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Abstract—In this paper, we consider the problem of energy Recent studies suggest that significant performance gaims ¢
efficient _scheduling under average delay constraint for a aigl_e be obtained bycross layer approach [3] where the physical
user fading channel. We propose a new approach for on-line |avar characteristics can be exploited for resource diloga

implementation of the optimal packet scheduling algorithm This .
approach is based on reformulating the value iteration equion at the network layer. See [4] for an excellent overview ofsro

by introducing a virtual state called post-decision state. The layer resource allocation and other related issues.
resultant value iteration equation becomes amenable to on- There has also been a lot of interest in studying information
line implementation based on stochastic approximation. Tis  theoretic capacity aspects of fading channels. A compisihen
approach has an advantage that an explicit knowledge of the \q\je\y of recent developments has been given in [5]. For a
probability distribution of the channel state as well as thearrivals - . . .
is not required for the implementation. We prove that the online ~ Single user fading channel, it has been shown [6] that if the
algorithm indeed converges to the optimal policy. transmitter is aware of the channel state information, then
the channel capacity under the constraint on average power
can be maximized by the ‘water-filling’ power allocation ove
the fading states. This suggests that we should transmi¢ mor
information in good channel states and less in bad channel
. INTRODUCTION states in order to maximize the long term average throughput
Over the past few years, wireless networks have witnesggike also [7] for other notions of capacity of fading charnel
remarkable growth both in terms of number of subscribers andApart from fading characteristics, energy efficiency ials
number of applications. While the earlier growth in wiralesan important concern for wireless devices. It can be argued
networks was driven primarily by cellular telephony, theeet [8] that for most wireless communication systems, the power
years have seen an increase of wireless data and multimediguired to transmit a bit ‘reliably’ is an increasing and
applications [1]. These applications call for efficientaesce strictly convex function of the transmission rate for a give
allocation. The traditional view of resource allocation ifiading channel state. Thus, if we transmit at a lower rate,
packet networks is to treat the network architecture aswse can conserve energy, but this leads to packet delay at the
layered architecture [2]. In this layered architecture model,network layer. Moreover, as discussed above, since cgpacit
the network and link layers deal with packet level quality a6 maximized by transmitting in good channel states, the
service attributes like throughput, packet delay, loss ®etbile transmitter should defer the transmission of packets if the
the physical layer deals with information theoretic limits channel is bad. However, this also contributes to packetydel
reliable communication and practical means of achieving itat the network layer. This indicates a fundamental trade-of
Wireless channel is characterized Igding, i.e., signal between the average power and the average delay.
strength variations over time, frequency and space due tdn practice, it can be assumed that the channel coherence
constructive and destructive interference caused by paihis. times are reasonably long so that ‘near’ capacity rates ean b
Moreover, limited battery life at mobile hosts poses an adchieved by employing practically implementable codeword
ditional challenge in system design and resource allogati@nd yet the coherence times are smaller than the ‘packet dela
time-scale’ of interest at the network layer. Accordingly,
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assumptions on packet arrival and channel state processes. proximation based computation. But none of the related
Interestingly, this problem has also been considered for no work discussed above seems to have explored this issue
fading channel [16] and also for the case when the power in developing implementable optimal packet scheduling

required for transmission is a linear function of rate [Tifje algorithm.
model considered in this paper is similar to that of [8], [10] 2) Secondly and more importantly, the computation of the
[11], [12], [13], [14], [15] with a single user fading charine optimal policy using the above mentioned techniques

