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Abstract—In this paper, we consider the problem of energy the user with the best channel gain. This leads to significant
efficient uplink scheduling with delay constraint for a multi-user performance improvement in terms of total system throughpu
wireless system. We address this problem within the framework Such scheduling algorithms that exploit the charactesisti

of constrained Markov decision processes (CMDPs) wherein one . .
seeks to minimize one cost (average power) subject to a hard of the physical channel to satisfy some network level QoS

constraint on another (average delay). We do not assume the perfo_"mance metrics are referred toa@sss layerscheduling
arrival and channel statistics to be known. To handle state spac algorithms [6].

explosion and informational constraints, we split the problem into In this paper, we consider a single cell multi-user wireless
individual CMDPs for the users, coupled through their Lagrange  qjink system. For such a system, we consider the problem of
multipliers; and a user selection problem at the base station. To det inina th to b heduled i h ti lot al
address the issue of unknown channel and arrival statistics, we (.aer.mlnlng ef u§er 0 be SC. edule 'n each ume siot along
propose a reinforcement learning algorithm. The users use this With its transmission rate. This scenario may correspond to

learning algorithm to determine the rate at which they wish to  scheduling users on the uplink in an IEEE 802.16 based system
transmit in a slot and communicate this to the base station. The tg satisfy delay constraint of each user.
base station then schedules the user with the highest rate in a slot.
We analyze convergence, stability and optimality properties of
the algorithm. We also demonstrate the efficacy of the algorithm A  Related Work
through simulations within IEEE 802.16 system. o ]
Index Terms—Multi-user Fading Channel, Constrained 1) Energy Efficient SchedulingThe problem of energy

Markov Decision Process, Energy Efficient Scheduling, Learning ef,f'c'ent scheduling with delay Cons_tramt fc_)r a S',ngle user
Algorithm wireless channel has been explored in the pioneering work of

[7]. Subsequently, the model of Berry-Gallager [7] has been
extended with many generalizations on arrival and channel
. INTRODUCTION state processes in [8], [9], [10], [11], [12], [13], [14]. Most
Broadband wireless networks like IEEE 802.16 [1] and 3Gf these papers, the scheduling policy has been formulated
cellular [2] are expected to provide Quality of Service (QoSas a control policy within the Constrained Markov Decision
for emerging multimedia applications. One of the challengérocess (CMDP) framework. However, only structural result
in providing QoS is the time varying nature of the wirelessf the optimal policy are available under various assunmstio
channel due to multipath fading [3]. Moreover, for portabldloreover, these results are applicable to only the singée us
and hand-held devices, energy efficiency is also an import&eenario. There is very little work for extending the vastijpo
consideration. of literature on single user delay constrained energy effici
For most wireless communication systems, the power rgcheduling to the multi-user scenario.

quired to transmitreliably’ for a given channel fading state In [15], the author does extend the analysis for single user
is an increasing and strictly convex function of the transase to multi-user case, albeit with only two users. Beyamd t
mission rate [3]. This suggests that energy efficiency casers, the problem becomes too unwieldy to gain any useful
be achieved by transmitting the data at lower rates whérsight. This is primarily due to the large state space. Rer t
the channel is bad, albeit at a cost of queuing delay, thiyso user case, the author has given an elegant near optimal
leading to a power-delay tradeoff. Furthermore in a mutiu policy where each user’s rate allocation is determined Iy th
wireless system, recent studies [4], [5] suggest that sinee joint channel states across users and the user's own queue
wireless channel fades independently across differentsusetate. Thus each user's queue evolution process behavigs as i
this diversity can be exploited bypportunisticallyscheduling were controlled by a single user policy. However, compatati

of user’s transmission power still takes into account thetjo
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that comes within a logarithmic factor of achieving the Berr control problem of power minimization subject to consttain
Gallager power-delay bound. While [16] is one of the firgbn average delays, this would be a special case of a CMDP.
serious attempts at multi-user energy efficient scheduwlily The traditional approaches for numerically determining th
delay constraint, it deals with sum power minimization opptimal policy in a CMDP framework are based on Linear
the downlink. On the other hand, for the uplink, the proble®rogramming (LP) [28]. These, however, cannot be used for
is to minimize the average power @&ach usersubject to the problem posed in this paper because of the following
individual delayconstraint, subject to the additional constrainteeasons:

automatically imposed by the multi-user environment. Tais
not been addressed in the literature so far.

Even for the single user case [8], [9], [10], [11], [12],
[13], [14], practical implementation of optimal policy isuf

from simple. This is because a knowledge of the probability
distributions of the arrival and channel state processes is

required for computing the optimal policy. This knowledge i
usually not available in practice. We have addressed tiis li
itation by formulating an on-line algorithm within stoclias
approximation framework in [17].

