LiME : A Linux based MPLS Emulator

Abhijit Gadgil and Abhay Karandikar

Department of Electrical Engineering,
Indian Institute of Technology, Bombay.
Powai, Mumbai - 400076.
gabhijit,karandi@ee.iitb.ac.in

ABSTRACT

In this paper, we present the design of a Linux based
Emulator for Multiprotocol Label Switching (MPLS)
network-LiME. LiME has been designed to emulate
real world network toplogies and test actual MPLS pro-
tocol implementations unlike network simulators that
would only provide an abstraction of the protocol. More-
over, LIME can used as a Protocol Development Envi-
ronment by those developing MPLS based protocols.
The design of LiME leverages on a multithreaded ver-
sion of Label Distribution Protocol (LDP) and a switch-
ing engine in Linux kernel developed by us.

1. INTRODUCTION

Network layer routing consists of two components— for-
warding and control. The forwarding component makes
use of the information available in Forwarding Informa-
tion Base (FIB) to forward packets along the data path.
The control component usually consists of one or more
distributed protocols and is responsible for populating
the FIB. In traditional routing, the control component
may be one or more routing protocols like OSPF, BGP.

Multiprotocol Label Switching (MPLS) [1] is a new
network layer routing paradigm where the forwarding
component is a Label Swapping algorithm. A label is a
short fixed length shim header inserted in the packet by
a router at the ingress node (called Label Edge Router
(LER)) of a MPLS network. Each router in the MPLS
domain (called a Label Switch Router (LSR)) uses the
label as an index in the forwarding table, determines
the forwarding treatment to be applied (including the
next hop to be forwarded) and swaps the incoming label
with another label (See [2, 3] for a full appreciation of
label swapping and switching mechanism).

At an LER, the packets are classified into a set of
Forwarding Equivalence Classes (FEC) that determine
the treatment these packets will receive in the MPLS
domain. The control component of MPLS creates bind-
ings between labels and FEC and informs other Label

Switched Router (LSR) of these bindings. The control
component utilizes the information from routing proto-
cols also. Various control protocols for exchanging la-
bel binding information are being standardized. These
include Label Distribution Protocol (LDP) [4] and ex-
tensions to Resource Reservation Protocol (RSVP-TE)
[5]-

The task of testing these distributed protocols is
very involved as it necessitates a network test bed. Net-
work simulators like ns2 [6] provide a good framework
for testing these protocols but are not useful for test-
ing actual implementation as these simulators provide
only abstraction of the protocol. Another approach
would be to emulate the network in software. The em-
ulator is different from a simulator in the sense that
it provides Applications Programming Interface (API)
for plugging in actual implementation thereby enabling
a network device (called Device Under Test (DUT))
or a protocol to be tested for its performance in real
network scenarios. Previous researchers have consid-
ered network emulator for TCP/IP based networks [7].
To the best of our knowledge, however, no emulator is
available for MPLS networks.

The objective of this paper is to design and develop
a Linux based Emulator for MPLS-LiME. One of the
primary contributions of the paper is a scalable archi-
tecture of the emulator. The emulator can emulate user
defined topologies. It would be able to support and tear
down Label Switched Paths (LSP) based on topology
changes. It also emulates the forwarding behavior of
LSR and LER. For emulating the control protocol, the
emulator leverages on a multi-threaded version of La-
bel Distribution Protocol [8] developed by us. Another
unique contribution of the design is the capability of
LiME to inject MPLS traffic into the external world.

Rest of the paper is organized as follows. Section 2
discusses the top level design of LiME. The implemen-
tation aspects are covered in the following two sections.
Section 5 focuses on the interaction of LIME with Linux
TCP/IP stack. We conclude the paper in Section 6.

Script Master Event
= Parser - LSR - Manage|
Controller

Emulator Control Engine

LSR1

LSR2

LSR3

LSR4

Figure 1: MPLS Emulator Overview.

