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Abstract—In this paper, we consider the problem of energy
efficient scheduling under average delay constraint for a single
user fading channel. We propose a new approach for on-line
implementation of the optimal packet scheduling algorithm. This
approach is based on reformulating the value iteration equation
by introducing a virtual state called post-decision state. The
resultant value iteration equation becomes amenable to on-
line implementation based on stochastic approximation. This
approach has an advantage that an explicit knowledge of the
probability distribution of the channel state as well as thearrivals
is not required for the implementation. We prove that the on-line
algorithm indeed converges to the optimal policy.

Index Terms—Energy Efficient Scheduling, Stochastic Approx-
imation, Constrained Markov Decision Processes

I. I NTRODUCTION

Over the past few years, wireless networks have witnessed
remarkable growth both in terms of number of subscribers and
number of applications. While the earlier growth in wireless
networks was driven primarily by cellular telephony, the recent
years have seen an increase of wireless data and multimedia
applications [1]. These applications call for efficient resource
allocation. The traditional view of resource allocation in
packet networks is to treat the network architecture as a
layered architecture [2]. In this layered architecture model,
the network and link layers deal with packet level quality of
service attributes like throughput, packet delay, loss etc., while
the physical layer deals with information theoretic limitsfor
reliable communication and practical means of achieving it.

Wireless channel is characterized byfading, i.e., signal
strength variations over time, frequency and space due to
constructive and destructive interference caused by multipaths.
Moreover, limited battery life at mobile hosts poses an ad-
ditional challenge in system design and resource allocation.
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Recent studies suggest that significant performance gains can
be obtained bycross layer approach [3] where the physical
layer characteristics can be exploited for resource allocation
at the network layer. See [4] for an excellent overview of cross
layer resource allocation and other related issues.

There has also been a lot of interest in studying information
theoretic capacity aspects of fading channels. A comprehensive
review of recent developments has been given in [5]. For a
single user fading channel, it has been shown [6] that if the
transmitter is aware of the channel state information, then
the channel capacity under the constraint on average power
can be maximized by the ‘water-filling’ power allocation over
the fading states. This suggests that we should transmit more
information in good channel states and less in bad channel
states in order to maximize the long term average throughput.
(See also [7] for other notions of capacity of fading channel.)

Apart from fading characteristics, energy efficiency is also
an important concern for wireless devices. It can be argued
[8] that for most wireless communication systems, the power
required to transmit a bit ‘reliably’ is an increasing and
strictly convex function of the transmission rate for a given
fading channel state. Thus, if we transmit at a lower rate,
we can conserve energy, but this leads to packet delay at the
network layer. Moreover, as discussed above, since capacity
is maximized by transmitting in good channel states, the
transmitter should defer the transmission of packets if the
channel is bad. However, this also contributes to packet delay
at the network layer. This indicates a fundamental trade-off
between the average power and the average delay.

In practice, it can be assumed that the channel coherence
times are reasonably long so that ‘near’ capacity rates can be
achieved by employing practically implementable codewords
and yet the coherence times are smaller than the ‘packet delay
time-scale’ of interest at the network layer. Accordingly,in
this paper, we consider the problem of scheduling packets for
a single user over a point to point link where the objective
is to minimize the average power (required for ‘reliably’
transmitting at a given rate) subject to a constraint on the
average (queueing) delay.

A. Related Work

The problem of energy efficient scheduling with average
delay constraint was first addressed in the pioneering work of
[8], [9]. Subsequently, the other works [10], [11], [12], [13],
[14], [15] have also considered this problem under various
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assumptions on packet arrival and channel state processes.
Interestingly, this problem has also been considered for non-
fading channel [16] and also for the case when the power
required for transmission is a linear function of rate [17].The
model considered in this paper is similar to that of [8], [10],
[11], [12], [13], [14], [15] with a single user fading channel.
Under this model, the scheduling policy can be considered
as a control policy which decides the number of packets to
be transmitted to maximize an average cost subject to some
constraint. Thus this problem falls within the framework of
constrained Markov decision process [18].

In [8], [9], the trade-off between the average delay and the
average power has been analyzed. The delay-power trade-off
has also been quantified in the region of asymptotically large
delays. In [9], structural results for optimal policy have been
derived. Structural results have also been discussed in [11]
for a policy which minimizes the average delay subject to a
constraint on the average power. It is proved in [9] and [11]
that there exists an optimal stationary policy which increases
as the buffer occupancy increases, and decreases as the channel
state goes from good to bad. What this means in physical terms
is that for a fixed channel gain, the greater the queue length,
the more you transmit, and for a fixed queue length, the better
the channel, the more you transmit. A characterization of the
optimal scheduler has also been provided in [12] in terms of
a smaller class of deterministic schedulers.

While the existence of a stationary optimal policy for
the average cost problem has been considered in [11] when
the packet arrival process is independent and identically dis-
tributed (i.i.d.), the problem becomes much more difficult
when the arrival process is Markovian. For this case, in [8],
only the unconstrained average cost dynamic programming
formulation has been given. Subsequently, the model of [8]
and [11] has been extended in [14] where the authors consider
a more general state space version of the average cost Con-
strained Markov Decision Problem (CMDP). In this model,
both the arrival and the channel state process are considered
to be Markovian. In [13], a discrete state space version of the
same problem has been considered for correlated arrivals and
correlated fading. In [10], it is observed that while structural
results of an optimal policy can be derived, it is very difficult
to compute the optimal policy due to large state space size.
Accordingly, the authors suggest a suboptimal policy that is of
‘thresholding’ type. They also suggest a mechanism to derive
the optimum thresholds for queue length and channel gain.

