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Abstract—To support the exponentially increasing data re-
quirements of users, efficient use of scarce and limited spectrum
is paramount. One of the possible solutions is to allocate the
spectrum dynamically for short duration with the consideration
of temporal variations in the wireless network load. We consider
a spectrum allocation for multiple Base Stations (BSs), where
their respective resource requirements are time varying in nature.
The resource allocation has to be done while maintaining the
spectrum reuse constraints for guaranteed Quality of Service
(QoS) requirements in the network. We know that the socially op-
timal resource allocation is NP-hard and hence, computationally
infeasible even for modest network sizes. Further, we formulate
the problem within the sealed bid auction framework with the
aim of maximizing the social welfare. We propose an efficient
strategy-proof spectrum allocation mechanism. Moreover, using
Monte Carlo simulations, we show that the proposed algorithm
can be implemented in large networks. It not only has near-
optimal social welfare, but also provides fair allocation in spite
of some base stations constantly bidding much higher values than
others.

I. INTRODUCTION

Spectrum is a limited and scarce resource. With the surging
mobile data traffic, it becomes challenging to support the data
requirements of the users in wireless networks [1]. Moreover,
the statistics suggest varying traffic density patterns temporally
as well as spatially across the network [2]. For instance, while
in a regular day residential areas may observe peak traffic
density in the evening, business parks or offices experience
peak traffic hours around 10-12 a.m. or 2-3 p.m. In the
existing network, spectrum allocation is done considering the
peak traffic requirements of the network which results in a
significant peak to average traffic ratio [3]. During the off-
peak hours, the spectrum remains under-utilized, whereas it
may not be sufficient at some overloaded base stations (BSs).
However, it is observed that the peak traffic density is sporadic
and for short intervals across the networks. Fortunately, the
hourly traffic is fairly predictable [3], [4]. Note that the static
allocation of the spectrum does not address the dynamic nature
of traffic across the network [5]. Hence, the static allocation
of spectrum is highly inefficient, and it becomes important to
find other alternatives.

In this paper, we consider a scenario in which BSs are
allocated static resource to support average traffic, and extra
resource for supporting peak traffic can be obtained through
auctions. The auctioned spectrum can be white spaces, unli-

censed band or even certain band reserved for short duration
allocation. Our aim here is to propose a strategy-proof spec-
trum auction that is computationally efficient and has desirable
properties like near-optimal social welfare and fairness. Re-
cently, Dynamic Spectrum Allocation (DSA) has emerged as
a potential solution for efficient spectrum utilization [6]. The
DSA facilitates flexible spectrum allocation using auctions [7].
Most of the mechanisms are designed to fulfill the worst case
requirements, i.e., assuming each BS has spectrum demand for
the entire duration of the auction.

The practical feasibility of the auctions makes it an attractive
choice in devising strategies for distributing spectrum among
the base stations (BSs) [7]. However, designing auction mech-
anisms have their own challenges. In auctions, buyers provide
their valuations for the object to the auctioneer. Based on
the valuations, auctioneer distributes the resource among the
buyers. Since the buyers are selfish and want to maximize
their own utility, they tend to manipulate the valuation to
seek benefit. Hence, strategy-proofness/truthfulness is a key
challenge in auction design [8]. Strategy-proof auctions ensure
that all the bidders report their true valuation. For this, a
mechanism to be designed such that no bidder has an incentive
to misreport the valuation.

Another challenge specific to spectrum auctions is efficient
channel utilization. Spatial and temporal re-usability of the
channels makes the spectrum auction different from conven-
tional auctions in practice. Due to spatial re-usability, the
same spectrum (channel) can be reused for non-overlapping
coverage areas. The classical Vickrey-Clarke-Groves (VCG)
auction ensures strategy-proof spectrum allocation [9]–[11].
Although VCG provides optimal social welfare, its prohibitive
computational complexity leaves it infeasible in real networks.
To address this issue, greedy [12] and SMALL [13] which
are computationally efficient and strategy-proof spectrum al-
location mechanisms, are proposed in the literature. While
in greedy allocation some BSs may starve for spectrum due
to unfair allocation across time, SMALL suffers from low
spectrum utilization and social welfare. In [14] authors propose
TRUST, which is a strategy-proof double auction spectrum
allocation mechanism. Authors in [15], propose strategy-proof
spectrum allocation mechanism, which ensures certain fairness
of spectrum allocation among the BSs in the network. DSA
auction mechanisms for spectrum allocation are presented in



[16]–[19]. However, [18], [19] do not guarantee to be strategy-
proof. Authors in [20], propose strategy-proof spectrum allo-
cation mechanism for adaptive channel width. None of the
works mentioned consider temporal spectrum re-usability.

