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Abstract

We consider the problem of transmitting packets over a randomly varying point to point channel

with the objective of minimizing the expected power consumption subject to a constraint on the average

packet delay. By casting it as a constrained Markov decision process in discrete time with time-averaged

costs, we prove structural results about the dependence of the optimal policy on buffer occupancy, num-

ber of packet arrivals in the previous slot and the channel fading state for both i.i.d. and Markov arrivals

and channel fading. The techniques we use to establish such results: convexity, stochastic dominance,

decreasing-differences, are among the standard ones for the purpose. Our main contribution, however,

is the passage to the average cost case, a notoriously difficult problem for which rather limited results

are available. The novel proof techniques used here are likely to have utility in other stochastic control

problems well beyond their immediate application considered here.

Index Terms

Randomly varying channel, transmission scheduling, power control, time averaged cost, constrained

Markov decision processes.

I. INTRODUCTION AND RELATED WORK

Power efficient communication has been an important design challenge for wireless communications.

While there are avenues for power savings in transmitters at a variety of implementation stages including

radio circuitry, communication protocols etc, in this paper we concern ourselves with the power savings

that can be achieved through packet scheduling where the transmitter gains by transmitting packets at a

more opportune time or in a more opportune fashion.

In wireless as well as in wired channels with Additive White Gaussian Noise (AWGN), at the physical

layer, the transmission power required for reliable communication increases as a convex function of the

transmission rate. The convex nature of the relationship between power and rate allows one to save energy

by choosing the rate at various stages in transmission in an appropriate fashion. This, however, would

lead to an increase in buffered data and hence the average delay.

The wireless channel being time varying offers another opportunity of power savings where the sched-

uler can simply defer the transmission of packets during ‘bad’ channel states to ‘good’ channel states. In

this paper, we consider the problem of scheduling packets over a point to point channel. The objective

is to minimize the average power consumption subject to a constraint on the average packet delay. The

problem of energy efficient scheduling for a wireless channel has been considered in [1], [2], [3], [4], [5],

[6], [7], [8], [9], [10].
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In [7], the authors have considered the problem of power efficient scheduling under average and ab-

solute delay constraints. They have used a slotted system and considered an arbitrary independent and

identically distributed (i.i.d.) packet arrival process. A characterization of the optimal scheduler has been

provided in terms of a smaller class of deterministic schedulers. In [8] and [9], the authors consider energy

minimization over a given time interval in a wireless network. Both off-line static optimization algorithms

and on-line heuristics are considered. In [4], the authors have dealt with energy efficient scheduling under

an average delay constraint for time-varying channels. However, the authors have assumed a linear rela-

tionship between power (P ) and rate (R), and thus do not take into account the gains that can be realized

by varying the transmission rates.

In [2], [3], the tradeoff between the average delay and the average power in a fading channel has been

analyzed. The delay-power tradeoff has also been quantified in the region of asymptotically large delays.

In [10] also, the author has considered the problem of energy efficient scheduling taking into account both

the fluctuating channel conditions and the convex P − R relationship. The structural results for a policy

which minimizes the average delay subject to a constraint on the average power, in presence of channel

fading, are provided in [5]. It is proved in [2] and [5] that there exists an optimal stationary policy which

increases as the buffer occupancy increases, and decreases as the channel state goes from good to bad.

What this means in physical terms is that the optimal decision is to transmit a certain number of packets

(or, in our continuous model, the ‘fluid’ approximation thereof) at any given instant, where this number

is an increasing function of the current queue length and a decreasing function of the channel state. Thus

for a fixed channel gain, the greater the queue length the more you transmit, and for a fixed queue length,

the better the channel, the more you transmit. This interpretation will be used throughout when we talk of

‘increasing’ and ‘decreasing’ policies. See also [1], [6] for some more results in this vein: these articles

also derive explicit structural results for optimal policies under specific set of assumptions.

Our model is similar to that of [2] with a single transmitter and a single receiver on a point to point

wireless link with fading. The only difference is that we assume fluid packet arrival and departure pro-

cesses. We have also considered the arrival process to be both i.i.d. and first order Markov. The channel

state has also been considered for both cases - i.i.d. and first order Markov. The primary contribution of

the paper is to derive structural results of an optimal policy that minimizes the average power subject to

an average delay constraint. Specifically, we improve upon the results of [2], [5]. The results not available

in [2], [5] are concerning Markovian packet arrivals. They are:

1) In case of First order Stochastically Dominant (FSD) Markov arrivals, the optimal policy is increas-
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ing in the number of packet arrivals in the previous slot.

2) The existence of a stationary policy for the average cost problem when the packet arrival process is

Markovian.

The existence of a stationary optimal policy for the average cost problem when the packet arrival process

is i.i.d. has been proved in [5], but the problem becomes much more difficult when the arrival process

is Markovian. This is because the state of the arrival process is an additional state variable on which

the policy must depend, and the dynamics of this state variable may not be as explicit as that of the

queue length process. Also, [5] does not derive the average cost dynamic programming equation which

characterizes the optimal policy.

In a recent work [11], a discrete state space version of this problem is analyzed. Our problem may

be considered a time-discretized version of the so called fluid limit of the discrete problem. However, in

practice, channel fading state will be continuous valued (discretization is usually an approximation). Even

[11] has mentioned this see, e.g., their Example 2. This automatically makes the state space non-discrete,

as this is one component of the state space. Once the state space is continuous even in one component, the

usual (easier) treatment of average cost dynamic programming equation does not apply. Denumerable or

general state space problems involve in particular nontrivial stability considerations, involving, e.g., the

choice of initial guess in policy iteration. See the work of Sean Meyn on this [12].

It is true that the packet arrivals are likely to be discrete in practice but the ‘fluid’ approximations of

arrivals such as ours are commonplace. Our treatment can also cover the discrete arrivals / queue length

case - the only part that does not go through is the uniqueness of minimizer in the dynamic programming

equation, implying that the optimal policy may be randomized. We believe that fluid limits have the

advantage that a simple fluid limit often serves as a robust approximation to a wide class of discrete

state models. The reason for this is that the limit theorems through which the fluid limits are arrived at

depend on gross local characteristics like the conditional mean, and therefore suppress other details that

are irrelevant in the limit. This allows for the same fluid limit to work for a class of models rather than a

single model. Furthermore, for the same reason, the fluid limit usually offers a more compact description.

Our approach will be to begin with the finite horizon discounted problem and pass first to the infinite

horizon limit, followed by the vanishing discount limit to obtain the average cost case. There is copious

literature on structural results for optimal policies in Markov decision processes, see, e.g., [13], [14], [15],

[16] among others. Our main contribution is the passage from the infinite horizon discounted case to the

average cost case, a notoriously difficult problem for which rather limited results are available. While the
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average cost problem for general state spaces has been extensively studied in stochastic control literature

[17], [18], the results available use conditions either too restrictive or not easily verifiable for problems

such as the one studied in this paper. The novel proof techniques used here are likely to have utility in

other stochastic control problems well beyond their immediate application considered here. Specifically,

the following are the highlights of our proof technique:

1) We combine ‘coupling at pseudo-atom’ argument with a pathwise comparison argument based on

stochastic dominance. While both these techniques exist separately (the former in fact is not so

commonly known or used), this is the first time they are thus combined. The combination provides

a more concise argument for the scalar case, which is also intuitively more appealing.

2) The passage to the vanishing discount limit for the general state space has to be based upon an

equicontinuity-boundedness argument that invokes Arzela-Ascoli theorem (See p. 214 of [19]), as

the simple argument based on Bolzano-Weierstrass theorem (See p. 77 of [19]) in discrete frame-

work does not work. The argument given by us which is based on showing that the renormalized

discounted value attains its minimum in a prescribed bounded set independent of the discount factor

is new in discrete time framework and is applicable more generally to all cost criteria that penalize

large excursions of the state process.

The rest of the paper is organized as follows. Section II discusses the model, problem formulation and

the solution approach. We summarize our main contributions in Section III. The subsequent sections

provide the proofs of the main results. Specifically, the unconstrained finite horizon discounted cost

problem and the unconstrained infinite horizon discounted cost problem are considered in Sections IV

and V. The unconstrained average cost problem is then addressed in Section VI. The paper concludes in

Section VII.

II. MODEL, PROBLEM FORMULATION AND APPROACH

A. System Model

There is a point to point channel over which packets are being transmitted. Packets arrive at the

transmitter with a queue of infinite size and get buffered. The system is discrete time, the dynamics of

which is given by:

xn+1 = xn − yn + wn+1.
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Here xn is the queue length or buffer occupancy at the beginning of slot n, yn is the number of packets

transmitted in this slot, and wn+1 the number of new arrivals in this slot taking values in a finite interval

[0, wmax] where wmax is the maximum number of arrivals in a slot. xn, yn and wn are assumed to be

fluid, i.e., continuous valued. The channel is time varying with fading. The state of the channel indicates

the time varying channel gain. We assume flat fading model, i.e., the channel state is assumed to remain

constant over the slot duration (See [2] for a detailed discussion on this). The packet arrival process

and channel state evolution process are assumed to be stationary and independent. Let {µn} denote the

channel state process taking values in R. We shall consider both i.i.d. and Markovian arrivals with law

(resp., transition kernel) p(dw) (resp., p(a, dw)) and both i.i.d. and Markovian channel with law (resp.,

transition kernel) q(dµ) (resp., q(ν, dµ)). The energy required to transmit y packets under channel state

µ will be assumed to be µF (y) for a convex and increasing F : R+ → R+. Let w0 denote the stationary

average of the number of packet arrivals in a slot. Let ymax denote the maximum number of packets that

can be transmitted in a slot. wmax, w0, ymax ∈ R. For the stability of the buffer, ymax > w0.

The state of the above system can be completely characterized by the 3-tuple, vn = (xn, wn, µn),

comprising of the buffer occupancy or queue length, the number of packet arrivals in the previous time

slot and the channel state. In slot n, the control (or scheduling) action corresponds to the number of

packets transmitted, yn. The control policy is a sequence of functions {π1, π2, . . .} where πn specifies

the conditional law of yn given the past history of the system state and the past applied controls, i.e.,

given v0,v1, . . . ,vn, y1, y2, . . . , yn−1.