While all the above approaches have provided significant
insights into the problem, none of them explicitly deals with
thecomputation of optimal packet scheduling algorithm. Con-
sequently, the practical implementation of the policy remains
an important open issue. This is primarily due to the following
two reasons-

1) Since the state space is very large, the standard dynamic
programming algorithms are very hard to implement.
The preferred technique for CMDP has been linear
programming [18]. Combined with the more recent
approach based on function approximation [19], this
holds great promise. The structural results of the policy
may help in the choice of basis functions in function ap-

proximation based computation. But none of the related
work discussed above seems to have explored this issue
in developing implementable optimal packet scheduling
algorithm.

2) Secondly and more importantly, the computation of the
optimal policy using the above mentioned techniques
assumes the knowledge of the underlying model. This
means that the knowledge of the probability distribution
of both the arrival process and the channel state is
necessary for the computation of optimal policy. This
is usually not the case in practice. In [10], the authors
have proposed a suboptimal algorithm but even here,
the computation of the appropriate thresholds seems to
assume the knowledge of the arrival process and channel
state distribution.

B. Our Contributions

The primary contribution of this paper is to propose an on-
line learning algorithm to compute the optimal packet schedul-
ing policy for single user fading channel, where the model is
not known. Recall that the Relative Value Iteration Algorithm
(RVIA) [20] is a well known algorithm for determining an
optimal policy for classical MDP. In this paper, we propose
a new approach for on-line implementation of RVIA for the
average cost CMDP such as the one studied in this paper. This
approach is based on reformulating the value iteration equation
by introducing a virtual state calledpost-decision state. The
resultant value iteration equation has a nice structure that
lends itself naturally to its on-line implementation basedon
stochastic approximation framework. Note that like all other
works [8], [10], [11], [13], [14], [15], we assume that the
transmitter is aware of the channel state information at the
beginning of each time slot. But unlike others, an explicit
knowledge of the probability distribution of the channel state
as well as the arrival process is not required for the pro-
posed implementation. We also prove that the proposed on-
line algorithm indeed converges to the optimal policy. The
challenge in developing an on-line algorithm has also been
recognized recently in [21] where the author has extended
the formulation of [8] for multi-user setting and proposed
an algorithm that does not require the model knowledge.
However, this algorithm is only order-optimal.

The rest of the paper is organized as follows. We begin
this paper by discussing the system model in Section II. The
formulation of the problem within the CMDP framework is
presented in Section III. This parallels the development in[8]
and other related work discussed above. Our point of departure
will be the development after the formulation of the problem
within the framework of CMDP. In Section IV, we introduce
the concept of a post-decision state and reformulate the value
iteration. In Section V, we propose an on-line algorithm
based on the post-decision state and stochastic approximation.
Convergence of the on-line algorithm to the optimal policy
is proved in the Appendix. For illustration purposes, we
implement the algorithm and demonstrate its performance in
a wireless system in Section VI. We conclude the paper with
directions for future research in Section VII.
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II. SYSTEM MODEL

In this section, we discuss the system model. As illustrated
in Figure 1, we consider a single user fading wireless channel.
Time is divided into slots of equal duration which is normal-
ized to unity. Packets arrive at the transmitter buffer and get
queued until they are transmitted. LetAn ∈ A

∆
= {0, . . . , A}

denote the number of arrivals just at the beginning of slotn.
The packet arrival process{An} is assumed to be an i.i.d.
sequence. For simplicity, we make an additional assumption
that every packet has a constant size, sayℓ bits. LetQn denote
the queue length at the beginning of slotn andUn denote the
number of packets transmitted in slotn, then the dynamics of
queue length can be expressed as

Qn+1 = max {Qn − Un, 0}+ An+1. (1)

In practice, the transmitter buffer may have a finite size, say B

and thereforeQn ∈ Q
∆
= {0, . . . , B}. However, compared to

the packet arrival rate, we assumeB to be large enough so as
to neglect the probability of buffer overflow and hence packet
drops. Thus we do not consider the effect of finite buffer size
in the queue dynamics mentioned above.

The channel is assumed to be time varying withblock
fading model, i.e., channel is constant over a slot duration
and changes only at slot boundaries. Under this model, if the
user transmits a signalyn in slot n, then the received signal
Rn is given by

Rn = Hnyn + Wn, (2)

whereHn
1 denotes the complex channel gain due to fading

and Wn denotes the complex additive white Gaussian noise
with zero mean and varianceN0

2. Let Xn = |Hn|
2 be

called the channel state at timen andW denote the received
signal bandwidth. If the transmitted signal corresponds to
transmittingUn = u packets, each ofℓ bits, then following
the discussion in [8], the power required for error-free reliable

1Random variables (RVs) are denoted with capital letters while values taken
by the RVs are denoted by small letters.

2Usually, Hn is also assumed to be zero mean complex Gaussian random
variable with unit variance under Rayleigh fading model. Asdemonstrated
later, the knowledge of explicit probability distributionof the channel gain is
not required for our approach.

communication whenXn = x is given by,

P (x, u) =
WN0

x

(

2
uℓ
W − 1

)

. (3)

Note that for a givenx, the transmission powerP (x, u) is
an increasing and strictly convex function ofu. Though the
complex channel gainHn (therebyXn) may be a continuous
random variable, we make a simplifying assumption thatXn

takes values only from a finite state spaceX and varies from
slot to slot in an i.i.d. fashion. This approximation is usually
justified in practice and also has been used by other authors
[8], [10].