Under this model, the scheduling policy can be considered assumes the knowledge of the underlying model. This
as a control policy which decides the number of packets to  means that the knowledge of the probability distribution
be transmitted to maximize an average cost subject to some of both the arrival process and the channel state is
constraint. Thus this problem falls within the framework of necessary for the computation of optimal policy. This
constrained Markov decision process [18]. is usually not the case in practice. In [10], the authors
In [8], [9], the trade-off between the average delay and the  have proposed a suboptimal algorithm but even here,
average power has been analyzed. The delay-power trade-off the computation of the appropriate thresholds seems to
has also been quantified in the region of asymptoticallydarg assume the knowledge of the arrival process and channel
delays. In [9], structural results for optimal policy haveen state distribution.
derived. Structural results have also been discussed ih [11
for a policy which minimizes the average delay subject to a I
constrglint on the average power. It is proved in [9] and [1f Our Contributions
that there exists an optimal stationary policy which inse=sa  The primary contribution of this paper is to propose an on-
as the buffer occupancy increases, and decreases as tmekthdine learning algorithm to compute the optimal packet scited
state goes from good to bad. What this means in physical tering policy for single user fading channel, where the model is
is that for a fixed channel gain, the greater the queue lengtiot known. Recall that the Relative Value Iteration Alglonit
the more you transmit, and for a fixed queue length, the bet{®VIA) [20] is a well known algorithm for determining an
the channel, the more you transmit. A characterization ef tloptimal policy for classical MDP. In this paper, we propose
optimal scheduler has also been provided in [12] in terms afnew approach for on-line implementation of RVIA for the
a smaller class of deterministic schedulers. average cost CMDP such as the one studied in this paper. This
While the existence of a stationary optimal policy foapproach is based on reformulating the value iterationtémua
the average cost problem has been considered in [11] whBnintroducing a virtual state callepost-decision state. The
the packet arrival process is independent and identicadly dresultant value iteration equation has a nice structuré tha
tributed (i.i.d.), the problem becomes much more difficulends itself naturally to its on-line implementation bassd
when the arrival process is Markovian. For this case, in [8tochastic approximation framework. Note that like allesth
only the unconstrained average cost dynamic programmiwgrks [8], [10], [11], [13], [14], [15], we assume that the
formulation has been given. Subsequently, the model of [Bhnsmitter is aware of the channel state information at the
and [11] has been extended in [14] where the authors consibeginning of each time slot. But unlike others, an explicit
a more general state space version of the average cost Gamewledge of the probability distribution of the channedtst
strained Markov Decision Problem (CMDP). In this models well as the arrival process is not required for the pro-
both the arrival and the channel state process are condidggesed implementation. We also prove that the proposed on-
to be Markovian. In [13], a discrete state space version ef tline algorithm indeed converges to the optimal policy. The
same problem has been considered for correlated arrivdls @hallenge in developing an on-line algorithm has also been
correlated fading. In [10], it is observed that while sturel recognized recently in [21] where the author has extended
results of an optimal policy can be derived, it is very difficu the formulation of [8] for multi-user setting and proposed
to compute the optimal policy due to large state space sizm algorithm that does not require the model knowledge.
Accordingly, the authors suggest a suboptimal policy teafi However, this algorithm is only order-optimal.

‘thresholding’ type. They also suggest a mechanism to deriv The rest of the paper is organized as follows. We begin
the optimum thresholds for queue length and channel gainthis paper by discussing the system model in Section Il. The
While all the above approaches have provided significafgirmulation of the problem within the CMDP framework is

insights into the problem, none of them explicitly dealshwitpresented in Section Ill. This parallels the developmeri8]n

the computation of optimal packet scheduling algorithm. Con-and other related work discussed above. Our point of degartu

sequently, the practical implementation of the policy remaa will be the development after the formulation of the problem

an important open issue. This is primarily due to the follogvi within the framework of CMDP. In Section 1V, we introduce

two reasons- the concept of a post-decision state and reformulate thesval

1) Since the state space is very large, the standard dynaitécation. In Section V, we propose an on-line algorithm

programming algorithms are very hard to implemenbased on the post-decision state and stochastic appraaimat
The preferred technique for CMDP has been line&@onvergence of the on-line algorithm to the optimal policy
programming [18]. Combined with the more recenis proved in the Appendix. For illustration purposes, we
approach based on function approximation [19], thisnplement the algorithm and demonstrate its performance in
holds great promise. The structural results of the poligy wireless system in Section VI. We conclude the paper with
may help in the choice of basis functions in function apdirections for future research in Section VII.
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Fig. 1. System model
Il. SYSTEM MODEL communication whenX,, = z is given by,
In this section, we discuss the system model. As illustrated P(z,u) = W Ny (2% ~1). 3)

in Figure 1, we consider a single user fading wireless channe ’ x

Time is divided into slots of equal duration which is normalNote that for a givenz, the transmission poweP(z,u) is

ized to unity. Packets arrive at the transmitter buffer aetl gan increasing and strictly convex function of Though the
queued until they are transmitted. Ldf, € A = {0,..., A} complex channel gaidf,, (therebyX,) may be a continuous
denote the number of arrivals just at the beginning of slot random variable, we make a simplifying assumption tRat

The packet arrival procesgA,} is assumed to be an i.i.d.takes values only from a finite state spateand varies from
sequence. For simplicity, we make an additional assumptisiot to slot in an i.i.d. fashion. This approximation is ulépa
that every packet has a constant size, &hifs. Let(),, denote justified in practice and also has been used by other authors
the queue length at the beginning of stoandU,, denote the [8], [10].

number of packets transmitted in slotthen the dynamics of  The state of the above systefy at timen can be described

gueue length can be expressed as by the two tuple,S,, = (Q,, X,), comprising of the queue
length and the channel state. Note that the state space of
Qnt1 = max{Qn —Upn,0} + App1. (1) the systemS = Q x X is discrete and finite{U,,} denotes