2. TOP LEVEL DESIGN

One of the challenges in the design of LiME is to de-
velop a scalable architecture. This would mean that the
memory and computational requirements should grow
as linearly as possible with the size of the network to
be emulated. With this in mind, the following impor-
tant design decisions were observed while developing
the top level architecture of LiME.

1. Though LiME has been designed to work with
Linux, it makes little changes to the existing net-
work stack of Linux.

2. In order to avoid overheads of copying data to
user—space and back to kernel-space while for-
warding, the packets are switched in Linux kernel
itself in LiME.

3. In LIME, we avoid creating multiple copies of the
networking stack per emulated LSR.

4. The user interface is in the form of Tcl/Tk scripts.

The architecture of LIME consists of two main func-
tional blocks (See Figure 1) - Emulator Control Engine
and Emulated LSR/LER. The Emulator Control En-
gine (ECE) provides the abstraction for the network
subsystem. The network topology to be emulated is
given as an input to the control engine. The ECE has
three main functional sub blocks. These are Script

Parser, Master LSR Controller and Event Manager.
The Emulated LSR (ELSR) performs the forwarding
and control behavior of an instance of the LSR to be
emulated. An Emulated LSR implements FIB, LDP
and one or more MPLS devices attached to the LSR.
The detailed designs of the ELSR and ECE are dis-
cussed in the following sections.

In addition to the ECE and ELSR, MPLS forward-
ing engine and Label Distribution Protocol as in [8, 9]
and OSPF implementation and OSPF simulator envi-
ronment as described in [10] also form part of LIME.

3. DESIGN OF EMULATED LSR

In LiME, an Emulated LSR comprises of an instance of
control component, Forwarding Information Base and
one or more MPLS devices. We briefly discuss each of
them.

3.1. LSR/LER Control Component -
(LDP/Routing)

An instance of LDP [4] will form the control compo-
nent of emulated LSR. LDP is developed as a multi-
threaded application in user-space of Linux employing
TCP/UDP sockets. The LDP design has the following
logical threads

1. The I/O thread - This thread implements the

socket based I/O operations of the LDP.

2. The Processing thread - This thread undertakes
the processing functions of the received LDP pack-
ets, and maintaining the overall state of the LDP.

3. Kernel Interface thread - This thread forms the
interface between LDP and the switching engine.
It is based upon netlink sockets that facilitates
the exchange of information between user-space
and kernel-space.

These threads are co-ordinated and scheduled by
a scheduler in the main loop. The FEC information
required by the LDP is made available through OSPF.

3.2. Forwarding Information Base (FIB)

The packet label is used as an index into FIB to re-
trieve the corresponding entry for making a forwarding
decision. The FIB implementation comprises of

e Next-Hop Label Forwarding Entry (NHLFE)
struct nhlfe_ type - It has information which is
useful in actual forwarding of packets and outgo-
ing label stack etc.

e Incoming Label Map(ILM)

struct ilm entry_type - A label space associ-
ated with a device, determines the way in which
a labeled packet is interpreted. Two packets that
have the same label values but belong to different
label spaces will be treated differently. The ILM
entry specifies incoming label entry in the label
space associated with the device.

e FEC To NHLFE table (FTN)
struct fec_type - FTN is used to make forward-
ing decision on unlabeled packets.

3.3. MPLS Device.

MPLS device is implemented as a loadable kernel mod-
ule in the Linux kernel. The device provides the func-
tionality of receiving packets and forwarding them on
the data path. Upon initialization, MPLS device regis-
ters itself with the list of kernel network devices. One
advantage of introducing the feature of MPLS Device
is that it obviates the need for sending data path pack-
ets to user-space and processing them in the user-space
thereby avoiding a data copy from kernel-space to user-
space and back. Moreover, the approach enables to
exploit the MPLS forwarding engine available in the
kernel [9] directly without duplicating this functional-
ity in the user-space.

3.4. Packet Forwarding in Emulated LSR

The following pseudo-code explains how a packet re-
ceived at an MPLS device in the ELSR is processed.