The state of the above systemSn at timen can be described
by the two tuple,Sn = (Qn, Xn), comprising of the queue
length and the channel state. Note that the state space of
the systemS = Q × X is discrete and finite.{Un} denotes
the control process taking values from the finite action space
U = {0, . . . , B}. The control action determines the number of
packetsUn to be transmitted in a slotn. Since the transmitter
can at most transmit all the packets that are present in the
buffer at any time slot, we haveUn ≤ Qn. The control
or scheduling policy is a sequence of functions{µn} where
µn specifiesUn (more generally, the conditional law thereof)
given the past history of the system state and past controls
up to time n. The conditional law of the stateSn+1 of the
underlying dynamical system given this history depends only
upon the stateSn and the controlµn, thus making it a Markov
decision process. Letp : S × U × S → [0, 1] denote the state
transition probability of this Markov Decision Process.

We note here that we can also handle Markov arrivals
by augmenting the state space further to include the arrival
process. The analysis will be similar. We avoid this generality
in the interest of notational simplicity.

III. PROBLEM DESCRIPTION

As discussed above, for a givenx, the power required to
transmitu packets, i.e.,P (x, u) is a convex function ofu. Thus
from an energy efficiency perspective, the policy should be to
transmit packets in small chunks. This may, however, lead to
queueing of packets thereby causing delay. Our objective isto
minimize the average transmission power subject to constraint
on the average packet delay.
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A. Formulation as a Constrained Markov Decision Problem
(CMDP)

By Little’s law [2], the average delaȳD is related to the
average queue length̄Q as,

Q̄ = āD̄, (4)

whereā is the average arrival rate. In the rest of the paper, we
treat average delay as synonymous with average queue length
and ignore the proportionality constantā. Let cp(Sn, Un)
denote the cost in terms of power required in transmittingUn

packets when the state isSn. Thuscp(Sn, Un) = P (Xn, Un).
Since the packets get queued, they suffer a cost of buffering.
Let cq(Sn, Un)

∆
= Qn. The time averaged power and queue

length can be expressed as,

P̄ = lim sup
N→∞

1

N
E

N
∑

n=1

cp(Sn, Un), and

Q̄ = lim sup
N→∞

1

N
E

N
∑

n=1

cq(Sn, Un), (5)

respectively. Our objective is to design a scheduler that mini-
mizesP̄ subject to a constraint (say,δ) on Q̄. It is a CMDP
with average cost and finite state and action spaces. It is well
known that a stationary randomized optimal policy exists [18].
Hence we concentrate only on stationary randomized policies
characterized byµ(·|s) : s ∈ S → probability measures on
U . That is, µ(·|s) for each states specifies the distribution
with which the control in that state is applied. We assume
irreducibility of the chain under such policies. Then{Sn} is
an ergodic Markov chain and thus has a unique stationary
distributionρµ. Let Eµ denote the expectation w.r.t.ρµ. Under
a randomized policyµ, the costs in (5) can be expressed as,

P̄µ ∆
= E

µ
[

cp(Sn, µ(Sn))
]

=
∑

u,s

ρµ(s)µ(u|s)cp(s, µ(s)),

(6)
and,

Q̄µ ∆
= E

µ
[

cq(Sn, µ(Sn))
]

=
∑

u,s

ρµ(s)µ(u|s)cq(s, µ(s)),

(7)
respectively. Then the scheduler objective can be stated as:

Minimize P̄µ subject to Q̄µ ≤ δ. (8)

B. The Lagrangian Approach

The constrained problem in (8) can be converted into an
unconstrained one using standard Lagrangian approach [18],
[22]. In this section, we discuss the Lagrangian formulation
and the corresponding dynamic programming equation. The
treatment in this section is standard and follows [20], [22].
Nevertheless, we include it here for introducing the notation
and for an easier understanding of the rest of the paper.

Let λ ≥ 0 be a real number. Definec : R+ × S × U → R
as follows,

c(λ, s, u) = cp(s, u) + λ(cq(s, u)− δ). (9)

Note that the functionc(·, ·, u) is a strictly convex function
of u (as the power required to transmitu packets is a

strictly convex function ofu). The unconstrained problem is
to determine an optimal stationary policyµ∗(·) that minimizes

L(µ, λ) = E
µ
[

c(λ, Sn, µ(Sn))
]

, (10)

for a particular value ofλ called the Lagrange Multiplier
(LM). L(·, ·) is called the Lagrangian. The following dynamic
programming equation provides the necessary condition for
optimality of the policy.