: . o the control process taking values from the finite action spac
In practice, the transmitter buffer may have a finite sizg,Ba U = {0,..., B}. The control action determines the number of
and therefore, ¢ Q = {0,..., B}. However, compared t0 y4cketg/, to be transmitted in a slot. Since the transmitter
the packet arrival rate, we assurfieto be large enough so ascan at most transmit all the packets that are present in the
to neglect the probability of buffer overflow and hence packg frer at any time slot, we havé/, < Q,. The control
drops. Thus we do not consider the effect of finite buffer sizg scheduling policy is a sequence of functiofs,} where
in the queue dynamics mentioned above. 1 Specifiest/,, (more generally, the conditional law thereof)

The channel is assumed to be time varying willock given the past history of the system state and past controls
fading model, i.e., channel is constant over a slot duratiqub to time n. The conditional law of the staté,,,; of the
and changes only at slot boundaries. Under this model, if t[]ﬁderlying dynamical system given this history dependy onl
use_r tra_nsmits a signaj, in slot n, then the received signal upon the state,, and the controli,,, thus making it a Markov
Ry, is given by decision process. Let: S x U x S — [0, 1] denote the state

R, = Hyy, + Wy, (2) transition probability of this Markov Decision Process.
We note here that we can also handle Markov arrivals

where H,* denotes the complex channel gain due to fading, augmenting the state space further to include the arrival

and I,, denotes the complex additive white Gaussian noiggocess. The analysis will be similar. We avoid this geritgral
with zero mean and variancy®. Let X, = [H,|* be in the interest of notational simplicity.
called the channel state at tirneand W denote the received
signal bandwidth. If the transmitted signal corresponds to
transmittinglU,, = « packets, each of bits, then following _ _ _
the discussion in [8], the power required for error-fregatle ~~ AS discussed above, for a given the power required to
transmitu packets, i.e.P(z, ) is a convex function of.. Thus
1Random variables (RVs) are denoted with capital letterdentilues taken rOM an energy efficiency perspective, the policy shoulddoe t
by the RVs are denoted by small letters. transmit packets in small chunks. This may, however, lead to
2Usually, H,, is also assumed to be zero mean complex Gaussian rand ing of ki her sing delay. Our obiectit@ is
variable with unit variance under Rayleigh fading model. desmonstrated %fﬁe_ue_ g of packets thereby Cau 9 Y. . J .
minimize the average transmission power subject to canstra

later, the knowledge of explicit probability distributi@mf the channel gain is
not required for our approach. on the average packet delay.

I11. PROBLEM DESCRIPTION



A. Formulation as a Constrained Markov Decision Problem strictly convex function ofu). The unconstrained problem is
(CMDP) to determine an optimal stationary poligy(-) that minimizes

By Little’s law [2], the average delay is related to the

average queue length as,
Q = aD, (4) for a particular value of\ called the Lagrange Multiplier
(LM). L(-,-) is called the Lagrangian. The following dynamic

wherea is the average arrival rate. In the rest of the paper, Wgogramming equation provides the necessary condition for
treat average delay as synonymous with average queue lengifimality of the policy.
and ignore the proportionality constant Let c,(S,,U,)
denote the cost in terms of power required in transmitliag V' (s) = min [C(A, s,u) =B+ pls,u, 5')V(S')}, s’ €8,
packets when the state §,. Thusc,(S,,U,) = P(X,,Uy). s' (11)
Since the packets get queugd, they suffer a cost of bUﬁem\}\%ereB € R is uniquely characterized as the corresponding
Let ¢y(Sn, Un) = Qn. The time averaged power and QUEU§tima) cost per stage. If we imposé(s®) = 0 for a fixed
length can be expressed as, s € 8, V is unique [20]. Furthermore, an optimat must

L, A) = B [e(A, S 1(Sn))] (10)

_ 1 X satisfy,
P = limsup—EZcp(Sn,Un), and
N—oo N = support(u*(:|s)) C arg min [c()\, s,u) —
N
Q = limsup iE Z ¢q(Sn, Un), (5) B+ ZP(&% SI)V(SI)} Vs €S. (12)
N—oo N n=1 s

respectively. Our objective is to design a scheduler thai-mi By using standard arguments (see, e.g., [22]), it follovat th
mizes P subject to a constraint (say) on Q. It is a CMDP the constrained problem has a stationary, though possibly
with average cost and finite state and action spaces. It is w@&ndomized, optimal policy which is also optimal for the
known that a stationary randomized optimal policy exisgj[1 unconstrained problem considered in (10) for a particular
Hence we concentrate only on stationary randomized psliciehoice of A = \* (say). In fact, we know from [22] that the
characterized by(-|s) : s € S — probability measures on optimal stationary policy can be taken to teterministic for

U. That is, u(-|s) for each states specifies the distribution all but at most ones, i.e., there exists a unique*(s) such
with which the control in that state is applied. We assuntBat u*(u*(s)|s) = 1 andu* is the solution to the following
irreducibility of the chain under such policies. Théf,,} is equation,
an ergodic Markov chain and thus has a unique stationary
distributionp”. Let E* denote the expectation w.r#". Under

a randomized policy:, the costs in (5) can be expressed as, 8+ Zp(s’u78/>v(sl)} Vs € S. (13)

