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Abstract: In video streaming applications, especially during live streaming events, video traffic can
account for a significant portion of the network traffic and can lead to severe network congestion. For
such applications, multicast provides an efficient means to deliver the same content to a large number
of users simultaneously. However, in multicast, if the base station transmits content at rates higher
than what can be decoded by users with the worst channels, these users will experience outages.
This makes the multicast system’s performance dependent on the weakest users in the system.
Interestingly, video streams can tolerate some packet loss without a significant degradation in the
quality experienced by the users. This property can be leveraged to improve the multicast system’s
performance by reducing the dependence of the multicast transmissions on the weakest users. In this
work, we design a loss-tolerant video multicasting system that allows for some controlled packet
loss while satisfying the quality requirements of the users. In particular, we solve the resource
allocation problem in a multimedia broadcast multicast services (MBMS) system by transforming
it into the problem of stabilizing a virtual queuing system. We propose two loss-optimal policies
and demonstrate their effectiveness using numerical examples with realistic traffic patterns from real
video streams. It is shown that the proposed policies are able to keep the loss encountered by every
user below its tolerable loss. The proposed policies are also able to achieve a significantly lower peak
SNR degradation than the existing schemes.

Keywords: multicast; video streaming; loss tolerance; MBMS; resource allocation

1. Introduction

The popularity of video streaming platforms such as Netflix and YouTube has led to a
fundamental shift in the way that video content is consumed online. Users increasingly
prefer to stream content on the go over cellular wireless networks. As a result, during
live video streaming events (such as the Super Bowl, Facebook, YouTube, Instagram live
sessions, etc.), the same video content is transmitted to thousands of users over orthogonal
spectral resources. This massive influx of video traffic consumes a substantial fraction of the
limited amount of spectrum available for use by cellular systems, leading to severe network
congestion and degraded quality of service. For such services, multicast transmission
provides an excellent solution [1,2] that can serve users over shared spectral resources
while also improving the quality of service.

A major bottleneck in multicast transmissions is that, in order to serve all user equip-
ments (UEs) in a multicast group, data cannot be transmitted at a rate greater than what can
be decoded by the UE with the weakest channel in the group. As a result, UEs with good
channel conditions are constantly forced to settle for lower rates despite their high channel
quality indicator (CQI) values, leading to user dissatisfaction and low system throughput.
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This work proposes a novel method to overcome these issues by exploiting the loss-tolerant
nature of video streams. It has been shown that video streams can tolerate as much as 40%
packet loss [3] without significantly impacting the quality observed by the end users. For
instance, for an H.264/AVC encoded video, decoders such as FFmpeg and JM can conceal
as much as 39% packet loss with no deterioration in the quality of video observed by the
users [3]. This can be leveraged to build video-specific resource allocation policies that can
significantly reduce the bandwidth consumption of video streams.

A compressed video stream is made up of a group of pictures (GoP). A GoP comprises
a series of intra-coded (I), predicted (P) and bidirectional predicted (B) frames. I frames
are self-contained and do not require other frames to be decoded. P frames are dependent
on their preceding I frames to be correctly decoded, and B frames are dependent on both
preceding and following I and/or P frames to be correctly decoded. Although the actual
number of I, P and B frames in a GoP depends upon the size of the GoP used, the number
of B frames is at least twice the number of I and P frames combined [4].

It is difficult to estimate the impact of the loss of I and P frames on the video quality [5].
However, since B frames encode differential information with respect to the past and future
I and P frames, their loss has the least impact on the quality of the video. Therefore, in this
work, we assume that the base station uses lossless allocation policies [2] to allocate suffi-
cient resources for the lossless transmission of I and P frames, and the lossy transmission
proposed here impacts only the B frames of a video stream.

1.1. Related Literature

In this section, we present the relevant state of the art for the problem addressed in
this work. The relevant literature can be broadly considered under the following three
categories. (a) The study of problems related to optimal resource allocation in wireless
multicast transmission. These include multicast transmission for video streaming, as
well as other forms of data. (b) The study of the problem of joint grouping and resource
allocation in wireless multicast transmission. The grouping problem refers to the problem
of creating multicast groups of UEs, which could be based on the content requested by the
UEs, the channel quality of UEs or, in the case of multi-layer video streaming, the number
of enhancement layers that a UE can receive. (c) The study of optimal multicast streaming
strategies specifically for multi-layer video transmission.

The most important literature from each of these categories is summarized in the
following subsections.

1.1.1. Resource Allocation

A resource allocation algorithm for live video streaming that allocates resources based
on the channel quality and priority of UEs is proposed in [6]. The proposed policy makes
use of streaming statistics to reserve resources for UEs that have priority in the system.
In [7], the authors propose a frequency domain packet scheduler (FDPS) for multimedia
broadcast multicast services (MBMS) that maximizes the minimum rate achievable by UEs
in a physical resource block (PRB). It uses a conservative approach that only minimizes
the damage caused by the worst PRB assignment. Video delivery simultaneously using
WiFi unicast and 4G multicast has been proposed in [8], with the aim of minimizing the
load on 4G while maximizing the quality of video received by the user. Methods enabling
multi-connectivity for multicast video streaming have been proposed in [9]. In [10], a
scheduling scheme for MBMS broadcast is proposed that is focused on reducing the average
latency of packets in the system. The proposed scheme starts transmission in unicast mode
and gradually moves to broadcast as the number of UEs increases. In [11], the authors
deal with efficient broadcasting in LTE using MBMS. The resource allocation algorithm
proposed in [11] uses a water filling form of proportional fair scheduling [12,13]. In [14], an
SDN-based video streaming architecture is proposed for the IP multicasting of advanced
video-coded live streams. The proposed architecture aims at minimizing the bandwidth
usage and cost of transcoding for live streaming. More recently, various learning techniques
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have also been employed to solve the problem of resource allocation in multicast streaming.
In [15], deep reinforcement learning is used for resource allocation in multicast TV services.

1.1.2. Joint Grouping and Resource Allocation for Multicast Transmission

The problem of grouping and resource allocation for lossless multicast streaming
has been studied in [1,2]. The objective of resource allocation in [1,2] is to satisfy all the
multicast UEs while minimizing the number of PRBs used in doing so. In [16], the authors
propose a fair and optimal resource allocation policy for MBMS. It is assumed that the
video content is simultaneously available through unicast and MBMS and the primary
problem seeks to jointly optimize the grouping of UEs and the allocation of resources to
unicast and MBMS services. In [17], the problem of joint power allocation and subgrouping
is addressed in a non-orthogonal multiple access (NOMA)-based multi-layer multicast
streaming system. The algorithms proposed in [17] are aimed at achieving the minimum
target rate and proportional fairness for the base layers of the video streams that carry the
most essential content. The problem of joint user grouping, version selection and resource
allocation for multicast streaming in a cloud RAN framework has been studied in [18].

1.1.3. Multi-Layer Video Transmission

Resource allocation for MBMS operation on-demand has been studied in [19]. The
authors consider quality of experience (QoE) metrics such as user engagement, instead of
quality of service (QoS) metrics such as throughput, as the utility functions to be maximized
by the resource allocation schemes. All the video streams are assumed to be encoded using
scalable video coding (SVC). In [20], convex optimization is used to obtain an optimal
solution for the multicasting of dynamic adaptive streaming over HTTP (DASH) [21] and
for SVC streaming of content over LTE. The problem optimizes the modulation and coding
schemes and the forward error correction code rates used while allocating resources. An
adaptive resource assignment scheme for scalable video multicast has been proposed in [22],
with the objective of maximizing the long-term quality of experience of the system.

In [23], the authors use a pricing-based scheme for the allocation of resources to
multicast groups streaming SVC video content. Users are divided into three multicast
groups based on the price that they pay. The UEs that pay the most receive the maximum
number of enhancement layers. In [24], the authors investigate the use of random network
linear coding (RNLC) to improve the performance of multicast services. They use two
different forms of RNLC for the multicasting of H.264/SVC videos in a generic cellular
system. The authors in [25] deal with optimizing the delivery of network-coded SVC
content using MBMS. They make use of unequal error protection to ensure the reliability of
multi-layer video transmission. A resource allocation model that provides better coverage
than conventional multi-rate transmission is also proposed in [26].