2) Other Multi-user Cross Layer Scheduling Schemes:

While there has been little work in the area of multi-user

energy efficient delay constrained scheduling, there idhan-a
dance of literature on cross layer scheduling algorithnts wi
other objectives. See [18] for a succinct review. A schexdyli

policy is consideredtableif the expected queue lengths are 2)
bounded under the policy. Many scheduling policies progose

in the literature have considered stability as a QoS caiteriin

[19], the authors have shown that the throughput capacity re

gion (as derived in [4]) is the same as the multi-accesslgtabi
region (i.e., the set of all arrival vectors for which thexéses

some rate and power allocation policies that keep the system

stable.). A scheduler is termdtiroughput optimalif it can

maintain the stability of the system as long as the arrivid ra  3)

is within the stability region. Throughput optimal scheadgl

1) Large state spacein our model, the system state space

is large even for moderate number of users and the state
space size increases exponentially with the number of
users. We illustrate this with a simple example. Consider
a system witht users. Assume that each user has a buffer
of size 50 packets (assuming equal sized packets). The
channel condition of each user can be represented using
8 states, which is a practical assumption justified in [29].
For this scenario, the system state space confdifis

81 = 2.56 x 1010 states. The computational complexity
for determining the optimal policy (possibly based on
the CMDP approach) is proportional to the state space
size [30], [31] and thus increases exponentially with the
number of users.

Unknown system modelComputation of optimal
scheduling policy using traditional schemes based on
LP assumes a knowledge of the system model, i.e.,
a knowledge of probability distributions of the arrival
and channel state processes, for modeling the transition
probability mechanism of the underlying Markov chain.
This knowledge is not easily available in practice, so the
exact model is not known.

Communication overheadi the multi-user framework
considered here, there is also a cost on messages com-

municated between users and base station, as these
consume some of the available rate. Thus any proposed
scheme should be low on these overheads, which works
against a scheme based on full state information.

policies have been explored in [4], [20]. Longest Connected
Queue (LCQ) [21], Exponential (EXP) [22], Longest Weighted
Queue Highest Possible Rate (LWQHPR) [23] and Modified
Longest Weighted Delay First (M-LWDF) [24] are other well
known throughput optimal scheduling policies.

While throughput optimal scheduling policies maintain th&he issue of unknown system model can be resolved by using
stability of the queuing system, they do not necessarily-guaeinforcement learning (RL) algorithms [31] which ‘learn’
antee small queue length and consequently lower delayyDetle optimal policy by performing approximate dynamic
optimal scheduling deals with optimal rate and power allg@rogramming based on observed data. However, with such
cation such that the average queue length and hence averagl@rge state space, the learning algorithms would take
delay are minimized for arrival rates within the stabiliggion prohibitively large time to converge to the optimal schéuaiyl
under average and peak power constraints. It has been shalicy. One therefore has to address the issue of the large
that the Longest Queue Highest Possible Rate (LQHPR) poligiate space first and then employ the reinforcement learning
[25] (besides being throughput optimal) is also delay optimalgorithms appropriately. This provides us the motivation
for any symmetric power control under symmetric fadingesigning multi-user scheduling policy as a combination of
provided that the packet arrival process is Poisson and tiggle user policies that search over a relatively smaliesta
packet length is exponentially distributed. space. This is achieved by artificially splitting the prable

Apart from throughput and delay optimal policies, oppornto several single user problems for the individual userd a
tunistic scheduling which maximizes sum throughput subjehe base station, which are coupled, but in a relatively Bmp
to various fairness constraints have been explored in [28], and manageable manner. Note that this solution strategy may
be viewed as approximate solution to the power optimal
delay constrained energy efficient scheduling. Howevas, th
reduces the complexity to linear in the number of users and

In this paper, we consider the problem of opportunistidoes not require the knowledge of channel and arrival models
scheduling for a multi-user uplink system with power cos$imulations demonstrate very promising results.
and individual delay constraints. Considered as a cenémli

B. Our Contributions



Thus in our approach, each user behaves as though it is
facing a single user optimization problem and comes up with <<<<( )))) 7)(1_(( ))‘—|lll
a desired rate. This is then communicated to the base station ~ ®5 é user, Q"
The base station then schedules the user with the highest rat X2
requirement in a slot. The intuition behind this is that this (( ) T
will favor the user with greatest need, be it because of a Scheduler
favorable channel or a high queue length. At the same time, XN é User, Q2
when a user with lower rate requirement is not allocated the
channel for a while, its queue length and therefore the rate (( )) nn
requirement will go up and it will eventually be allocatea th é
channel. The learning algorithm puts a penalty on violation User, QN
of the delay constraint. This implicitly couples individua
decisions, as the users are sharing a common channel. ldel. System Model
prove convergence, stability and optimality propertiesiam
some assumptions.

that the proposed algorithm is power efficient. We also

The scheduling algorithms proposed in the literature like  study performance of the scheme under different ‘infor-
EXP [22], LQHPR [25], M-LWDF [24] etc., also require mation accuracies’, i.e., with different number of bits
the queue length information for determining the schedulin for conveying the desired rate.
decision. In the downlink scenario, this information is The rest of the paper is organized as follows. In Section II,
readily available to the scheduler residing at the baséatat we present the system model. In Section Ill, we formulate the
However, in the uplink scenario, this information needs ¢o bmulti-user scheduling problem. In Section IV, we propose an
communicated by the users to the scheduler. Communicatimgtline learning algorithm for the users and a user selectio
the queue length information poses a significant overheadgorithm at the base station. We also discuss the imple-
In our approach, each user needs to communicate only thentation issues. In Section V we analyze properties of the
desired rate. In a practical system, we may have few possiblgorithm such as convergence, queue stability and optynal
rates, say eight. This means that we may need only 3 bits\Ww& present the simulation setup and results in Section VI.
information to be conveyed. Finally, we conclude in Section VII.