B. Problem Formulation

Since the packets arrive and get queued in the buffer, they suffer a delay. By Little’s theorem (Chapter

3 of [20]), the average packet delay, D, is related to the time-averaged queue length, Q, as:

D =
Q

w0
, (1)

where w0 denotes the average packet arrival rate. Hence, in the rest of the paper, we ignore the propor-

tionality constant w0, and treat average delay as synonymous with average queue length. In our problem,

Q can be written as:

Q = lim sup
M→∞

1
M

[ M∑
n=1

xn

]
. (2)

We thus define:
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Definition 1—Average Delay, D; Average Power, P :

D = lim sup
M→∞

1
M

E
[ M∑

n=1

xn

]
, P = lim sup

M→∞

1
M

E
[ M∑

n=1

µnF (yn)
]

(3)

Recall that the energy required to transmit packets is a convex function of the number of packets being

transmitted (transmission rate). Thus, from an energy efficiency point of view, we would want to transmit

packets in small chunks. Transmitting packets in small chunks leads to higher delay. Thus, we have

the average cost optimal scheduling problem that can be stated as: Determine a scheduling policy that

minimizes P subject to a constraint on D. It is a constrained Markov decision problem. To solve it, we

first consider the corresponding unconstrained Markov decision problem.

Let λ be a positive real number. Let Cλ = P + λD, where, P and D are defined in (3). The uncon-

strained average cost optimal scheduling problem can be stated as: Determine a scheduling policy that

minimizes Cλ. Later on, we shall map the constrained problem to this unconstrained one by interpreting

λ as the appropriate Lagrange multiplier.

Before we can solve this problem, we first address the corresponding infinite horizon discounted cost

problem. Let 0 < β < 1 be a real number. Define:

Definition 2—Infinite Horizon Expected Discounted Delay:

D∞ = E
[ ∞∑

n=1

βnxn

]
(4)

Definition 3—Infinite Horizon Expected Discounted Power:

P∞ = E
[ ∞∑

n=1

βnµnF (yn)
]

(5)

Define C∞,λ = P∞ + λD∞. The infinite horizon unconstrained β-discounted cost optimal scheduling

problem can be stated as: Determine a scheduling policy that minimizes C∞,λ. This problem is addressed

by first formulating the corresponding finite horizon problem. We then address the unconstrained average

cost and finally the constrained average cost problem.

C. Mathematical Preliminaries and Assumptions

In this section, we review some mathematical preliminaries. We first define the notion of First Order

Stochastic Dominance (FSD). For probability measures p1, p2 on R, p1 is said to be First Order Stochas-

tically Dominant with respect to p2 if p1((−∞, x)) ≤ p2((−∞, x)), ∀x ∈ R. First Order Stochastic

Dominance of p1 with respect to p2 will be denoted by p1 � p2, or by p2 ≺ p1. The following two results

are proved in Chapter 1 of [21].
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Lemma 1: Let p1 � p2 be probability measures on R. Let f : R → R be an increasing function. Then∫
R

f(w)p1(dw) ≥
∫

R
f(w)p2(dw).

Lemma 2: Let p1 � p2 be probability measures on R. Then there exist random variables X̄1 and X̄2

on a common probability space such that X̄1 ∼ p1, X̄2 ∼ p2, and X̄1 ≥ X̄2 almost surely.

We make the following assumptions for the incoming packet arrival distribution p(a, dw).

1) p(b, dw) ≺ p(a, dw) whenever a > b.

2) p(x, dw) is continuous in x in total variation norm: ∫ |p(x, dw)− p(x′, dw)| x′→x→ 0.

The following more stringent conditions will be used in our analysis of the average cost problem:

1) p(·, ·) satisfies:

∫ |p(a′, dw)− p(a, dw)| ≤ c0|a′ − a|, for some constant c0. (6)

2) The process < Xn,Wn, µn > is ergodic under any stable stationary policy.

3) Minorization Condition: Let W = [0, wmax]. There exists a probability measure ν̂ on W and a real

number δ > 0 such that for all x ∈ W , A ⊂ W Borel,

p(x,A)− δν̂(A) ≥ 0. (7)

Note 1: The minorization condition holds, for example, if there is a neighborhood N of 0 such that

p(x,N) ≥ ε for all x, where ε > 0 is a constant. (Take ν̂ = the normalized uniform distribution on

N .) Intuitively, this means that there is a strictly positive probability of “close to” zero packet arrivals

irrespective of the number of packet arrivals in the previous slot.

III. SUMMARY OF MAIN RESULTS AND PROOF OUTLINE

We first summarize our main results and give a sketch of the methodology adopted for the proofs. The

details of the proofs are given in the subsequent sections. Our main results are for the infinite horizon

average cost problems, both constrained and unconstrained. We first consider i.i.d. channel fading.

A. Channel Fading- i.i.d.

Theorem 1: 1) The average cost dynamic programming equation for the unconstrained problem:

V (x, a, µ) = min
y≤x∧ymax

(
λx + µF (y)− ρ +

∫
q(dν)

∫
p(a, dw)V (x− y + w,w, ν)

)
, (8)
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has a solution (V (·, ·, ·), ρ), where ρ is uniquely characterized as the optimal cost and V is unique

up to an additive constant on the support of the stationary law under any optimal stationary policy.

2) V is convex increasing in the buffer occupancy or queue length, increasing in the number of arrivals,

and decreasing in the channel state. Also, it is supermodular in the first two arguments, i.e., queue

length and the number of arrivals.

3) y∗(x, a, µ) given by

y∗(x, a, µ) = arg min
[0,x∧ymax]

{µ(F (y) +
∫

q(dν)
∫

p(a, dw)V (x− y + w,w, ν)},

is an optimal stable stationary strategy and is increasing in the queue length and the number of

arrivals and decreasing in the channel state.

The proof strategy followed is:

1) Derive the dynamic programming equation for the finite horizon discounted cost control problem

and establish the aforementioned monotonicity and supermodularity properties for the value func-

tion (Section IV).

2) Consider the infinite time limit of the above and justify the dynamic programming equation for the

infinite horizon discounted cost problem. This involves verifying boundedness and equicontinuity

of the finite horizon discounted value functions. The monotonicity and supermodularity properties

for the infinite horizon discounted value function follow from the corresponding properties for the

finite horizon problem.

3) Consider the vanishing discount limit of the dynamic programming equation for the infinite horizon

discounted cost problem after suitable renormalization, which amounts to subtracting from the

value function its value at a prescribed state. This yields the dynamic programming equation for

the average cost problem. The proof involves boundedness and equicontinuity of the renormalized

infinite horizon discounted value functions. This is done using a coupling argument based on the

Athreya-Ney-Nummelin pseudo atom construction (Chapter 5 of [22]), combined with a pathwise

comparison that uses stochastic monotonicity (the latter distinguishes it from the few earlier uses

of coupling at pseudo atom in literature for similar purposes), and finally, a novel proof technique

to prove that the renormalized infinite horizon discounted value functions and therefore the average

cost value function are uniformly bounded from below, which in turn allows us to prove the first

part of the theorem above (Section VI).

Note 2: Note that the use of Little’s theorem to justify the particular cost function above is not valid for

the finite and infinite horizon discounted cost problems. These, however, are merely intermediate steps to
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our average cost problem for which it is indeed justified.

Our main concern, however, is the constrained problem for which we have the following result. Assume

that F is strictly convex.

Theorem 2: There exists a unique stable stationary optimal policy y∗(x, a, µ) increasing in buffer oc-

cupancy, x and the number of arrivals, a and decreasing in the channel state, µ.

By a standard ‘Lagrange multiplier’ formulation (see, e.g., [23]), it follows that the constrained problem

has a stationary, though possibly randomized, optimal policy which is also optimal for the unconstrained

problem considered in Theorem 1 for a particular choice of λ = λ∗ (say), the Lagrange multiplier for the

problem. But the optimal stationary policies for the latter, randomized or not, must attain the minimum

on the right hand side (r.h.s.) of the Bellman equation (8) for each (x, a, µ). By the strict convexity of F ,

this minimum is attained at a unique point, whence there is a unique optimal stationary policy with the

stated properties, viz., increasing in x, a, and decreasing in µ.

Note 3: While we do not consider computational issues here, it is worth making a few comments

regarding these. The preferred computational technique for constrained Markov decision problems in the

past has been the linear programming approach [24]. As the state space here is not discrete, it becomes

an abstract infinite dimensional linear program, which needs an approximation step to reduce it to a finite

linear program. While discretization methods have been proposed for this purpose in the past [25], the

more recent approach based on function approximation [26] holds great promise. An alternative is to use

‘primal-dual’ type methods which use a conventional iteration scheme for the value function and a dual

ascent for the Lagrange multiplier [27]. (It may be recalled here that the standard iterative schemes for

Markov decision processes have been extended to general state spaces, see, e.g., [12].) These schemes

can also be combined with a function approximation scheme for dimensionality reduction. In either,

structural results such as the ones presented here aid greatly in the choice of basis functions (‘features’ in

Artificial Intelligence parlance) in function approximation. Function approximation based approximate

linear and dynamic programming is currently an active area of research. What is more, a typical situation

is the one where the model is not known and an on-line learning scheme is warranted. Such schemes

based on function approximation are no harder for continuous state space than for discrete state space.

B. Channel Fading- Markov

In case of Markov channel fading, by using exactly the same methods used for proving Theorem 1 and

Theorem 2, it can be proved that there exists an optimal stationary policy which is increasing in buffer

occupancy and the number of packet arrivals in the previous time slot. However, unlike the case of i.i.d.
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channel fading where the policy is decreasing in the channel fading state, nothing can be said in general

when the channel fading is Markovian. We give an intuitive reason for this:

Let q(ν1, dµ) � q(ν2, dµ) if ν1 > ν2. Intuitively, this means that if the channel fading in the current slot

is high, it is expected that the channel fading in the next slot will be higher than what it would be if the

channel fading in the current slot is low. Thus, even if the channel fading in the current slot is high, we

might be better off transmitting a larger number of packets in anticipation of a very bad channel in the

future, compared to when the channel fading in the current slot is low. For this reason, the number of

transmissions in a bad channel state might be higher compared to the number of transmissions in a good

channel state.