1.2. Contributions

Existing approaches do not leverage the unique loss-tolerant nature of video streams to
optimize resource allocation in multicast video streaming. This work exploits this property
to design efficient resource allocation policies for video multicasting. A loss-tolerant
mechanism for video streaming is proposed that allows for controlled packet losses without
significantly impacting the quality of service. Each UE has a certain tolerance for loss,
which could be a function of several factors, such as the type of video being streamed, the
type of subscription (for instance, a costlier subscription would imply lower loss tolerance),
the device being used to stream the video or the channel quality experienced by the UE.

Moreover, most of the existing wireless multicast literature assumes the rate achievable
by a UE to be the same across all PRBs. This assumption significantly simplifies the resource
allocation problem. Without the channel variability over PRBs, all PRBs are equivalent
for a multicast group/UE and the problem of resource allocation is simplified to only
determining the number of PRBs to be allocated to a multicast group. This work takes into
account the fact that, due to fast fading, the CQI of a UE may also vary for different PRBs
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within a sub-frame. Therefore, while determining the allocation of PRBs to groups, the
identity of the PRBs to be allocated also needs to be specified.

The main contributions of this paper are summarized below. Since multicast services
in fifth-generation (5G) communications are termed MBMS, the terms MBMS and multicast
services will be used interchangeably through the rest of this paper.

• A loss-tolerant mechanism for multicast video streaming is proposed that exploits
the loss-tolerant nature of videos to improve the system performance and utilize the
available bandwidth more efficiently. The proposed mechanism allows for controlled
packet losses while satisfying the quality of service requirements of the users.

• The problem of resource allocation in loss-tolerant MBMS systems is converted to the
problem of stabilizing a fictitious virtual queuing system. It is proven that stabilizing
the constructed virtual token queues is equivalent to satisfying the loss requirements
of the users (Section 4).

• Two loss-optimal policies are proposed for the allocation of resources in loss-tolerant
MBMS systems, namely loss optimal resource allocation (LORA) and priority LORA
(p-LORA). An algorithm for the efficient polynomial time implementation of these
policies is also provided (Section 5). These policies do not require any statistical
information about the channel states of users. Channel states can vary arbitrarily
and can also be correlated across users. The proposed policies are optimal in the
sense that they can satisfy the loss requirements of all the UEs whenever any other
policy, including offline policies with complete information of channel states of users,
can do so.

• The performance of the proposed policies is evaluated using extensive simulations.
Since these policies are designed for video streaming, traces from actual videos [4,5]
are used to simulate realistic video traffic patterns (Section 6).

Unlike the multicast streaming mechanisms in the existing literature (Sections 1.1.1 and 1.1.2),
the proposed loss-tolerant streaming mechanism allows a larger number of users to be served
within the same spectral resources and avoids network congestion during peak traffic hours. Con-
trary to conventional multicast transmission [2,16], loss-tolerant streaming reduces the dependence
of a multicast group on the UE with the worst channel quality, as the resource allocation policy is
no longer constrained to serving every UE in every sub-frame. Therefore, the transmission rates
in some sub-frames may be higher than what can be decoded by the weakest UEs, resulting in
higher system throughput and better user satisfaction.

Although we do not consider multi-layered video transmission in this work, the pro-
posed policies can also be extended to these applications by considering each enhancement
layer as a separate stream. In this case, the loss tolerances would also be a function of the
enhancement layer being transmitted.

Notation

Vectors are written in boldface letters, e.g., B = (B1, . . . , BN)
T. The set of integers

up to n is denoted as [n] = {1, 2, . . . , n}. As a shorthand, we use [x]+ = max{x, 0}. The
probability and expectation operators are denoted by Pr and E, respectively. An overview
of the most commonly used variables’ notation can be found in Table 1.

Table 1. Notation of the most commonly used variables.

Symbol Explanation Definition

Γ Resource allocation policy Definition 1
BΓ[t] Allocation vector for sub-frame t Equation (1)
`Γ

k [t] Packet loss of UE k in sub-frame t Equation (2)
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Table 1. Cont.

Symbol Explanation Definition

˜̀k Tolerated fractional loss of UE k —
`Γ

k Average packet loss of UE k Definition 3
µΓ

k [t] Service indicator for UE k in sub-frame t Equation (6)
λk Average arrival rate of virtual queue k λk = 1− ˜̀k

QΓ
k [t] Queue length of UE k in sub-frame t Equation (7)

2. System Model

Consider a 5G multicast system with L different video streams. There are M UEs
in the system, each subscribed to one of the L video streams. UEs subscribed to video
stream i ∈ {1, 2, . . . , L} form multicast group Gi and the number of UEs in Gi is denoted by
Ki. The index of the group that UE k belongs to is denoted by i(k), i.e., if UE k belongs to
the group Gj, then i(k) = j. Thus, [M] and [L] denote the set of UEs and the set of multicast
groups, respectively. In each sub-frame, there are N ≥ L PRBs that can be assigned to the
groups. Since these PRBs are typically shared with other types of data transmission in the
system, each multicast group Gi is allocated at most one PRB in each sub-frame.

For each of the L video streams, a data packet arrives at the beginning of each sub-
frame and is transmitted in the same sub-frame. The size of the arriving packet for group Gi,
along with the length of a sub-frame, determines the rate Ri (in bits/second) at which the
data needs to be transmitted to its subscribers. Therefore, whenever a PRB is allocated to
multicast group Gi, data is transmitted in this PRB at the corresponding rate Ri.

In each sub-frame t ∈ N, the resource allocation policy Γ decides which PRB is
allocated to which group. This allocation in sub-frame t is denoted in form of the allocation
vector BΓ[t] of length L given by

BΓ[t] =
(

BΓ
1 [t], BΓ

2 [t], . . . , BΓ
L[t]
)T

, (1)

where BΓ
i [t] = j ∈ {0, 1, . . . , N} describes that PRB j is allotted to Gi in sub-frame t.

However, if BΓ
i [t] = 0, it means that group Gi is not scheduled for reception in this sub-

frame. The policy Γ in sub-frame t is completely defined by the value of BΓ[t].
The channel states of the UEs vary across time and frequency. As a result, the channel

experienced by a UE varies from one sub-frame to another and also across the PRBs within
a sub-frame. There is a certain maximum rate rkj[t] that UE k can successfully decode in
PRB j of sub-frame t [27]. This rate is a function of the CQI experienced by the UE in this
PRB. Since data is transmitted to group Gi at rate Ri, a UE may not receive the MBMS
content successfully, even after a PRB has been assigned to its multicast group. A UE is said
to have been served in a sub-frame if and only if the UE successfully receives data in this
sub-frame. Therefore, even if the group of the UE is scheduled for reception in a sub-frame,
the UE itself may or may not be served in this sub-frame. We distinguish between these two
terms as follows.

• A UE is scheduled in a sub-frame, if a PRB is allocated to its group in this sub-frame.
More precisely, UE k ∈ Gi is scheduled in sub-frame t under policy Γ if BΓ

i [t] 6= 0.
• A UE is served in a sub-frame, if it has been scheduled in that sub-frame and is able

to successfully receive the transmitted packet. More precisely, UE k ∈ Gi is served in
sub-frame t under policy Γ if BΓ

i [t] = j 6= 0 and Ri ≤ rkj[t].

Recall that for each video stream i, a packet arrives at the beginning of each sub-frame.
Therefore, if a UE is not served in a sub-frame, it experiences a packet loss. We denote
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the loss encountered by UE k under policy Γ in sub-frame t by `Γ
k [t]. More precisely, for

UE k ∈ [M], the loss `Γ
k [t] under policy Γ in sub-frame t is given by

`Γ
k [t] =

{
0 if BΓ

i(k)[t] 6= 0 and Ri(k) ≤ rkj[t],

1 otherwise.
(2)

All UEs in the system can tolerate some degree of packet loss. This loss tolerance may
differ from UE to UE depending upon the channel conditions experienced and the video
resolution chosen by them. A higher resolution would typically imply lower loss tolerance
and vice versa. For all k ∈ [M], we denote by ˜̀k the fractional loss that can be tolerated by
UE k. The loss tolerance vector for the system is given by

˜̀ = ( ˜̀1, . . . , ˜̀M)T. (3)

Within this framework, the objective of the resource allocation problem is to allocate PRBs
to the multicast groups such that the average loss encountered by every UE k is below its
tolerable loss ˜̀k.