Is the packet Labeled?
/* ethertype == ETH_P_MPLSUC 7 */
if (yes) {
/* mpls_rcv */
look for ILM entry in the label-space
for the device.
/* search_ilm_entry */
if (entry exists){
/* mpls_send */
forward packet using NHLFE.
} else {
if default NHLFE exists,
forward packet using default
NHLFE or drop the packet.
}
} else {
/* ip_rcv */
Send the packet to IP module.
look for FTIN entry for the packet in
the FTN table for the LSR.
/* fec_prefix_match */
if (entry exists) { i
/* grab_nhlfe_for_fec */
forward using NHLFE.
/* mpls_send */
} else {
Forward the packet using
IP forwarding.
/* ip_forward */

Figure 2 depicts an emulation of two LSRs and their
interface with the external IP/MPLS network.

4. EMULATOR CONTROL ENGINE (ECE)

An instance of LSR/LER provides the functions of a
single MPLS node. The network abstraction of an
MPLS network, comprising the emulated LSRs in a
specified topology, is achieved through the Emulator
Control Engine. The engine provides abstraction in
the form of network topology and network events. The
actions of multiple instances of LSRs, their configura-
tions and performance monitoring are implemented in
ECE. It has three main functional blocks- Tcl Script
Interpreter, Event Manager, Master LSR, controller.

LSRO LSR1
LDP [LDP [|
FIB FIB
mpls00 mplsol mplsl10 mplsll|
eth0 ethl

| v

Figure 2: Emulated LSR - Simple Topology.

4.1. Tcl Script Interpreter.

Tecl script is used for specifying the network topology.
The Tcl interpreter parses the input scripts and gener-
ates the topology information to be used by the master
LSR controller. Various network events to be emulated
like link failure, node failure are dispatched to the event
manager.

4.2. Event Manager

The response of a DUT can be observed for different
types of network events like - link between a pair of
LSRs going down, disabling MPLS functionality on one
of the LSRs etc. These network events are registered
with the event manager via Tcl script. The event man-
ager synchronizes these events with the global timer
(described below) and dispatches them for execution
to the Master LSR controller.

4.3. Master LSR Controller

Master LSR, Controller is the heart of the emulator con-
trol engine. The important functions like timer man-
agement, resource management, LSR/LER scheduling
are handled by this component. The following compo-
nents achieve this functionality.

e Emulator Control Socket— Upon initialization, the
master controller creates a server socket.This socket

is used for exchange of information with the emu-
lated LSR/LERs. An LSR/LER instance creates
its own client socket, which talks to the server
socket. However, this communication is different
from that of MPLS control exchange facilitated
through TCP/UDP sockets created by the LDP
instance.

e Emulator Master Timer— One global timer is ini-
tialized while starting the emulator engine. All
events in the emulator are synchronized with re-
spect to this global timer. We define a “tick”
in the timer to be 1/10th of a second, which is
a reasonable resolution for exchanging control in-
formations. However it should be noted that, this
“tick” will not slow down the data path forward-
ing because, data path forwarding takes place in
the kernel-space.

e The scheduler - After the initialization and in-
stantiation of LSRs is over, the scheduler is in-
voked which schedules the events sequentially. The
scheduler performs the function of resource man-
agement in the emulator. The management and
integrity of respective data structures is handled
by particular instance of LSR/LER. Following
tasks are scheduled in the decreasing order of
their priority.

— ELSR control protocol tasks.

— Event management tasks

— ELSR kernel interface tasks

— Tasks related to maintaining state of ECE.

ELSR configuration and notification tasks.

4.4. Emulator Main Loop

The function of LIME can be explained by the following
pseudo code. The LiIME main loop can be described as
follows.

Input topology information.

/* get_nw_topology */
Open the server socket.

/* create_ctrl_sock */
Create the timer thread.

/* init_timer */

Create an instance of LSR/LER for every
LSR in the given topology.

/* for (each 1lsr) { init_lsr } */
Send the configuration information on
the control socket.

/* send_config_info */
while(true) {

Schedule LSR events. /* schedule */

5. LINUX TCP/IP STACK AND APIS

We now discuss the issues related to Linux kernel while
implementing the MPLS device and a set of APIs for
the protocol developers which will be exposed through
LiME implementation.