In the rest of the paper, we provide the proofs for Theorems 1 and 2 by first considering the un-

constrained finite horizon discounted cost, infinite horizon discounted cost and finally the average cost

problem.

IV. UNCONSTRAINED FINITE HORIZON DISCOUNTED COST PROBLEM

In this section, we consider the finite horizon discounted cost version of our problem as a first step

to prove our main results as outlined in the previous section. In this section, we consider the channel

fading to be i.i.d. We prove some properties like continuity and convexity of the optimal finite horizon

β-discounted cost function. We also prove that this function is increasing in queue length, number of

packet arrivals in the previous slot, and decreasing in channel state.

Let V β
n (v) denote the optimal β-discounted n-step cost when the initial state is v, defined as the

infimum over all possible admissible controls. Let Jβ
n,π(v) denote the β-discounted n-step cost when the

initial state is v and the policy used is π. In the rest of this section, β will be a constant, and we do not

explicitly show the superscript β. Thus, V β
n (v) will be denoted as Vn(v) and Jβ

n,π(v) will be denoted as

Jn,π(v).

Vn, n ≥ 0, the finite horizon value function, is given by the Bellman equation

Vn(x, a, µ) = min
y≤x∧ymax

[λx + µF (y) + β ∫ q(dν)p(a, dw)Vn−1(x− y + w,w, ν)], n > 0, (9)

with V0(x, a, µ) = λx. Also define

hn(y, x, a, µ) = λx + µF (y) + β ∫ q(dν)p(a, dw)Vn−1(x− y + w,w, ν), ∀n

Theorem 3: Vn(x, a, µ) for each n is convex continuous and increasing in x, and satisfies

|Vn(x′, a, µ)− Vn(x, a, µ)| ≤ λ

1− β
|x′ − x|.
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Proof: See Appendix -A for the proof.

Theorem 4: Vn(x, a, µ) for each n is continuous increasing in a and satisfies

Vn(x, a′, µ)− Vn(x, a, µ) ≤ wmaxλβ

(1− β)2
∫ |p(a′, dy)− p(a, dy)|.

Proof: See Appendix -B for the proof.

Note that ymax is the maximum number of packets that can be transmitted in a slot. Then we can easily

prove the following theorem.

Theorem 5: Vn(x, a, µ) for each n is continuous increasing in µ and satisfies

|Vn(x, a, µ)− Vn(x, a, µ′)| ≤ |µ− µ′|F (min(x, ymax)).

We now state the following ‘supermodularity’ property.

Theorem 6: Let ∆x and ∆a be arbitrary non-negative real numbers. Then, for each n, Vn satisfies,

Vn(x + ∆x, a + ∆a, µ) + Vn(x, a, µ) ≥ Vn(x, a + ∆a, µ) + Vn(x + ∆x, a, µ) (10)

Proof: The proof is outlined in Appendix -C

V. UNCONSTRAINED INFINITE HORIZON DISCOUNTED COST PROBLEM

In this section, we analyze the unconstrained infinite horizon discounted cost problem.

Let 0 < β < 1 be a real number and V β(x, a, µ) denote the optimal infinite horizon β-discounted cost

when the initial state is (x, a, µ).

Lemma 3: There exists a function M(x, a, µ) such that V β
n (x, a, µ) ≤ M(x, a, µ) for all n.

Proof: Let π0 be the policy which transmits nothing in any time slot, irrespective of the state. Then

V β
n (x, a, µ) ≤ Jβ

n,π0
(x, a, µ) ≤ Jβ

π0
(x, a, µ) =

∞∑
i=0

βi(λx + iwmax) , M(x, a, µ) < ∞.

Note that V β
n increases as n increases. Suppose V β

n ↑ W β . From the corresponding estimates for the

Vn’s, we have

|W β(x′, a′, µ′)−W β(x, a, µ)| ≤ |µ′ − µ|F (min(ymax, x′))

+
wmaxβλ

(1− β)2
∫ |p(a′, dy)− p(a, dy)|+ λ

1− β
|x′ − x| (11)
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In particular, W β is continuous. It will clearly be increasing in its arguments and convex in x for fixed

a, µ. Also, by Dini’s theorem [28], V β
n ↑ W β uniformly on compact sets. Consider the Bellman equation,

V β
n (x, a, µ) = min

y≤x∧ymax

[λx + µF (y) + β ∫ q(dν)p(a, dw)V β
n−1(x− y + w,w, ν)] (12)

, min
y≤x∧ymax

hβ
n(y, x, a, µ)

Define:

hβ(y, x, a, µ) , λx + µF (y) + β ∫ q(dν)p(a, dw)W β(x− y + w,w, ν) (13)

Let n →∞ on both sides in (12). By the monotone convergence theorem (p. 377 of [19]),

lim
n→∞

∫ p(a, dw)q(dν)V β
n−1(x− y + w,w, ν) = ∫ p(a, dw)q(dν)W β(x− y + w,w, ν)

Since V β
n−1 → W β uniformly on compact sets, hβ

n(y, x, a, µ) → hβ(y, x, a, µ) uniformly on compact

sets. Hence

lim
n→∞

min
y≤x∧ymax

hβ
n(y, x, a, µ) = min

y≤x∧ymax

hβ(y, x, a, µ)

Thus W β satisfies:

W β(x, a, µ) = min
y≤x∧ymax

[λx + µF (y) + β ∫ q(dν)p(a, dw)W β(x− y + w,w, ν)] (14)

(14) is the Bellman equation for the Infinite Horizon Discounted Cost Problem. By standard arguments,

we have V β = W β = limn→∞ V β
n , and,

V β(x, a, µ) = min
y≤x∧ymax

[λx + µF (y) + β ∫ q(dν)p(a, dw)V β(x− y + w,w, ν)] (15)

Note also that since the infinite horizon Bellman equation is satisfied, there exists an optimal stationary

policy for the infinite horizon β-discounted problem, given by

y∗(x, a, µ) = arg min
y≤x∧ymax

[λx + µF (y) + β ∫ q(dν)p(a, dw)V β(x− y + w,w, ν)] (16)

Lemma 4: For all µ, x′ ≥ x, a′ ≥ a,

V β(x′, a′, µ) + V β(x, a, µ) ≥ V β(x, a′, µ) + V β(x′, a, µ). (17)

This follows from the corresponding property of V β
n from Theorem 4 by passing to the n → ∞ limit

therein.
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VI. UNCONSTRAINED AVERAGE COST PROBLEM

In this section, we prove the existence of an optimal stable stationary policy for the unconstrained

average cost problem. We do so under the additional assumptions of Section III.

The proof technique considers a suitably renormalized infinite horizon discounted value function. We

first prove the boundedness and equicontinuity of this renormalized value function. This is proved in

Lemma 12. To prove this lemma, we develop the arguments in Lemma 5, 6, 7, 8, 9, 10 and 11. This

follows Athreya-Ney-Nummelin pseudo-atom construction (Chapter 5 of [22]) combined with a pathwise

comparison. This is different from the earlier uses of pure ‘coupling at pseudo-atom’ argument. We then

use a novel proof technique to show that the renormalized infinite horizon value functions and thereby

the average cost value functions are bounded from below. This is proved in subsequent Lemma 13 and

Theorem 8 and 38. We can thus prove our main results, i.e., Theorems 1 and 2. We develop these

arguments in this section.

Recall that a stationary policy is stable if the one dimensional marginals of the corresponding Markov

process remain tight. If so, a stationary distribution exists. The process is ergodic if this stationary

distribution is unique. Then the time averages of functions of the Markov process that are integrable w.r.t.

the stationary distribution converge a.s. to their respective averages w.r.t. this distribution. Under our

minorization condition, stationarity automatically implies ergodicity.

Theorem 7: There exists a stationary distribution π for the Markov Chain < Wn >. Also, there exists

c > 0, 0 < γ < 1 such that

| ∫ w[p(n)(a, dw)− π(dw)]| ≤ cγn, ∀n > 0. (18)

A proof can be found in [22]. The additional burden of verifying ‘geometric ergodicity’ therein is unnec-

essary here because we have a compact state space anyway. Next, we state a result which will be used to

prove the subsequent lemma.

Lemma 5: For all a, µ,

|V β(x′, a, µ)− V β(x, a, µ)| = O[|x′ − x|+ |x′ − x|(x′ + x)]. (19)

Proof: Let x′ > x and (x′ − x) ≤ ymax−w0

2 , ∆ where w0 denotes the stationary expectation of

the arrival sequence < Wk > and ymax denotes the maximum number of packets that can be transmitted
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in a slot. Wk is the arrival process with W0 = a. Let < Yk > be optimal for the process:

Xk+1 = Xk − Yk + Wk+1, X0 = x,W0 = a, µ0 = µ.

Let τ be the index of the first slot such that Yn ≤ (ymax −∆) (recall that the slots are numbered starting

with 0). Consider the process < X ′
k > defined inductively as:

X ′
k+1 = X ′

k − Y ′
k + Wk+1, X0 = x′

where

Y ′
k =

 x′ − x + Yk if τ = k,

Yk otherwise.

The channel state process < µn > remains the same for both. It is easy to check that for n ≤ τ ,

(X ′
n −Xn) = (x′ − x), and for n > τ , (X ′

n −Xn) = 0. Using the fact that < Y ′
k > need not be optimal

for < X ′
k >, and that, V β(x′, a, µ) ≥ V β(x, a, µ), it is easy to see that

V β(x′, a, µ)− V β(x, a, µ) ≤ E[(τ + 1)λ(x′ − x)] + µmax[F (x′ − x + Yτ )− F (Yτ )]

≤ λ(x′ − x)(Eτ + 1) + η′µmax(x′ − x) = λ(x′ − x)Eτ + η(x′ − x), (20)

where η′ is the Lipschitz constant for F (y), 0 ≤ y ≤ ymax and η = (µmaxη′ + λ). Here, µmax is the

maximum possible channel fading in a slot.