Through our simulations in an IEEE 802.16 system, we Il. SYSTEM MODEL
demonstrate that the algorithm is indeed able to satisfy th

delay constraints of the users. Moreover, we demonstrate t ivision Multiple Access (TDMA) systefwith N users, i.e.,

the power expenditure of a user is commensurate with fithe is divided into slots of equal duration and only one tser

delay requirement, average arrival rate and average Chanr“aowed to transmit in a slot. We assume that the slot dumatio

. al
condition. is normalized to unity. The base station is a centralizedyent

I . . that schedules the users in every slot. We assume a fading
The contributions of this paper can be summarized as S )
) Wireless channel where the channel gain is assumed to remain
follows: . .
. . ... constant for the duration of the slot and to change in an
1) We propose a novel scheduling algorithm for m'n'm!zm%dependent and identically distributed (i.i.d.) manneroas
the avetraget povye:j_e_ﬁpered bi; TaCh. user StljtheCtsF&s. This model is termed as théock fadingmodel [7]. We
a constraint on ndividual user delay in a Mulli-US€lgq,me that the channel gains across users are also i.ddr Un

uplink wireless system. 'I_'his e}lgqrith_m does not requig@ese assumptions, if a usetransmits a signaji in slot n,
knowledge of the probability distributions of the chann en the received signdl’ can be expressed as,

states and the arrivals. ) o
2) We analyze convergence and stability properties of the Z, = Hly, + G, (1)

proposed scheme. We establish an interpretation aﬁ I denotes th | h | qain due to fadi
‘Markov equilibrium’ of a stochastic game and aIsoWnderg g ne?o eti € fnorriexdgit:/nn\?vhﬁal% ue ioni Iing
argue incentive compatibility of the scheme. We arg n denotes the compiex a e € Lbaussian noise

H i T _ 1|2
dealing with a ‘learning’ situation for which we makeWlth zero mean and varianca). Let X, = |H,|" be the

a somewhat qualified convergence-stability claim: if thcéhannel state for usein slotn. Usually, i, (and hencex,)

learning scheme converges as desired, then the que\fe‘g continuous random variable. However, in this paper we

are stable. Conversely, if the queues are stable, {Azsume thafX}, takes only finite and discrete values from a

learning scheme converges. The simultaneous validit t&. This assumption has been justified in [7], [8]. In this

of both, while observed in simulations, appears hard o\?ve h we assutr;:et t‘[]hat the d|:str|bu|i|otn)6g 'S l;nknovxlln..
prove, a situation not uncommon in adaptive control. ¢ assume that Ine Users: packets are of equal size, say,

3) We demonstrate applicability of the algorithm within” bits. Packets arrive into the user buffer of infinite capacit

!EEE 802'1_6 framgwork. Our simulation studies involv- 1The assumption of TDMA does not restrict the applicability tbfs
ing comparison with M-LWDF scheduler demonstratérmulation to any orthogonal multiple access system.

*We consider uplink transmissions (as in Figure 1) in a Time



and are queued until they are transmitted. The packet hrriby a useri can be expressed as:
process for each user is assumed to be i.i.d. across sldts. Le M
A? denote the number of packets arriving into the udmiffer P’ = limsup iE Z P(X!, I'RY). (4)

in slotn. We assume that the random variatlg takes values M—oo M~

.. . A . i
from a finite and discrete se = {0,..., A}. Like X}, We The average queue length of useran be expressed as:
assume that the distribution ef!, is unknown. u
Let Qi € Q 2 {0,1,...} denote the queue length or buffer O = limsup LE Z Q. (5)
occupancy of usef in slot n. Let U denote the number of M—oo M "
packets actually transmitted in slat(by user:). We assume

thatU? takes values from the st 2 {0,1,...}. Let I{ be an

|nd|catpr variable that !s set tbif users is schedluled mNsIot algorithm that minimizesP' for each useri subject to a
n and is set td) otherwise. Lefl,, be the vectofI},.... I.}].

, o v in constraint onQ’. Thus the scheduler objectives can be stated
Note that since only one user can transmit in a slot, only one

element ofl,, is equal tol and the rest aré. Let Z be the set _ o
of all possibleN dimensional vectors with one element equal Minimize P* subject to Q* <¢*, i=1,...,N. (6)
to 1 and the rest being. Let R!, € U« denote the number of

packets that usershould transmit in a slot if it is scheduled.these problems are not independent. This is because in a

ThenU;, can be represen_ted 8 =LR,. I\_/Io_reover, Sif‘ce 2 TDMA system, only one user can be scheduled in a slot
user can at most transmit all the packets in its buffer in § sl% ' '

. S : . nsequently, the scheduling decision in a slot impacts the
R: < @:. Since we assume that the slot length is normahz%dp d Y, 9 . P