In general, spectrum auction mechanisms are focused on
maximizing the social welfare to maximize the benefit of the
end users. Auctions are performed repeatedly for dynamic
spectrum allocation. Therefore, achieving some fairness is
necessary, otherwise continuous starvation of some base sta-
tions may lead to monopoly. In the long term, monopoly is
undesirable for end users as it removes the competition. We
know that determining the optimal spectrum allocation is not
only NP-Hard [21], but it is also computationally infeasi-
ble. In this paper, we aim to propose a strategy-proof and
computationally efficient auction-based spectrum allocation
mechanism considering the time-varying traffic demands at
each BS in the duration of the auction. We show that the
proposed mechanism achieves efficient spectrum utilization
and obtains near-optimal social welfare of the auction, in
addition to fair allocation.

Most of the spectrum auction mechanisms presented in
literature focus on maximizing the social welfare of the auction
considering only the spatial re-usability of the spectrum [12],
[13], [14], [15]. However, in our work, we consider spatial
and temporal variations of traffic during the auction. In our
mechanism, we incorporate the temporal variations of the
spectrum requirement at a BS for short duration instead
of the total auction duration. Only mechanism [15] ensures
the fairness in channel allocation among the BSs. However,
our mechanism ensures fair channel allocation along with
maximizing social welfare and spectrum utilization. Our main
contributions in the paper are as follows:
• We study the problem of the spectrum allocation among

multiple BSs considering spatial and temporal variations
in traffic, which is a NP-Hard problem.

• We propose a computationally efficient strategy-proof
sealed-bid auction mechanism for spectrum allocation
among the BSs.

• Using simulations, we demonstrate that the performance
of proposed mechanism is near-optimal in terms of social
welfare and spectrum utilization. In comparison to other
work, the proposed mechanism guarantees fair spectrum
allocation in long term among the base stations.

The rest of the paper is organized as follows. The system
model and problem formulation are described in Section II. In
Section III, the spectrum allocation mechanism is proposed,
and strategy-proofness of the mechanism is illustrated. We
provide an illustrative example of the proposed mechanism and
other existing mechanisms in Section IV. Simulation results
are provided in Section V. In Section VI, we discuss the
possible extensions of the problem and finally, we conclude
our work in Section VII.

II. SYSTEM MODEL

We consider a spectrum allocation framework comprising
of an auctioneer, spectrum database and a set of base stations.
The auctioneer is responsible for spectrum allocation. The

spectrum database contains the information about the spectrum
available for allocation. Generally, spectrum is divided into
multiple channels. For the sake of simplicity, we assume
only one channel is available in the spectrum database. Let
N = {1, 2, . . . , n} denote the set of base stations. We assume
that base stations are selfish, rational and do not collude. We
consider a spectrum allocation problem where spectrum is
allocated dynamically based on the demand. We assume that
the sealed-bid spectrum auction is performed for a specific
duration. The duration is adjustable depending on the spatio-
temporal variations in the traffic of the network.

Time

Fig. 1: Illustration of auction duration [T1, T2] and demand
time intervals t1, t2 and t3 corresponding to base stations 1,
2 and 3, respectively.

We consider that the auctioneer broadcasts the duration
[T1, T2] for spectrum auction to the base stations. To exploit
the re-usability aspect of the spectrum auctions, auctioneer
requests the BSs to report both the spectrum demand slot and
their valuation. Fig.1 illustrates the auction duration [T1, T2]
and the demand time intervals t1, t2 and t3 for BSs 1, 2 and
3, respectively. Each BS i communicates the spectrum demand
interval, ti = [tsi, tei], where tsi ≤ tei; T1 ≤ tsi, tei ≤ T2.
Here, tsi and tei denote start and end time of the demand
interval for user i. Thus, ti may denote the peak traffic interval
for BS i in the interval [T1, T2]. Let bi and vi denote the
bid value and the true valuation, respectively, of user i in
the demand interval ti. In sealed-bid auctions, vi(t) is private
information of any BS i. Since BSs are selfish, they may
deviate from the true value if doing so results in a utility gain,
i.e., bi need not equal vi. We assume that a BS i can report
any bid bi > 0. The bids in a network consisting of n BSs
is denoted as n-tuple, b = (b1, . . . , bn). Therefore, the action
space or possible set of bid values is b ∈ Rn

+. We also define
b−i ∈ Rn−1

+ as the bid valuation of all the BSs except i.
If two nearby BSs transmit simultaneously, then they cause

interference to each other and this may lead to the unaccept-
able degradation in the desired quality of service (QoS). Thus,
to meet the QoS requirements, spectrum must not be allotted
to the BSs in close proximity. We model this through conflict
graph G ′ = (V,E′), where nodes denote BSs and edges denote
an interfering pair of BSs in the network. The graph G ′ is
an undirected graph. Note that if (i, j) ∈ E′, then the same
spectrum can not be allocated to the BSs i and j at the same
time. Let S ′i denotes the set of neighbors for node i in G ′.
Observe that if j ∈ S ′i , then i ∈ S ′j . The conflict graph
G ′ captures the constraints on spectrum allocation. Next, we
define the set of feasible allocations.