We now derive an upper bound on E[τ ]; more precisely, we prove that E[τ ] ≤ C1 + C2x for suitable

constants C1, C2 > 0. Note that Xn ≤ (ymax −∆) ⇒ Yn ≤ (ymax −∆) ⇒ τ ≤ n. Let τ̂ = the index

of the first slot when Xn ≤ ymax −∆. Note that Xm ≥ (ymax −∆) for m < τ , hence τ ≤ τ̂ , a fact we

shall use in order to derive an upper bound on E[τ ].

Let n0 > 1 be such that for n ≥ n0,

E(W1 + W2 + · · ·+ Wn|W0 = w) ≤ n

(
w0 +

∆
2

)
(21)

This is possible because 1
nE[

∑n
m=1 Wm|W0 = w] → w0.

Let Zn = Xnn0 . Let Zn ≥ n0ymax and τ̂ > nn0. Note that if Zn ≥ n0ymax and τ > nn0,

τ ≥ (n + 1)n0. This is because the maximum number of packets that can be transmitted in a slot is ymax
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and therefore Xm ≥ ymax for nn0 ≤ m < (n + 1)n0.

E(Zn+1 | Zn)− Zn

= E(−Ynn0 + Wnn0+1 − Ynn0+1 + Wnn0+2 − · · · − Y(n+1)n0−1 + W(n+1)n0
| Zn)

= E(Wnn0+1 + · · ·+ W(n+1)n0
| Zn)− E(Ynn0 + · · ·+ Y(n+1)n0−1 | Zn)

≤∗ n0

(
w0 +

∆
2

)
− n0(ymax −∆)

= −n0
∆
2

.

(*) follows by (21) and the fact that Yn > (ymax − ∆) for n < τ̂ . Thus, Vliap(x) = x is a Liapunov

function for the process < Xk > for k < τ̂ . A standard argument (See p. 268 in [22]) then shows that

the expected hitting time of the set [0, n0ymax] for the process < Xk > is bounded by K(1+x) for some

K > 0 for all x. Next, we prove that if x ≤ n0ymax, there exists a constant C such that E[τ̂ ] ≤ C.

Combining the two, it will follow that E[τ̂ ] and hence E[τ ] is bounded by K ′(1 + x) for some K ′ > 0

for arbitrary x. Thus we assume that x ≤ n0ymax. Assume also that x > (ymax − ∆) since otherwise

τ̂ = 0. For n ≥ n0,

Pr[τ > n|X0 = x,W0 = w]

=∗1 Pr[X0, X1, . . . , Xn > (ymax −∆)|X0 = x,W0 = w]

= Pr[x > (ymax −∆), (x− Y0 + W1) > (ymax −∆), . . . ,

(x− Y0 + W1 − Y1 + W2 − . . .− Yn−1 + Wn) > (ymax −∆)|W0 = w]

≤∗2 Pr
[
x +

n∑
i=1

Wi − n(ymax −∆) > (ymax −∆)
∣∣∣W0 = w

]
= Pr

[ n∑
i=1

Wi − E

n∑
i=1

Wi > (ymax −∆) + n(ymax −∆)− x− E

n∑
i=1

Wi

∣∣∣W0 = w
]

≤∗3 Pr
[ n∑

i=1

Wi − E

n∑
i=1

Wi > (ymax −∆) + n(ymax −∆)

−x− n
(
w0 +

∆
2

)∣∣∣W0 = w
]

= Pr
[ n∑

i=1

Wi − E

n∑
i=1

Wi > n
(∆

2
+

ymax −∆− x

n

)∣∣∣W0 = w
]
.

• (∗1) follows by the fact that τ̂ > n =⇒ Xm ≥ (ymax −∆).

• (∗2) follows since for n < τ , Yn ≥ (ymax −∆).
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• (∗3) follows by (21).

Let n1 be such that n1 ≥ n0, ymax−∆−n0ymax

n ≥ −∆
4 for n ≥ n1, and n ≥ 2wmax

δ
“

∆
2

+
ymax−∆−n0ymax

n

” for

n ≥ n1. By the Hoeffding’s inequality for Markov chains [29], for n ≥ n1,

Pr[τ̂ > n|X0 = x,W0 = w] ≤ exp

[
−δ2

(
n∆

4 −
2wmax

δ

)2
2nw2

max

]
. (22)

Thus, for x ≤ n0ymax,

E[τ̂ |X0 = x,W0 = w] = 1 +
∞∑
i=1

Pr[τ > i|X0 = x,W0 = w]

≤ n1 +
∞∑

i=n1

exp

[
−

δ2
(
i∆

4 −
2wmax

δ

)2
2iw2

max

]
= C

for some C < ∞. This is because the ith term of the series on the right is O(e−Ki) for a suitable K > 0

independent of x,w and the series is therefore summable uniformly w.r.t. these variables. Thus for

x ≤ n0ymax, E[τ̂ ] ≤ C. We had proved earlier that for arbitrary x, the hitting time of the set [0, n0ymax]

for the process < Xk > is O(x). It follows that E[τ ] = O(x) for arbitrary x whenever (x′ − x) ≤ ∆.

We write this fact as: E[τ ] ≤ αx + η for some suitable constants α, η > 0.

We now remove the assumption that (x′ − x) ≤ ∆.

V β
(
x′, a, µ

)
− V β (x, a, µ)

=
bx′−x

∆
c−1∑

n=0

[
V β (x + (n + 1) ∆, a, µ)− V β (x + n∆, a, µ)

]
+
[
V β
(
x′, a, µ

)
− V β

(
x +

⌊
x′ − x

∆

⌋
∆, a, µ

)]

≤
bx′−x

∆
c−1∑

n=0

[λα (x + n∆) + η]∆ +
(
λαx′ + η

)(
x′ − x−

⌊
x′ − x

∆

⌋
∆
)

= (λαx + η) ∆
⌊

x′ − x

∆

⌋
+

λα∆2

2

(⌊
x′ − x

∆

⌋
− 1
)(⌊

x′ − x

∆

⌋)
+
(
λαx′ + η

)(
x′ − x−

⌊
x′ − x

∆

⌋
∆
)

≤ (λαx + η)
(
x′ − x

)
+

λα

2
(
x′ − x

)2 +
(
λαx′ + η

) (
x′ − x

)
= 2η

(
x′ − x

)
+ λα

(
x′ + x

) (
x′ − x

)
+

λα

2
(
x′ − x

)2
= O

[
|x′ − x|+ |x′ − x|(x′ + x)

]
.
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This proves the lemma.

Definition 4: ζ(n) = ∫ w|p(n)(a′, dw)− p(n)(a, dw)|.

Lemma 6: i) ζ(n) ≤ k1|a′ − a|,

ii) ζ(n) ≤ k2γ
n,

for some constants k1 and k2, and γ is as in Theorem 7.

Proof: i)

ζ(n) = ∫ w|p(n)(a′, dw)− wp(n)(a, dw)|

= ∫ wp(n−1)(y, dw)|p(a′, dy)− p(a, dy)|

≤ ∫ wp(n−1)(y, dw)|p(a′, dy)− p(a, dy)|

= ∫ |p(a′, dy)− p(a, dy)| ∫ wp(n−1)(y, dw)

≤ ∫ wmax|p(a′, dy)− p(a, dy)|

≤ c0wmax|a′ − a|

by (6). Thus the first part of the lemma is true with k1 = c0wmax.

ii) Follows trivially by use of Theorem 7 with k2 = 2c.

Lemma 7: Let a′ > a. Then,
∞∑

n=1

nkζ(n) ≤ fk(a′ − a),

where fk(x) → 0 as x → 0, for all k.

Proof: Without loss of generality, let k2 > 2k1wmax/γ. Let n0 ≥ 0 be such that

k2γ
n0 ≥ k1|a′ − a| ≥ k2γ

n0+1. (23)

It is easy to check that

n0 =

⌊
log(k1

k2
|a′ − a|)

log γ

⌋
. (24)

Then
∞∑

n=1

nkζ(n) =
n0∑

n=1

nkζ(n) +
∞∑

n=n0+1

nkζ(n)

≤
n0∑

n=1

nkk1|a′ − a|+
∞∑

n=n0+1

nkk2γ
n

= k1Pk(n0)|a′ − a|︸ ︷︷ ︸
T1

+ k2Fk(n0)︸ ︷︷ ︸
T2
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for appropriately defined Pk and Fk. Now, limx→0 x(log x)n = limy→∞(−y)ne−y = 0 (for y =

− log x), for all n. Using the value of n0 from (24) in the above equation, it follows that T1 → 0 as

|a′−a| → 0. Also, note that as |a′−a| → 0, n0 →∞, and hence, T2 → 0. Also, T1 and T2 are functions

of |a′ − a| because n0 is. The lemma follows.