. » . , : uffer occupancy of all the users in future slots. The above
to unity, U, also represents the rate at which uséransmits

in slot n. Let U, be the vectofU/! ..., UN], U, € UV, formulatiqn, however, .Iea.ds to the difficulties of. largetsta
. ) , space, high communication overheads etc which we have
The queue evolution equation for usecan be expressed mentioned already.
as, In the next section, we present a solution strategy wherein
21+1 = Q -U +Afm+1- (2) we split the p_roblem intQV +_1 parts: N user problems a_nd
one base station problem. This alters the problem to a simple
For most communication systems, the power required fépe which may be viewed as an approximation to the above.
reliable communication at a rate’, = u packets/sec when The details follow.
X! = x, denoted asP(z,u), is an increasing and strictly
convex function ofu. Let P denote the maximum power with 1V. SOLUTION STRATEGY: DECOMPOSITION INTOUSER
which a user can transmit in any slot. L& (z%) be the AND BASE STATION PROBLEMS

maximum number of packets which usecan transmit in a  |n this section, we propose the following solution strategy
slot Wh?n the channel state:i$ and when transmitting with we view the pr0b|em asVv (dependent) user prob|ems and
powerf. Then the set of feasible actions for ugen slotn  one base station problem. The useroblem is to determine
is Ft =40,...,min(R"(2%), Q%) }. a rate at which it desires to transmit in a slot so as to solee th
We assume that the users specify their QoS requirementpimblem specified in (6). Since the channel and arrivalstiesi
terms of the average packet delay requirements. These dedesy not known, in order to address this problem, the users
requirements of the users are known a-priori to the schedulesort to a ‘learning’ approach discussed below. The users’
By Little’s law [32], the average delay is related to the desired rates are then conveyed to the base station. The base
average queue lengt as, station problem is to select a user in each slot.

n=1
Each usei wants its average queue length to remain below a
certain value, say)’. Our objective is to design a scheduling

Note that there are actuallv problems in (6). However,

@=ab, (3) A. Learning Algorithm for the Users

wherea is the average arrival rate. In the rest of the paper, weWe consider a modified version of the on-line algorithm
treat average delay as synonymous with average queue lergthposed in [17] that determines the transmission rate émyev
and ignore the proportionality constamt slot for each user. Once the on-line algorithm has deteminine
the rateR?, € F!, the transmitter at a particular user executes
this action if the channel is allocated to it, otherwise it is
unable to proceed with the transmission. If the transmitter

In this section, we formulate the multi-user schedulingot able to proceed with the transmission, the packets remai
problem. in the queue. Under the given model, the queue evolution

equation can be expressed as,

The problem considered here is to design a scheme for Qi 4 AL TR )
scheduling a user in each time slot and also the rate (i.e., ntl n T Sntl - Tntin
number of packets to be transmitted) that minimizes the-averherel? = 1 if the transmitteri actually transmits the packets
age power expenditure of each user subject to the satisfiactii.e., if useri is scheduled in a slat), else, I} = 0. Let Q,,
of individual delay constraint. The average power consumedd X,, denote the vectorf)l,..., QY] and [X},... XX]

I1l. PROBLEM FORMULATION



respectively. The state of the systédpy at time n can be The following dynamic programming equation [30] gives a
described byS,, = (Q,,, X,,) comprising of the queue lengthsnecessary condition for the optimality of a solution:
and the channel states. The control variablesIarteR,, =

[RL...., RN], of which the transmitters independently choose Vi(ga) = min [C(M ¢ x,r) =B+

the corresponding components Bf, and the base station, L Naris g

which is doing the channel allocation, choodgssubject to Zp((q’x)7r7 (@, 2))Vi(d,2")|, (14)
q/ I/

the constraints that’ € {0,1} and ), I’ = 1.

Our learning policy, however, mandates that once tranemitwherea’ € A, 2’ € X, V(-,-) is the value function3 € R is
i has determined the rat&!, it updates its power costthe unique optimal power expenditure. L@, z°) € Q x X
irrespective of whether packets have been transmitted or rize any pre-designated state. If we impd8¢q°, 2°) = 0, then
That is, it operates as though its cost is Vi(.,-) is unique [30]. The Relative Value Iteration Algorithm

(RVIA) [30] is a known approach for determining the optimal

g 1. S value function. It can be expressed as:
P = lij\r/lnsup —EY P(X},R.). (8) o ”
el n=1 V7z+1(q7 ‘L) = :2‘17_1_1@ |:C()"Lv q,Z, 7') -
Thus the problem that useéraddresses can be specified as: P L rir
Vila"2") + Y plla. @), (¢ 2)Vilda))]. (15)

Minimize P! subject to Q° < 4§, i=1,...,N. (9) qa'

) , ) o Note, however, that RVIA (15) requires the knowledge of
Th_ls p_robl_em is a CMDP with average cost criterion. Thg(.7.7.), This depends on the probability distributions of the
objective is to determine an optimal poligy"* such that 5qj a5 and channel states; which are not known. Moreover,
the power cost (8) is minimized while satisfying the delayetermining the optimal value function as defined in (14)ds n
constraint. Note that the policy considered here minimtbes g icient hecause the unconstrained solution for a pdaticu
singlg_ usgr cost exactly as in the single user case of [17] RS does not ensure that the constraints would be satisfied.
specified in (8), not the actual power cost (4). See the Rema#k ensyre constraint satisfaction, the optimal LM needseto b
1 at the end of this sub-section and the subsequent sectigng. mined.
for further discussion on this aspect. _ 2) The Post-decision State Formulatiofo address the

