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Abstract—We investigate a cross layer congestion control
technique for TCP Reno-2 (NewReno) in CDMA-based wireless
ad-hoc networks in which both TCP layer and PHY layer jointly
control congestion. The PHY layer varies transmission power
based on the channel condition, interference power received and
congestion in the network and seeks to transmit at a minimum
power level, whereas the TCP layer controls congestion using
Reno-2 flow control. We show the convergence of our algorithm
theoretically and through simulations. We demonstrate that our
cross layer congestion control technique provides performance
improvement in terms of throughput, window size variations,
transmission power and converges to a stable value even with
addition and deletion of flows to the network.

I. INTRODUCTION

In a wired network, the links are assumed to be reliable and

of fixed capacities. Congestion in such kind of networks is the

major cause of packet loss and/or delay. Various techniques are

employed in the Internet to counter the congestion problem,

which are either proactive or reactive. These techniques are im-

plemented in the Transmission Control Protocol (TCP) layer of

Internet. In TCP, congestion is said to have occurred when the

sender receives three duplicate acknowledgments (dupacks) or

when a timeout (packet loss) occurs. The TCP congestion

control techniques are based on an Additive Increase and

Multiplicative Decrease (AIMD) technique, in which increase

and decrease of congestion window (cwnd) is based on ac-

knowledgements received and packet drops/dupacks respec-

tively. TCP Tahoe [1], TCP Reno [2] and TCP Reno-2 or

NewReno[3], [4] are some of the commonly deployed variants

of congestion control techniques.

The congestion control techniques of TCP are demonstrated

to be effective in the wired networks of the Internet. However

this is not true in wireless networks, where packet loss and/or

delay can result not only due to congestion, but also due to

time varying nature of the wireless channel. The link capacity

in wireless networks is not fixed but depends upon the Signal

to Interference and Noise Ratio (SINR) at the receiver of the

link. Congestion in a wireless link can be controlled either by

controlling the transmission rate of the link or by increasing

the capacity of that link. Capacity of a link can be increased

either by increasing transmission power on that link or by

decreasing transmission power on other interfering links. Since

wireless nodes are battery powered, transmission power on a

link should be minimum, such that the lifetime of the network

can be increased. Also, transmissions at a higher power in a

Hemant Kumar Rath is a Philips India Fellow and his research is supported
by Philips India and that of Abhay Karandikar is supported by Department
of Science and Technology (Project Code 05DS025).

link leads to higher interference on some other link. Hence,

instead of applying the congestion control techniques of wired

networks directly to wireless networks a joint congestion and

power control technique is desirable. An optimization based

joint congestion and power control technique is proposed in

[5] to address the congestion control problem of wireless

networks for TCP Vegas. We have extended the technique

of [5] to TCP Reno-2 (NewReno) in [6] in which the TCP

layer performs the window based flow control and PHY layer

varies the transmission power of wireless nodes depending on

the congestion cost of the links. In this paper, we extend [6]

by incorporating “network cost” which is the combination of

congestion cost and energy cost of a link. The energy cost

of a link is a function of the transmission power in that link

whereas the congestion cost of a link is the packet dropping

probability in that link. We seek to minimize the transmission

power and maximize the transmission rate by considering the

network cost of the links.

A. Related Work

Modeling congestion control as an optimization based flow

control problem has been addressed in [7], [8], [9], [10].

In these works, the authors have modeled a constrained

optimization based flow control in which the sources adjust

their transmission rates in response to the congestion in the

network. The solution to the constrained optimization problem

provides the solution to congestion control in the network.

Various authors have used optimization based flow con-

trol techniques in which instead of controlling the rate of

transmission only, they control the transmission power of the

links to control congestion in wireless networks. For example,

in [5], the authors have employed power control along with

congestion control in a wireless network and analyzed their

scheme for TCP Vegas. In [11], the author has modeled

the power control and utility maximization of a wireless

network as a sum product problem. This approach is used

to design a new Joint Optimal Congestion control and Power

control (JOCP) algorithm for a wireless network. In [6], we

have extended JOCP for TCP Reno-2 and have proposed a

distributed congestion control and power control algorithm

considering the packet loss due to buffer overflow in a node.

The rest of the paper is organized as follows. In Section II,

we discuss the system model and network cost for a multi-

hop wireless ad-hoc network. In Section III, we discuss the

individual and social optimization techniques and solve a joint

congestion and power control technique for TCP Reno-2. We

discuss our simulations, results and convergence analysis of



the cross layer congestion control algorithm in Section IV.

