2 User Selection Algorithm

The base station schedules the user with the highest rate Ri
n in a slot, i.e, Ii

n = 1 if
i = argmax j R j

n and all other I j
n = 0. If more than one user has the highest rate, one

of them is selected at random with uniform probability.
This strategy can be thought of as an auction where users bid their rates to the

base station which then schedules the user bidding the highest rate. Note that it is
not in the interest of the users to bid unnecessarily high rates as this might result in
higher power consumption.

4.2.3 Algorithm Analysis

Convergence Analysis: The convergence of value functions and LM follow as in the
single user case. Since the value function of each user is updated in each slot re-
gardless of whether the user is scheduled in that slot or not; the value functions are
decoupled across users. This is in the spirit of the decoupling of static formulations
of network flow problems via the Lagrange multiplier as in [22], except that here it
is mandated by our algorithm. The decoupling is facilitated by the fact that the users
compute their value function as though the cost is (66) and not (68). Convergence
of the LMs implies that the delay constraints are satisfied and vice versa. This im-
plies that if there is sufficient capacity, the multiuser scheduling satisfies the delay
constraints of all the users.

Queue Stability: Assuming that the users and base station have already learned
their policies, one can establish the queue stability. A sketch of the proof is as fol-
lows.

āi = E[Ai
n]. Let π denote the (unique) stationary distribution of the Markov chain

{Xn}. Let R ∆= mini ∑x π(x)R̂i(xi). Recall that Ri
n depends on (Qi

n,X
i
n). Suppose that

Ri
n = `i(Qi

n,X
i
n) for some `i(·, ·). Write `(Qn,Xn) for [`1(Q1

n,X
1
n ), . . . , `N(QN

n ,XN
n )].

For proof of stability, we assume a more general scheme where the channel is
allocated to user i with a probability,

F i(Rn) := g(Ri
n)

m/(∑
j

g(R j
n)

m)

,
where g is a monotone increasing and smooth function and m >> 1. Note that

with this user selection algorithm, the base station uses a smooth approximation
F := [F1, . . . ,FN ] of the maximum function for channel allocation, i.e., it allocates
the channel to the user with the highest rate (say, ith) with a probability F i(Rn)
close to one, but does allocate it to others also with a small but nonzero probability
F j(Rn), j 6= i. We also assume that the `i(·, ·) above is continuously differentiable.

The queue evolution (67) for user i can be rewritten as:

Qi
n+1 = Qi

n +(āi−F i(Rn)Ri
n)+

(
(Ai

n+1− āi) + (F i(Rn)Ri
n−U i

n)
)
.
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Let F̃ = [F̃1, . . . , F̃N ] be defined by: F̃ i(r) = F i(r)ri ∀i. Note that this is continu-
ously differentiable. Then the queue evolution is of the form:

Qi
n+1 = Qi

n +(āi− F̃ i(Rn))+Mn+1, n≥ 0, (69)

where {Mn} is a martingale difference sequence.
Let q = [q1, . . . ,qN ]. Define F̂ = [F̂1, . . . , F̂N ] by:

F̂ i(q) = ∑
x

F i(`(q,x))`i(qi,xi)π(x).

Consider the scaled version of (69), given by

Qi
n+1 = Qi

n +η [(āi− F̃ i(Rn))+Mn+1], n≥ 0, (70)

for a small η > 0. If we consider smaller and smaller time slots of width η with āi,
and F̃ i being ‘rates per unit time’ rather than ‘per slot’ quantities, then we obtain the
‘fluid’ approximation of (69) , which is given by the o.d.e.

q̇i(t) = āi− F̂ i(q(t)), (71)

It can be proved that the trajectories of the o.d.e. in (71) converge to an equilib-
rium for all almost all initial conditions. This in turn proves that the actual queue
lengths will concentrate near the equilibrium set of this o.d.e with very high proba-
bility. The readers are referred to [41] for more details.

The above strategy thus ensures a stable energy efficient scheduling algorithm
that also satisfies the delay constraints of the users. In the uplink scenario, the base
station does not have information about queue lengths of users. In the above ap-
proach, each user needs to communicate only the desired rate (instead of the queue
length information). In a practical system, we may have few possible rates say 16.
In such a case, we may need only 4 bits of communications overhead. This strategy
does not require the knowledge of packet arrival and channel state distributions. It
thus provides a powerful framework for implementing multiuser packet scheduling
algorithms.