1) The Primal Dual Approach:The constrained problem difficulty posed by unknownp(-, -, -), we introduce a stochas-
in (9) can bg converted into an unconstrained problem usigg approximation version of the RVIA. The RVIA above,
the Lagrangian approach [28]. We focus on fkte user. Let powever, is not suited for this because the conditional ex-
A" > 0 be a real number termed as the Lagrange Multipligfactation w.rt. the transition probability is inside theo-
(LM). Let c : RT x Qx X xU — R be defined as the jinear) minimization operator. This prompts us to repldue t
following, state variable§Q’,, X?) by ‘post-decision state’ variablés

o R (Qi,X?) defined byQ! = Q! — U, X! = X'. Let ¢'(.)
P(Xp, By) +AMQ = 0Y), (10)  genote the unknown law for the arrivals art(-|-) the tran-
sition probability kernel for the channel states. The dyitam
programming equation and the RVIA for post-decision states
become

e\, QX ) 2
where R¢, is determined using the rate allocation polig :
Q x X — U. The unconstrained problem is to minimize:

L', N) = limsup — B >~ (N, Qb Xp 1 (@1, X)), V@) = Y ¢ a)n(elle) x

M—oo n=1

(11) min |¢(\, §+d 2, 1) — B+ Vi(G+ad —ra 16
L(-,-) is called the Lagrangian. Our objective is to determine re7: { W g+d,ar) =5 (@ ’ )}’ (16)
the optimal rate allocation policy* and optimal LMA“*  gng

such that the following saddle point optimality conditidB]

is satisfied: Vi1 (6,8) = ) ¢'(a)k(a|2) x
a’,x’
L(pb* N < LB Xo*) < Lpt, \o). (12) ml;_l {C()\i,ij—l— a’,x’,r) - V;((jo,jo) + V;(d"" a —r, J,‘/):|, (17)
refF*

Fc_)r_a fixed LM, the prok_)Iem IS an unconstralne_zd Marko\Ovhere (¢°,2°) is any pre-designated reference post-decision
Decision Problem (MDP) with the average cost criterion. L%t[ate. On the right hand side in (17), the value function

p((g,z),m, (q,’wl).) denote t.he probability of reaching a Stalteéorresponding to this state is subtracted in order to keep th
(¢’,2’) upon taking an actiom in state(q,x). Let V()
denote the value function under poligy, i.e., V*#*(q,x) 2This is a special construct that is possible when the cdattdtansition
denotes the expected cost for a St@ﬁr) under a policyu. naturally splits into the control action followed by theiaat of noise. It has

il . ; ; advantage that the corresponding dynamic programmingdienueas the
LetV ( ’ ) denote optlmal value function. It can be eXpreSSé&@iditional expectation operation outside the minimizatoperation. This

as: facilitates a stochastic approximation version of it, whishthe learning
i : i algorithm. See [34] for an extensive account of the postsieti state
V*(q,2) = min V"*(q, x). (13) fo?malism. [34] P



iterates bounded. In the next section, we present an on-line converge to zero sufficiently fast to eliminate the noise
algorithm based on a reformulation of this RVIA that does effects when the iterates are close to their optimal values

not require the knowledge of-, -, -). The approach is similar Vi(-,-) and \*, while those in (19) ensure that they do
to that in [17]. We also augment the reformulated RVIA with not approach zero too rapidly to avoid convergence of
an LM iteration to ensure constraint satisfaction. the algorithm to non-optimal values. Furthermore, (20)
3) The On-line Rate Allocation Algorithmn this section, ensures that the update rates of primal, i.e., the value
we present the on-line algorithm which we call thate function iterations and the dual, i.e., the LM iterations

allocation algorithm This algorithm determines the rate with are different. Sinces,, approache$) much faster than

which the user should transmit in a slot and updates the value f,, the update rate of the value function iterations is
function and LM. much higher than that of the LM iterations. Using a two
Let{f.} and{e,} be two sequences that have the following time scale analysis, we show in Section V-A that even
properties, though both the primal and dual variables are updated

) ) simultaneously, both converge to their optimal values.

Z(f”) ’ Z(e”) < 00 (18) Remark 1:Note that the r.h.s. of (22) is nothing but the

" " actual minimum of the expression being minimized on the

an = 00, Zen = 00, (19) rhs. of (21). That is, the relative value iteration is lgein
" " performed for the single user cost exactly as in the single
nILH;O f—n — 0. (20) user case of [17] specified by (8), not for the power cost (4).

n

As we argue later, it will in fact converge to the single user
The significance of these properties has been explainewbelgptimum rate requireor the current quasi-static value of the
Let the useri’s state at the beginning of slot be S}, = Lagrange multiplier This is the rate the user wilequest it is
(Qh,X%) = (¢.x). Suppose that, packets are transmittednot necessarily the rate actualijlocatedto it. The difference

in slot n. The following primal-dual algorithm can be usedyith the single user case of [17] comes from the fact that
to compute the rate?;, ., = r,,; at which the transmitter these relative value iterations for users are coupled tirdoe

should transmit in slot + 1, Lagrange multiplier updates which are indeed affected ly th
i . ~ actual transmission scheme. As we see later, the convergenc
e {(1 = fa)Va (G, %) + fu X of (23) perforce implies that the constraints are met. Given
i o i i the fact that not the full requested transmission rate igadlgt
{C@”’ a+ A”“’ X"ﬂ’ v) granted, that leads to the conclusion that a higher ratebsill
V(@ + Apr — v, Xppy) requested than in the single user case in [17], which in turn
—Vrf(fioafo)}}7 1) means larger Iimiting valu.es for thes compared to those _in
o o [17]. We call this themulti-user penaltythat a user pays in
wi1(@,7) = (L= fu)Via(q,2) + fu ¥ the multi-user environment. Further discussion on this lman

found in Section V-D1.