Now, we describe in brief the Athreya-Ney-Nummelin construction (see [22]) of pseudo atom to con-

struct another Markov chain M̌ related to the Markov chain M ≈< Wn >. The construction is as

follows: Let W̌ = W × {0, 1}, where, W 0 = W × {0} and W 1 = W × {1} are thought of as copies

of W , equipped with copies B(W 0) and B(W 1) of the Borel sigma field B(W ) of W . Let B(W̌ ) denote

the smallest sigma field containing sets of the form A0 := A × {0}, A1 := A × {1}; A ∈ B(W ). Let

x0, w0, a0 denote elements in W 0 and x1, w1, a1 denote elements in W 1. For each measure λ on W , we

define a measure λ∗ on W̌ as follows:

λ∗(A0) = (1− δ)λ(A)

λ∗(A1) = δλ(A)

We now define the Markov chain M̌ on W̌ by listing down the single step transition kernel p̌.

p̌(x0, ·) =
p∗(x, ·)− δν∗(·)

1− δ

p̌(x1, ·) = ν∗(·) (25)

That is,

p̌(x0, A0) = p(x,A)− δν(A)

p̌(x0, A1) =
δ

1− δ
[p(x,A)− δν(A)]

p̌(x1, A0) = (1− δ)ν(A)

p̌(x1, A1) = δν(A)

Note that these probabilities are well defined since the Minorization Condition, (7) holds. It is easy to

prove (see p. 104 of [22] for the second claim, the first follows easily by induction.) that

p̌(n)(xi, A1) =
δ

1− δ
p̌(n)(xi, A0), i = 0, 1,

p(n)(x,A) = (1− δ)p̌(n)(x0, A0 ∪A1) + δp̌(n)(x1, A0 ∪A1). (26)

The Markov chain M can be recovered from M̌ as follows: Let the initial distribution on M be λ(dw).
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Let the initial distribution on M̌ be λ∗(dw). Then it is easy to prove by use of (26) that

∫
W

λ(dw) Pr(wn ∈ An, . . . , w1 ∈ A1|w0 = w)

= ∫
W̌

λ∗(dw̄) Pr(w̄n ∈ A0
n ∪A1

n, . . . , w̄1 ∈ A0
1 ∪A1

1|w̄0 = w̄) (27)

Thus if n is the smallest time at which the chain is in W 1, the behavior of the chain from time (n +

1) onwards is independent of where the chain started. This is because, as can be checked from (25),

p(x1, ·) is independent of x1. This property about M̌ helps derive many useful properties about M̌ , and

corresponding properties about M can be proved by use of (26). The set W 1 is called the Pseudo Atom.

Next we state a few definitions and observations.

We define a partial order, ≥, on W̌ as follows:

Definition 5—Partial Order, ≥, on W̌ : wi
1 ≥ wj

2 if i = j and w1 ≥ w2. Note that if i 6= j, wi
1 and wj

2

are not related by the partial order ≥.

Definition 6—Stochastic Dominance, �, on W̌ : Let p̌ and q̌ be probability measures on W̌ . We say

that p̌ � q̌ if p̌|W 0 � q̌|W 0 and p̌|W 1 � q̌|W 1 for all wi ∈ W̌ .

Lemma 8: Let X̌1 and X̌2 be random variables in W̌ . Let X̌1 ∼ p̌, X̌2 ∼ q̌. Let p̌ � q̌. Then, there

exist random variables X̌ ′
1 and X̌ ′

2 such that X̌ ′
1 ∼ p̌, X̌ ′

2 ∼ q̌, and X̌ ′
1 ≥ X̌ ′

2 a. s.

This is a trivial extension of Lemma 2.

Lemma 9: p̌(x′0, ·) � p̌(x0, ·), p̌(x′1, ·) = p̌(x1, ·), where x′ ≥ x.

This is easy to prove.

Recall that our Markov chain M is the packet arrival process. Since M can be recovered from M̌ , we

identify our packet arrival process with the chain M̌ . By using the structure on M̌ , we will relate different

sample paths of the packet arrival process and derive useful results.

Let < Wk > and < W ′
k > be packet arrival processes with W0 ∼ (1 − δ)κ(a0) + δκ(a1), W ′

0 ∼

(1 − δ)κ(a′0) + δκ(a′1), where κ(x) stands for the Dirac measure at x. For each sample path < wik
k >

of the process < Wk >, we associate a corresponding sample path < w′i′k
k > of the process < W ′

k > as

follows:

• Case I: k is such that ir = 0, 0 ≤ r ≤ (k−1). Assume, inductively, that w′i′r
r ≥ wir

r , 0 ≤ r ≤ (k−1),

and i′r = ir, 0 ≤ r ≤ (k − 1). Now, p̌(w′i
′
k−1

k−1 , ·) = p̌(w′0
k−1, ·) � p̌(w0

k−1, ·) = p̌(wik−1

k−1 , ·). By

Lemma 8, we can have an association wherein w′i′k
k > wik

k , which also implies that i′k = ik.

• Case II: There exists k′ < k such that ik′ = 1, i.e., < Wm > has hit the pseudo-atom before k. In

this case, associate, w′i′k
k = wik

k .
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Thus, to each path < wk
ik >, we associate a corresponding sample path < w′i′k

k > such that w′i′k
k ≥

wk
ik , and equality holds for n ≥ (n0 + 1), where n0 is the smallest integer for which in0 = 1.

Definition 7—Coupling Time, τc : The time when < Wk > hits W 1 for the first time is called the

coupling time, and is denoted by τc.

Note that by our construction, < W ′
k > also hits W 1 at this time and this is the first time the two processes

‘meet’ at W 1. The reason for this nomenclature is that < Wk > and < W ′
k > get “coupled” at this time

in the sense that for all future time, W ′
k = Wk. We will need the following two lemmas:

Lemma 10:

Pr(τc = n) = δ(1− δ)n, n ≥ 0.

Proof: Note that W0 ∼ (1− δ)κ(a0) + δκ(a1). Thus,

Pr(W0 ∈ W 0) = 1− δ,

Pr(W0 ∈ W 1) = δ.

From (25), it is easy to see that

Pr(Wk+1 ∈ W 0 | Wk ∈ W 0) = 1− δ,

Pr(Wk+1 ∈ W 1 | Wk ∈ W 0) = δ.

Now,

Pr(τc = 0) = Pr(W0 ∈ W 1) = δ.

Hence

Pr(τc = n)

= Pr(W0 ∈ W 0,W1 ∈ W 0, . . . ,Wn−1 ∈ W 0,Wn ∈ W 1)

= Pr(W0 ∈ W 0)
[ n−2∏

k=0

Pr(Wk+1 ∈ W 0 | Wk ∈ W 0)
]
Pr(Wn ∈ W 1 | Wn−1 ∈ W 0)

= (1− δ)(1− δ)n−1δ

= δ(1− δ)n.
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Definition 8: p̌
(n)
τ (ai, Aj) , Pr(Wn ∈ Aj | W0 = ai, τc = τ).

Lemma 11: Given τc = τ ≥ 1,

p̌(n)
τ (a0, A0) =

p(n)(a,A)− δηn(A)
(1− δ)n

, 0 ≤ n ≤ τ − 1,

p̌(n)
τ (a0, A1) = 0, 0 ≤ n ≤ τ − 1,

p̌(n)
τ (a0, A0) = 0, n = τ,

p̌(n)
τ (a0, A1) =

p(n)(a,A)− δηn(A)
(1− δ)n

, n = τ.

where ηn are positive measures satisfying∫
W

p(n)(a, dw)− δηn(dw)
(1− δ)n

= 1.

Proof: We first prove the lemma for n = 1.

Case 1: τ > 1. This means that W1 ∈ W 0. This implies that p̌
(1)
τ (a0, A1) = 0.

p̌(1)
τ (a0, A0) = Pr(W1 ∈ A0 | W0 = a0, τc = τ)

=
Pr(W1 ∈ A0, τc = τ | W0 = a0)

Pr(τc = τ | W0 = a0)

=
Pr(τc = τ | W1 ∈ A0, W0 = a0) Pr(W1 ∈ A0 | W0 = a0)

Pr(τc = τ | W0 = a0)

=
Pr(τc = τ | W1 ∈ A0)p̌(a0, A0)

Pr(τc = τ | W0 = a0)

=
(1− δ)τ−1[p(a,A)− δν(A)]

(1− δ)τ

=
p(a,A)− δν(A)

1− δ
.

Thus the claim is true in the case τ > 1, n = 1, with η1 ≡ ν.

Case 2: τ = 1. The proof is similar to Case 1, and indeed, η1 ≡ ν.

Let the lemma be true for n = k. We prove the lemma for n = (k + 1).
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Case 1: τ > (k + 1). Clearly, p̌
(k+1)
τ (a0, A1) = 0.

p̌(k+1)
τ (a0, A0)

=
∫

W 0

p̌(1)
τ (a0, dy0)p̌(k)

τ (y0, A0)

=
∫

W

[p(a, dy)− δν(dy)
(1− δ)

· p(k)(y, A)− δηk(A)
(1− δ)k

]
=

p(k+1)(x,A)− δ
[
ηk(A)− δηk(A) +

∫
W ν(dy)p(k)(y, A)

]
(1− δ)k+1

.

Thus, with ηk+1(A) = [ηk(A)− δηk(A) +
∫
W ν(dy)p(k)(y, A)], Case 1 follows.

Case 2: τ = (k + 1). A similar proof can be given, and indeed, ηk+1 is the same as in Case 1.

The lemma follows by induction.

Next, we estimate V β(x, a′, µ)−V β(x, a, µ). Let < Yk > be optimal for the process < Xk >, defined

inductively as:

Xk+1 = Xk − Yk + Wk+1, X0 = x,W0 ∼ (1− δ)κ(a0) + δκ(a1), µ0 = µ.

Consider the process < X ′
k > defined inductively, for 0 ≤ k ≤ τc as:

X ′
k+1 = X ′

k − Yk + W ′
k+1, X0 = x,W ′

0 = W0 ∼ (1− δ)κ(a0) + δκ(a1), 0 ≤ k ≤ τc, µ0 = µ

where, to each sample path < wik
k > of < Wk > we have associated the sample path < w′i′k

k > of

< W ′
k > as before. The channel fading process < µn > is the same for both. Since w′

k > wk, the policy

< Yk > is admissible in the process < X ′
k >. Note also, that < Yk > need not be optimal for < X ′

k >.

Hence, for k ≥ 0,

E
[
V β(X ′

k,W
′
k, µk)− V β(Xk,Wk, µ)] ≤ E

[
λ(X ′

k −Xk)

+ β
{

V β(X ′
k+1,W

′
k+1, µk+1)− V β(Xk+1,Wk+1, µk+1)

}]
.