Example 1. In order to illustrate the described model, we consider a simple example of M = 5
UEs, each subscribing to one of L = 3 streams. In particular, users 1, 2, and 4 form group G1,
while users 3 and 5 are groups G2 and G3, respectively. In each sub-frame, there are N = 2 PRBs
available. For this example, we assume that the policy Γ assigns PRB 1 to group G3 and PRB 2 to
group G1 in sub-frame t, i.e., we have BΓ[t] = (2, 0, 1)T.

The frame that needs to be transmitted for video stream 1 has a size of 100 kbit, while the
packet of stream 3 is 80 kbit. Since the length of a sub-frame in 5G-NR is 1 ms, the required data
rates for groups 1 and 3 are R1 = 100 Mbit/s and R3 = 80 Mbit/s, respectively. Assuming that
the users can decode packages up to rates r1 = 120 Mbit/s, r2 = 90 Mbit/s, r4 = 100 Mbit/s,
and r5 = 90 Mbit/s, we find that users 2 and 3 experience losses due to not being able to decode
and not being scheduled, respectively. The loss vector for this example is therefore given according
to (2) as `Γ[t] = (0, 1, 1, 0, 0)T.

3. Problem Definition

The main problem considered in this work is to find an efficient resource allocation
policy that satisfies the different loss tolerances of the UEs. For the exact formulation of the
problem, we require the following definitions.

Definition 1 (Feasible resource allocation). Resource allocation under policy Γ in sub-frame t
is said to be feasible if, at most, one PRB is assigned to each multicast group and no two groups
are assigned the same PRB. More precisely, a feasible allocation vector BΓ[t] is such that, for all
(i, i′) ∈ [L]2 with BΓ

i [t], BΓ
i′ [t] 6= 0, it holds that BΓ

i [t] 6= BΓ
i′ [t].

Definition 2 (Feasible resource allocation policy). A feasible resource allocation policy Γ is a
policy that chooses a feasible allocation vector in each sub-frame.

A resource allocation policy can make use of the knowledge of the current channel
states of the UEs, the allocation information of the previous sub-frames, the loss tolerance
of the UEs, and the losses encountered by the UEs in the previous sub-frames to make
allocation decisions in a sub-frame. It could also be an off-line policy that has prior
knowledge of the channel conditions of all sub-frames in advance. However, we will show
in the following sections that this prior knowledge does not improve the performance and
that the proposed policies achieve optimal performance without requiring any knowledge
of future channel conditions.
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Definition 3 (Average packet loss). The average packet loss encountered by UE k under resource
allocation policy Γ is the packet loss per unit time given by

`Γ
k = lim sup

T→∞

1
T

T

∑
t=1

`Γ
k [t],

with `Γ
k [t] in (2).

The vector of the average packet losses of all UEs is given by

`Γ = (`Γ
1 , . . . , `Γ

M)T. (4)

The feasible region of a resource allocation policy and that of the system can now be defined
as follows.

Definition 4 (Feasible region of a policy). The feasible region of a resource allocation policy Γ,
denoted by LΓ, is the set of all loss tolerance vectors ˜̀ that can be satisfied by Γ, i.e.,

LΓ =
{

˜̀ : ˜̀ > `Γ a.s.
}

, (5)

where ˜̀ is defined in (3) and `Γ in (4).

Definition 5 (Feasible region of the system). The feasible region of the system is the set of loss
vectors L =

⋃
Γ LΓ where the union is over all feasible policies Γ.

Using the above definitions, the optimal resource allocation policy can now be defined
as follows.

Definition 6 (Optimal resource allocation policy). The optimal resource allocation policy Γ? is
a policy for which the feasible region is given by LΓ?

=
⋃

Γ LΓ.

Problem Statement. Based on the above definitions, the main objective of this work is to
determine the optimal resource allocation policy Γ? from Definition 6.

Remark 1. While the focus of this work is on video streaming, it should be emphasized that the
considered problem and our proposed resource allocation framework are not uniquely applicable to
video streaming, but more generally to any loss-tolerant multicast transmission.

4. A Virtual Queuing System for Multicast Resource Allocation

In this section, we show that the considered problem can be solved by converting
it into the problem of stabilizing a queuing system. In particular, we construct a virtual
queuing system Q, which consists of a token queue for each UE. The term token is used to
refer to the virtual entities that make up the queues, and the tokens are used to keep track
of the losses of the individual UEs. The basic idea is that tokens in each queue arrive at
a rate proportional to the loss tolerance of the corresponding user. For users with stricter
reliability constraints, i.e., lower loss tolerances, more tokens arrive on average. Whenever
a UE is served, a token is removed from the corresponding queue. Thus, the length of
the queue of a user is an indicator of how much loss a user has encountered. The state of
this queuing system is completely described by the lengths of these virtual queues. An
overview of the system is depicted in Figure 1.
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UE 1 UE K1

Group 1

. . . Loss
Tolerances

{ ˜̀1, . . . , ˜̀K1

}

UE k UE M

Group L

. . . Loss
Tolerances

{ ˜̀k, . . . ˜̀M
}

...

Rate R1

Rate R
L

Q1[t]

Q2[t]

QM[t]

...

Queuing System Q at eNodeB

Policy Γ

Figure 1. Considered MBMS system in which M users subscribe to one of L video streams. Each UE k
has an average loss tolerance ˜̀k. The base station maintains a virtual queuing system Q, which keeps
track of the packet losses for the individual users. Based on the state of Q, the resource allocation
policy Γ assigns a PRB to each group i ∈ {1, 2, . . . , L}, which corresponds to transmitting the data at
rate Ri.

For all k ∈ [M], the arrival process for the token queue of UE k is denoted by {λk[t]}t≥1.
The variable λk[t] is a binary random variable indicating the arrival of a token to the
queue of UE k in sub-frame t and has the expected value λk = 1− ˜̀k. Therefore, if the
virtual queue k with this expected arrival rate λk is stabilized, we ensure that UE k is
served in at least 1− ˜̀k of the sub-frames. Arrivals across sub-frames are assumed to be
independent and identically distributed. Across users, the arrival processes are assumed to
be independent. The system arrival rate vector is denoted by λ = (λ1, . . . , λM)T.

Denote by µΓ
k [t] the binary random variable that indicates whether or not UE k has

been served in sub-frame t under policy Γ, i.e., µΓ
k [t] is given by

µΓ
k [t] =

{
1, if BΓ

i(k)[t] = j 6= 0 and Ri(k) ≤ rkj[t],

0, otherwise.
(6)

Let QΓ
k [t] denote the length of queue k at the beginning of sub-frame t under policy Γ. For

all k ∈ [M], the queue length QΓ
k [t] evolves according to the following:

QΓ
k [t + 1] =

[
QΓ

k [t] + λk[t]− µΓ
k [t]
]+

. (7)

As mentioned above, we will show in the following that stabilizing the virtual queuing
system Q provides a solution to the originally considered resource allocation problem. For
this, we introduce the following definitions.

Definition 7 (Stability of Q). The constructed queuing system Q is said to be stable under a
feasible resource allocation policy Γ if it holds that supt E[QΓ

k [t]] < ∞, for all k ∈ [M].

A resource allocation policy that stabilizes Q is called a stable resource allocation policy.
The stability region of a stable resource allocation policy and the queuing system Q are
defined as follows.

Definition 8 (Stability region of Γ). The stability region SΓ of a stable resource allocation policy Γ
is the set of arrival rate vectors for which the system is stable under Γ.

Definition 9 (Stability region of Q). The stability region S of the queuing system Q is the union
of the stability regions of all stable resource allocation policies, S =

⋃
Γ SΓ, where the union is over

all stable Γ.

Definition 10 (Throughput optimality). A resource allocation policy Γ is said to be throughput-
optimal [28] if Γ can stabilize the queuing system Q provided that the queuing system is stabilizable.
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Since the eNodeB (eNB) knows both the loss requirements and the channel states of
the UEs, it has all the information needed to maintain the virtual queuing system. In the
following, we establish the relationship between the stability region of the constructed
queuing system and the feasible region of the optimal resource allocation policy Γ? from
Definition 6.