V (s) = min
u

[

c(λ, s, u)− β +
∑

s′

p(s, u, s′)V (s′)
]

, s′ ∈ S,

(11)
whereβ ∈ R is uniquely characterized as the corresponding
optimal cost per stage. If we imposeV (s0) = 0 for a fixed
s0 ∈ S, V is unique [20]. Furthermore, an optimalµ∗ must
satisfy,

support(µ∗(·|s)) ⊆ argmin
[

c(λ, s, u)−

β +
∑

s′

p(s, u, s′)V (s′)
]

∀s ∈ S. (12)

By using standard arguments (see, e.g., [22]), it follows that
the constrained problem has a stationary, though possibly
randomized, optimal policy which is also optimal for the
unconstrained problem considered in (10) for a particular
choice ofλ = λ∗ (say). In fact, we know from [22] that the
optimal stationary policy can be taken to bedeterministic for
all but at most ones, i.e., there exists a uniqueu∗(s) such
that µ∗(u∗(s)|s) = 1 and u∗ is the solution to the following
equation,

u∗(s) = arg min
[

c(λ∗, s, u)−

β +
∑

s′

p(s, u, s′)V (s′)
]

∀s ∈ S. (13)

Furthermore, for the single (if any) states for which this fails,
µ(·|s) is supported on exactly two points. The optimal average
cost β gives the minimum power consumed̄P ∗ subject to
the specified delay (or equivalent queue length) constraint.
Moreover, the followingsaddle point condition holds:

L(µ∗, λ) ≤ L(µ∗, λ∗) ≤ L(µ, λ∗). (14)

For a fixedλ, the Relative Value Iteration Algorithm (RVIA)
is a known algorithm for solving the dynamic programming
equation for the unconstrained problem in an iterative fashion.
The average cost RVIA for determining the value function
such that (11) is satisfied can be written as:

Vn+1(s) = min
u∈U(s)

[c(λ, s, u) +

∑

s′

p(s, u, s′)Vn(s′)]− Vn(s0), (15)

where s, s′, s0 ∈ S and s0 is any fixed state.Vn(·) is an
estimate of the value function aftern iterations for a fixed
LM λ.

RVIA (15) requires the knowledge of transition probabilities
p(s, u, s′) which in turn requires the knowledge of channel
state and packet arrival distributions which are unknown. In
the rest of the paper, we address this limitation by proposing a



5

new approach based on post-decision state. We begin by first
introducing the concept of a post-decision state.

IV. POST-DECISION STATE FRAMEWORK

We define the post-decision state3 to be the virtual state
of the system immediatelyafter taking a decision butbefore
the action of the noise. Lets = (q, x) be the stateS of the
system in some time slot and the transmitter transmitsU = u

packets, then the post-decision state denoted byS̃, S̃ ∈ S is
(q − u, x). If A = a arrivals occur in the post-decision state
and the channel gain changes toX = x′, then the system
reaches the next actual system state, which can also be called
the pre-decision state,(q′, x′) = (q − u + a, x′).

Let Ṽ : S → R be the value function based on the post-
decision state given by

Ṽ (s̃) = E
s
[

V (S)
]

.

whereE
s is the expectation taken over all the pre-decision

states that can be reached from the post-decision states̃. Let ζ
be the law for the arrivals andκ(·|·) the transition probability
function for the channel state process. ThenṼ satisfies the
post-decision dynamic programming equation: fors̃ = (q, x),

Ṽ (s̃) =
∑

a,x′

ζ(a)κ(x′|x)( min
u≤q+a

[c(λ, (q + a, x′), u)

+Ṽ ((q + a− u, x′))])− β. (16)

From (15) and (16), we get the ‘one component at a time’
RVIA based on post-decision state as follows. Fixs̃0. If the
post-decision state at timen is s̃ = (q, x), then do:

Ṽn+1(s̃) =
∑

a,x′

ζ(a)κ(x′|x)( min
u≤q+a

[c(λ, (q + a, x′), u)

+Ṽn((q + a− u, x′))])− Ṽn(s̃0);

Ṽn+1(s̃
′′) = Ṽn(s̃′′) ∀ s̃′′ 6= s̃. (17)

The important thing to note here is that we update only the
s̃-th component, not the rest. This is to lay ground for the
on-line scheme we propose below, which is perforce ‘one at
a time’, because one learns only about the current state being
observed, and can, therefore, update only the corresponding
component.

V. ON-L INE ALGORITHM

In this section, we propose an on-line algorithm to evaluate
Ṽ . We note that the RVIA (15) is not amenable to on-line
implementation because of the occurrence ofmin operator
outside the averaging operation w.r.t. an unknown conditional
law. On the other hand, (17) has a useful structure in the
sense that theexpectation operation has been moved outside
of the min operator. Theexpectation can thus be dropped by
performing averaging in time in order to determine the optimal
value function.

3Similar ideas have been around in the literature before, see, e.g., [23],
[24].

Let f(n) be a positive update sequence that has the follow-
ing properties,

∑

n

f(n) =∞;
∑

n

(f(n))2 <∞. (18)

Then, following the theory of stochastic approximation [25],
we can remove the expectation from (17), and perform av-
eraging via the following update equation. Recall thatSn =
(Qn, Xn), n ≥ 0, is our state process. If̃s = (q, x), the post-
decision state at timen, then do:

Ṽn+1(s̃) = (1− f(n))Ṽn(s̃) + f(n)
{

min
u

[c(λ, (q + An+1, Xn+1), u)

+Ṽn((q + An+1 − u, Xn+1))]− Ṽn(s̃0)
}

,

= Ṽn(s̃) +f(n)
{

min
u

[c(λ, (q + An+1, Xn+1), u)

+Ṽn((q + An+1 − u, Xn+1))]− Ṽn(s̃)

−Ṽn(s̃0)
}

,

Ṽn+1(s̃
′′) = Ṽn(s̃) ∀ s̃′′ 6= s̃. (19)

The algorithm (19) is a primal RVIA scheme that attempts
to solve the dynamic programming equation for a fixed value
of the LM λ.