Iterating over 0 ≤ k ≤ τc and taking expectations,

V β(x, a′, µ)− V β(x, a, µ) ≤ E
[
λ

τc∑
k=0

βk(X ′
k −Xk)

+ βτc+1
{

V β(X ′
τc+1,W

′
τc+1, µτc+1)− V β(Xτc+1,Wτc+1, µτc+1)

}]
. (28)
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But

E

[
τc∑

k=0

βk(X ′
k −Xk)

]

≤ E

[
τc∑

k=0

(X ′
k −Xk)

]

= E

[
τc∑

k=1

(τc − k + 1)(W ′
k −Wk)

]

=
∞∑

n=1

p(τc = n)E

[
n∑

k=1

(n− k + 1)(W ′
k −Wk)

∣∣∣ τc = n

]

=∗1
∞∑

n=1

δ(1− δ)n
n∑

k=1

(n− k + 1)
∫

W 0

w
[
p̌(k)

τc
(a′0, dw0)− p̌(k)

τc
(a0, dw0)

]
=∗2

∞∑
n=1

δ(1− δ)n
n∑

k=1

(n− k + 1)
ζ(k)

(1− δ)k

=
∞∑

k=1

ζ(k)
∞∑

n=k

(n− k + 1)δ(1− δ)n−k

=
∞∑

k=1

ζ(k)

( ∞∑
n=0

(n + 1)δ(1− δ)n

)

=∗3 O

( ∞∑
n=1

ζ(n)

)
=∗4 O[f0(|a′ − a|)] → 0 as a′ → a. (29)

Here

• (∗1) follows from Lemma 10.

• (∗2) follows from Definition 4 and Lemma 11.

• (∗3) follows by interchange of summations.

• (∗4) follows by Lemma 7.

November 5, 2007 DRAFT



25

Thus for some K > 0,

E[V β(X ′
τc+1,W

′
τc+1, µτc+1)− V β(Xτc+1,Wτc+1, µτc+1)]

=∗1 E[V β(X ′
τc+1,Wτc+1, µτc+1)− V β(Xτc+1,Wτc+1, µτc+1)]

=
∞∑

n=0

p(τc = n)E

[
V β

(
x−

n∑
k=0

Yk +
n∑

k=1

W ′
k + Wn+1, Wn+1, µn+1

)

−V β

(
x−

n∑
k=0

Yk +
n+1∑
k=1

Wk, Wn+1, µn+1

)∣∣∣∣∣τc = n

]

≤∗2 K

∞∑
n=1

p(τc = n)E

[(
n∑

k=1

W ′
k −

n∑
k=1

Wk

)

+

(
n∑

k=1

W ′
k +

n∑
k=1

Wk

)(
n∑

k=1

W ′
k −

n∑
k=1

Wk

)∣∣∣∣∣τc = n

]

≤∗3 K

∞∑
n=1

p(τc = n)

[
n∑

k=1

ζ(k)

(1− δ)k
+ 2nwmax

n∑
k=1

ζ(k)

(1− δ)k

]

=∗4 O

( ∞∑
n=0

nζ(n)

)
=∗5 O[f0(|a′ − a|) + f1(|a′ − a|)] → 0 as a′ → a. (30)

• (∗1) follows because for n > τc, W ′
n = Wn.

• (∗2) follows by Lemma 5.

• (∗3) Here, we have used the fact that if X and Y are non-negative random variables and the maximum

possible value of X is xmax, E(XY ) ≤ xmaxEY . In this case, X = [
∑n

k=1 W ′
k +

∑n
k=1 Wk] and

Y = [
∑n

k=1 W ′
k −

∑n
k=1 Wk].

• (∗4) follows by interchanging summations, as in (29) above.

• (∗5) follows by Lemma 7.

Using (29) and (30) in (28), we get:

V β(x, a, µ′)− V β(x, a, µ) ≤ O(f0(|a′ − a|) + f1(|a′ − a|)). (31)

It follows by Theorem 5, Lemma 5 and (31) that

V β(x′, a′, µ′)− V β(x, a, µ)

≤ k1[|x′ − x|+ |x′ − x|(x′ − x)] + k2(f0(|a′ − a|) + f1(|a′ − a|))

+|µ′ − µ|F (min(ymax, x)). (32)
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Definition 9—V̄β: V̄ β(x, a, µ) = V β(x, a, µ)− V β(0, 0, 0).

Lemma 12: i) For all x, a, µ, there exists M depending on x, a, µ such that V̄ β(x, a, µ) ≤ M for

all β.

ii) V̄ β, β ∈ (0, 1), is an equicontinuous family of functions.

Both parts of the lemma follow from (32).

Lemma 13: There exists M such that (1− β)V β(0, 0, 0) ≤ M for all β.

Proof:

V β(0, 0, 0) =∗1 β ∫ q(dν)p(0, dw)V β(w,w, ν)

≤ βV β(wmax, wmax, µmax)

≤∗2 β[V β(0, 0, 0) + k1(wmax + w2
max) + k2(f0(wmax) + f1(wmax))

+µmaxF (min(wmax, ymax))]

⇒ (1−β)V β(0, 0, 0) ≤ β[k1(wmax+w2
max)+k2(f0(wmax)+f1(wmax))+µmaxF (min(wmax, ymax))]

Here, k1 and k2 are some constants. (∗1) follows by the Bellman equation and (∗2) follows by (32). The

lemma follows.

By Lemma 12, V̄ β is a bounded equicontinuous family of functions. By the Arzela-Ascoli Theorem

(see p. 214 of [19]), there exists a sequence < β′n >↑ 1 such that limn→∞ V̄ β′n = V̄ , and the convergence

is uniform on compacts. By Lemma 13, (1−β)V β(0, 0, 0) is bounded. Hence, there exists a subsequence

< βn > of < β′n >, βn ↑ 1, such that limn→∞(1 − βn)V βn(0, 0, 0) = ρ, for some ρ. Consider the

Bellman equation, (15),

V β(x, a, µ) = min
y≤x∧ymax

[λx + µF (y) + β ∫ q(dν)p(a, dw)V β(x− y + w,w, ν)].

After some manipulation and using Definition 9,

V̄ β(x, a, µ) = min
y≤x∧ymax

[λx + µF (y)− (1− β)V̄ β(0, 0, 0)

+ β ∫ q(dν)p(a, dw)V̄ β(x− y + w,w, ν)].

Letting β → 1 on both sides along βn, we get:

V̄ (x, a, µ) = min
y≤x∧ymax

[λx + µF (y)− ρ + ∫ q(dν)p(a, dw)V̄ (x− y + w,w, ν)]. (33)
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This follows by arguments similar to those used to prove the convergence of V β
n to V β in Section V,

except that in place of the Monotone Convergence Theorem, we have to use the Dominated Convergence

Theorem (see p. 381 of [19]). The applicability of the Dominated Convergence Theorem follows by

use of (32). The uniform convergence on compact sets follows by equicontinuity. (33) is the Bellman

equation for the Average Cost problem. Let v = (x, a, µ) denote the state. Define:

y∗(v) = arg min
y≤x∧ymax

[λx + µF (y)− ρ + ∫ q(dν)p(a, dw)V̄ (x− y + w,w, ν)]. (34)

Note that y∗ is a stationary policy. Recall that we want to minimize Cλ = P + λD, where P and D are

defined in Definition 1.

Theorem 8: The ρ in (33) equals the optimal Cλ, attained when policy y∗ is used.

Proof: Let ρopt be the infimum of all achievable average costs. Since the chain is ergodic under

y∗, ρopt is independent of the initial state. Also, it is known that stable stationary policies suffice for

optimality [23]. We will first prove that V̄ is bounded from below. We have

(1− β) inf V β ≤ (1− β)E[
∞∑

n=0

βn(µnF (yn) + λxn)],

where the expectation on the right is under some stable stationary policy π and an arbitrary deterministic

initial state. Averaging both sides w.r.t. the stationary distribution under π and then taking infimum over

all such π, we obtain, in view of the above observation from [23], that (1−β) inf V β ≤ ρopt. It is easy to

see that V β(x, a, µ) ↑ ∞ as x ↑ ∞ and hence this infimum is a minimum attained at some (xβ, aβ, µβ).

Let yβ(·) denote the optimal stationary policy for the β−discounted problem. In view of the dynamic

programming equation (15) above, we have

0 = λx + µF (yβ(x, a, µ)) + β

∫
q(dν)p(a, dw)V β(x− y + w,w, ν)− V β(x,w, µ).

Therefore, at (xβ, aβ, µβ), we have:

0 ≥ λxβ + βV β(xβ, aβ, µβ)− V β(xβ, aβ, µβ),

that is,

λxβ ≤ (1− β)V β(xβ) ≤ ρopt.

That is, V β and hence V̄ β attain their minimum on the bounded set {||x|| ≤ ρopt

λ }. Then so will V̄ .

Now, let vn = (xn, wn, µn) denote the state at the beginning of the nth slot. Also, let cn(vn, yn) =

[λxn + µnF (yn)] be the nth step cost. From the Bellman equation, it follows that

V̄ (vn) = min
yn≤xn∧ymax

[cn(vn, yn)− ρ + E[V̄ (vn+1)|vn]]. (35)
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Thus

V̄ (vn) = c(vn, y∗(vn))− ρ + E[V̄ (vn+1)|vn].

Taking expectation of both sides given the initial state v0,

E[V̄ (vn)|v0] = E[c(vn, y∗(vn))|v0]− ρ + E[V̄ (vn+1)|v0]

⇒
N−1∑
n=0

E[V̄ (vn)|v0] =
N−1∑
n=0

E[c(vn, y∗(vn))|v0]−Nρ +
N−1∑
n=0

E[V̄ (vn+1)|v0]

⇒ 1
N

N−1∑
n=0

E[c(vn, y∗(vn))|v0] = ρ +
V̄ (v0)− E[V̄ (vN )|v0]

N

⇒∗1 lim sup
N→∞

1
N

E[
N−1∑
n=0

c(vn, y∗(vn))|v0] ≤ ρ

⇒ ρopt ≤ ρ.

Here (∗1) uses Fatou’s lemma (Chapter 6 of [19]) and the fact that V̄ (·) is bounded from below. Next we

prove that ρ ≤ ρopt. Since stationary policies suffice for optimality, there exists a stationary policy which

attains the optimal average cost. (This can be proved a priori by the general techniques of [23]. Even

otherwise, one could argue with an ‘ε−optimal stationary policy’ instead with slight additional work.)