5 Scheduling Schemes that Maximize Throughput

In the preceding section, we have considered power optimal scheduling algorithms
that minimize power cost under delay constraints. In this section, we consider
scheduling algorithms under the power constraints. We first study scheduling al-
gorithms that consider queue stability as a notion of QoS. While some of these al-
gorithms are throughput optimal, they do not necessarily ensure small average queue
lengths and hence small delays. Subsequently, we consider scheduling algorithms
that address this issue while achieving high sum throughput.
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5.1 Throughput Optimal Scheduling

We first review feasible rate and power allocation with an objective of stabilizing
the queues of the users. We define the overflow function as follows:

f i(ξ ) = limsup
M→∞

1
M

M

∑
n=1

IQi
n>ξ , (72)

where IQi
n>ξ is an indicator variable that is set to 1 if Qi

n > ξ , else it is set to 0.
We say that the system is stable if f i(ξ )→ 0 as ξ → ∞ for all i = 1, . . . ,N. Let
ā = [ā1, . . . , āN ]T denote the arrival vector, āi being the average arrival rate for user
i. In this section, in addition to the average power constraints, we also consider the
peak power constraints, i.e., a user i can transmit at a maximum power P̂i in any
slot. Let P̂ = [P̂1, . . . , P̂N ]T denote the peak power constraint vector.

Note that, since the objective is to keep the queues stable, the power and rate
allocation policies have to be cognizant of the queue lengths of the users in each
slot. A power allocation policy P is a mapping from the joint channel state and
queue length vector (x,q) to a power allocation vector P. A rate allocation policy
R is a mapping from the joint channel state and queue length vector (x,q) to a rate
allocation vector R. As noted previously in Section 1.1.2, a feasible rate allocation
policy allocates rates within the multi-access capacity region Cg(x,P). The stability
region of the multi-access system is the set of all arrival vectors ā for which there
exists some feasible power allocation policy and rate allocation policy under which
the system is stable. The stability region of a multi-access system can be shown to
be given by:

Cs(P̄, P̂) =
⋃

P∈F
E [Cg(X,P(X))] . (73)

Note that the power control policy P(X) depends only on the channel state vector
X. More importantly, this stability region of the multi-access system is same as the
throughput capacity region under power control defined in Section 1.1.2.

If the joint arrival process {An} and joint channel state process {Xn} are ergodic
Markov chains, then the system can be stabilized by a power and rate allocation
policy if ā ∈ Cs(P̄, P̂). In practice, one does not have a knowledge of the arrival
vector ā and this can only be estimated over time. Power and rate allocation poli-
cies that do not assume knowledge of the arrival vector ā and stabilize the system
as long as ā ∈ Cs(P̄, P̂) are referred to as throughput optimal policies. Through-
put optimal scheduling policies have been explored in several papers in literature,
see bibliographic notes for further details. Longest Connected Queue (LCQ), Ex-
ponential (EXP), Longest Weighted Queue Highest Possible Rate (LWQHPR) and
Modified Longest Weighted Delay First (M-LWDF) are some well known examples
of throughput optimal scheduling policies. We now review some of these scheduling
rules that are throughput-optimal under a power allocation policy P .

• LWQHPR: Let α = [α1, . . . ,αN ]T be a vector of weights. The throughput optimal
rate allocation policy is obtained by maximizing ∑

N
i=1 α iQi

nU i
n over Cg(x,P(x)).
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The solution r∗ is obtained by successively decoding the users in an increas-
ing order of their weights α iQi

n, i.e., shorter queues are decoded before longer
queues. This implies that longer queues are given preference over shorter queues.