Finally, we provide the concluding remarks in Section V.

II. SYSTEM MODEL

We assume a multi-hop CDMA-based wireless ad-hoc

network, where the nodes are placed uniformly over a 2-

dimensional area. The nodes are stationary and have identical

system properties. Let SINRl be the SINR of a link1 l ∈ L
expressed as SINRl = PlGll

P

k 6=l
PkGlk+nl

, where Pl is the

transmission power on the link l, Gll is the path gain from

the transmitter of link l to the receiver of the link l and Glk is

the path gain from the transmitter on link k to the receiver on

link l. nl is the thermal noise on the link l. Using Shannon’s

capacity theorem, we determine the maximum capacity of link

l as: cl = 1
T

log(1 + MI.SINRl) packets/sec, where T is

the symbol period and MI is the modulation index which

depends on the modulation scheme used.

We consider a set I of source-sink pairs which share

a network of L unidirectional links. The capacity of any

individual link l is cl, l ∈ L. Each source-sink pair i ∈ I has

a utility function Ui(xi) associated with its transmission rate

xi. Any node in our model can send its own traffic and also

relay (forward) traffic of other nodes. All traffic are elastic in

nature. The utility function Ui(xi) is assumed to be concave,

increasing and double differentiable. The route matrix R
consists of all possible links and Rli = 1, if the path of source-

sink pair i traverses link l and Rli = 0, otherwise. We assume

that the time scale of change of routing is higher than the

time scale of our analysis, which is a multiple of Round Trip

Time (RTT). The aggregate flow yl(t) (packets/sec) at each

link l can be written as: yl(t) =
∑

i Rlixi(t). Each link l is

associated with two different costs, namely congestion cost

and energy cost as explained below.

A. Congestion Cost

It is the cost of congestion in a link, e.g., packet dropping

probability of a link in TCP Reno and TCP Reno-2 and

queuing delay in TCP Vegas. We consider TCP Reno-2 in our

analysis, in which the packet loss probability due to congestion

at link l is modelled as buffer overflow of an M/M/1/B
queuing model. We express the congestion cost λl(t) of link

l (derived in [6]) for TCP Reno-2 as:

λl(t) =







max
(
0,(yl(t)−cl(t))

)

yl(t)
if yl > 0,

0 if yl = 0.
(1)

B. Energy Cost

The energy cost is the cost of transmission power spent by

a wireless node to transmit its own traffic or to rely (forward)

others traffic. Energy cost is important when the nodes are

battery powered and maximum node life time is desired. The

energy cost bl(t) is a function of transmission power pl(t)
(i.e., energy consumption) of the node in that link. We express

energy cost of a link l as:

bl(t) = θ + k1f1(k2pl(t)), (2)

where θ is the minimum cost to keep the transmitter on

(equivalent to maintain minimum SINR) and k1 and k2 are

1SINR is measured at the receiver of link l.

constants which can be chosen for a pricing model by the

network operator. The value of k1 and k2 also indicate whether

energy cost or the congestion cost is dominant. The function

f1 is a piecewise monotonically increasing function.

If each link l is associated with λl(t) and bl(t) as con-

gestion cost and energy cost respectively, then the end-to-end

aggregate cost qi(t) for source-sink pair i is expressed as:

qi(t) =
∑

l

Rli(λl(t) + bl(t))

=
∑

l

Rliµl(t),
(3)

where µl is the “network cost“ of link l; sum of congestion

cost and energy cost of the link l. End-to-end aggregate cost

is feedback to the source node which computes the rate of

transmission. In Fig. 1, we illustrate a simple 2-link, one

source-sink pair scenario with the direction of data and cost.

TCP Sink

TCP Source

xi

xi

qi = µ1
+ µ2

µ1

µ2

Fig. 1. Source-Sink Pair in an Ad-hoc Network

III. OPTIMIZATION BASED CONGESTION CONTROL

We seek to maximize rate of transmission and minimize

transmission power in order to deal with the congestion control

and power control problem. The system consisting of source-

sink pairs and wireless links attempts to reach the equilibrium

point (x∗, q∗). Each source-sink pair i chooses its data rate

xi(t) such that its utility is maximized for the end-to-end cost

qi(t) and the aggregate flow in a link l is less than or equal to

the capacity of the link, i.e., yl(t) ≤ cl(t). We express these

in the following individual optimization problem:

max
xi

[

Ui(xi)− qixi

]

; s.t.
∑

i

Rlixi ≤ cl. (4)

A. Social Optimization

Since in (4), each user attempts to maximize its individual

profit by transmitting at the optimum x∗
i , social optimality or

system optimality as in [12] can be achieved for an optimum

transmission rate X = {xi}. We express the social optimality

equation as follows:

max
X≥0

∑

i

Ui(xi); s.t. RX ≤ C(P );

where, X = {xi}, and C(P ) = {cl(P )}.