Let π0 be the stationary policy which attains the optimal average cost for the average cost problem. Now

for a stationary policy π,

lim inf
N→∞

1
N

E

N−1∑
n=0

c(vn, yπ(vn)) = lim sup
N→∞

1
N

E

N−1∑
n=0

c(vn, yπ(vn)) (36)

By the Tauberian theorem (see [30]), and (36), it follows that for any stationary policy π,

lim
N→∞

1
N

E

N−1∑
n=0

c(vn, yπ(vn)) = lim
β↑1

(1− β)E
∞∑

n=0

βnc(vn, yπ(vn)) (37)

Now,

V β(0, 0, 0) ≤ Jβ
π0

(0, 0, 0)

⇒ lim
β↑1

(1− β)V β(0, 0, 0) ≤ lim
β↑1

(1− β)Jβ
π0

(0, 0, 0)

⇒∗ ρ ≤ ρopt

(*) follows from the definitions of ρ, ρopt and π0 and from (37). This proves the theorem.

Theorem 9: i) (33) uniquely specifies ρ as ρopt. Also, if (V, ρopt) is another continuous solution

to (33) satisfying Es[|V (Xn) − V̄ (Xn)|] < ∞, where Es[ · ] is the stationary average under any
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optimal strategy, then V differs from V̄ by at most an additive scalar on the support the stationary

law of any optimal stationary policy.

ii) V̄ (x, a, µ) is continuous increasing in a, µ and continuous convex increasing in x.

iii) For all µ, x′ ≥ x, a′ ≥ a,

V̄ (x′, a′, µ) + V̄ (x, a, µ) ≥ V̄ (x, a′, µ) + V̄ (x′, a, µ) (38)

(This is the ‘supermodularity’ property for V̄ .)

Proof: Uniqueness of ρ is proved as above. Let (V, ρopt) be another solution to (33) with V

continuous and Es[|V (Xn)− V̄ (Xn)|] < ∞. Consider the process governed by the stationary policy y∗

above. Since this policy in particular has finite cost, it follows that it is stable. Consider the stationary

< Xn > governed by y∗. By the definition of y∗,

0 = −V̄ (Xn) + λXn + µnF (y∗(Xn,Wn, µn))− ρopt + E[V̄ (Xn+1)|Xn].

Also, since (33) is satisfied by (V, ρopt),

0 ≤ −V (Xn) + λXn + µnF (y∗(Xn,Wn, µn))− ρopt + E[V (Xn+1)|Xn].

From above, it follows that V̄ (Xn) − V (Xn), n ≥ 0, is a supermartingale with supm Es[|V (Xm) −

V̄ (Xm)|] = Es[|V (Xn)−V̄ (Xn)|] < ∞. Thus it must converge a.s. by the supermartingale convergence

theorem. Since < Xn > is ergodic, this is possible only if V − V̄ is constant a.s. w.r.t. the stationary law

of Xn. By continuity, it is so on the support thereof. The first claim follows. Using Definition 9 it is easy

to see that the second and the third claims hold for V̄ β . Let β → 1 along βn to conclude.

In order to prove the structural results, we need the following technical result:

Theorem 10: Let h be a function of (n + 2) variables, viz., scalars y, x, and n-dimensional vector s.

Let S be a sublattice of Rn. The sublattice structure defines a partial order > on S. Let h be defined on

the set (x, y, S), where x ∈ R, and 0 ≤ y ≤ x ∧ ymax. Let h be a continuous function. Let h satisfy

decreasing differences in (y, x, s), that is, for x′ ≥ x, s′ ≥ s, y′ ≥ y, and y, y′ ≤ x:

h(y′, x′, s′)− h(y, x′, s′) ≤ h(y′, x, s)− h(y, x, s). (39)

Let

D∗(x, s) = arg min{h(y, x, s)|y ∈ [0, x]}.

Then,
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• For each (x, s), D∗(x, s) is a non-empty compact sublattice of R, and admits a greatest element

denoted by y∗(x, s).

• y∗(x′, s′) ≥ y∗(x, s) whenever x′ ≥ x, s′ ≥ s.

Proof: This follows along the lines of Theorems 10.7 and 10.12 of [31].

We now prove structural results about the optimal stationary policies. Note that y(x, a, µ) denotes the

number of packet transmissions in state (x, a, µ). Note that since the policy is stationary, the action taken

depends only on the present state.

Theorem 11: There exists an optimal stationary policy such that y∗(x′, a′, µ′) ≥ y∗(x, a, µ), for all

x′ ≥ x, a′ ≥ a, µ′ ≤ µ.

Proof: Let χ = −µ, χ′ = −µ′. Thus, x′ ≥ x, a′ ≥ a, χ′ ≥ χ.

Let y′ ≥ y, and y, y′ ≤ x. Lemma 14 (Appendix - C) and (38) imply that

[
V̄ (x′ − y + w,w, µ)− V̄ (x′ − y′ + w,w, µ)

]
↑ as w ↑ ∀µ. (40)

Lemma 1 and (40) imply∫
q(dµ)p(a′, dw)

[
V̄ (x′ − y + w,w, µ)− V̄ (x′ − y′ + w,w, µ)

]
≥
∫

q(dµ)p(a, dw)
[
V̄ (x′ − y + w,w, µ)− V̄ (x′ − y′ + w,w, µ)

]
. (41)

By convexity,

V̄ (x′ − y + w,w, µ)− V̄ (x′ − y′ + w,w, µ)

≥ V̄ (x− y + w,w, µ)− V̄ (x− y′ + w,w, µ), ∀µ. (42)

Using (42) in (41) we get∫
q(dµ)p(a′, dw)

[
V̄ (x′ − y + w,w, µ)− V̄ (x′ − y′ + w,w, µ)

]
≥
∫

q(dµ)p(a, dw)
[
V̄ (x− y + w,w, µ)− V̄ (x− y′ + w,w, µ)

]
. (43)

Define

h(y, x, a, µ) = λx + µF (y) +
∫

q(dν)p(a, dw)V̄ (x− y + w,w, ν).

Set h̄( · , · , · , · ) = h( · , · , · , − · ). Manipulating (43), we get

h̄(y′, x′, a′, χ′)− h̄(y, x′, a′, χ′) ≤ h̄(y′, x, a, χ)− h̄(y, x, a, χ), (44)
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where in the notation of Theorem 10, s = (a, χ), and h̄ satisfies decreasing differences. By Theorem 10,

the claim follows.

This completes the proofs of Theorems 1 and 2. By Theorem 2 and the discussion that follows it, the

same holds for the constrained problem when F is strictly convex.

VII. CONCLUSIONS

We have derived structural properties of the optimal transmission policy across a randomly varying

channel for a single transmitter. By casting it as a constrained Markov decision process in discrete time

with time-averaged costs, we prove structural results about the dependence of the optimal policy on

buffer occupancy, number of packet arrivals in the previous slot and the channel fading for both i.i.d.

and Markovian arrivals and channel states. When the packet arrival process is FSD Markovian and the

channel fading is i.i.d., there exists an optimal stationary deterministic policy which is increasing in buffer

occupancy and number of packet arrivals in the previous slot, and decreasing in the channel fading state.

When the packet arrival process is FSD Markovian and the channel fading is Markovian, there exists an

optimal stationary deterministic policy which is increasing in buffer occupancy and number of packet

arrivals in the previous time slot. Nothing can, in general, be said about the nature of the optimal policy

with respect to channel fading.

The main contribution is the methodology developed for the average cost criterion for continuous state

spaces, which, while being the preferred one in communications applications, is notoriously difficult to

handle rigorously. This methodology combines a pathwise comparison based on stochastic dominance

with ‘coupling at pseudo atom’ to establish boundedness of the renormalized discounted value function,

uniformly in the discounted factor as it tends to zero. It also uses a novel argument to show that the

discounted value function itself attains its minimum on a bounded set independent of the discount factor,

a fact that plays a key role in analyzing the dynamic programming equation for the ergodic problem. We

expect the techniques developed here to have much broader implications.

VIII. ACKNOWLEDGEMENTS

The authors would like to acknowledge the anonymous reviewers for their comments to improve the

quality of the manuscript.

November 5, 2007 DRAFT



32

APPENDIX

A. Proof of Theorem 3

Let x < x′. Let the arrival process < Wk > be defined on some probability space (Ω,F , P ). Let

< Y ′
k > be optimal for < X ′

k > given inductively by

X ′
k+1 = X ′

k − Y ′
k + Wk+1, X ′

0 = x′,W0 = a, 0 ≤ k ≤ (n− 1). (45)

In particular, Y ′
k ≤ ymax ∀k. Construct inductively, with the same channel fading process,

Xk+1 = Xk − Yk + Wk+1, X0 = x,W0 = a, 0 ≤ k ≤ (n− 1), (46)

where Yk is the process min(Xk, Y
′
k). Note that Yk ≤ Y ′

k ≤ ymax ∀k. It is easy to prove that Xk ≤ X ′
k.

The channel state process {µn, n ≥ 1} is the same for both, with µ0 = µ. “With the same channel fading

process” means that we take the same realization of the random variable of channel fading for both X ′

and X .

Thus

Vn(x, a, µ) ≤ Jn,<Yk>(x, a, µ) = E

(
n−1∑
i=0

βi[λXi + µnF (Yi)] + λβnXn

)

≤ E

(
n−1∑
i=0

βi[λX ′
i + µnF (Y ′

i )] + λβnX ′
n

)
= Vn(x′, a, µ) (47)

Next we prove the continuity of Vn. Consider the same process < Wk > with W0 = a. Let < Yk > be

optimal for < Xk > given by

Xk+1 = Xk − Yk + Wk+1, X0 = x, 0 ≤ k ≤ (n− 1). (48)

Consider the process

X ′
k+1 = X ′

k − Yk + Wk+1, X0 = x′, 0 ≤ k ≤ (n− 1). (49)

It is easy to check that (X ′
k−Xk) = (x′−x). Also, the transmission process < Yk > is the same in both

cases. By using the fact that Vn(x′, a, µ) ≥ Vn(x, a, µ), it is easy to see that

0 ≤ Vn(x′, a, µ)− Vn(x, a, µ) ≤ Jn,<Yk>(x′, a, µ)− Vn(x, a, µ) =
n∑

i=0

βiλ(x′ − x)

=
λ(1− βn+1)

1− β
(x′ − x) ≤ λ

1− β
(x′ − x) (50)
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This proves the continuity of Vn and derives the required bound. Convexity is proved by induction.