S A
P2 B[S 1(Sa))| = 3 o ()ululs)e (s, (), o o
w,s Furthermore, for the single (if any) statdor which this fails,
(6)  1u(-|s) is supported on exactly two points. The optimal average
and, cost 8 gives the minimum power consumed* subject to

A pule (S s _ u the specified delay (or equivalent queue length) constraint
@ [cq( i "))} ;p (s)ululs)eq(s, p(s)); Moreover, the followingsaddle point condition holds:

u*(s) = argmin {c()\*, s,u) —

(7) L(u*,N) < L(u*, A*) < L(p, A* 14

respectively. Then the scheduler objective can be stated as (% ) < L7, A7) < L, A7), (14)
Minimize P subject to O < 4. ©®) . For a fixed\, thg Relative Val_ue Iteration Algonthm (RVIA_)
is a known algorithm for solving the dynamic programming

equation for the unconstrained problem in an iterativeitash

B. The Lagrangian Approach The average cost RVIA for determining the value function
The constrained problem in (8) can be converted into &fch that (11) is satisfied can be written as:

unconstrained one using standard Lagrangian approach [18]

[22]. In this section, we discuss the Lagrangian formutatio Vata(s) = ufenUi&)[C(N&u) +
and the corresponding dynamic programming equation. The , , 0
treatment in this section is standard and follows [20], [22] > pls,u, 8 )Wals)] = Va(s”), (15)

Nevertheless, we include it here for introducing the notati
and for an easier understanding of the rest of the paper. wheres,s’,s € S and s° is any fixed stateV,, () is an
Let A > 0 be a real number. Define: R* xS xU — R estimate of the value function after iterations for a fixed
as follows, LM .
RVIA (15) requires the knowledge of transition probabdti
c(A, 5,u) = cp(s, u) + Alcq(s,u) = 0). ©) p(s,u, s’) which in turn requires the knowledge of channel
Note that the functiore(-,,u) is a strictly convex function state and packet arrival distributions which are unknown. |
of u (as the power required to transmit packets is a the rest of the paper, we address this limitation by promgpain



new approach based on post-decision state. We begin by firstet f(n) be a positive update sequence that has the follow-
introducing the concept of a post-decision state. ing properties,
> (f(n))?

f(n) =
IV. POST-DECISION STATE FRAMEWORK Zn:

We define the post-decision statto be the virtual state Then, following the theory of stochastic approximation][25
of the system immediatelgfter taking a decision bubefore Wwe can remove the expectation from (17), and perform av-
the action of the noise. Let = (¢,z) be the stateS of the eraging via the following update equation. Recall that=
system in some time slot and the transmitter transhiits v (@n, X»),n > 0, is our state process. K= (g,z), the post-
packets, then the post-decision state denoted by € S is decision state at time, then do:
q—u,z). If A = a arrivals occur in the post-decision state - . ~
gnd the >channel gain changes ¥ = 2/, then the system Vat1(5) (1= J(n)Va(5) +f(n){
reaches the next actual system state, which can also be calle min[c(A, (¢+ Ant1, Xnt1),u)
the pre-decision state,(¢’, ') = (¢ — u + a,2').

Let V : S — R be the value function based on the post-
decision state given by

(18)

V(3) = E*[V(9)].
where E° is the expectation taken over all the pre-decision —Va
states that can be reached from the post-decision &thet { - iy o~

Vir1(3") v 8§ # s

be the law for the arrivals ane(-|-) the transition probability
function for the channel state process. THénsatisfies the  The algorithm (19) is a primal RVIA scheme that attempts
post-decision dynamic programming equation: o (¢, ), to solve the dynamic programming equation for a fixed value
of the LM .
Let e(n) be a positive update sequence that has the same
properties ag (n) expressed in (18). To reach the saddle point
of the Lagrangian in (14), we introduce the following LM

g.
_ iterations,
From (15) and (16), we get the ‘one component at a time’

RVIA based on post-decision state as follows. Bt If the
post-decision state at timeis § = (¢, x), then do:

Vua(®) = 3 Ca)m(a']o)

a,z’

(19)

mm [c(\, (g + a,2"),u)

=2l min

+V((g+a—u,2))) - (16)

= AP\n + e(n) (Q” - 5)]’

where we use the projection operatoto project the LM onto
interval [0, L] for large enougtL > 0, to ensure boundedness
of the LM. We impose the following additional requirements
on the update sequencgén) ande(n),

Vo (5) = 2 (f(m)* +em)’) <oo,  lim Zw —0.
The important thing to note here is that we update only the The complete primal-dual RVI algorithm can be expressed
5-th component, not the rest. This is to lay ground for thes: forS, = 3 = (¢, z),
on-line scheme we propose below, which is perforce ‘one at . ~ -
a time’, because one learns only about the current state bein Vat1(3) Va(3) + f(n)