Let e(n) be a positive update sequence that has the same
properties asf(n) expressed in (18). To reach the saddle point
of the Lagrangian in (14), we introduce the following LM
iterations,

λn+1 = Λ[λn + e(n) (Qn − δ)], (20)

where we use the projection operatorΛ to project the LM onto
interval [0, L] for large enoughL > 0, to ensure boundedness
of the LM. We impose the following additional requirements
on the update sequencesf(n) ande(n),

∑

n

(f(n)
2
+ e(n)

2
) <∞, lim

n→∞

e(n)

f(n)
→ 0. (21)

The complete primal-dual RVI algorithm can be expressed
as: forSn = s̃ = (q, x),

Ṽn+1(s̃) = Ṽn(s̃) + f(n)
{

min
u

[c(λn, (q + An+1, Xn+1), u)

+Ṽn((q + An+1 − u, Xn+1))]− Ṽn(s̃)

−Ṽn(s̃0)
}

, (22)

Ṽn+1(s̃
′′) = Ṽn(s̃) ∀ s̃′′ 6= s̃, (23)

λn+1 = Λ[λn + e(n) (Qn − δ)]. (24)

That these iterates, indeed, converge to the optimal valuesis
proved in the Appendix. In (22, 23, 24), iterating simulta-
neously on the primal variable as well as the dual variable
on different timescales ensures that the update rates of the
primal and dual variables are different. The dual variable is
updated on a slower timescale than the primal variable. This
means that as viewed from the slower LM timescale, the
primal variable appears to be equilibriated or converged tothe
optimal value corresponding to the current value of LM, while
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as viewed from the faster value function timescale, the LM
values appear to be almost constant. This can be interpretedas
iterating the LM after everykn = f(n)

e(n) >> 1 iterations of the
value function. Note that separation of timescales introduces
a ‘leader-follower’ behaviour among the two components
(fast and slow) of the algorithm which prevents the possible
interference of one in the convergence of the other if they
were run concurrently on the same timescale. We prove in the
Appendix that this scheme converges ‘almost surely’ (a.s.).

Based on on-line primal-dual RVI computations (22, 23,
24), the transmitter implements the scheduling scheme as
explained in Algorithm 1. We assume that the transmitter is
aware of the value of channel stateXn in each time slotn. In
practice, this may be achieved by receiver first estimating the
channel state and then informing this to the transmitter through
a feedback mechanism. In each time slot, the transmitter
determines the number of packet arrivals, channel state and
current queue length. The number of packets to be transmitted
is then determined as explained in Algorithm 1. The value
functions and the LM are then appropriately updated. The
algorithm thus continues in each slotn.

1: Initialize the value function matrix̃V (s̃) = Ṽ (q, x) ←
0 ∀q ∈ Q, x ∈ X , the LM λ← 0, the slot countern← 1,
queue lengthq ← 0, channel statesx ← 0, x′ ← 0. Let
reference statẽs0 = (0, x1), wherex1 ∈ X .

2: while TRUE do
3: Determine number of arrivalsAn+1 = a and channel

stateXn+1 = x′ in the current slot.
4: Transmitu packets, such thatu minimizes the r.h.s in

(22), thereby, powerP (x′, u) required to transmitu
packets is also determined (using (3)).

5: Update the component̃s = (q, x) of the value function
matrix using (22). Rest of the components of the matrix
remain unchanged.

6: Update the LMλ using (24) (Qn = q).
7: Setn← n + 1, q ← q + a− u, x← x′.
8: end while

Algorithm 1: The On-Line Algorithm

Remark 1: While the theoretical convergence is proved in
the Appendix, our simulation results demonstrate that con-
vergence of the algorithm occurs in reasonable number of
iterations (time slots) for practical purposes. In long file
transfer applications, the duration of transfer is of the order of
seconds, while the slot duration in wireless systems is of the
order of milli-seconds. Hence, non-optimality may be there
only for certain part of data transfer.

Remark 2: In practical scenarios, we may not wait for the
actual convergence to take place, but would like to be within
a prescribed neighborhood of the optimal solution with high
probability. Results of [26] give a bound on the number of
iterations required for the iterate to be within a given distance
from the convergence point thereafter with a prescribed high
probability.

VI. SIMULATION RESULTS

We implement Algorithm 1 in a simulation environment
using MATLAB where we simulate the single user scenario
depicted in Figure 1. We simulate a time slotted system with
slot duration of1 msec. Although the algorithm does not
depend on any distribution for the channel gainH , for the
purposes of modeling, we simulate an i.i.d. Rayleigh channel
across slots. For a Rayleigh model, channel stateX is an expo-
nentially distributed random variable with probability density
function given byfX(x) = 1

αe−
x
α , whereα is the mean of

X . We discretize the channel into eight equal probability bins,
with the boundaries specified by{ (-∞, −8.47 dB), [−8.47
dB, −5.41 dB), [−5.41 dB, −3.28 dB), [−3.28 dB, −1.59
dB), [−1.59 dB, −0.08 dB), [−0.08 dB, 1.42 dB), [1.42 dB,
3.18 dB), [3.18 dB,∞ ) }. We choose the channel state space
to beX = { x1 = −13 dB, x2 = −8.47 dB, x3 = −5.41 dB,
x4 = −3.28 dB, x5 = −1.59 dB, x6 = −0.08 dB, x7 = 1.42
dB, x8 = 3.18 dB}. This discretization of the state space of
X has been justified in [10]. We know from (3) that the power
required for transmittingu packets when the channel state is
x is given by,P (x, u) = N0W

x

(

2uℓ/W − 1
)