V0(x, a, µ) = λx is a convex function. Assume that Vn−1(x, a, µ) is convex ∀a, µ. For x = x1, x2, let

the minimum in (9) be attained, respectively, at y = y1, y2. Then

Vn(x1, a, µ) = λx1 + µF (y1) + β ∫ q(dν)p(a, dw)Vn−1(x1 − y1 + w,w, ν)

Vn(x2, a, µ) = λx2 + µF (y2) + β ∫ q(dν)p(a, dw)Vn−1(x2 − y2 + w,w, ν)

Vn(x1, a, µ) + Vn(x2, a, µ) = λ(x1 + x2) + µ(F (y1) + F (y2))

+β ∫ q(dν)p(a, dw)[Vn−1(x1 − y1 + w,w, ν)

+Vn−1(x2 − y2 + w,w, ν)]

≥∗1 2
[
λ
(x1 + x2

2

)
+ µF

(y1 + y2

2

)
+β

∫
q(dν)p(a, dw)Vn−1

(x1 + x2

2
− y1 + y2

2
+ w,w, ν

)]
= 2hn

(y1 + y2

2
,
x1 + x2

2
, a, µ

)
≥∗2 2Vn

(x1 + x2

2
, a, µ

)
(∗1) follows by the convexity of Vn−1 and F . (∗2) follows since hn(y, x, a, µ) ≥ Vn(x, a, µ) ∀x. This

proves the convexity of Vn assuming the convexity of Vn−1. By induction, Vn is convex for all n.

B. Proof of Theorem 4

Without loss of generality, let a′ ≥ a. We first prove that Vn(x, a′, µ) ≥ Vn(x, a, µ). Let < Wk > and

< W ′
k > denote arrival processes corresponding to a and a′ arrivals before slot zero. Thus, W0 = a and

W ′
0 = a′. To each sample path < w̃k > of < Wk >, we associate a sample path < w′

k > of < W ′
k > as

follows:

w′
0 = a′ ≥ a = w̃0. Assume inductively that w′

k ≥ w̃k. Now, w′
k+1 ∼ p(w′

k, dw) � p(w̃k, dw) ∼

w̃k+1. By Lemma 2, we can have an association wherein w′
k+1 ≥ w̃k+1 a.s.

Thus, we have arrival sequences < Wk > and < W ′
k > such that W0 = a, W ′

0 = a′, and W ′
k ≥ Wk

a.s. Let < Y ′
k > be optimal for < X ′

k >, defined inductively by

X ′
k+1 = X ′

k − Y ′
k + W ′

k+1, X
′
0 = x,W ′

0 = a′, 0 ≤ k ≤ (n− 1). (51)

Construct inductively, with the same channel fading process,

Xk+1 = Xk − Yk + Wk+1, X0 = x,W0 = a, 0 ≤ k ≤ (n− 1), (52)
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where < Yk >= min(Xk, Y
′
k) ≤ Y ′

k. Also, it is easy to see that Xk ≤ X ′
k. It follows that

Vn(x, a, µ) ≤ Jn,<Yk>(x, a, µ) = E

(
n−1∑
i=0

βi[λXi + µiF (Yi)] + λβnXn

)

≤ E

(
n−1∑
i=0

βi[λX ′
i + µiF (Y ′

i )] + λβnX ′
n

)
= Vn(x, a′, µ). (53)

We next derive the given bound. Consider the same processes < Wk >,< W ′
k >. Let < Yk > be

optimal for < Xk > given inductively by

Xk+1 = Xk − Yk + Wk+1, X0 = x,W0 = a, 0 ≤ k ≤ (n− 1) (54)

Consider the process

X ′
k+1 = X ′

k − Yk + W ′
k+1, X

′
0 = x,W ′

0 = a′, 0 ≤ k ≤ (n− 1) (55)

It is easy to check that

(X ′
k −Xk) =

k∑
i=1

(W ′
i −Wi) (56)

Denoting by p(k)(a, dw) the k-step transition kernel for < Wn >, we have,

E(W ′
k −Wk) = ∫ [wp(k)(a′, dw)− wp(k)(a, dw)]

= ∫ ∫ wp(k−1)(y, dw)[p(a′, dy)− p(a, dy)]

≤ ∫ ∫ wp(k−1)(y, dw)|p(a′, dy)− p(a, dy)|

= ∫ |p(a′, dy)− p(a, dy)| ∫ wp(k−1)(y, dw)

(57)

≤ ∫ wmax|p(a′, dy)− p(a, dy)|

= wmax ∫ |p(a′, dy)− p(a, dy)| (58)

Recall that wmax is the maximum number of packet arrivals in a slot. Note that the transmission process

< Yk > is the same in both cases. It is easy to see by use of (56) and (57) that

Vn(x, a′, µ)− Vn(x, a, µ) ≤ Jn,<Yk>(x, a′, µ)− Vn(x, a, µ)

≤ wmaxλβ

(1− β)2
∫ |p(a′, dy)− p(a, dy)| (59)

This completes the proof.
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C. Proof of Theorem 6

To prove this Theorem, we first prove the following technical Lemma.

Lemma 14: Let f(x, a) be a function which is convex in x for each a, and satisfies

f(x + ∆x, a + ∆a) + f(x, a) ≥ f(x, a + ∆a) + f(x + ∆x, a), (60)

where ∆x and ∆a are arbitrary non-negative real numbers. Then,

f(x + ∆x + w,w)− f(x + w,w)

increases with w.

Proof: Let ∆w > 0. Consider[
f(x + ∆x + w + ∆w,w + ∆w)− f(x + w + ∆w,w + ∆w)

]
−
[
f(x + ∆x + w,w)− f(x + w,w)

]
=
[
f(x + ∆x + w + ∆w,w + ∆w)− f(x + ∆x + w,w + ∆w)

−f(x + w + ∆w,w + ∆w) + f(x + w,w + ∆w)
]

+
[
f(x + ∆x + w,w + ∆w)− f(x + w,w + ∆w)

−f(x + ∆x + w,w) + f(x + w,w)
]

≥∗ 0 + 0

= 0,

where (*) follows by the convexity of f(·, w) and (60).

We can now prove Theorem 6 as follows.

Proof: V0(x, a, µ) = λx satisfies the assertion. Assume that the assertion is true for Vn−1. We will

prove that the assertion is true for Vn. Consider the Bellman equation,

Vn(x, a, µ) = min
y≤x∧ymax

[λx + µF (y) + β ∫ q(dν)p(a, dw)Vn−1(x− y + w,w, ν)] (61)

Let v1 = (x + ∆x, a + ∆a, µ), v2 = (x, a, µ). Let the minimum in (61) corresponding to v1, v2 be

attained, respectively, at y1, y2.
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Case 1: y1 − y2 ≤ ∆x.

y1 − y2 ≤ ∆x

⇒ x + ∆x− y1 + w ≥ x− y2 + w

⇒∗1 [Vn−1(x + ∆x− y1 + w,w, µ)− Vn−1(x− y2 + w,w, µ)] ↑ as w ↑

⇒∗2
∫

q(dν)p(a + ∆a, dw)[Vn−1(x + ∆x− y1 + w,w, ν)− Vn−1(x− y2 + w,w, ν)]

≥
∫

q(dν)p(a, dw)[Vn−1(x + ∆x− y1 + w,w, ν)− Vn−1(x− y2 + w,w, ν)]

⇒ Vn(x + ∆x, a + ∆a, µ) + Vn(x, a, µ)

= λ(x + ∆x) + µF (y1) + β

∫
q(dν)p(a + ∆a, dw)Vn−1(x + ∆x− y1 + w,w, ν)

+λx + µF (y2) + β

∫
q(dν)p(a, dw)Vn−1(x− y2 + w,w, ν)

≥ λx + µF (y2) + β

∫
q(dν)p(a + ∆a, dw)Vn−1(x− y2 + w,w, ν)

+λ(x + ∆x) + µF (y1) + β

∫
q(dν)p(a, dw)Vn−1(x + ∆x− y1 + w,w, ν)

= hn(y2, x, a + ∆a, µ) + hn(y1, x + ∆x, a, µ)

≥ Vn(x, a + ∆a, µ) + Vn(x + ∆x, a, µ)

where (∗1) follows by Theorem 1, the induction hypothesis that (10) holds for Vn−1, and Lemma 14. (∗2)

follows by Lemma 1 and our stochastic monotonicity assumption on a → p(a, ·).

Case 2: y1 − y2 ≥ ∆x.

y1 − y2 ≥ ∆x

⇒∗ F (y1) + F (y2) ≥ F (y1 −∆x) + F (y2 + ∆x)

⇒ Vn(x + ∆x, a + ∆a, µ) + Vn(x, a, µ)

= λ(x + ∆x) + µF (y1) + β

∫
q(dν)p(a + ∆a, dw)Vn−1(x + ∆x− y1 + w,w, ν)

+λx + µF (y2) + β

∫
q(dν)p(a, dw)Vn−1(x− y2 + w,w, ν)

≥ λx + µF (y1 −∆x) + β

∫
q(dν)p(a + ∆a, dw)Vn−1(x + ∆x− y1 + w,w, ν)

+λ(x + ∆x) + µF (y2 + ∆x) + β

∫
q(dν)p(a, dw)Vn−1(x− y2 + w,w, ν)

= hn(y1 −∆x, x, a + ∆a, µ) + hn(y2 + ∆x, x + ∆x, a, µ) ≥ Vn(x, a + ∆a, µ) + Vn(x + ∆x, a, µ)

(*) follows since F is convex. Thus, V0 satisfies the assertion of the theorem, and Vn satisfies the assertion

of the theorem on the hypothesis that Vn−1 does. By induction, the theorem is proved.
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