Aot 1 (20)

)(min e(2, (g + a,27), u)
+Va((g 4+ a —u,2"))]) = Vi (3%);
Vi(3") V5" #5. (17) eln) (21)

observed, and can, therefore, update only the correspgndin {min[c()\n, (g4 Any1, Xnt1),u)
component. Y .
+V:rL((q + ArH—l —Uu, X7L+1))] V ( )
=0
V. ON-LINE ALGORITHM *V( )} (22)
_ In this section, we propose an on-line algorithm to evaluate Va1(5") = Va(3) V 5" #5, (23)
V. We note that the RVIA (15) is not amenable to on-line A1 = Ay +e(n) (Qn —0)]. (24)

implementation because of the occurrenceneh operator

outside the averaging operation w.r.t. an unknown conuttio
law. On the other hand, (17) has a useful structure in t
sense that thexpectation operation has been moved outside
of the min operator. Thexpectation can thus be dropped by
performing averaging in time in order to determine the optim

That these iterates, indeed, converge to the optimal vatues
IE)roved in the Appendix. In (22, 23, 24), iterating simulta-
neously on the primal variable as well as the dual variable
Bn different timescales ensures that the update rates of the
primal and dual variables are different. The dual variakle i
updated on a slower timescale than the primal variable. This

value function.

3Similar ideas have been around in the literature before, sep, [23],
[24].

means that as viewed from the slower LM timescale, the
primal variable appears to be equilibriated or convergeti¢o
optimal value corresponding to the current value of LM, whil



as viewed from the faster value function timescale, the LM VI. SIMULATION RESULTS

values appear to be almost constant. This can be interpasted

iterating the LM after every:,, = % ~> 1 iterations of the =~ We implement Algorithm 1 in a simulation environment
value function. Note that separation of timescales intoagu USing MATLAB where we simulate the single user scenario
a ‘leader-follower’ behaviour among the two Componenp‘gepicted in Figure 1. We simulate a time slotted system with
(fast and slow) of the algorithm which prevents the possibfdot duration of1 msec. Although the algorithm does not
interference of one in the convergence of the other if thélgpend on any distribution for the channel gdin for the
were run concurrently on the same timescale. We prove in tAgrPoses of modeling, we simulate an i.i.d. Rayleigh channe
Appendix that this scheme converges ‘almost surely’ (a.s.) 8Cross slots. For a Rayleigh model, channel skate an expo-

entially distributed random variable with probabilityrehity

Based on on-line primal-dual RVI computations (22, 2 1 =

24), the transmitter implements the scheduling scheme Upction aven by fx (x) ol wherea is the mean Of_
. : . . . We discretize the channel into eight equal probabilitysbin
explained in Algorithm 1. We assume that the transmitter is. . -
: : with the boundaries specified by (-co, —8.47 dB), [-8.47
aware of the value of channel stakg, in each time slot. In
ractice, this may be achieved by receiver first estimatireg {dB, —5.41 dB), [-5.41 dB, —3.28 dB), [~3.28 dB, —1.59
P ' y be & abyt . dB), [~1.59 dB, —0.08 dB), [-0.08 dB, 1.42 dB), [1.42 dB,
channel state and then informing this to the transmittentgh
i . . 3.18 dB), [3.18 dB, oo ) }. We choose the channel state space
a feedback mechanism. In each time slot, the transmitier

: : obeXx ={2!=-13dB,2? = -8.47 dB, * = —5.41 dB,
determines the number of packet arrivals, channel state anpti 398dB, 4% = —1.59 dB, 2 — —0.08 dB, 27 — 1.42

current queue length. The number of packets to be transmlttgeB’ 28 — 3.18 dB}. This discretization of the state space of

IS thgn determined as explained in Algqnthm 1. The valu/% has been justified in [10]. We know from (3) that the power
functions and the LM are then appropriately updated. The . " )

. : . réquired for transmitting:. packets when the channel state is
algorithm thus continues in each stot

z is given by,P(z,u) = foW (2u/W 1), whereNj is the
power spectral density of the additive white Gaussian noise

and WV is the received signal bandwidth. We assulie= 5
0 Vge Q,z € X, the LM\ «— 0, the slot counten «+ 1, .MHZ anql the pr.odchJ\.fO o be .nor_mal_lzed t.d' we S|mulqte
, i.i.d. arrivals with a Poisson distribution with med&n This
queue lengthy < 0, channel states < 0,2’ «— 0. Let| . "" o - o
0 1 1 implies that the probability of generatingpackets is given
reference statg” = (0,z'), wherez' € X. . Yy .
» while TRUE do by p(5) = e We assume that packets are of equal size
3 Determine number of arrivalsl, ; = a and channe| ¢ = 5000 bits. We also assume that the transmitter can transmit

state X, 1, =z’ in the current slot. 1 to 8 packets in a slot. In practice, it can correspond to