Feasible Region of the Optimal Resource Allocation Policy

In this section, we prove that stabilizing the constructed virtual queuing system Q
is equivalent to meeting the loss requirements of all UEs in the system. This establishes
the equivalence between the stability region of Q and the feasible region of the optimal
resource allocation policy Γ? defined in Definition 6. The consequence of establishing this
equivalence is that designing a resource allocation policy that stabilizes Q is equivalent to
solving the originally considered problem.

Let B = {B1, . . . , B|B|} be the set of all feasible allocation vectors of the form in (1).
The cardinality of B is given by

|B| =
(

N + 1
L

)
L! +

L

∑
k=0

(
L
k

)(
N

L− k

)
(L− k)!,

where N is the number of PRBs in a sub-frame and L is the number of multicast groups.
In 5G communication systems, channel states are identified using a finite number of
integral values termed the CQI values. The Third Generation Partnership Project (3GPP)
standards [29] define a total of 15 CQI values. Since the number of CQI values is finite,
the possible channel states of UEs can only take a finite number of values. Define set C
that contains all possible CQI combinations of the M UEs in the system, i.e., for D ∈ N
distinct CQI values, C will be a set of DM CQI vectors, each of length M. Let g denote the
probability distribution over the set C such that, for all C ∈ C, the probability of the system
being in the CQI state C is g(C).

Denote by µBiC ∈ {0, 1}M the service vector of the UEs corresponding to allocation
Bi ∈ B in CQI state C ∈ C. We use µC = {µBiC}Bi∈B to denote the set of possible service
vectors in channel state C. For a given C ∈ C, define a distribution wC = {wBiC} over the
set of µBiC, where wBiC denotes the probability of choosing allocation Bi in channel state C.

Therefore, within this virtual queuing system, we are required to find a distribution
{wC}C∈C that satisfies the following set of constraints for δ > 0:

P(δ) : ∑
C∈C

∑
Bi∈B

g(C)wBiCµBiC = λ + δ, (8a)

wBiC ≥ 0, ∀ Bi ∈ B, C ∈ C, (8b)

∑
Bi∈B

wBiC = 1, ∀ C ∈ C, (8c)

where the constraint in (8a) ensures the stability of the virtual queuing system by imposing
that the service rates of the virtual token queues are higher than their respective arrival
rates, and (8b) and (8c) ensure that {wC}C∈C is a valid probability distribution. Therefore,
a policy whose assignment decisions follow the distribution {wC}C∈C would be able to
stabilize the virtual queuing system Q.

Denote by Λ(δ) the set of arrival rate vectors λ such that the feasible region of P(δ) is
non-empty. We define the sets Λ◦ and Λ as

Λ◦ =
⋃
δ>0

Λ(δ) and Λ =
⋃
δ≥0

Λ(δ). (9)

The sets Λ◦ and Λ provide a means of characterizing the stability region of the constructed
virtual queuing system. As we will see in the subsequent results, these sets enable us to
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establish the relationship between the feasible region of the optimal resource allocation
policy for our system and the stability region of the constructed virtual queuing system.

The following theorem provides the relationship between Λ◦, Λ, and the stability
region S of the queuing system Q from Definition 9.

Theorem 1. Λ◦ ⊆ S ⊆ Λ.

Proof. Detailed proof is given in Appendix A.

From here on, we consider Λ◦ to be the stability region of Q since the region Λ◦ is
well defined for the constructed virtual queueing system. Moreover, since Λ◦ ⊆ S , all the
arrival rate vectors in Λ◦ are stabilizable.

With this result, we are now able to state the main contribution of this section, which
establishes the relation between the feasible region of the optimal resource allocation
policy LΓ?

from Definition 6 and the stability region S from Definition 9.

Theorem 2. The loss requirement of the UE is met if and only if its corresponding token queue in
Q is stable. More precisely, ˜̀ ∈ LΓ?

if and only if (1− ˜̀) ∈ S . Here, 1 is a vector of ones of the
same length as ˜̀ .

Proof. Detailed proof is given in Appendix B.

Theorem 2 establishes that the stability region of the virtual queuing system is the
same as the feasible region of the optimal resource allocation policy Γ?. Henceforth, we
focus our attention on stabilizing the token queues corresponding to each UE knowing that,
by Theorem 2, stabilizing the token queues of the UEs will ensure that their respective loss
requirements are met.

5. Resource Allocation Algorithms for Loss-Tolerant Multicast Streaming

In the loss-tolerant MBMS systems under consideration, the UE is satisfied as long
as the losses encountered are kept below the acceptable thresholds. In this section, we
propose loss-optimal resource allocation policies that can meet the loss requirements of all
UEs in the system.

5.1. Loss-Optimal Resource Allocation (LORA)

LORA makes scheduling decisions in a sub-frame t based on the token queue lengths
Qk[t] of the users. Throughout the following, we use Γ0 to denote LORA. In each sub-
frame t, Γ0 chooses a service vector µΓ0 [t] according to the following:

µΓ0 [t] ∈ arg max
µΓ0 [t]∈µC

M

∑
k=1

Qk[t]µ
Γ0
k [t], (10)

where µΓ0
k [t] is the service rate of UE k in sub-frame t under Γ0. The intuition behind this is

that Γ0 maximizes the sum of the queue lengths of the UEs served in sub-frame t. As we
have already established in Section 4, stabilizing the token queues ensures that the loss
requirements of all UEs are met. Thus, in order to prove that Γ0 can successfully meet the
loss requirements, it is sufficient to show that Γ0 stabilizes the virtual queuing system.

Theorem 3 (Throughput optimality of Γ0). For any stabilizable arrival rate vector λ, Γ0 stabi-
lizes the queuing system.

Proof. Detailed proof is given in Appendix C.

This theorem implies that as long as the system is stabilizable, i.e., there exists some
policy Γ that can stabilize the queuing system, so can Γ0. Note that Γ is not restricted
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to using the same information that is available to Γ0. In fact, Γ could use information
from the past and future allocations and channel conditions to make allocation decisions.
However, the LORA policy Γ0 only uses the current state of the queuing system to make
the scheduling decisions.

With LORA, we now have a loss-optimal policy that meets the loss requirements of
users by making allocation decisions based on the UEs’ token queue lengths. However, in
addition to the amount of packet loss in a video stream, we would also like to control the
pattern in which these losses occur. Even if a user has high tolerance for loss, we would like
to avoid a large number of consecutive packet losses in order to improve the QoE. Starving
users for a large number of consecutive sub-frames may lead to user dissatisfaction and
result in users leaving the multicast session. Therefore, a loss-tolerant resource allocation
policy should also restrict the number of consecutive packet losses encountered by a UE, in
addition to the long-term average packet loss. We propose such a policy in the following.
This policy ensures that users do not remain unserved for long periods at a time, which
leads to better loss performance and the reduced burstiness of packet losses.

5.2. Priority LORA (p-LORA)

Similar to LORA, p-LORA also makes scheduling decisions in sub-frame t based on
the queue lengths Qk[t]. However, in p-LORA, we use an additional priority vector to
increase the probability of serving a previously unserved UE. A similar approach has also
been used in [30] to design a regular service guarantee algorithm for a wireless network. In
the following, we use ΓP to denote the p-LORA policy.

In every sub-frame t, ΓP chooses service vector µΓP [t] according to the following:

µΓP [t] ∈ arg max
µΓP [t]∈µC

M

∑
k=1

(
Qk[t] + (ck[t] + 1) · s

)
µΓP

k [t], (11)

where ck[t] is the priority weight ascribed to the token queue of UE k and s is a positive
constant. The priority weight ck[t] is defined as

ck[t] =

{
0, if µk[t− 1] = 1,
min{ck[t− 1] + 1, κ} otherwise,

with κ > 0 being the maximum value that the priority weights can take. Additionally, for
all k ∈ {1, 2, . . . , M}, we set ck[0] = 0. Denote by c̄[t] = (c1[t], . . . , cM[t]) the vector of the
priority weights of all the queues in sub-frame t. Increasing ck[t] increases the contribution
of UE k in (11), which increases its likelihood of being served under ΓP.