X G+ A1 Xy : I
{C< o4 41 Xnen T A convergence analysis of the user algorithm in (21), (22)

FVHG+ AL — 1, X ) and (23) is presented in Section V-A. Each useletermines
—V,f(do,io)}, (22) the ra'te.R.;+1 = 1, at Whl_ch it would transmit in slpt
. , o n+ 1 if it is scheduled, specified by the algorithm described
Moy = DL +e, (QL =69, (23) above, and communicates this rate to the base station. The

base station employs the user selection algorithm to sédedu
@ user. The users update their value functions in each slot

N |teratbes 'Tj tge mterfv?rEO,IC]'tfor th >C> L. Th'st IS t::)e ﬁfsuming successful transmission regardless of whetkgr th
ensure boundedness of nese ilerates. L.omponents other ha g-paqyled by the base station or not. Note, however,

the (g, Z)th in (22) are left unchanged. These equations Affat for the user who is actually scheduled, a corresponding

explained below. gueue transition occurs because of the transmitted packets

1) (21), (22) and (23) constitute the rate allocation afrhjs influences the queue length and consequently the LM
gorithm or the ‘user algorithm’. It consists of twoypdate.

phasesrate determination phaseandupdate phase21)
constitutes the rate determination phase of the algorithm, . .
i.e., it is used to determine the rate at which a us& User Selection Algorithm
should transmit in a slot. (22) is a primal iteration to The user selection algorithm schedules the user with the
determine the optimal value function for post-decisiotargestR: . If more than one user has the largest rate, then
states and thereby the optimal policy, while (23) is a user is selected at random from among them with uniform
coupled dual iteration for determining the optimal LM probability. The intuition behind selecting the user witiet
They constitute the update phase of the algorithm. largest rate is the following. The rate allocation algaritiof

2) The sequenceg, and e, have properties specified ina useri would direct it to transmit at a high rat&’, under
(18), (19) and (20). The properties of the update séwo circumstances: either the channel condition for that is
guences in (18) ensure that the sequer¢e$ and{e,} very good, in which case transmission at high rate savesmpowe

whereT'[-] in (23) is a projection operator that projects th



or the queue length of that user is large. Thus selecting ia

with a high rate results in either power savings or reduci

the queue length of that user and thereby ensuring that

delay constraint of that user is satisfied. An analysis of {

user selection algorithm is presented in Section V-C.

Base station
scheduler
(User selection
policy)

Rate
determination
phase

—>|

Update phase

Inform
scheduling
decision

Useri

Inform rate to base
station

Fig. 2. Solution schematic

C. Algorithm Details and Implementation

The rate allocation algorithm is implemented on the user.
devices while the user selection algorithm is implemented a...

the base station, as illustrated in Figure 2. From (21), tiwe
the rate determination phase requif€s, i.e., the knowledge

of the channel state at the base station. The communica
overhead incurred by the base station in informing a useutak
the channel state perceived by it depends on the numbe

states used to represent the channel. We represent theeth
using 8 states. Thus the base station ne8dsits per slot in
order to inform a user about the channel state perceived b

ise: Initialize the value function matri®’?(q,z) « 0 Vq €
ng O,xelX
the Initialize LM A" « 0
he: Initialize slot countem « 1
4: Initialize queue lengthy’ < 0

Inform the base station of the raté

%:  while Base station has not scheduled a uber

17 wait

18:  end while
1o Update the componery’, z*) of the value functiori/*
0 using (22). Rest of the components remain unchar
r f Update the LM)® using (23) @, = ¢)
Agn ¢ —q +a —ui

22: b — xi/
yﬂ%: n«—n+1

The users inform the base station about the computed rates. and while

We allocate3 bits for conveying this information, i.e., th
system can emplo§ rates. The user selection algorithm the
determines the user to be scheduled and all users are irdor
about this decision. The rate allocation algorithm at easzr u

Igorithm 1: The Rate Allocation Algorithm at the User

gvice

then enters the update phase where the value function and thewhile TRUE do

LM for each user are appropriately updated using (22) ana:

(23). The algorithm thus continues in each shotThe rate

allocation algorithm that is executed at each user device

illustrated in Algorithm 1 where, step$— 13 represent the
rate determination phase, while steffs — 24 represent the
update phase. The user selection algorithm executed at
base station is detailed in Algorithm 2.