) ; L .| transmission using the following modulation schemes - Bina

4: Transmitu packets, sucr) that minimizes the r.h.; n Phase Shift Keying (BPSK), Quadrature Phase shift Keying
(22), thereby, powet(z',u) required to transmiti| ooy e o adrature Amplitude Modulation (QAM), 16-
packets is also determined (using (3)). ! P '

5. Update the componest— 1. ) of the value funciiop 30k X S X Bt 2 epectral
matrix using (22). Rest of the components of the matri P

remain unchanged Iéfficiency of 1 — 8 bits/sec/Hz, and withiW = 5 MHz,
s Update the LM\ us;in 24) O = o) slot duration of1 msec and packet sizé = 5000 bits,
7: ng ent+1,qeq i o—u ; T_qx,' the transmitter can potentially transmit— 8 packets/slot

8: end while respectively.

1: Initialize the value function matri¥/ (3) = V(g z) «—

: . s We perform several experiments to validate the analytical
Algorithm 1. The On-Line Algorithm resultsi.) While the converr)gence results are asymptotic, we
demonstrate that for all practical purposes, the quastitie
, ) i LM, power and delay converge within reasonable number of

Remark 1:.Wh|Ie the thet_)retlcal convergence is proved iy qiions Consequently, for long file transfers lastipgesal
the Appendix, our swn_ulaﬂon resulfts demonstrate that COlaconds, the algorithm essentially operagtimally for a vast
vergence of the algorithm occurs in reasonable number gt i of the file transfer duration. In all the experimenwe
iterations (time slots) for practical purposes. In long filgjjate the algorithm fot00, 000 time slots. For the LM and
transfer applications, the duration of transfer is of théeorof -\ o £ nction update, we cr’loos(az) — 10 andf(n) = —is.
seconds, while the slot duration in wireless systems is ef th " e
order of milli-seconds. Hence, non-optimality may be there

. Experi 1 nvi f LM for vari n-
only for certain part of data transfer. periment 1. Convergence o or various delay co

straints, arrival rates and channel gains: This experiment
Remark 2: In practical scenarios, we may not wait for thejemonstrates the convergence behaviour of the)\Lh each
actual convergence to take place, but would like to be with#lot, arrivals are generated with Poisson distributiomwiean
a prescribed neighborhood of the optimal solution with high — 2 packets/msec, i.e., arrival rate 1$ Mbits/sec. We
probability. Results of [26] give a bound on the number cdhoosen = 0.4698 (—3.28 dB). In each slot, we generatk
iterations required for the iterate to be within a givenaliste ysing the exponential distribution with meanWe determine
from the convergence point thereafter with a prescribedh highe channel state based on the partition that contilins
probability. as explained above. We then use Algorithm 1 to determine the
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number of packets that must be transmitted, the transmission 1 2 3 4 5 6 7 8 9 1010*
power P(z,u) and update the LM\ and the value function Time slots

matrix V. We plot the variations in\ for delay constraints of Fig. 5. Convergence of average delay for various averagsy deinstraints
8 msec,16 msec and20 msec in Figure 2. From Figure 2, it

can be observed that the LM converges in alzio0 slots.

Each time slot may, typically, correspond tomsec. Thus

convergence can be achieved in ab®weconds.

We repeat this experiment for average arrival ratess of 80 — T o p——— T

. . . . . i . e
Mbits/sec, 10 Mbits/sec and15 Mbits/sec with the delay oL Av. power conv., delay constrant: 16 msec - _
constraint a24 msec and the average channel siatéo be Av. power conv., delay constraint: 20 msec ==

0.4698 (—3.28 dB). The convergence behaviour of LMfor 60 | .

various arrival rates has been plotted in Figure 3. We furthe

50 H x ***_X***X*X%*%)ﬁ*){**'X%X%*****%X%X%X%X%*'%%%*){%%*)&?
repeat the experiment with average channel stas0.4698, o o0, onoomonoTEoRasasEsS oo -
0.6934 and0.9817, i.e, —3.28 dB, —1.59 dB, and—0.08 dB. 40 ; b
We keep the delay constraint 260 msec and average arrival 30 | i

rate § at 2 packets/msec, i.el,0 Mbits/sec. The convergence

behaviour of LM for various channel gains has been plotted < 20

in Figure 4. Figures 3 and 4 illustrate that the LM converges 1o L i

in approximateh2000 slots for all the arrival rate and channel

gain variations. ° T 2 3 4 5 o6 7 8 o 1010*
Experiment 2: Convergence of delay and power for various Time slots

delay constraints: In this experiment, we demonstrate theig 5 convergence of average power for various delay caints