We now prove that ΓP is throughput-optimal, i.e., ΓP will stabilize the queuing system
if any other policy can do so.

Theorem 4 (Throughput optimality of ΓP). For any stabilizable arrival rate vector λ, ΓP
stabilizes the queuing system.

Proof. Detailed proof is given in Appendix D.

In the next section, we present the generalization of the exponential queue length (EXP-
Q) rule, which was proposed in [31]. The EXP-Q rule is a well-known throughput-optimal
policy for the scheduling of multiple flows over a time-varying wireless channel, such
that the maximum delay encountered in the system is minimized [32]. The rule, however,
considers that there is a single channel that can be used by one flow at a time. Therefore,
we propose the generalization of EXP-Q for use with multicast transmission and multiple
channels. It serves as a benchmark for the performance evaluation of our proposed policies.
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5.3. Generalized Exponential (Queue Length) Rule (ΓE)

The EXP-Q rule [31] schedules a single queue k in a time slot t such that

k ∈ arg max
k

γkµk[t] exp
(

akQk[t]
β + [Q̄[t]]η

)
, (12)

where µk[t] is the rate of service of queue k in sub-frame t; ak, γk, and η are constants; and
Q̄[t] = (1/N)∑k akQk[t]. The EXP-Q rule is designed for use in a system where a single
time-varying channel is shared by multiple flows. Since our considered system requires
the allocation of multiple flows to multiple channels (in the form of PRBs), the EXP-Q
rule cannot be used in the existing form. Therefore, we generalize it as described in the
following. The generalized version of the EXP-Q rule is denoted by ΓE.

Since we have multiple channels available and multiple groups can be scheduled for
service in a sub-frame, the policy has to determine an allocation vector BΓE [t] instead of
choosing a single entity to be scheduled in a sub-frame. As defined in Section 3, BΓE [t] is a
vector that specifies which PRB is allocated to which multicast group. We define ΓE as the
policy that chooses service vector µΓE [t] according to the following:

µΓE [t] ∈ arg max
µΓE [t]∈µC

M

∑
k=1

γkµΓE
k [t] exp

(
akQk[t]

β + [Q̄[t]]η

)
, (13)

where µΓE
k [t] is the service rate of UE k in sub-frame t under ΓE. Based on the service vector

µΓE [t], the corresponding allocation vector BΓE [t] is determined.
The mapping from the service vector µΓE

k [t] to the allocation vector BΓE [t] can be
accomplished as follows. Since we assume perfect CSI at the eNB, given a channel state C in
sub-frame t, the eNB knows µC = {µBiC}Bi∈B , the set of possible service vectors in channel
state C. Therefore, if µΓE [t] = µBiC, allocation vector BΓE [t] = Bi is chosen.

5.4. Computational Complexity

All the resource allocation policies discussed in this section have a brute force com-
putational complexity of O

(
M(N

L)L!
)

. This makes them unsuitable for use in practical
systems unless we can find efficient means of implementing them. We show that these poli-
cies can be implemented in polynomial time using a maximum weight bipartite matching
(MWBM) [33]. We discuss the details of this implementation in the next subsection.

5.5. Polynomial Time Implementation

We make use of MWBM for an efficient polynomial time implementation of the
resource allocation policies proposed in this section. The MWBM reduces the computational
complexity of their implementation to O(NL2), where N is the number of PRBs in a sub-
frame and L is the number of multicast groups. Thus, the policies can be implemented in
polynomial time.

We begin with the construction of the underlying bipartite graph, which is the same for
all the policies, except that the edge weights are different for each policy. In the following,
we discuss the implementation for Γ0 in detail. The procedure and proof can be directly
used for ΓP and ΓE as well with modified edge weights. The modifications involved will
be specified at the end of this section.

Construct a bipartite graph G = (U, V, E), where vertex set U is the set of L multicast
groups and vertex set V is the set of N PRBs. We define the service rate of UE k ∈ Gi in
PRB j in sub-frame t as follows:

ν
j
k[t] =

{
0, if Ri > rkj[t]
1, otherwise.
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Note that µΓ
k [t] in (6) denotes the service rate for UE k under policy Γ in sub-frame t. Since

we need to denote the service rate for a UE in each PRB here, we employ a different
notation to avoid ambiguity with the service rate vector of a policy. The weight of an edge
connecting i ∈ U to j ∈ V is wj

i [t] = ∑k∈Gi
Qk[t]ν

j
k[t].

In the following lemma, we show that an MWBM of G that matches each vertex in U
to a unique vertex from V results in allocation equivalent to Γ0.

Lemma 1. Maximum weight bipartite matching for graph G, as described above, results in resource
allocation according to policy Γ0.

Proof. Detailed proof is given in Appendix E.

The same MWBM can be used to implement ΓP and ΓE by changing the edge weights.
For ΓP, the edge weights are given by

wj
i [t] = ∑

k∈Gi

(
Qk[t] + (ck[t] + 1) · s

)
ν

j
k[t], (14)

and, for ΓE, the edge weights are

wj
i [t] = ∑

k∈Gi

γkν
j
k[t] exp

(
akQk[t]

β + [Q̄[t]]η

)
. (15)

In the next section, we present the numerical results of simulations performed to evaluate
the performance of the proposed resource allocation schemes.

6. Simulations

We study the performance of the proposed allocation algorithms in an MBMS system.
We consider a cell with UEs distributed uniformly at random through the cell. There are
L = 5 MBMS video streams available in the cell and each UE is subscribed to one of these
streams. In our simulations, the same number of UEs are subscribed to each stream. All the
UEs subscribed to the same video stream form a multicast group and receive the relevant
content on the same PRBs. We use the MATLAB-based simulator designed in [34] for the
numerical simulations. To create 5G-specific physical layer conditions, we create channels
using the models recommended by 3GPP [27]. Signal-to-noise ratio (SNR) to CQI and CQI
to rate mappings have been performed according to the 3GPP specifications [27]. Other
relevant simulation parameters are listed in Table 2.

Table 2. System simulation parameters [27].

Parameter Value

System bandwidth 20 MHz
Path loss model 128.1 + 37.6 log10(d), with d in km
Lognormal shadowing Log-normal fading with 10 dB standard deviation
White noise power density −174 dBm/Hz
eNB cell radius 150 m
eNB noise figure 5 dB
eNB transmit power 46 dBm
Number of PRBs 100 per sub-frame

As described in Section 2, for each stream, a packet arrives at the beginning of a
sub-frame and is transmitted in the same sub-frame at the required rate. Each UE can
tolerate some amount of packet loss. We observe the packet loss encountered by the UEs
under the proposed policies and compare their performance with that of the modified
EXP-Q rule.
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Since the proposed policies are intended for use with video streaming services, we use
traces from actual videos to generate realistic video traffic patterns in the simulations. These
video traces have been obtained from the Arizona State University Video Trace Library
(http://trace.eas.asu.edu/ (accessed on 23 July 2019)) [4,5]. The videos used are Silence of
the Lambs, Star Wars IV, the Tokyo Olympics, NBC News, and a Sony Demo. All videos
are H.264/AVC, encoded with a GoP size of 16, with 15 B frames in each group.

Since I and P frames are needed to decode other frames in a GoP, we ensure that
all I and P frames are transmitted without any loss by allocating sufficient resources and
transmitting at the rate corresponding to the weakest UE. We use the proposed lossy
allocation policies only to send the B frames. This is a recommended practice in network
simulations with video traces [5], since it is difficult to estimate the impact of the loss of I
and P frames on the video quality [5].

First, we compare the losses encountered by the UEs to their loss tolerances. For this,
we run the simulations for the entire duration of all five videos (L = 5) with K = 50 UEs per
stream. The resulting differences between the loss tolerance ˜̀k and the average encountered
loss `Γ

k are shown in Figure 2. Note that negative values correspond to a violation of the
loss tolerance. It can be seen that both LORA and p-LORA succeed in meeting the loss
requirements of all UEs. In contrast, several users experience losses significantly higher
than their tolerable limits for the modified EXP-Q rule.
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Figure 2. Differences between the tolerable losses ˜̀k and the average losses encountered by the video
traces `Γ

k under policies LORA, p-LORA, and EXP-Q.