• M-LWDF: Let ϒ̄ i and D̄i be the delay requirement and achieved delay for user i
respectively. The M-LWDF scheduler attempts to satisfy the delay constraints of
the form,

Pr
(
D̄i > ϒ

i)≤ ρ̄
i, (74)

where ρ̄ i is an upper bound on the probability with which D̄i is allowed to exceed
ϒ i. The M-LWDF scheme achieves this by scheduling a user i in a slot n where:

− log(ρ̄ i)×Qi
n×U i

n

ϒ̄ i = max
j

− log(ρ̄ j)×Q j
n×U j

n

ϒ̄ j . (75)

Note that higher the queue length and better the channel state (and hence higher
the rate) of a user in a slot, higher is the probability of scheduling the user in the
slot.

• EXP: Let γ = [γ1, . . . ,γN ]T , b = [b1, . . . ,bN ]T be an arbitrary set of positive con-
stants. Let α and η ∈ (0,1) be fixed. The Exponential (EXP) rule schedules a
user i in a slot n where:

i = argmax
j

γ
jU j

n exp

(
b jQ j

n

α +[Q̂n]η

)
, (76)

where Q̂n
∆= 1

N ∑
N
i=1 biQi

n. Thus, a user with better channel state and hence higher
rate and higher queue length has a higher probability of being scheduled.

5.2 Delay Optimal Scheduling

While throughput optimal scheduling policies maintain the stability of the queuing
system, they do not necessarily guarantee small queue lengths and consequently
lower delays. Delay optimal scheduling deals with optimal rate and power control
such that the average queue length and hence average delay are minimized for ar-
rival rates within the stability region under average and peak power constraints. Due
to the nature of the constraints, there is no loss of optimality in choosing the rate and
power control policies separately. Hence, to simplify the problem, one can choose
any stationary power control policy that satisfies the peak and average power con-
straints. The delay optimal policy, therefore, deals with optimal rate allocation for
minimizing delays under a given power allocation policy. The objective is to maxi-
mize a weighted combination of the rates expressed in (20), while at the same time
minimizing the achieved delay Q̄i, i = 1, . . . ,N. Note that this problem is a multi-
objective optimization problem.
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We now study a scheme that is throughput optimal and delay optimal under cer-
tain assumptions on the arrival and channel state processes for both multi-access
(uplink) and broadcast (downlink) channels. Before outlining these assumptions,
we define a symmetric channel state process. The channel state process is called
symmetric or exchangeable if for all n and x = [x1, . . . ,xN ]T in the channel state
space XN ,

Pr
(
X1

n = x1, . . . ,XN
n = xN)= Pr

(
X1

n = xπ(1), . . . ,XN
n = xπ(N)

)
, (77)

for any permutation π ∈ Π , where Π is the set of all permutations on the set
{1, . . . ,N}. A power control policy P that is a function of the channel state vec-
tor only is symmetric if for all x ∈ X,

P i (x1, . . . ,xN)= Pπ−1(i)
(

xπ(1), . . . ,xπ(N)
)

. (78)

Intuitively, under a symmetric power control policy, the power allocated to a given
user is determined by the channel state perceived by that user relative to the channel
states perceived by the other users and not on the identity of that user. In [56],
the authors consider symmetric channel state and power control. Moreover, they
assume Poisson arrivals and exponentially distributed packet lengths. Under these
assumptions, they prove that the Longest Queue Highest Possible Rate (LQHPR)
policy, besides being throughput optimal, also minimizes delay.

The problem of maximizing the sum throughput subject to constraints on the in-
dividual user delays has the structure of a Constrained Markov Decision Process
(CMDP). However, the primary difficulty in computing optimal policy lies in large
state space size that increases exponentially with the number of users. A simple
heuristic would be to compute indices for all users in each slot based on their chan-
nel state and queue length. The base station schedules the user with the largest in-
dex. The indices are carefully updated so that the delay constraints of the users are
satisfied and the system achieves a high sum throughput.