LiME private ioctls —

The standard mechanism to configure network de-
vices uses the ioctl system call. We extend the basic
functionality in the kernel to provide some configura-
tion options for control protocol, label space and en-
capsulation mechanisms used with a MPLS device.
Handling Unlabeled Packets in LIME-

At any given MPLS device, an unlabeled packet
will be received if the device is attached to an LER,
or if the packet is a control protocol packet or if the
packet is delivered to this LSR after Penultimate Hop
Popping (PHP). Thus the decision for unlabeled packet
may differ for every device even for the same destina-
tion address. We exploit the multiple routing table
mechanism of Linux, to forward packets based on the
input device on which the packet is received. A rule is
set to look into a specific forwarding table depending
upon the input device index. Each MPLS device will
have a unique index in the Linux kernel in LiME.
LiME Interface to External Network—

MPLS device acts as a wrapper for actual system
devices like eth0, ppp0, atm0 (for Ethernet, PPP and
ATM interfaces) etc. Packets received on these devices
will be handled by the MPLS device receive function.
LiME Applications Programming Interface—

LiME APIs are library functions that can be used
by a programmer to port any MPLS software on LIME
platform. These API calls essentially provide necessary
hooks to the ECE. This enables LIME to be used as a
Protocol Development Environment.

6. DISCUSSION

In this paper, we have described a scalable architec-
ture of LIME- a Linux based MPLS Emulator. LiME
can be used as a test-environment for testing control
protocol implementations. The APIs also enable LIME
to be used as a Protocol Development Environment.
The framework is useful in studying the deployment
effects of different traffic engineering algorithms within
operation MPLS networks. Some of these applications
are currently being investigated by the authors. The
given architecture can be enhanced further to incor-
porate a distributed ECE. This would facilitate em-

ulation of very large topologies. The emulator can
also be extended to support other control protocols like
RSVP-TE [5], Differentiated Services over MPLS [11]
etc. These issues will be considered in future releases
for LIME.

REFERENCES

[1] E Rosen, A Viswanathan, R Callon, “Multiproto-
col Label Switching Architecture.”, January 2001,
http://www.ietf.org/rfc/rfc3031.txt

[2] B Bruce and Y Rekhter, “MPLS: Technology and
Applications”, Morgan Kaufman, 2000.

[3] E Grey, “MPLS: Implementing the Technology”,
Addison Wesley, 2001.

[4] L Anderson, P Doolan, N Feldman, A Fredette,
B Thomas, “LDP Specification”, January 2001,
http://www.ietf.org/rfc/rfc3036.txt

[5] D Awduche, L Berger, Der-Hwa Gan, T Li, V
Srinivasan, G Swallow, “RSVP-TE : Extensions
to RSVP for LSP Tunnels”, work in progress.,
August 2001. http://www.ietf.org/internet-
drafts/draft-ietf-mpls-rsvp-Isp-tunnel-09.txt

[6] The Network Simulator ns-2,
http://www.isi.edu/nsnam/ns/

[7] X Huang, R Sharma and S Keshav, “The Entrapid
Protocol Development Environment”, Proceedings
of INFOCOM, 1999.

[8] A Gadgil, “Label Distribution Protocol (LDP) De-
sign Document-v1.0” Technical Report, EE Dept,
IIT Bombay, February 2001. (Available on request
from authors.)

[9] R Soni, “Architecture of MPLS Forwarding En-
gine in Linux Kernel”, MTech Thesis, IIT Bom-
bay, January 2001.

[10] J Moy, “OSPF Complete Implementation”, Addi-
son Wesley 2001.

[11] F Le Faucheur, L. Wu, B Davie, S Davari,
P Vaananen, R Krishnan, P Cheval, J
Heinanen, “MPLS Support for Differenti-
ated Services”, work in progress., April 2001,
http://www.ietf.org/internet-drafts/draft-ietf-mpls-
diff-ext-09.txt