(5)

Since the link capacity in a wireless network is a function

of transmission power, we use cl(P ) instead of cl in the above

equation. We solve (5) using Karush-Kuhn-Tucker (KKT) [13]

optimality conditions by solving the complementary slackness

conditions at equilibrium. For this, we associate a Lagrangian

Multiplier µl for the constraint to (5). Then we determine the

stationary points (X∗ = {x∗
i }, µ∗ = {µ∗

l }) using:



φsystem(X, P, µ) =
∑

i

Ui(xi)−
∑

l

µl

(
∑

i

Rlixi − cl(P )

)

(6)

Maximization of φsystem is decomposed2 as in [5]:

max I(X, µ) =
∑

i

Ui(xi)−
∑

l

µl

∑

i

Rlixi,

max I(P, µ) =
∑

l

µlcl(P ),

s.t., X ≥ 0; 0 ≤ Pl ≤ PMax
l

(7)

The above decomposition is possible as the common vari-

able µl is linked between the two sub-objective functions

I(X, µ) and I(P, µ). Since the utility function of TCP Reno-

2
(
Ui(xi) = 1

RTTi
log

[
xiRTTi

2xiRTTi+3

])
[6] is concave and twice

differentiable for xi, RTTi ≥ 0, I(X, µ) will converge to a

global maximum. We investigate the concave nature of I(P, µ)
in the following section.

B. Nature of I(P, µ)

We assume that the symbol period T and the modulation

index MI as unity, and for high SINR we re-write the

Shannon capacity cl = log(SINRl). Using this we express

I(P, µ) =
∑

l (λl + bl)log(SINRl(P )) for our investigation.

Instead of investigating the concave nature of I(P, µ), we

transform the power vector P to a logarithmic power vector

P̃ and then investigate the concave nature of the transformed

I(P̃ , µ). Let P̃l = log Pl, ∀l. We write I(P̃ , µ) as follows:

I(P̃ , µ) =
∑

l

µllog

[
Glle

P̃l

∑

k 6=l GlkeP̃k + nl

]

=
∑

l

λl

[

log(Glle
p̃l)− log

(
∑

k 6=l

eP̃l+log Glk + nl

)]

︸ ︷︷ ︸

I1(P̃ ,µ)

+
∑

l

bl

[

log(Glle
p̃l)− log

(
∑

k 6=l

eP̃l+log Glk + nl

)]

︸ ︷︷ ︸

I2(P̃ ,µ)

= I1(P̃ , µ) + I2(P̃ , µ)
(8)

From (8) it is evident that I1(P̃ , µ) is concave in P̃ , as

log(Glle
P̃l) is linear in P̃ and log

(
∑

k eP̃l+log Glk + nl

)

is

convex in P̃ .

I2(P̃ , µ) =
∑

l

θ

[

log(Glle
p̃l)− log

(
∑

k 6=l

eP̃l+log Glk + nl

)]

+
∑

l

k1f1(k2Pl)

[

log(Glle
p̃l)

− log

(
∑

k 6=l

eP̃l+log Glk + nl

)]

(9)

2Distributed solution is possible as along as there is an interaction between
the two decomposed equations through some information passing (message
passing in our case). This is known as sum product algorithm [11].

Similarly, from (9) it is evident that I2(P̃ , µ) is concave

as f1(k2Pl) is linear and monotonic in Pl. Hence, I(P̃ , µ) is

concave in P̃ and in P . Since I(X, µ) and I(P, µ) are concave

and double differentiable, (6) will converge to a global maxima

resulting in optimum X∗ = {x∗
i }, µ∗ = {µ∗

l }. The solution

methodologies to find the global maxima are explained below.