D. Discussion

1) Computational complexitythe computational complex-
ity of the rate allocation algorithm executed at a us

foriel,...,N do

3: Estimate the channel staf&! ., = z*' in the curren
is slot for useri

4: Inform 2% to useri

5. end for

tle while Rate of each user is not knovdo

7 wait

:end while

9: Determine the uset who has the highest rate
10:  Schedule usek in the current slot
kL end while

5: Initialize channel states’ — 0,z — 0

6: Reference state- (0,z!), wherez! € X

7: while TRUE do

8:  while Base station has not informed the channel state
Xi, =2 do

9: wait

10:  end while

11:  Determine the number of arrivald’  , = a' in the
current slot

12 Determine the queue length in the current €}t = ¢°

13:  Use the rate determination phase of the rate allocation
algorithm, i.e., (21) to determine the ratg for trans-
mission

14:  Determine the poweP(z!' ) required to transmit"
packets

ged

device is independent of the number of users in tfdlgorithm 2: The User Selection Algorithm at the Base
system. This is because the rate allocation algorithfrfation

for any useri is dependent on the usérstateS? only

and is independent of the states of the other users. The

user selection algorithm has to determine the maximum

of N numbers and hence is linear iN. Thus the
computational complexity of the user selection algorith
grows only linearly with the number of users.

2) An auction interpretation:The above scheme can b
interpreted as an auction, where the user selection
gorithm auctions each time slot. The users bid in t

form of their transmission rates to the user selection

algorithm, which allocates the time slot to the user

m bidding the highest rate. The rate bid by a user is
dependent on its channel state and queue length. If the
e channel state is good and/or the queue length is large,
al- the user bids a high rate. This is because transmitting
he at a high rate when the channel state is good saves



power, while doing so when the queue length is largge assume very large buffers. This can be viewed as an
aids in satisfying the delays. Note that the users do napproximation to the original problem. Alternatively, wanc

bid unnecessarily high rates because that might resultiimerpret the analysis as stating that high buffer occupanc
higher power consumption. For a user, not winning amas low probability.

auction in a certain slot implies that other users either

have better channel conditions or relatively higher queueThe main steps in the analysis are as follows:

length or both. If a user does not win the auction for a 1) We make an assumption on the stability of the queues
certain number of slots successively, its queue length  under the closed loop scheme, as noted above.

grows, thus forcing it to bid a higher rate. 2) We then analyze the convergence of the value function
for each user for an almost constant value of the LM.
V. ANALYSIS OF THEMULTI-USER SCHEME Since the value function of each user is updated in each

slot regardless of whether the user is scheduled in that
slot or not; the value functions are decoupled across
users. This is in the spirit of the decoupling of static
formulations of network flow problems via the Lagrange
multiplier as in [36], except that here it mandatedby
our algorithm. The decoupling is facilitated by the fact
that the users compute their value function as though the
cost is (8) and not (4). The latter would have introduced
) a more direct dependence on other users, over and above

.. .s(shn i that through the LM.

llnrrilo%f n >0, Vst (24) 3) Finally, we prove that the LMs and the coupled iterates
(24), which is akin to positive recurrence for uncontrolled ~ ©Of the users also converge. Convergence of the LMs
Markov chains, is a stability condition and is essential for ~ implies that the delay constraints are satisfied and vice
proving the convergence of our algorithm. We shall prove tha ~ Versa. This implies that if there is sufficient capacity,
the queues are indeed stable, implying that (24) is indeed the multi-user scheduling satisfies the delay constraints
satisfied, if we assumethat the users have already learnt  Of all the users.
their policies, i.e., the user learning component of theralle We now prove that the value functions converge.
scheme has converged. On the other hand, this convergence ihheorem 1:For the rate determination algorithm (21), (22)
turn requires a priori proof of stability. This circularsétion is and (23), under the assumption of stability of queues, e it
very common in adaptive and learning control (see, e.gl) [3%tes(V,/, \!,) converge to the optimal values, i. €V N —
and a procedure that assures its resolution is yet unknowl.’, \>*). Moreover, convergence to equilibrium implies that
There are however certain heuristic approaches that wollk widae delay constraints of the users are satisfied.
in practice. In the present case, for example, one can impose Proof: The proof for individual user’s algorithm is similar
an initial ‘pure learning’ phase wherein one employs a knowto that of the single user algorithm in [17]. We sketch it
stable strategy for a finite duration instead of the ‘seffitg’ in outline below, referring to the relevant portions of [37]
policy which bases its decision on the current guess for tfer details. The arguments are based on the well known
value function, and then switches to the latter. This wibwe ‘o.d.e.’ approach for the analysis of stochastic approxioma
that the latter, when finally inducted, gives good guesses fagorithms, wherein one looks at the algorithm as a noisy dis
the value functions so that the corresponding guesses €oetization of a limiting ordinary differential equation.¢.e.)
actions are close to optimal, in particular stable. Anothavhich can be written by inspection. One treats the ‘learning
possible solution is to use a known stabilizing policy wheparameters’ or stepsizes as discrete time steps and canpare
the state process blows up, i.e., crosses a very large tideshthe linearly interpolated iterates with the o.d.e. trapegtfrom
and use the policy proposed herein otherwise. Our simuigtiosome time on. The assumptions such as (18) and (19) on the
however, use the original scheme and the simulation rearédts stepsizes ensure (under suitable hypotheses) that etrertod
quite promising. both discretization and noise are asymptotically negkgénd
therefore the iterates a.s. track the asymptotic behayitreo
o.d.e. See Chapter 2 of [37] for the general idea of proof. We
spell out some details below that are specific to this paper.
Note that each user in the system has coupled |terat|onsl) Our requirement thag= — 0 induces two time scales, a

comprising of the value function and LM. We need to prove i) =
that these coupled iterations converge to an equilibrium fast one for (22) and a slow one for (23). UE[(V
[ ( )] be given by:

set for each user. It may be noted that the reinforcement
learning algorithms that we are adapting here are originall hi Zcz 'z) x mm[ (N, g+ a, 7, )
designed for finite state space scenarios. In contrast we are
dealing with a discrete but countably infinite state space. W

present the proof only for finite state space. Note that the
channel state space is already finite. For queue length space where(q’, z°) is any pre-designated state. Using the two