, whereN0 is the
power spectral density of the additive white Gaussian noise
andW is the received signal bandwidth. We assumeW = 5
MHz and the productWN0 to be normalized to1. We simulate
i.i.d. arrivals with a Poisson distribution with meanθ. This
implies that the probability of generatingj packets is given
by p(j) = e−θ θj

j! . We assume that packets are of equal size
ℓ = 5000 bits. We also assume that the transmitter can transmit
1 to 8 packets in a slot. In practice, it can correspond to
transmission using the following modulation schemes - Binary
Phase Shift Keying (BPSK), Quadrature Phase shift Keying
(QPSK), 8-Quadrature Amplitude Modulation (QAM), 16-
QAM, 32-QAM, 64-QAM, 128-QAM, 256-QAM respectively.
This is because these modulation schemes have a spectral
efficiency of 1 − 8 bits/sec/Hz, and withW = 5 MHz,
slot duration of 1 msec and packet sizeℓ = 5000 bits,
the transmitter can potentially transmit1 − 8 packets/slot
respectively.

We perform several experiments to validate the analytical
results. While the convergence results are asymptotic, we
demonstrate that for all practical purposes, the quantities like
LM, power and delay converge within reasonable number of
iterations. Consequently, for long file transfers lasting several
seconds, the algorithm essentially operatesoptimally for a vast
majority of the file transfer duration. In all the experiments, we
simulate the algorithm for100, 000 time slots. For the LM and
value function update, we choosee(n) = 10

n andf(n) = 1
n0.7 .

Experiment 1: Convergence of LM for various delay con-
straints, arrival rates and channel gains: This experiment
demonstrates the convergence behaviour of the LMλ. In each
slot, arrivals are generated with Poisson distribution with mean
θ = 2 packets/msec, i.e., arrival rate is10 Mbits/sec. We
chooseα = 0.4698 (−3.28 dB). In each slot, we generateX
using the exponential distribution with meanα. We determine
the channel state based on the partition that containsX = x

as explained above. We then use Algorithm 1 to determine the
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Fig. 2. Convergence of Lagrange multiplier for various average delay
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number of packetsu that must be transmitted, the transmission
power P (x, u) and update the LMλ and the value function
matrix Ṽ . We plot the variations inλ for delay constraints of
8 msec,16 msec and20 msec in Figure 2. From Figure 2, it
can be observed that the LM converges in about2000 slots.
Each time slot may, typically, correspond to1 msec. Thus
convergence can be achieved in about2 seconds.

We repeat this experiment for average arrival rates of5
Mbits/sec, 10 Mbits/sec and15 Mbits/sec with the delay
constraint at24 msec and the average channel stateα to be
0.4698 (−3.28 dB). The convergence behaviour of LMλ for
various arrival rates has been plotted in Figure 3. We further
repeat the experiment with average channel stateα as0.4698,
0.6934 and0.9817, i.e,−3.28 dB, −1.59 dB, and−0.08 dB.
We keep the delay constraint at24 msec and average arrival
rateθ at 2 packets/msec, i.e.,10 Mbits/sec. The convergence
behaviour of LMλ for various channel gains has been plotted
in Figure 4. Figures 3 and 4 illustrate that the LM converges
in approximately2000 slots for all the arrival rate and channel
gain variations.

Experiment 2: Convergence of delay and power for various
delay constraints: In this experiment, we demonstrate the
convergence behaviour of the average delay and the average
power for various delay constraints. We determine the running

 0

 500

 1000

 1500

 2000

 2500

 3000

5⋅1034321

La
gr

an
ge

 M
ul

tip
lie

r

Time slots

LM convergence, av. ch. state: -3.28 dB
LM convergence, av. ch. state: -1.59 dB
LM convergence, av. ch. state: -0.08 dB 

Fig. 4. Convergence of Lagrange multiplier for various average channel
states

 0

 20

 40

 60

 80

 100

10⋅104987654321

A
ve

ra
ge

 q
ue

ue
 le

ng
th

Time slots

Av. queue len. conv., queue len. constr.: 16
Av. queue len. conv., queue len. constr.: 32
Av. queue len. conv., queue len. constr.: 40

Fig. 5. Convergence of average delay for various average delay constraints

 0

 10

 20

 30

 40

 50

 60

 70

 80

10⋅104987654321

A
ve

ra
ge

 p
ow

er
 (

W
at

ts
)

Time slots

Av. power conv., delay constraint: 8 msec
Av. power conv., delay constraint: 16 msec
Av. power conv., delay constraint: 20 msec

Fig. 6. Convergence of average power for various delay constraints



8

 36

 32

 28

 24

 20

 16

 12

 8
 40 36 32 28 24 20 16 12 8

A
ch

ie
ve

d 
de

la
y 

(m
se

c)

Average delay constraint (msec)

Average channel state: -3.28 dB
Average channel state: -1.59 dB
Average channel state: -0.08 dB

Fig. 7. Achieved system delay for various average delay constraints

 20

 25

 30

 35

 40

 45

 50

 55

 60

 40 36 32 28 24 20 16 12 8

A
ve

ra
ge

 p
ow

er
 e

xp
en

de
d 

(W
at

ts
)

Average delay constraint (msec)

Average channel state: -3.28 dB 
Average channel state: -1.59 dB
Average channel state: -0.08 dB

Fig. 8. Power-delay curve for various average channel states

averages of the queue lengthQav
n and the power expendedP av

n

in slot n as follows

Qav
n =

n− 1

n
Qav

n−1 +
1

n
Qn,

P av
n =

n− 1

n
P av

n−1 +
1

n
Pn, (25)

with Qav
0 = 0, P av

0 = 0. The variations inQav
n andP av

n with
simulation time for the delay constraints of8 msec,16 msec
and 20 msec are plotted in Figures 5 and 6 respectively. We
keep the arrival rateθ at 2 packets/msec, i.e.,10 Mbits/sec and
the average channel stateα at 0.4698, i.e.,−3.28 dB. Figures
5 and 6, illustrate that the average delay and average power
converge reasonably fast.