Each source-sink pair i solves the first maximization equa-

tion involving I(X, µ) as it knows its own utility function

Ui(xi) and the end-to-end cost (which is fed back by the

system) by using TCP Reno-2 congestion control in every

RTT. We solve the second maximization equation involving

I(P, µ) by choosing appropriate transmission powers of the

wireless nodes as discussed below. Differentiating I(P, µ) with

respect to Pl, we evaluate the lth component of the gradient

∇I(P, µ). We use the Steepest Descent method as in [6] to

solve the maximization problem with a small step size δ to

obtain the transmission power as:

Pl(t + 1) = Pl(t) + δ

(

∇I(P, µ)

)

(10)

Each node computes its required transmission power Pl

and network cost µl of each outgoing link associated with

it and passes on these information to its neighbors, such that

end-to-end cost of a path can be computed by each source-

sink pair i. Each source-sink pair i computes its transmission

rate using TCP Reno-2 and transmission power using (10),

which is equivalent to solving a joint congestion control and

power control for an ad-hoc network. We suggest an algorithm

to implement this joint congestion and power control and

provide the pseudo code in Algorithm 1. The parameter ∆
in Algorithm 1 is a small tunable system parameter.

IV. EXPERIMENTAL EVALUATION

We have considered a CDMA-based ad-hoc network with

6 wireless nodes and two pairs of TCP transmitters and

receivers (1-5) and (2-6) as shown in Fig. 2. All nodes in our

simulation are capable of transmitting and receiving “network

cost”. Nodes 1, 2, 5, 6 are TCP Reno-2 agents. Depending

upon the network costs, we update the transmission power

of the participating nodes. We set the TCP retransmission

timeout to be 4 × RTT . We update RTT by using the

exponential averaging technique as: RTT = αRTTestimated+
(1 − α)RTTmeasured. We assume that α = 0.85 for our

simulations. We assume that the time required for transmission

in each of the segments 1-3, 2-3, 3-4, 4-5 and 4-6 are same.

The forward and reverse channel characteristics are same. The

channel gains are assumed to be log-normally distributed with

variance σ = 8 dB. The path loss factor γ is assumed to be 4.

We use Matlab [14] for our simulations. We have implemented

TCP Reno-2 in Matlab. We set winitial = 3, PMin
l = 3 units

and PMax
l = 15 units in our simulations. The frequency of

updating of SINRl is a configurable parameter (usually this is

a multiple of RTTs). We calculate the data rate xi by using the

relation xi(t) = wi(t)
RTTi

, whereas wi(t) and RTTi are updated

using TCP Reno-2 congestion control principle.

A. Results

We simulate TCP Reno-2 congestion control mechanism

with and without power control techniques. We have per-

formed 10 independent runs and averaged out the results. In



Algorithm 1 :Cross Layer Congestion Control for CDMA-

based Ad-hoc Network

1: xi(0)← 1 ∀i
2: wi(0)← 3 ∀i
3: Pl(0)← Pl ∀l
4: cl(0)← cMax

l ∀l
5: bl(0)← θ ∀l
6: λl(0)← 0 ∀l
7: µl(0)← θ ∀l
8: t← 1
9: while TRUE do

10: Update Gll and Glk periodically

11: SINRl(t)←
Pl(t−1)Gll

P

k 6=l
Pk(t−1)Glk+nl

∀l

12: Pl(t)← Pl(t− 1) + δ(∇I(P, µ)) ∀l
13: if |Pl(t)− Pl(t− 1)| ≤ ∆ then

14: Pl(t)← Pl(t− 1) ∀l
15: else

16: Pl(t)← min(Pl(t), P
Max
l ) ∀l

17: end if

18: Update wi(t), RTTi from TCP Module ∀i

19: xi(t)←
wi(t)
RTTi

∀i
20: yl(t)←

∑

i Rlixi ∀l
21: bl(t)← θ + k1f1(k2Pl(t)) ∀l
22: cl(t)←

1
T

log(1 + MI × SINRl(t) ∀l

23: λl(t)←
max(0,yl(t)−cl(t))

yl(t)
∀l

24: µl(t)← λl(t) + bl(t) ∀l
25: qi(t)←

∑

l Rliµl ∀i
26: t← t + 1
27: end while

2 5

3

1

4

6

Flow 1
Flow 2

Fig. 2. System Model/Topology

fixed power scheme, the nodes transmit at a maximum power

(PMmax
l = 15 units), whereas in our cross layer scheme,

nodes transmit in an average of PAvg
l = 8.296 units. We

observe that the power consumption of nodes in our cross

layer scheme is lower as compared to that of fixed power

scheme. Fig. 3 shows the cwnd variation of joint power

and congestion control mechanism involving congestion cost

only. Fig. 4 shows the cwnd variation of joint power and

congestion control mechanism involving network cost and Fig.