Let a binary vector x = (x1, . . . , xn) denote allocation
vector. Here, xi = 1 signifies base station i is allocated channel
in the interval ti.



Definition 1. A vector x is a feasible channel allocation if
ti∩tj 6= φ for any j ∈ S ′i then xi+xj ≤ 1. Allocation vector
x̄ is said to be maximal if for every j such that xj = 0, there
exists i ∈ S ′j satisfying ti ∩ tj = φ and xi = 1.

Note that any feasible x does not allocate spectrum simul-
taneously to the conflicting BSs. Let X denote the set of
all feasible channel allocations. Now, we define auction based
spectrum allocation mechanism.

Definition 2. An auction based spectrum allocation mecha-
nism π is a map from Rn

+ to X × [0,∞)n, i.e., for given bids
b, π outputs a feasible allocation xπ(b) and a price vector
pπ(b) = (pπ1 (b), . . . , pπn(b)).

Thus, a spectrum allocation mechanism π outputs a feasible
channel allocation for any given bid vector b, and also the
price that each BS needs to pay for the allocated channel. Let
Π denote the set of all auction based allocation policies.

Definition 3. Social welfare under mechanism π for bid values
b is defined as Wπ

s (b) =
∑n
i=1 vix

π
i (b). Moreover, utility for

BS i for bids b under π is given as Uπi (b) = (vi−pπi (b))xπi (b).

Note that the social welfare is the sum of true evaluations
vi’s, not the bid values bi’s reported by the BSs to mechanism
π. Moreover, utility for a BS is the difference between its true
evaluation vi and price pi charged under the mechanism π.
The aim of the spectrum auctioneer is to design a mechanism
π that maximizes social welfare, i.e., it needs to evaluate

π? ∈ arg max
π∈Π

Wπ
s (b), (1)

while each BS wants to bid so as to maximize its own utility.
Note that v is the private information of the base stations, and
the spectrum auctioneer may not know it. Therefore, we need
to design a mechanism in which a rational BSs do not have
any incentive to submit bid other than their true evaluations.

Definition 4. A mechanism π is truthful (strategy-proof) if

Uπi (vi, b−i) ≥ Uπi (bi, b−i), for all (bi, b−i).

Note that for a strategy-proof mechanism π, a BS has no
incentive to bid anything other than its true evaluation. Thus,
for a strategy proof mechanism the social welfare is equal
to the sum of utilities of individual user utilities. The well
known VCG auctions are strategy-proof and maximize the
social welfare. However, in the proposed setup, computing
VCG allocation is NP-hard. Hence, we need a mechanism that
is computationally feasible and achieves near-optimal social
welfare. We describe our proposed scheme next.

III. ALGORITHM

In this section, we propose an efficient, strategy-proof
spectrum auction mechanism for time-varying demand inter-
vals/slots during the auction period. The proposed mecha-
nism consists of a channel assignment strategy and a pricing
scheme. Each base station is charged based on the pricing
scheme to ensure strategy-proofness.

Algorithm 1 Pseudo code for randomized conflict-free group-
ing

Input: N , Si for every i ∈ N

Output: A conflict-free partition {G1, . . . , Gη}
1: Initialize Ntemp = N and Gu = φ, ∀ u = 1, . . . , η
2: while Ntemp 6= φ do
3: Choose i, from Ntemp uniformly w.p. 1

|Ntemp|
4: Find umin = min{u : u ∈ {1, . . . , η} and Gu ∩Si =
φ}

5: Gumin
← Gumin

∪ {i}
6: Ntemp ← Ntemp \ {i}
7: end while

A. Channel Allocation Strategy
As described in the system model, the BSs may demand

the spectrum only for specific time slots during the auction.
The channel allocation strategy determines allocation vector
x? ∈X for the desired goal of the auction. We first, construct
the modified interference graph based on the demand slots of
the users. The interference graph G = (V,E) contains N base
stations, but the interfering pair of base stations are determined
based on the demand slots of each BS as follows: an undirected
edge (i, j) ∈ E if (i, j) ∈ E′ and ti ∩ tj 6= φ. Define, Si to
be the set of neighbors of i in G .