Experiment 3: This experiment demonstrates that the algo-
rithm satisfies various average delay constraints. We perform
the simulations for the delay constraints8, 12, 16, 20, 24,
28, 32, 36, 40 msec. We fix θ at 2 packets/msec, i.e.,
10 Mbits/sec. We repeat the experiment for values ofα =
0.4698, 0.6934, 0.9817, i.e,−3.28 dB, −1.59 dB, −0.08 dB.
From Figure 7, it can be observed that in all the cases, the
average delay constraints are met. As the constraint on the
delay increases, the average power required for transmission
decreases as can be observed from Figure 8. The plot also
demonstrates the convex characteristics of the power-delay
curve that has been proved analytically in [8].
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Experiment 4: This experiment demonstrates the range of
arrival rates for which the algorithm satisfies a delay constraint
of 10 msec. We perform the simulations for the arrival rates5,
10, 15, 20, 25, 30, 35, 40 Mbits/sec by varying the meanθ of
the Poisson distribution as1, 2, 3, 4, 5, 6, 7, 8, packets/msec.
We chooseα = 0.4698 (−3.28 dB). From Figure 9, it can
be observed that the average delay constraint is met till the
arrival rate becomes8 packets/msec or40 Mbits/sec. Beyond
this, the arrival rate becomes more than the departure rate and
thus the delay constraint cannot be satisfied as it violates the
stability condition of the queue assumed in the formulation. As
the arrival rate nears the capacity, the average power required
for transmission is extremely high as can be observed from
Figure 10.

VII. C ONCLUSIONS ANDDISCUSSIONS

In this paper, we have proposed an on-line learning algo-
rithm for computing the optimal packet scheduling policy for
single user fading channel, where the model is not known. The
earlier works [8], [10], [11], [13], [14], [15] have provided
valuable insights into the problem by proving the structural
results under various assumptions (including that of more
general state spaces). But none of them deals explicitly with
the computation of optimal policy. We have proposed a new
approach for on-line implementation of the optimal packet
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scheduling algorithm. This approach is based on reformulating
the value iteration equation by introducing a virtual statecalled
post-decision state. The resultant value iteration equation
is amenable to on-line implementation by using stochastic
approximation. Like other related work, we assume that the
transmitter has a perfect knowledge of channel state, however,
an explicit knowledge of the transition probability function of
the channel state as well as the distribution of arrivals is not
required for computing the policy. We have also proved that
the on-line algorithm indeed converges to the optimal policy.
Our simulation results have illustrated the performance ofthe
algorithm under various scenarios and demonstrate that the
algorithm can converge in reasonable number of slots for it to
be practically useful with satisfaction of delay constraint.

In this paper, our focus has been on implementing on-
line algorithm for single user fading channel. The problem
of packet scheduling for multi-user fading channel under
various assumptions has been explored in [27], [28], [29],
[30]. However, extension of the problem considered in this
paper (i.e., energy efficient delay constrained scheduling) for
multi-user setting has not received much attention, notable
exceptions being [21], [31]. We are currently investigating this
problem and the applicability of the framework developed in
this paper for its on-line implementation. Another issue that
is worth investigating is how the structural properties of the
optimal policy can be exploited to speed up the convergence
time of the algorithm.

APPENDIX

Here we prove:
Theorem 1: For the algorithm (22, 23, 24), the iterates

(Ṽn, λn)→ (Ṽ , λ∗).
We prove this in several steps. First, note that the purpose

of subtractingṼn(s̃0) from the r.h.s. in (22) is to keep the
iterates stable. It turns out thatṼn(s̃0) converges to the optimal
average cost per stageβ. More generally, we can replace
Ṽn(s̃0) with a generic offset termg(Ṽn) if we make the
following assumption on the functiong : R

|S| → R [32].
Assumption 1: g(·) is Lipschitz and forη equal to the

constant vector of all1’s in R
|S|, g(η) = 1 andg(x + cη) =

g(x) + c for c ∈ R. We further assume thatg(ax) = ag(x)
for a > 0.