convergence behaviour of the average delay and the average

power for various delay constraints. We determine the mopni

verage power (Watts)
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Fig. 8. Power-delay curve for various average channelsstate Fig. 10. Power-arrival rate curve
averages of the queue lengl§” and the power expendde)” Experiment 4: This experiment demonstrates the range of
in slotn as follows arrival rates for which the algorithm satisfies a delay crist
w n—1_ 1 of 10 msec. We perform the simulations for the arrival raies
Qn' = ——@n1+ _Qn, 10, 15, 20, 25, 30, 35, 40 Mbits/sec by varying the meahof
pav _ "~ 1P“” 11D 5 the Poisson distribution ak 2, 3, 4, 5, 6, 7, 8, packets/msec.
L + nom (25 We choosen = 0.4698 (—3.28 dB). From Figure 9, it can

be observed that the average delay constraint is met till the
arrival rate become8 packets/msec ot0 Mbits/sec. Beyond
is, the arrival rate becomes more than the departure nate a
thus the delay constraint cannot be satisfied as it violdtes t
stability condition of the queue assumed in the formulatis
arrival rate nears the capacity, the average powernesjui

with Q§¥ = 0, Pg¥ = 0. The variations in¢” and P2¥ with
simulation time for the delay constraints ®msec,16 msec
and 20 msec are plotted in Figures 5 and 6 respectively.
keep the arrival raté at 2 packets/msec, i.el) Mbits/sec and
the average channel stateat 0.4698, i.e., —3.28 dB. Figures
5 and 6, illustrate that the average delay and average po L .
converge reasonably fast. or transmission is extremely high as can be observed from
Experiment 3: This experiment demonstrates that the alg(f—'gure 10.
rithm satisfies various average delay constraints. We parfo
the simulations for the delay constrairgts 12, 16, 20, 24, VII. CONCLUSIONS ANDDISCUSSIONS
28, 32, 36, 40 msec. We fix6# at 2 packets/msec, i.e., |n this paper, we have proposed an on-line learning algo-
10 Mbits/sec. We repeat the experiment for valuesaof  rithm for computing the optimal packet scheduling policy fo
0.4698,0.6934,0.9817, i.e, —3.28 dB, —1.59 dB, —0.08 dB.  single user fading channel, where the model is not known. The
From Figure 7, it can be observed that in all the cases, tBgrlier works [8], [10], [11], [13], [14], [15] have provide
average delay constraints are met. As the constraint on tRguable insights into the problem by proving the strudtura
delay increases, the average power required for transmissfesults under various assumptions (including that of more
decreases as can be observed from Figure 8. The plot ajgderal state spaces). But none of them deals explicitly wit
demonstrates the convex characteristics of the poweydelpe computation of optimal policy. We have proposed a new
curve that has been proved analytically in [8]. approach for on-line implementation of the optimal packet



scheduling algorithm. This approach is based on reforimgat and x(-|-) the transition probability function for the channel
the value iteration equation by introducing a virtual stzeibed state process. Note that the algorithm is unaware of these,
post-decision state. The resultant value iteration equatiorwe consider them only for the purpose of analysis. Let
is amenable to on-line implementation by using stochasfig, : RISl — RI°! be the map defined by,

approximation. Like other related work, we assume that the .

transmitter has a perfect knowledge of channel state, mwev(TAV)(g) - Z ﬁ(m/lm)da){ uglqlila [C()" (g+a,27),u)
an explicit knowledge of the transition probability furarti of a,!
the channel state as well as the distribution of arrivalsois n +Vo(g+a—u,2')] },

required for computing the policy. We have also proved that
the on-line algorithm indeed converges to the optimal golic = (@) es (29)
Our simulation results have illustrated the performancthef Define 7} : RISI — RISI by T} (V) = T\ (V) — g(V)n. The
algorithm under various scenarios and demonstrate that A can be written as:

algorithm can converge in reasonable number of slots far it t -

be practically useful with satisfaction of delay consttain Var1(8) = Va(8) + f(n)[Tx, (Va(3)) = 9(Va(5)) = Va(3)
In this paper, our focus has been on implementing on- +Mp1(3)],
line algorithm for single user fading channel. The problerw, , ,(3") = V,(3) V " # 3,

of packet sched_uling for multi-user fadin_g channel under Mst = AP +e(n) (Qn — 0], (30)
various assumptions has been explored in [27], [28], [29],

[30]. However, extension of the problem considered in thighere, fors = (¢, z),

paper (i.e., energy efficient delay constrained schedufioig ~ .

multi-user setting has not received much attention, netabl M4 (5) = ugﬁgln,+1[c()"’L’ (g4 Any1, Xnya),u)
exceptions being [21], [31]. We are currently investiggtinis V(g + Apgr — u, Xpg1)] — Th, (Vi (3)).

problem and the applicability of the framework developed in

this paper for its on-line implementation. Another issuatthLet 7, denote ther-algebrao (S, Am, U, m < n),n = 0.
is worth investigating is how the structural properties foé t It can be verified thak [, 1|F,] = 0. Consider

optimal policy can be exploited to speed up the convergence

time of the algorithm. V(t) = T(V(1) - V(D). (31)
It can be argued as in [32] that as- oo, V (t) converges to
APPENDIX the unique fixed point of}(-), i.e., V* such that
Here we prove: (V) = VA (32)
Theorem 1. For the algorithm (22, 23, 24), the iterates
(Vs An) — (V, 2%). HenceV/* is the globally asymptotically stable equilibrium for
We T above ODE.