Lemma 1. If x ∈X , then xi + xj ≤ 1 for all i and j ∈ Si.

As discussed above, the channel allocation phase determines
which BSs should be allocated the channel, i.e., we select
x ∈X . Our first step is to partition the set of all BSs N into
at most η non-conflicting groups denoted as {G1, . . . , Gη},
where η = maxi∈N |Si| + 1 [22]. Here, |A | denotes the
cardinality of set A . The partitioning is achieved using an
iterative greedy algorithm. In the first iteration a BS is selected
at random and put in group G1. In further iterations, a BS i is
picked at random from N \∪ηk=1Gk and placed in the group
Gumin

such that umin = min{u : u ∈ {1, . . . , η} and Gu ∩
Si = φ}. We continue this process until ∪ηk=1Gk = N .
Pseudo code for the randomized conflict-free grouping is
provided in Algorithm 1. Following lemma summarizes key
properties of the partitioning step.

Lemma 2. A conflict-free grouping algorithm given in Algo-
rithm 1 outputs a partition {G1, . . . , Gη} of N such that if
i, j ∈ Gu, then j 6∈ Si.

Proof. We need to show that the RHS in Step 4 of the
algorithm is a non-empty set in every iteration. Rest follows
immediately from the set construction. Required follows from
the fact maximum cardinality of any Si is η− 1. Thus, there
exist at least one u such that Gu ∩Si = φ.

Lemma 2 states that the channel can be allocated to all the
members of any group Gu without violating the allocation
constraint. Moreover, it is important to note that the grouping
does not depend on the bid values b.

Now, let Ωg denote the set of all possible orderings of
the sets {G1, . . . , Gη} obtained using conflict-free grouping



Algorithm 2 Pseudo code for channel allocation for given
group ordering ωj

Input: Gju for every 1 ≤ u ≤ η, Si for every i ∈ N

Output: A channel allocation x(j)

1: Initialize Gtemp = φ, ` = 1 and xi(j) = 0 for all i ∈ N
2: while ` ≤ η do
3: Ga ← Gj` \ (∪i∈Gtemp

Si)
4: xi(j)← 1 for every i ∈ Ga
5: Gtemp ← Gtemp ∪Ga
6: `← `+ 1
7: end while

algorithm. Thus, |Ωg| = η!. Furthermore, let ωj ∈ Ωg denote
the jth ordering of the groups in the set Ωg . We denote ωj by
a tuple (Gj1, . . . , Gjη). For example if η = 3, then there are
|Ωg| = 3! = 6 different orderings. One of the possible 6 group
ordering or tuple is ωj = (G2, G1, G3). Thus, Gj1 = G2,
Gj2 = G1 and Gj3 = G3. Channel allocation in a given group
ordering ωj is done as follows. We first assign the channel to
each BS in Gj1, then to all the BSs in Gj2 \ (∪i∈Gj1

Si), and
so on. Pseudo-code to obtain channel allocation corresponding
to group ordering ωj is given in Algorithm 2. Following
guarantee can be given about output of the algorithm.

Lemma 3. The channel allocation vector x(j) given by
Algorithm 2 corresponding to any group tuple ωj is feasible,
i.e., x(j) ∈X . Moreover, x(j) is a maximal allocation vector
for every j.

Proof. Let x`(j) denote the allocation after ` iterations of the
algorithm. We first show that x`(j) ∈X for every 1 ≤ ` ≤ η.
Note that for ` = 1, x`i = 1 only for i ∈ Gj1. From Lemma 2,
x1(j) ∈ X follows. Suppose x`(j) ∈ X holds for every
1 ≤ ` ≤ `′. Consider (`′+1)th iteration of the algorithm. Note
that the Gtemp in every iteration contains BSs to which the
channel is allocated until that iteration. Note that in Step 5 of
the algorithm the channel is allocated only to BSs in Gj(`′+1)

that do not conflict with the BSs in Gtemp. This proves that
x`′+1(j) ∈X and the required follows using induction. Now,
we prove that the channel allocation is maximal. Suppose not,
then there exist a BS u such that x`u(j) = 0 in the output of
the algorithm, but x′ such that x′i = x`i(j) for every i 6= u and
x′u = 1 is in X . Since, (Gj1, . . . , Gjη) is a partition of N , u
must belong to some Gj`. Also, u must not belong to Si for
any i which is allocated the channel in first `− 1 iterations of
the algorithm. But, then the algorithm will allocate channel to
BS u in `th iteration. Hence, no such BS exists. This proves
the required.