Next, we compare the average losses encountered by the UEs under the three schemes.
For this, the encountered losses per second have been exponentially averaged for each UE
individually. The average of these smoothed curves over all UEs is shown in Figure 3. It
can be observed that the EXP-Q rule results in the highest average loss. Both LORA and
p-LORA achieve nearly the same performance, with p-LORA only being slightly better.

After considering the average packet loss, we compare the peak signal-to-noise ratio
(PSNR) degradation due to the packet losses in Figure 4. The PSNR is widely regarded as
an important metric in evaluating the quality of a video stream [5]. In order to capture the
impact of each resource allocation policy on the PSNR of the transmitted videos, we plot
the differences between the PSNR of the transmitted and received video streams, which we
term PSNR degradation. This is calculated as follows.

The video traces obtained from the ASU repository contain the PSNR values of each
frame in a video trace. Using these, the PSNR of a GoP is obtained by adding the PSNR
values of the frames in this GoP. We then find the average PSNR of a video stream as the
average over all the GoPs in this stream. This is used as the representative PSNR value for
the transmitted video stream.

http://trace.eas.asu.edu/
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Figure 3. Average losses of all UEs and video streams over time for different policies.

The PSNR of the video stream received by a UE is similarly calculated by taking the
sum of the PSNR values of the frames that were successfully received by this UE within
a GoP, followed by averaging over all the GoPs. We then calculate the average received
PSNR of a stream by taking the average of the PSNR values over all the UEs in the group.
Finally, the PSNR degradation is calculated as the difference in the average PSNR of the
transmitted and received video streams. From the figure, it can be seen that EXP-Q leads
to the largest degradation in the PSNR. Both LORA and p-LORA result in significantly less
loss in the PSNR of the received video streams.
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Figure 4. Comprarison of the PSNR degradation for different videos.

As discussed in Section 5, in addition to the amount of packet loss, the pattern in which
the losses occur also has a significant impact on the user experience. While a certain amount
of loss spread (more or less) evenly throughout a session may not result in a significant
degradation in video quality, concentrated packet loss in a video stream can be extremely
annoying and cause the UEs to leave the session. To compare the burstiness of the losses
for the different policies Γ, we plot the differences between the encountered losses `Γ[t] in a
given second t and the average loss `Γ in Figure 5. Whenever the current loss `Γ is much
larger than the average, a large amount of packet loss has occurred in a short period of
time. As a result, the video quality is significantly worse than the average, and the users
experience a degradation in the quality of service. This behavior is clearly seen for both
the EXP-Q and LORA policies. On the other hand, the peaks are smaller for the p-LORA
algorithm, which is specifically designed to avoid bursts of packet loss.

These simulation results clearly demonstrate the effectiveness of the proposed policies.
The use of traces of actual videos further strengthens the case for the use of loss-tolerant
allocation policies to stream video content.



Entropy 2023, 25, 1045 16 of 24

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

Time t [s]

D
iff

.t
o

A
vg

.`
Γ
[t
]−

`Γ
[%

]

LORA (Γ0)
P-LORA (ΓP)
EXP-Q (ΓE)

Figure 5. Differences between the encountered losses `Γ[t] for one UE at time t of a video stream and
the average packet loss `Γ for policy Γ. A high peak indicates a burst of packet loss, which can result
in degradation in the video quality.

After having shown that the proposed algorithms work effectively on real video stream
data, we now focus on the influences of different parameters. In particular, we consider a
varying number of video streams L and users per video stream K in the following. For the
traffic data, we again use the realistic video content from the above simulations.

First, we compare the average computational time of the LORA and p-LORA algo-
rithms in Table 3. It can be noted that the times are very similar for both algorithms. As
expected, the computational effort increases both with the number of multicast groups L
and the number of users per group K. However, the computational times in the simulation
do not purely depend on the total number of UEs in the system LK, but also on the individ-
ual parameters. While, at L = 3 and K = 200, the total number of users is 600, the time of
around 0.6 ms is less than the required time of around 0.8 ms for the parameters L = 5 and
K = 100 (with a total of 500 UE). This observation that the number of video streams has a
greater influence on the computational complexity matches the theoretical results derived
in Section 5.5.

Table 3. Average time taken for resource allocation using the MWBM implementation of the LORA
and p-LORA algorithms. Each row represents a different number of video streams L and each column
represents different number of UEs K subscribed to each stream. The first number indicates the time
required to run the LORA algorithm, while the number in parentheses is for p-LORA.

L K = 50 K = 100 K = 150 K = 200

3 0.439 (0.438) ms 0.495 (0.497) ms 0.546 (0.543) ms 0.619 (0.613) ms
4 0.571 (0.571) ms 0.663 (0.660) ms 0.723 (0.721) ms 0.830 (0.825) ms
5 0.697 (0.706) ms 0.819 (0.813) ms 0.905 (0.894) ms 1.000 (1.000) ms

Next, we analyze the packet losses for different combinations of L and K. In Figure 6,
we show the average losses for the three algorithms LORA, p-LORA, and EXP-Q. The
average is taken both with respect to the users and over time. First, it can be seen that the
average loss increases for all algorithms with an increasing number of users per stream.
This is because, as the number of users subscribed to a video stream increases, a larger
number of users are likely to experience poor channel conditions, which in turn increases
the average loss incurred by the users. For an increasing number of parallel streams, the
average loss reduces. Similar to the results in Figure 3, LORA and p-LORA achieve nearly
the same performance, with p-LORA being slightly better. However, both algorithms
outperform the EXP-Q method.



Entropy 2023, 25, 1045 17 of 24

60 80 100 120 140 160 180 200
2

3

4

5

6

Number of Users per Stream K

A
ve

ra
ge

Lo
ss

[%
]

LORA
P-LORA
EXP-Q

Figure 6. Average loss for different combinations of the number of video streams L and the number
of users per stream K. The solid lines indicate the results for L = 3, the dashed lines for L = 4, and
the dash-dotted lines for L = 5.

7. Conclusions

Video streams can tolerate a certain amount of packet loss without a significant
degradation in the quality perceived by the end user. In this paper, we have leveraged
this property to improve the performance of multicast video streaming in MBMS. In
particular, we have considered an MBMS system where users can tolerate a certain amount
of packet loss depending on the type of video that they are streaming and the quality of
their channel. For such a system, we have addressed the resource allocation problem by
constructing a virtual queuing system to represent the actual loss-tolerant MBMS system.
It has been shown that an optimal resource allocation policy corresponds to a policy that
stabilizes the constructed virtual queuing system. Furthermore, we have proposed two
algorithms, namely LORA and p-LORA, for resource allocation in loss-tolerant multicast
video streaming services. Both LORA and p-LORA are optimal in the sense that their
resulting resource allocation fulfills the loss requirements of all the users. Interestingly,
this also implies that no policy can perform better, even if it uses information about future
channel states. Additionally, we have proposed an MWBM algorithm that provides an
efficient polynomial time implementation of the proposed policies. To compare our policies,
we have modified the EXP-Q rule [31] for use in multicast transmission systems with
multiple channels.

We have performed extensive simulations using video traces from actual video
streams [5] to study and compare the performance of LORA, p-LORA, and the modified
EXP-Q rule. As expected, both LORA and p-LORA are able to meet the loss requirements
for all users, while EXP-Q violates this constraint for some UEs. The simulation results
indicate that p-LORA achieves the smallest amount of packet loss and the best PSNR of all
these policies. Therefore, we can conclude that the use of this policy to stream video content
in MBMS can significantly reduce the resource utilization of video streaming services, while
simultaneously satisfying the users’ video quality requirements.
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MWBM maximum weight bipartite matching
NOMA non-orthogonal multiple access
p-LORA priority LORA
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QoE quality of experience
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SNR signal-to-noise ratio
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Appendix A. Proof of Theorem 1

We begin by constructing the following randomized resource allocation policy Γδ

based on the set of constraints P(δ) in (8).

Definition A1 (Randomized allocation policy Γδ). Γδ chooses an allocation vector in a sub-
frame according to a feasible solution wC of P(δ). If the system is in channel state C, Γδ chooses
allocation vector Bi with probability wBiC, i.e., Pr(BΓδ [t] = Bi |C(t) = C) = wBiC, ∀ t, and
decisions across sub-frames are independent. δ is an input parameter for Γδ.