5 shows cwnd variation without any power control. From these

figures, we observe that the fluctuations in cwnd with power

control mechanism (in both congestion cost and network cost)

is lower than the cwnd fluctuations without power control

mechanism. Also, the average window size of joint power and

congestion control scheme is higher than that of congestion

control without power control. Hence, power control provides

stabilized and better throughput.
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Fig. 3. Variation of cwnd Size with Power Control (Congestion Cost only)
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Fig. 4. Variation of cwnd Size with Power Control (with Network Cost)

B. Convergence Analysis

Since φsystem(X, P, µ) in (6) is separable and I(X, µ) as

well as I(P, µ) are concave and twice differentiable, a global

maximum is guaranteed. But it does not explain about the

rate of convergence. The rate of convergence depends on the

value of step size δ used in (10). To investigate the rate

of convergence, we perform simulations with three different

values of δ (0.1, 0.2 and 0.5) for the topology shown in Fig.

2 and observe the number of iterations to converge to an

optimum transmission power level. For δ = 0.1, it takes about

150 iterations to converge. For higher values of δ though it

takes fewer number of iterations (100 and 80 iterations for

δ = 0.2 and 0.5 respectively) to converge to some rate, but

does not converge to a stable transmission power level.

The convergence is guaranteed as long as neither a new

user enters nor an old user leaves the network. For any

addition and/or deletion of nodes/flows, Algorithm 1 will take

more iterations to converge. To investigate the convergence of

addition/deletion of flows we have used a different topology

as shown in Fig. 6 and Fig. 7. We have considered two cases,

involving 4 flows and 5 links. In Case-I, we have 4 flows as

shown, and run the simulations to find out the equilibrium

rates of each flow, number of iterations it takes to converge,

transmission power in each link and the total aggregate traffic

in each link. We observe that it takes around 150-180 iterations

to converge to the equilibrium values (shown in Fig. 8). Link

wise transmission powers and aggregate rates are shown in

Table I and flow wise transmissions are shown in Table II. We

observe that in Case-I, L-3 and L-4 are most congested links

as they accommodate 3 flows each. Hence as expected, the

transmission powers in those links are higher as compared

to other links. Similarly, we observe that L-1 is the least

congested link and hence the transmission power is the least in
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Fig. 5. Variation of cwnd Size without Power Control

L-1. After reaching convergence we delete Flow-4 involving

L-5 and L-6 and create a new flow involving L-1 and L-2

as shown in Case-II. We observe that it takes another 180-

200 iterations (Fig. 8) to converge, and hence we claim that

our algorithm converges to addition and/or deletion of flows

in a realistic time frame. In Case-II, L-2 and L-3 are most

congested as they accommodate 3 flows each and hence the

transmission power in those links are high.
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Fig. 6. Topology for Convergence Analysis
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Fig. 7. Topology for Convergence Analysis with Flow Alteration
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TABLE I

POWER TRANSMISSION AND LINK USAGE

(a) Case - I

Links Pl yl

L-1 5.2589 0.3147

L-2 8.479 0.5397

L-3 9.9616 0.8231

L-4 10.2413 0.9823

L-5 5.6831 0.7891

(b) Case - II

Links Pl yl

L-1 6.9911 0.7128

L-2 13.6162 0.9489

L-3 12.6060 0.8493

L-4 10.0886 0.5816

L-5 7.6860 0.3453

TABLE II

FLOW RATE

(a) Case - I

Flows xi

Flow 1 0.3147

Flow 2 0.2250

Flow 3 0.2835

Flow 4 0.5056

(b) Case - II

Flows xi

Flow 1 0.2677

Flow 2 0.2361

Flow 3 0.3455

Flow 4 0.4452

V. CONCLUSIONS

The joint congestion and power control scheme based on

“network cost” is a cross layer approach involving PHY and

TCP layer. The proposed algorithm converges very fast for

small values of step sizes and for addition and/or deletion of

flows into the network. As expected, the cross layer conges-

tion control technique provides stabilized throughput and low

transmission power for reasonably good channel conditions.

However, if the channel conditions are very bad, then there

would be more losses due to bad channel resulting in a

significant increase in λl, which in turn results in an increase in

transmission power and bl. In that case, the convergence of the

cross layer congestion control scheme needs to be investigated

and is considered as a future work of this paper.
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