Now define, with a little abuse of notation, the perceived
social utility under allocation x(j) as

Ũj(b) =

n∑
i=1

bixi(j).

Moreover, define j?b = arg max{j:ωj∈Ωg} Ũj(b). Thus, ωj? is
the group permutation for which perceived utility is maximized

among all possible group permutations. We choose allocation
x(j?b). Note that even though the grouping does not depend
on the bids b, the chosen channel allocation does. Let Ũ?(b)
denote the maximum value of the perceived social utility for
the bids b. Next, we describe our proposed pricing scheme.

B. Pricing Scheme
After the channel allocation, we propose the appropriate

pricing scheme which ensures the strategy-proofness of the
proposed algorithm. That is, if any base station tries to deviate
from its vi, it is penalized. Let (ε, b−i) denote the bid vector
in which the bids of all the BSs except i are same as that in
b, but the bid of BS i is ε > 0. Now, the price charged from
the BS i is given as:

pi(b) =

[
lim
ε↓0

Ũ?(ε, b−i)− (Ũ?(b)− bi)
]
× xi(j?b). (2)

We state the following straightforward result.

Lemma 4. Under any bid values b > 0, 0 ≤ pi ≤ bi for every
i ∈ N .

Proof. Note that for every ε > 0,

Ũ?(ε, b−i)) ≥ Ũ?(b)− bi + ε.

Thus, the proof follows by taking limit ε ↓ 0 on both sides of
the above inequality.

This lemma clearly shows that for any truthful BS i, utility
obtained is non-negative, irrespective of the bids of other BSs.

Note that the optimal group permutation under bid vectors
b and (ε, b−i) can be different. Unlike VCG, in our pricing
scheme we do not completely remove BS i, rather BS i is
always present. Only the bid value of BS i goes to zero. This
distinction is important as removing a BS changes channel
allocation conflicts. As illustration consider a system with five
BSs with constraint sets given by S1 = {3, 4, 5}, S2 = φ,
Si = {1} for i = 3, 4, 5. Suppose grouping given by
Algorithm 1 is G1 = {1, 2} and G2 = {3, 4, 5}. Consider
permutation ω1 = (G1, G2). Thus, as per Algorithm 2, the
channel will be first allocated to all the BSs in G1 and then
to the BSs in G2 that do not have a conflict with the BSs in
G1. Note that when BS 1 is present in the system, the channel
cannot be allocated to any BS in G2. But, if we remove BS
1 completely, then all the BSs in G2 can get the channel.
Thus, there is a clear difference under our scheme regarding
the presence and absence of BS. In our pricing scheme, BS is
retained in the system while calculation, unlike VCG. Pseudo
code for the proposed algorithm is given in Algorithm 3. Next,
we prove the key properties of our proposed algorithm.

Lemma 5. If a base station i is allocated channels for bids
b, then it will also be allocated channels for bids (ε, b−i) for
every ε > bi. Moreover, optimal group permutation under b
and (ε, b−i) are the same, i.e., j?b = j?(ε,b−i)

.

Proof. Without loss of generality, let ε = bi + ∆ for some
∆ > 0. Note that since the bid value of only BS i has changed,
we can conclude that

Ũj(ε, b−i)− Ũj(b) ≤ ∆, (3)



Algorithm 3 Pseudo code for Proposed mechanism

Input: bid vector b, Si for every i ∈ N

Output: Resource allocation x(b) and price vector p(b)

1: Use Algorithm 1 to obtain conflict free grouping
(G1, . . . , Gη)

2: for ωj ∈ Ωg do
3: Find allocation x(j) using Algorithm 2
4: Compute Ũj(b) =

∑n
i=1 bixi(j)

5: end for
6: Find j?b = arg max{j:ωj∈Ωg} Ũj(b)
7: Choose x(b) = x(j?b)
8: Compute prices using (2)

for every group permutation ωj . Moreover,

Ũj?b (b) + ∆ = Ũj?b (ε, b−i), (4)

i.e., the perceived social utilities under group permutation j?b
for bid vectors b and (ε, b−i) differ by amount ∆ with latter
having the larger value. Thus, we can conclude from (3) and
(4) that j?b is optimal group permutation for (ε, b−i) as well.
Now, the required follows from Algorithm 2.

Lemma 5 implies that if a base station unilaterally increases
its bid, then it is more likely to get the channels. Next, we
prove that our proposed algorithm is strategy proof.

Theorem 1. Algorithm 3 is strategy-proof.