The definition of Γδ will be used to prove various results in this and the following
sections. Consider the arrival rate vector λ = (λ1, . . . , λM)T ∈ Λ◦. By the definition of Λ◦

in (9), there exists δ > 0 such that P(δ) is feasible for arrival rate vector λ. Let wC = {wBiC}
denote a feasible solution of P(δ). Therefore, we can use policy Γδ to make scheduling
decisions in each sub-frame according to wC. Let Ak[t] denote the arrival process of queue k,
with Ak[t] = 1 if there is an arrival to queue k in sub-frame t and 0 otherwise. DΓδ

k [t] denotes
the departure process of k under Γδ. We have DΓδ

k [t] = 1 if a token departs from k under Γδ

in sub-frame t and 0 otherwise. Therefore, the evolution of the queue length of queue k
under Γδ is given by

QΓδ
k [t + 1] =

[
QΓδ

k [t] + Ak[t]− DΓδ
k [t]

]+
, (A1)

where QΓδ
k [t] is the length of the token queue of UE k at time t under policy Γδ. For simplicity

of notation, we omit the Γδ superscript from QΓδ
k [t] and DΓδ

k [t] throughout the rest of this

http://trace.eas.asu.edu/
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section. Since a departure from queue k means that UE k was successfully served, the
corresponding service rate is µ

Γδ
k [t] = 1, and we can write (A1) as follows.

Qk[t + 1] =
[

Qk[t] + Ak[t]− µ
Γδ
k [t]

]+
. (A2)

The state of the queuing system in a sub-frame can be completely defined by the
queue lengths of all the token queues in the sub-frame. We denote the state of the system
in sub-frame t by the vector Q[t] = [Q1[t], . . . , QM[t]]. Since the scheduling decisions made
under Γδ only make use of the current state of the system, the evolution of the states of
the system {Q[t]}t≥0 under Γδ forms a discrete time Markov chain (DTMC). This DTMC is
countable, irreducible, and aperiodic. We prove this in the following result.

Lemma A1. The DTMC {Q[t]}t≥0 formed by the evolution of the states of the system under policy
Γδ is countable, irreducible, and aperiodic.

Proof. Countable: The state space of the DTMC is the set of all M-tuples (Q1[t], . . . , QM[t]),
where Qk[t] ∈ N. It forms an M-dimensional Cartesian product of the set of natural
numbers N, which is a countable set. Therefore, the state space of the DTMC and hence the
DTMC itself is countable [35] [Thm. 2.13].

Irreducible: The DTMC can transition from any state Q to a state Q′ in the following steps:

1. Schedule all UEs for service until all queues are empty. This is accomplished in
maxk Qk sub-frames.

2. For the next maxk Q′k sub-frames, the token queue of UE k has an arrival and no
departure for the first Q′k sub-frames. In the remaining (maxk Q′k −Q′k) sub-frames,
there is no new arrival and no departure. At the end of this step, the DTMC is in
state Q′.

These steps define at least one path of length (maxk Qk + maxk Q′k) from any state Q
to any other state Q′. Therefore, the DTMC is irreducible.

Aperiodic: If the DTMC is in state Q[t] and no new token arrives in any queue and
no queue is scheduled for service, the state of the DTMC remains unchanged. Therefore,
self-loops exist and the DTMC is aperiodic.

We now begin the proof of Theorem 1. This is done in two steps. First, we establish in
Lemma A2 that Λ◦ ⊆ S , and we then show that S ⊆ Λ in Lemma A3.

Lemma A2. Every λ ∈ Λ◦ is a stabilizable arrival rate vector. Hence, Λ◦ ⊆ S .

Proof. To prove this, we first show, using Foster’s theorem [36], that the DTMC {Q[t]}t≥0
is positive recurrent and hence the queue lengths do not grow infinitely under Γδ. Using
the Lyapunov function f (Q[t]) = ∑M

k=1 Q2
k [t], we have

f (Q[t + 1])− f (Q[t]) ≤
M

∑
k=1

[(
Ak(t)− µ

Γδ
k [t]

)2
+ 2Qk[t]

(
Ak[t]− µ

Γδ
k [t]

)]
.

Hence,

E[ f (Q[t + 1])− f (Q[t]) | Q[t]] ≤ E
[

M

∑
k=1

(
Ak(t)− µ

Γδ
k [t]

)2
+ 2Qk[t]

(
Ak[t]− µ

Γδ
k [t]

)∣∣∣∣∣Q[t]

]

≤ M + 2E
[

M

∑
k=1

Qk[t]Ak[t]−
M

∑
k=1

Qk[t]µ
Γδ
k [t]

∣∣∣∣∣ Q[t]

]

≤ M + 2
M

∑
k=1

Qk[t]λk − 2
M

∑
k=1

Qk[t]E
[
µ

Γδ
k [t]

∣∣∣ Q[t]
]
.
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From P(δ), we have E
[
µ

Γδ
k [t]

∣∣∣ Q[t]
]
= λk + δ. Therefore,

E[ f (Q[t + 1])− f (Q[t]) | Q[t]] ≤ M + 2
M

∑
k=1

Qk[t]λk − 2
M

∑
k=1

Qk[t](λk + δ)

≤ M− 2
M

∑
k=1

Qk[t]δ.

Defining set A =
{

Q : ∑M
k=1 Qk ≤ M+1

2δ

}
, we have

E[ f (Q[t + 1])− f (Q[t]) | Q[t]] <

{
−1, ∀ Q[t] /∈ A,
∞, otherwise.

Thus, by Foster’s theorem [36], the DTMC is positive recurrent, so the expected queue
lengths in the queuing system are finite. Therefore, Γδ stabilizes the system for arrival rate
vector λ ∈ Λ◦. Thus, λ ∈ S , which implies that Λ◦ ⊆ S .

This proves the first part of our result. We now need to show that S ⊆ Λ. In the
interest of simplicity of notation, we assume that, under a policy Γ that stabilizes the system,
the following limit exists with probability 1:

lim
T→∞

1
T

T

∑
t=1
1Γ

BiC[t], (A3)

where 1Γ
BiC

[t] is an indicator random variable that is 1 if allocation vector Bi is chosen by Γ
under channel state C in sub-frame t and zero otherwise. Now, consider the following sets
of sample paths.

A1: The set of sample paths on which the strong law of large numbers (SLLN) holds for

the arrival rates, i.e., ∑t
i=1 λk [i]

t → λk as t → ∞, ∀ k. This is a probability 1 set, i.e.,
Pr(A1) = 1.

A2: The set of sample paths on which
∑t

i=1 1{C(i)=C}
t → g(C) as t→ ∞, ∀ C (SLLN holds),

where 1{C(t)=C} is an indicator random variable that is 1 if the channel state in sub-
frame t is C and 0 otherwise. Since g is a probability distribution over the set of
channel states C, we have Pr(A2) = 1.

A3: The set of sample paths on which the service rate under Γ is greater than or equal to λ.
Since Γ stabilizes the system, we have Pr(A3) = 1.

A4: The set of sample paths over which the limit in (A3) exists. Since we assume that this
limit exists with probability 1, Pr(A4) = 1.

Since A1, A2, A3, A4 are probability 1 sets, their intersection, A =
⋂4

i=1 Ai, is also a
probability 1 set. We refer to the sample paths belonging to this set A as non-trivial sample
paths. We now prove the second part of our result.

Lemma A3. If λ /∈ Λ, then λ /∈ S . Thus, S ⊆ Λ.

Proof. We prove this result using a contradiction. Let λ /∈ Λ be a stabilizable arrival rate
vector, i.e., λ ∈ S . Since λ is a stabilizable arrival rate vector, there exists some allocation
policy Γ that can stabilize the system for arrival rate λ. We observe the scheduling decisions
made by this Γ along a non-trivial sample path from the set A =

⋂4
i=1 Ai. Let vBiC denote

the fraction of time for which Γ chooses the allocation vector Bi in channel state C along
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such a sample path. Since Γ stabilizes the system, the rate of departures must equal the
arrival rate in the system. Therefore, it follows that

∑
C∈C

∑
Bi∈B

g(C)vBiCµBiC = λ, (A4)

where, vBiC ≥ 0 ∀ Bi ∈ B, C ∈ C, (A5)

∑
Bi∈B

vBiC = 1 ∀ C ∈ C. (A6)

This implies that v = {vBiC} is a feasible solution of P(δ) and that

λ ∈ Λ(0) =⇒ λ ∈ Λ, (A7)

which is a contradiction. Therefore, λ /∈ Λ is not stabilizable, i.e., any stabilizable λ must
be contained in Λ. Hence, we have that S ⊆ Λ.