With Assumption 1, a generalized form of the primal-dual
algorithm (22, 23, 24) can be written as follows. If the post-
decision state at timen is Sn = s̃ = (q, x), then do:

Ṽn+1(s̃) = Ṽn(s̃) + f(n)
{

min
u

[c(λn, (q + An+1, Xn+1), u)

+Ṽn((q + An+1 − u, Xn+1))]− Ṽn(s̃)

−g(Ṽn(s̃))
}

, (26)

Ṽn+1(s̃
′′) = Ṽn(s̃) ∀ s̃′′ 6= s̃, (27)

λn+1 = Λ[λn + e(n) (Qn − δ)]. (28)

We now proceed to show that the algorithm (26, 27, 28)
tracks an associated Ordinary Differential Equation (ODE)
as described later. Recall thatζ is the law for the arrivals

and κ(·|·) the transition probability function for the channel
state process. Note that the algorithm is unaware of these,
we consider them only for the purpose of analysis. Let
Tλ : R

|S| → R
|S| be the map defined by,

(TλṼ )(s̃) =
∑

a,x′

κ(x′|x)ζ(a)
{

min
u≤q+a

[

c(λ, (q + a, x′), u)

+Ṽn(q + a− u, x′)
]

}

,

s̃ = (q, x) ∈ S. (29)

DefineT ′
λ : R

|S| → R
|S| by T ′

λ(Ṽ ) = Tλ(Ṽ ) − g(Ṽ )η. The
RVIA can be written as:

Ṽn+1(s̃) = Ṽn(s̃) + f(n)[Tλn
(Ṽn(s̃)) − g(Ṽn(s̃))− Ṽn(s̃)

+Mn+1(s̃)],

Ṽn+1(s̃
′′) = Ṽn(s̃) ∀ s̃′′ 6= s̃,

λn+1 = Λ[λn + e(n) (Qn − δ)], (30)

where, fors̃ = (q, x),

Mn+1(s̃) = min
u≤q+An+1

[c(λn, (q + An+1, Xn+1), u)

+Ṽn(q + An+1 − u, Xn+1)]− Tλn
(Ṽn(s̃)).

Let Fn denote theσ-algebra,σ(Sm, Am, Um, m ≤ n), n ≥ 0.
It can be verified thatE[Mn+1|Fn] = 0. Consider

˙̃
V (t) = T ′

λ(Ṽ (t))− Ṽ (t). (31)

It can be argued as in [32] that ast→∞, Ṽ (t) converges to
the unique fixed point ofT ′

λ(·), i.e., Ṽ λ such that

T ′
λ(Ṽ ) = Ṽ λ (32)

HenceṼ λ is the globally asymptotically stable equilibrium for
the above ODE.

Lemma 1: The post-decision value function iterates{Ṽn}
remain bounded a.s.

Proof: ConsiderT 0 : R
|S| → R

|S| defined by,

(T 0Ṽ )(s̃) =
∑

a,x′

κ(x′|x)ζ(a) min
u≤q+a

[Ṽ (q+a−u, x′)]−g(x)η.

(33)
ThenT 0 is also a contraction w.r.t|| · ||w, limc→∞

T ′

λ(cṼ )
c =

T 0(Ṽ ), and the ODE,

˙̃
V (t) = T 0(Ṽ )− Ṽ , (34)

has origin as the globally asymptotically stable equilibrium
(again, by arguments of [33]). This is the scaled limit of the
ODE (34) in the sense of [34]. Note that it is independent of
λ. The claim follows from Theorem 2.1 of [34].

Lemma 2: In algorithm (26, 27, 28),̃Vn − Ṽ λn → 0 a.s.,
whereṼ λn is the value function based on post-decision state
for λ = λn.

Proof: The algorithm (30) is the standard stochastic ap-
proximation algorithm with martingale difference noiseMn+1.
From (21) and (30) it can be seen that the LM is varied on
a much slower timescale than the post-decision relative value
function estimatẽVn. Therefore, the post decision value func-
tion iterationssee the LM to be almost constant. To be precise,
the λ iterations in (30) can be written as,λn+1 = λn + ν(n),
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where ν(n) = O(e(n)) = o(f(n))4. Hence the limiting
ODEs associated with (30) for analyzing theṼn iterates are,
˙̃
V (t) = T ′

λ(Ṽ (t)) − Ṽ (t); λ̇(t) = 0. Since λ̇(t) = 0, for
analyzing theṼn iterates, it suffices to consider the ODE,

˙̃
V (t) = T ′

λ(Ṽ (t)) − Ṽ (t), (35)

for any prescribed value of the LMλ. The rest follows by
standard arguments as in [35].

The{λn} iterations are bounded since they are constrained
to remain in the interval[0, L]. We now prove that the
coupled iterates converge to their optimal values(Ṽ λ∗

, λ∗).
Let G(λ)

∆
= minµ L(µ, λ). We reproduce the following results

from [36].
Lemma 3: G is piecewise linear and concave. In particular,

it is continuously differentiable except at finitely many points
where both right and left derivatives exist.

Defineh(λ)
∆
=

∑

s,u ρµ(s)c(λ, s, u), whereµ is the optimal
stationary policy when LMλ is used (note that this introduces
an additionalλ−dependence not explicitly shown). Consider

λ̇(t) = h(λ(t)) − q, (36)

constrained to remain in(0,∞).
Lemma 4: Equation (36) is same as the gradient ascent,

λ̇(t) = ∇G(λ(t)), (37)

interpreted in the Caratheodory sense, i.e., as the integral
equation,

λ(t) = λ(0) +

∫ t

0

∇G(λ(s))ds, t ≥ 0. (38)

Proof: This follows using the ‘generalized envelope the-
orem’ as in [36].

Corollary 1: The iteratesλn a.s. converge to the set of
maxima ofG.

This follows by standard arguments as in [36].
Corollary 2: {µn} converge to the set of optimal policies

corresponding toλ ∈ argmax(G), a.s.
Note that anyλ ∈ arg max(G) is a valid Lagrange multi-

plier. This completes the proof of the theorem.
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