Proof. We prove the required by considering two scenarios.
Scenario 1 : BS i bids more than its true valuation, i.e.,
bi > vi. Without loss of generality, bi = vi + ∆ for some
∆ > 0. Bids of the other BSs can be arbitrary. Thus, we
compare two bid vectors, viz. b and (vi, b−i), where latter
corresponds to BS i bidding truthfully. This scenario is
further bifurcated into three cases.

Case (i): BS i gets channel under both bid vectors b and
(vi, b−i). By Lemma 5, it follows that the optimal group
permutation remains same for both the bid vectors. It follows
that the optimal perceived utility values satisfy Ũ?(b) =
Ũ?(vi, b−i) + ∆. Now, from (2), it follows that pi(b) =
pi(vi, b−i). Thus the required holds.
Case (ii): BS i does not get the channel under (vi, b−i), but
gets it under b. Note that utility for BS i under (vi, b−i) is
zero as it does not get the channel. Now, we bound BS i utility
under b. Since the bid for only BS i is different under two bid
vectors, we can conclude that

Ũ?(b)− Ũ?(vi, b−i) ≤ ∆. (5)

Now, from (2), it follows that

pi(b) = lim
ε↓0

Ũ?(b)− (Ũ?(b)− bi)

= lim
ε↓0

Ũ?(b)− (Ũ?(b)− vi) + ∆ (6)

= (Ũ?(vi, b−i)− Ũ?(b)) + vi + ∆ (7)
≥ vi. (8)

Equality (6) follows as bi = vi+∆. Equality (7) follows by
Lemma 5. Note that for every ε smaller than vi BS i can not get
channel as it can not get it at bid value vi. Moreover, since
only bid for BS i is changing, the optimal perceived social
utility remains unchanged. Hence, the limiting value equals
maximum perceived social utility for bid (vi, b−i). Finally,
(8) follows from (5). Now, (8) implies that the utility for BS
i under b can at most be 0, which is same when it bids true
valuation vi. This proves the required.
Case (iii): The BS i neither gets channel at bi, nor at bi + ∆.
Here, utility for BS i will remain zero.

Scenario 2 : BS i bids less than its true valuation, i.e.,
bi < vi. Without loss of generality, vi = bi + ∆ for some
∆ > 0. Bids of the other BSs can be arbitrary. Thus, we
compare two bid vectors, viz. b and (vi, b−i), where latter
corresponds to BS i bidding truthfully. This scenario is
further bifurcated into three cases.

Case (i): The BS i is allocated channel under (vi, b−i) and
also under b. Analysis of this case is similar to that in Case (i)
of Scenario 1. Again here, it can be shown that the utility
for BS remains unchanged, and hence there is no benefit for
deviating from true evaluation.

Case (ii): The BS i is allocated channel under (vi, b−i),
but it does not get it under b. This implies that the BS i
has utility vi − pi(vi, b−i) for bid vector (vi, b−i), but on
deviation its utility becomes zero. Now, the required follows
from Lemma 4.

Case (iii): The BS i neither gets a channel at (vi, b−i) nor at
b. Here, the utility for the BS remains zero. Thus, no incentive
on deviation from true value. This completes the proof.

In the next section, we describe the functioning of the
proposed algorithm using example.

IV. ILLUSTRATIVE EXAMPLE

Example: As illustrated in Fig. 2(a), we consider a wire-
less network consisting of 6 BSs. The wireless network is
represented as a graph. The nodes denote the BSs and edges
denote interfering pair of BSs in the graph. We consider that
the auctioneer collects the spectrum demand from the BSs
apriori for [T1, T2] = [0, 1], auction duration. We assume
that BSs submit a non-zero bid along with the time slot
in the interval [0, 1] for which channel is required, to the
auctioneer. Let the bid vector is b = [9 10 8 7 5 7]. For
simplicity of calculations, we assume each BS needs spectrum
for τ = 0.1 time unit in the interval of auction. Let the vector
tsi = [0.45 0.50 0.35 0.40 0.55 0.70] denote the start of the
demand time slot corresponding to each BS. In Fig. 2(b), ti
represents the time interval for channel demand corresponding
to BS i. For instance, the time interval for BS 1 corresponds
to [0.45, 0.55].

We know that a channel can be allocated between any
pair of interfering BSs in non-overlapping time slots. For
efficient spectrum usage, we exploit the temporal variation
in the demand across the BSs of the network. In case the
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Fig. 2: (a) Interference graph (b) Channel demand time slots

channel is required in non-overlapping time slots, the edge
joining them can be removed. Therefore, on consideration of
the demand time slots, the conflict graph in Fig. 2(a) reduces
to conflict graph illustrated in Fig. 3. We briefly describe the
channel allocation for the proposed strategy-proof mechanism
and compare with the two other strategy-proof mechanisms
SMALL [13] and greedy [12].
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Fig. 3: Re-constructed interference graph considering demand
time intervals for each base station.