In this chapter, we have considered scheduling algorithms that take advantage of
the opportunities provided by the fading wireless channel. These channel aware al-
gorithms are termed as cross layer scheduling algorithms. Most of these algorithms
can be considered as control problem where the objective is to optimize a given util-
ity such as throughput, energy, queue stability subject to some constraints. These
policies can be computed using dynamic programming tools. However, the curse
of dimensionality is a major impediment in determining optimal solutions within
this framework. MDP framework also needs knowledge of transition probability
mechanism of the underlying Markov chain. In practice, this depends on the fad-
ing process and arrival process. In most cases, this knowledge is difficult to possess
thereby requiring learning approaches. While significant progress has been made
in the scheduling literature, multiuser scheduling still continues to be a challenging
problem. In this chapter, we have given few formulations that outlined the nature of
problems being considered in the literature.
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Bibliographic Notes

An overview of fading in wireless channel has been provided in [44, 45]. The block
fading channel model has been suggested in [33]. The Markov model for modeling
Rayleigh channel has been suggested in [55]. An excellent review of information
theoretic limits over fading channels can be found in [11]. The waterfilling power
allocation policy has been suggested in the work by Goldsmith and Varaiya [19].
Further insights on transmission in multiuser wireless channel has been provided in
the works by Knopp and Humblet [23] and Tse and Hanly [50, 51]. The treatment
in Section 1.1.2 borrows from [50].

For the multiuser scheduling with symmetric channel fading and symmetric con-
straints, it has been shown in [23] that the optimal policy schedules the user with
the best channel condition in each slot. A generalized version of the problem has
been considered in [50] where the authors show that the optimal policy is a greedy
successive decoding scheme where the users are decoded in an order that is depen-
dent on the interference experienced by them. ‘Opportunistic scheduling’ has been
considered in [30]. Multiuser diversity has been discussed in a lucid way in [52].
Expressions for multiuser capacity with perfect transmitter CSI on the downlink
have been derived in [49, 28].

The single user power optimal scheduling with delay constraints discussed in
Section 4.1 has been formulated in a seminal paper by Berry and Gallager [6]. The
paper has also quantified power-delay tradeoff and demonstrates the convexity of the
power delay curve. Structural properties of the optimal policy under various assump-
tions on the channel and arrival processes have been proved in [5, 20, 18, 1, 37].
These problems have the structure of CMDP. [2] is an excellent monograph on
CMDP. While there have been a number of studies to explore structural proper-
ties of the power optimal policy, numerical computation using dynamic program-
ming is hard. Heuristic algorithms have been developed in [54]. Interestingly, Delay
constrained power optimal scheduling has also been considered under non-fading
gaussian noise channel [38] since the power-rate convexity relation also holds for
additive white gaussian channel.

The learning scheme of Section 4.1.3 is from [39]. General references on rein-
forcement learning algorithms are [10, 47] while [7, 36] can be referred for dynamic
programming. The result bounding the number of states at which the optimal sta-
tionary policy for a constrained problem takes randomized decisions can be found
in [12]. The post-decision state concept used in this chapter was introduced in [53].
Similar ideas have been around for quite some time, see, e.g., [32]. For further de-
tails on stochastic approximation, refer to [46, 14, 25]. Techniques used to prove
convergence of stochastic approximation schemes as well as multi-time scale and
asynchronous stochastic approximation (which can be employed to prove the con-
vergence of learning scheme of this chapter) have been discussed in [14].

Multiuser power optimal scheduling under delay constraint is a somewhat diffi-
cult problem. This problem has been considered for sum power minimization sub-
ject to delay constraints in [34]. However, this scenario corresponds to the downlink
scheduling. For an uplink case, weighted power minimization with a special case of
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two users has been studied in [5]. Power minimization of each user on the uplink
subject to individual delay constraints has been explored in [41]. The discussion in
Section 4.2 borrows from [41]. For a general discussion on theory of multiobjective
optimization see [17, 42].

Various notions of fairness have been explored (See Chapter 8 [27] and the ref-
erences therein). The proportional fair scheduler has been proposed in [16]. For a
discussion on ‘proportional fairness’ and associated properties see [21]. Long term
sum throughput maximization subject to providing minimum throughput or frac-
tion of slots to users has been variously considered in [29, 15, 4, 31]. Formulation
(38) has been considered in [29]. Short term fairness has been investigated in [24].
Formulation (40) in this chapter is from [24].

Throughput optimal policies have been considered in [50, 35]. LCQ has been
suggested in [48], EXP in [43], LWQHPR in [56] and M-LWDF is discussed in [3].
Delay optimality of LQHPR policy has been proved in [56]. The indexing heuristic
of Section 5.2 has been proposed in [40].
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