We prove this in several steps. First, note that the purpotgt'e
of subtractingV;, (3°) from the r.h.s. in (22) is to keep the Lemma 1: The post-decision value function iteratés;, }
iterates stable. It turns out thf, (3°) converges to the optimal 'éMain bounded a.s. o ois P
average cost per stagé. More generally, we can replace  Froof: Considerl’ t RIS — RISl defined by,

V,.(3°) with a generic offset termy(V,,) if we make the (797)(z) = S™ s(2' |z mm Viota—u ) —alz)m.
following assumption on the functiop: R/l — R [32]. Ve Z (& lz)¢(a ) [ (@ )l =g(@)n

a,z’

Assumption 1: ¢(-) is Lipschitz and fornp equal to the (33)
constant vector of all’s in RI®I, g(n) = 1 andg(x +cn) = ThenT‘) is also a contraction w.rlt - ||,,, lim.— o M =
g(x) + c for ¢ € R. We further assume that(ax) = ag(x) 7°(V), and the ODE,
for a > 0. . ~

With Assumption 1, a generalized form of the primal-dual V( ) =T°V) -V, (34)

algorithm (22, 23, 24) can be written as follows. If the pos

decision state at time is S, = 5 = (g, z), then do: ﬁwas origin as the globally asymptotically stable equilibmi

(again, by arguments of [33]). This is the scaled limit of the

Vii1(3) = Vi(3)+ f(n) ODE (34) in the sense of [34]. Note that it is independent of
) A. The claim follows from Theorem 2.1 of [34]. ]
{min[c(A”’ (¢ + Any1, Xni1) w) Lemma 2: In algorithm (26, 27, 28)V,, — V*» — 0 a.s.,
+f/n((q + Api1 —u, Xpg1))] — v, (3) whereV*+ is the value function based on post-decision state
- for A = \,..
*g(V"(S»}’ (26) Proof: The algorithm (30) is the standard stochastic ap-
17,”“(5”) = f/n(g) vV 3" #£3, (27) proximation algorithm with martingale difference noisg, ;.
Ast = AP +e(n) (Qn — 0)). (28) From (21) and (30) it can be seen that the LM is varied on

a much slower timescale than the post-decision relativeeval
We now proceed to show that the algorithm (26, 27, 28)nction estimaté/,,. Therefore, the post decision value func-
tracks an associated Ordinary Differential Equation (ODHipn iterationssee the LM to be almost constant. To be precise,
as described later. Recall thatis the law for the arrivals the X iterations in (30) can be written a5, 11 = A\, +v(n),



where v(n) O(e(n)) o(f(n))*. Hence the limiting
ODEs associated with (30) for analyzing the iterates are,
V(t) = T{(V(t) — V(t); At) = 0. Since A\(t) = 0, for
analyzing thel/, iterates, it suffices to consider the ODE,

(7]

(8]

TV () = V(1)

V) = (35)

El
for any prescribed value of the LM. The rest follows by [10]
standard arguments as in [35]. ]

The {\,} iterations are bounded since they are constrained
to remain in the intervall0, L]. We now prove that the
coupled iterates converge to their optimal valljéf§*,A*).

Let G(\) £ min, £(u, ). We reproduce the following results(12!
from [36].

Lemma 3: G is piecewise linear and concave. In particulari3]
it is continuously differentiable except at finitely manyimis
where both right and left derivatives exist.

Defineh()\) £ D P(8)c(A, 8,u), wherey is the optimal
stationary policy when LM\ is used (note that this introduces
an additional\—dependence not explicitly shown). Consider;s;

(36)

[14]

At) = h(A(®)) =,

constrained to remain if0, o).
Lemma 4. Equation (36) is same as the gradient ascent,

(37)

[16]

(17]

At) = VG(A(1)),

interpreted in the Caratheodory sense, i.e., as the irtegtg
equation,

[19]
t

A0)+ [ VG(A(s))ds, t>0. (38)
0 [20]
Proof: This follows using the ‘generalized envelope thel?!]
orem’ as in [36]. ]
Corollary 1: The iterates),, a.s. converge to the set off22]
maxima ofG.
This follows by standard arguments as in [36].
Corollary 2: {u,} converge to the set of optimal policies23]
corresponding to\ € arg max(G), a.s.
Note that any\ € argmax(G) is a valid Lagrange multi-
plier. This completes the proof of the theorem.

At)

[24]
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