A. Allocation in Proposed Algorithm

As discussed in the Section III, the proposed algorithm
first re-constructs the conflict/interference graph based on the
demand time interval of the spectrum for each BS in the net-
work. Then, it performs grouping of the non-conflicting BSs,
irrespective of their bids. Let the BSs in the re-constructed
interference graph mentioned in Fig. 3 grouped into 2 groups,
namely G1 = {1, 4, 5} and G2 = {2, 3, 6}. These two
groups result in two arrangements [G1, G2] and [G2, G1].

Based on the bid vector b, we determine the social welfare
for each arrangement. The social welfare for arrangements
ω1 = [G1, G2] and ω2 = [G2, G1] are 28 and 26, respectively.
Since the arrangement ω1 has maximum social welfare, the
arrangement corresponds to the channel allocation x?(b) =
(1, 0, 0, 1, 1, 1) (see Algorithm 2). Using the pricing scheme
(see 2), the BSs 1, 4, 5 and 6 get channel at the price
6, 4, 2 and 0, respectively. It is important to note that the
consideration of demand slots reduces the number of groups to

2, whereas no matter how the BSs are grouped in the network
illustrated in Fig. 2(a) the minimum number of groups required
is 3. In the example, the number of groups reduction from 3
to 2 decreases the group arrangements from 6 to 2. Thus,
the decrease in the number of groups reduces the possible
arrangements significantly. In other words, less number of
groups will have a smaller set of possible arrangements.

B. Allocation in SMALL

Now, we briefly describe SMALL for the time-varying de-
mand framework. Auction mechanism SMALL also partitions
the set of BSs randomly into non-conflicting groups. SMALL
determines the group valuation σ(Gj) for each group j, where
σ(Gj) = (|Gj | − 1) × min{bj |j ∈ Gj}. Without loss of
generality, let the grouping be same. All the BSs of the
maximum valuation group are assigned channels except the
one with the least bid in the group. The BSs allocated channel
pay price equal to the least bid value in the group. In the
example considered here, G1 and G2 have group valuations
10 and 14, respectively. The BSs in the group G2 get channel
except the one with the least bid value, i.e., BS 6. Hence,
the allocation vector and the social welfare comes out to be
x?(b) = (0, 1, 1, 0, 0, 0) and 14, respectively. The BSs 2 and
3 are charged price 7, individually.

C. Allocation in Greedy

The greedy mechanism allocates channels greedily based
on the bids submitted by the BSs. The highest bidding BS is
assigned a channel. In the iterative step, the highest bidding
user in the set of users which are neither already selected
nor are in the constraint set of the selected users is selected.
The process continues until no user can be selected. The price
for a selected user i is calculated as follows: We remove the
user i from the system. Compute the greedy allocation for the
remaining n − 1 users. Let c be the highest bid value of a
selected user in Si in the new allocation. Then, the price for
i is c. As described in the previous mechanisms, we again
re-construct the interference graph based on the demand time
intervals. Then, we perform a greedy allocation mechanism as
described above. In the example, BSs 2, 3 and 6 are assigned
the channel, and the prices charged for these are 9, 7 and 0,
respectively. The social welfare achieved is 25.

In the constructed example, the proposed algorithm out-
performs SMALL and greedy mechanisms in terms of so-
cial welfare. Social welfare of greedy allocation is close to
the proposed algorithm, while SMALL achieves much lesser
value. Moreover, the proposed algorithm and greedy provide
maximal allocation, while SMALL has poor resource utiliza-
tion. Though the proposed algorithm performs on par with
existing schemes in the constructed example, to understand the
performance comparison of these schemes we perform Monte
Carlo simulations as described in the following section.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
strategy-proof algorithm for spectrum allocation in a wireless
network. We also compare the performance of the proposed
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Fig. 4: Performance comparison for different algorithms in small network.
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Fig. 5: Performance comparison for different algorithms in large network.

algorithm with various other algorithms from the literature.
We use undirected graph G = (V,E) to represent a wireless
network. We randomly generate the undirected graphs using
configuration model [23] from a given degree distribution of
nodes in the graph. The nodes and edges in the graph denote
BSs and the pair of interfering BSs, respectively. We perform
simulations in MATLAB [24].