From Lemmas A2 and A3, we have Λ◦ ⊆ S ⊆ Λ, which is the required result.

Appendix B. Proof of Theorem 2

We need to show that the loss requirement of a UE is met if and only if its token queue
in the queuing system is stable. First, we argue that the stability of the queuing system
implies that the loss requirements of the UEs are met. If the queue corresponding to UE k
is stable, it means that there exists a policy Γ that stabilizes the queue for λ ∈ Λ◦. We
can, therefore, construct a randomized policy Γδ as defined in Definition A1 above. Under
Γδ, the rate of service is greater than λk, which means that UE k is served in more than
(1− ˜̀k) of the sub-frames. Therefore, the loss encountered by UE k is less than ˜̀k and its
loss requirement is met.

Now, let us assume that the loss requirement of UE k is met. We show that this ensures the
stability of its token queue. Since the loss requirement ˜̀k is achievable, there exists a policy Γ
that satisfies the loss requirement. This means that, under Γ, the UE is being served in more
than (1− ˜̀k) of the sub-frames. Since the arrival rate λk = (1− ˜̀k), the queue is served at a
rate greater than the arrival rate. Hence, Γ stabilizes the token queue. From these arguments, we
conclude that the loss requirement of a UE is met if and only if its corresponding token queue in
the queuing system is stable. Therefore, the feasible region of the optimal allocation policy Γ?,
LΓ?

, is equivalent to the stability region of the queuing system S .

Appendix C. Proof of Theorem 3

Similar to (A2) in Appendix A, the evolution of the queue length in the token queue

of UE k at time t under Γ0 is given by Qk[t + 1] =
[

Qk[t] + Ak[t]− µΓ0
k [t]

]+
. The state

of the queuing system is completely defined by the vector Q[t] = [Q1[t], . . . , QM[t]]. The
evolution of Q[t] forms a DTMC since the scheduling decisions made by Γ0 in a sub-frame are
based solely on the state of the system in the sub-frame. The DTMC {Q[t]}t≥0 is countable,
irreducible, and aperiodic. This can be easily proven following the same arguments as in the
proof of Lemma A1 in Appendix A. We now show, using Foster’s theorem [36], that this
DTMC is positive recurrent and hence the token queues do not grow infinitely.

Using the same Lyapunov function f and similar arguments as in the proof of Lemma A2
in Appendix A, it follows that

E[ f (Q[t + 1])− f (Q[t]) | Q[t]] = E
[

M

∑
k=1

(
Ak(t)− µΓ0

k [t]
)2

+ 2Qk[t]
(

Ak[t]− µΓ0
k [t]

)∣∣∣∣∣Q[t]

]

≤ M + 2
M

∑
k=1

Qk[t]λk − 2E
[

M

∑
k=1

Qk[t]µ
Γ0
k [t]

∣∣∣∣∣Q[t]

]
. (A8)
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Let µ
Γδ
k [t] denote the service rate for UE k in sub-frame t under the randomized

policy Γδ. Then, from (10), we have

M

∑
k=1

Qk[t]µ
Γ0
k [t] ≥

M

∑
k=1

Qk[t]µ
Γδ
k [t]. (A9)

Therefore, from (A8) and (A9),

E[ f (Q[t + 1])− f (Q[t]) | Q[t]] ≤ M + 2
M

∑
k=1

Qk[t]λk − 2E
[

M

∑
k=1

Qk[t]µ
Γδ
k [t]

∣∣∣∣∣ Q[t]

]

≤ M + 2
M

∑
k=1

Qk[t]λk − 2
M

∑
k=1

Qk[t]
(
λk + δ

)
≤ M− 2

M

∑
k=1

Qk[t]δ.

Defining set A = {Q : ∑M
k=1 Qk ≤ M+1

2δ } and following the same arguments as in the
proof of Lemma A2, it follows that the DTMC is positive recurrent. Therefore, Γ0 stabilizes
the system.

Appendix D. Proof of Theorem 4

When using policy ΓP for resource allocation, the state of the queuing system is
completely defined by the queue length and the value of the priority counter of each
queue. We denote the state of the queuing system in sub-frame t under policy ΓP by
QΓP [t] =

(
QΓP

1 [t], . . . , QΓP
M [t], c̄[t]

)
. Since scheduling decisions under ΓP in a sub-frame

are based only on the state of the system in the sub-frame, the evolution of the states of
the system form a DTMC that is countable, irreducible, and aperiodic. This can be easily
proven following similar arguments as in Lemma A1 in Appendix A. We omit the details
here in the interest of space. We now proceed to prove Theorem 4 as follows.

Similar to (A2) in Appendix A, the evolution of the queue length in the token queue

of UE k at time t under ΓP is given by Qk[t + 1] =
[

Qk[t] + Ak[t]− µΓP
k [t]

]+
. The evolution

of the state of the queuing system Q[t] = [Q1[t], . . . , QM[t], c̄[t]] forms a DTMC that is
countable, irreducible, and aperiodic. We now show, using Foster’s theorem [36], that this
DTMC is positive recurrent and hence the queues do not grow infinitely.

Using the same Lyapunov function f and following similar steps as in the proof of
Theorem 3 in Appendix C, we have

E[ f (Q[t + 1])− f (Q[t]) | Q[t]] ≤ M + 2
M

∑
k=1

Qk[t]λk − 2E
[

M

∑
k=1

Qk[t]µ
ΓP
k [t]

∣∣∣∣∣ Q[t]

]
. (A10)

Let µ
Γδ
k [t] denote the service rate for UE k in sub-frame t under the randomized policy Γδ.

Then, from (11), we have

M

∑
k=1

(
Qk[t]µ

ΓP
k [t] + (ck[t] + 1)sµΓP

k [t]
)
≥

M

∑
k=1

(
Qk[t]µ

Γδ
k [t] + (ck[t] + 1)sµ

Γδ
k [t]

)
. (A11)
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Therefore, from (A10) and (A11),

E[ f (Q[t + 1])− f (Q[t]) | Q[t]]

≤ M + 2
M

∑
k=1

Qk[t]λk − 2E
[

M

∑
k=1

Qk[t]µ
Γδ
k [t] + (ck[t] + 1)(µΓδ

k [t]− µΓP
k [t])s

∣∣∣∣∣Q[t]

]

≤ M− 2
M

∑
k=1

Qk[t]δ + 4Ms. (for κ = 1)

Defining set A =
{

Q : ∑M
k=1 Qk ≤ 4Ms+M+1

2δ

}
, and following the same arguments

as in the proof of Lemma A2, it follows that the DTMC is positive recurrent. Thus, ΓP
stabilizes the system.

Appendix E. Proof of Lemma 1

The matching for graph G selects edges that share no common vertices. This means
that each group from U will be matched to exactly one PRB from V and each PRB from V
will be matched to, at most, one group from U. Therefore, the requirement of assigning no
more than 1 PRB to each group is satisfied. Since PRBs in V are matched to no more than
one group from U, we will have BΓ

i [t] 6= BΓ
i′ [t] ∀ {i, i′ ∈ [L] : BΓ

i [t], BΓ
i′ [t] 6= 0}, as required

by Definition 1. Thus, the solution of the MWBM provides feasible resource allocation.
Next, we show that the resulting allocation is consistent with the allocation decisions that
would be made by policy Γ0.

MWBM selects edges such that the sum of the weights of the edges chosen is max-
imized. Therefore, it maximizes the quantity ∑i∈U ∑k∈Gi

Qk[t]ν
j
k[t] = ∑M

k=1 Qk[t]µ
Γ0
k [t],

which is the same as in (10). Hence, the resource allocation performed using MWBM on G
is consistent with policy Γ0.
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