In our simulations, we consider uniform degree distribution
of BSs in the network, with maximum degree restricted to
5. As discussed in the system model, auctioneer specifies the
duration [T1, T2] = [0, 1] for which the spectrum auction is to
be conducted. Each BS submits the time slot for which the
spectrum is required in the specified period of auction along
with the bid to the auctioneer. We assume that the BS bids
are uniformly distributed. All the results are averaged over
100 iterations for 100 different topologies. We evaluate the
mechanism performance for the following parameters:
• Social Welfare: It is defined as the sum of the valuations of
the BSs which are allocated channels.
• Spectrum utilization: It is defined as the total number of BSs
which are assigned channels.
• Temporal fairness: It quantifies disparity between the average
number of times the channel is allocated to BSs.

In Fig. 4, we compare the performance of the proposed
algorithm with VCG, SMALL and Greedy mechanisms. Sim-
ulations are carried out for small network of maximum size up
to 21 BSs (nodes in the graph). Bids generated at each BS are
uniformly distributed in the interval [15, 25]. We consider each
BS has a demand of τ time slot in the period of the auction.
The demand slot start tsi at each BS is generated uniformly

in the interval [0, 0.90]. A BS can be allocated channel for
duration [tsi, tsi + τ ] in the period of the auction. Note that
VCG provides optimal socal welfare, but due to computational
complexity it is not practically feasible. It can be observed
in Fig. 4, that the social welfare obtained in the proposed
algorithm is slightly greater than the greedy mechanism and is
close to the optimal. However, the performance of SMALL is
worse off the other algorithms. Similar, trends in performance
are observed for spectrum utilization. The proposed algorithm
outperforms both greedy and SMALL.

Next, we evaluate the performance in large networks. As
VCG is computationally intractable in large networks, we
compare the performance of the proposed algorithm with
SMALL and greedy mechanism. In Fig. 5, social welfare
of the proposed algorithm and greedy are approximately
same. However, the proposed algorithm shows better spectrum
utilization than greedy. The performance of the proposed
algorithm is better than SMALL for both social welfare and
spectrum utilization. The bid value and demand slot interval
at each BS is uniformly distributed in the interval [15, 25] and
[0, 0.90], respectively.

Using simulations, we observe the temporal fairness of the
algorithms when spectrum auction is performed repeatedly. As
explained earlier, we generate a network topology and choose
bid values uniformly distributed in the interval [15, 25]. For
each, we calculate the resource allocation under all the three
schemes. Let απi denote the fraction of time BS i is allocated
resource under mechanism π. Based on the vector απi we
calculate Jain’s fairness index [25]. Jain’s fairness index is
a metric used in networking to determine the share of system



0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

Network size

F
a
ir
n
es
s
In
d
ex

SMALL
Greedy
Proposed

Fig. 6: Comparison of fairness index for different algorithms
when some BSs bid at constantly higher values than others.

resources allocated to a user.
Further, we consider a scenario where bid values are dis-

tributed around a mean value which is constant across time
for users. Let the mean vector µ = {µi|i ∈ N}. The mean
value µi is uniformly distributed in interval [15, 35] for each
user i. Now, we generate bid deviation di in the period of
auction T for each user i, where di is uniformly distributed
in the interval [−1, 2]. The bid value for each user is given as
bi = µi + di. Fig. 6 illustrates the fairness index for various
mechanisms. Here, we observe that the proposed alogorithm
and SMALL significantly outperform the greedy scheme. In
the greedy mechanism, mostly the BSs with higher µi are
allocated channels, while BSs with lower µi starve.

VI. POSSIBLE EXTENSIONS

In this section, we describe the possible extensions of the
proposed spectrum allocation mechanism. Although in this
work, we proposed a mechanism where a BS demands spec-
trum only once in the duration of the auction, the mechanism
can be extended further when a BS has multiple disjoint
demand intervals during [T1, T2]. Here, the allocation can have
two variations depending on the type of demand slot scenarios:
(i) spectrum demand is strict i.e., a BS accepts channel only
if it gets it in all the requested demand slots. (ii) BS accepts
channel for any subset of the requested demand slots. In
the first case, the proposed mechanism is applicable without
any modification. However, in the second case, conflict graph
needs to be augmented with additional nodes to account for
the requested slots by a BS, after which the same proposed
algorithm can be applied for allocation.

VII. CONCLUSION

In this paper, we have modeled a spectrum allocation
problem with time-varying demand slots and proposed a
computationally efficient and strategy-proof mechanism. Using
Monte Carlo simulations, we compare the performance of the
proposed mechanism with other existing strategy-proof mech-
anisms. Results show that the performance of the proposed
mechanism is close to the optimal obtained using VCG [9]–
[11], and it is also feasible to implement in large networks.
We observe that the proposed mechanism outperforms other
mechanisms in spectrum utilization and social welfare is close

to optimal. It also achieves better fairness index in spectrum
allocation compared to others.
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