In this section, we present an analysis of the multi-user
algorithm presented in the paper. Specifically, we commant o
gueue stability, convergence and optimality of the algonit
We begin with certain conditions that are necessary for the
convergence of the algorithm.

Let ¢(s’,n) be the number of times that userstate s
is visited up to timen. The state process should satisfy the
following property:

A. Convergence Analysis

a,x’

+ Vilg+a—u,z') —Vi(g,z),



2)

3)

time scale analysis in [37], Section 6.1, we first analyze
(22) by freezing\, ~ a constant\’ and considering the
limiting o.d.e. for (22) given by

Vi(t) = A () (R (V' (1) — V(1)) (25)
where A%(t) is a diagonal matrix with nonnegative
elements summing td on the diagonal. The diagonal
elements ofA(t) reflect the relative frequency with
which the system state§;, z) are visited, and there-
fore the corresponding components of the iteration are
updated. Barring the diagonal matri¥ (), this is just
what one expects. The occurrence/dft) is due to the
asynchronous iteration — we update only one component
of f/;' at a time. See [37], Section 7.2, for a description
of how this comes about.
Suppose that the queues remain stable. Coupled with the
recurrence of the Markov chain describing the channel
state, this implies that the empirical frequency of any 4)
possible post-decision state value remains bounded away
from zero with probability one. This implies that the rel-
ative frequencies with which the states «) are visited
are of the same order of magnitude. Hence, the diagonal
elements of\‘(¢) remain uniformly bounded away from
zero (see [37], p. 87, for a more formal argument.). One
also needs that a particular user is scheduled frequently
enough by the base station. Our stability assumption will
be seen to ensure this automatically: a user not selected
for long builds up a large queue and hence requests
higher rate, which favors its selection thereafter. Were
this not so, that queue would have become unstable.
In fact this can still happen if the maximum permissible
rate for one user is way less than that for others, in which
case it will be starved of transmission opportunities
most of the time and go unstable. We assume that the
maximum allowable rates are sufficiently large for the
arrival rates under consideration and comparable (among
users) so that this does not happen, in fact we later
impose a condition ((30) below) stronger than this.
We now prove that the value function converges to its
optimal valueV?, i.e., Vi — V.

Lemma 1:If the diagonal elements of\‘(¢) remain
uniformly bounded away from zerd! — V?.

Proof: We first need to prove that the iterates
remain bounded a.s. We adapt the arguments of Section
3.2, [37]. The situation is slightly different here, viz.,
we have a time-dependent matri¥(¢) on the r.h.s.
of (25) whereas Section 3.2 of [37] analyzes a time-
homogeneous case (compare (25) in the present paper
and (3.2.1) in [37]). Nevertheless, it does not affect the
argument as long as the diagonal elementd @f) are
uniformly bounded away from zero. As in Section 3.2 of
[37], (especially the development after (3.2.2)), conside
a ‘scaled limit'" of the o.d.e. (25) wherein in the r.h.s.
of (25) the functionh® is replaced byh’  defined by
hi_(x) 2 limg oo % This corresponds to (25) again,
but with ¢(-) = 0, i.e., the immediate cost function is set

to zero. It can be shown as in [17], Lemma 1, that this
scaled o.d.e. has the origin as the globally asymptotically
stable equilibrium. This ensures a.s. boundedness of
the iterates by the results of Section 3.2 of [37]. The
intuition is as follows: if the iterates become unbounded
along a subsequence, a scaled version thereof, suitably
interpolated, begins to approximate the limiting o.d.e.
above and therefore has to return towards the origin by
the asymptotic stability of the limiting o.d.e. Since these
differ from the original iterates only by a scale factor,
one can argue that the original iterates themselves start
moving towards a bounded set and therefore cannot blow
up. Section 3.2 of [37] makes this intuition precise.
One can then argue as in [17] (development just before
Lemma 1) to conclude thaV’(t) converges to the
solution V* corresponding toV?(¢°, z°) = 3, where
[ is the optimal average cost per stage. As in Section
2.1, [37], it then follows that/} — V' a.s. [ ]
Note that the above analysis treats ~ a constant,
so what we have really proved (cf. Section 6.1, [37])
is that {V/!} closely tracks {V#*»}, where Vi
is V' with its \-dependence made explicit. To be
precise, Vi — ViA» — ( a.s. The following lemma
then proves that the LM converges to its optimal value
Ai*, and hence the pafii?, A\ ) converges tgV?, A"*).
Lemma 2: The LM iterates\!, converge to optimal
value \"*.

Proof: The proof is similar to that in [17], Lemma
4 and Corollary 1. The proof of this Lemma depends on
Lemma 1, hence by implication on our assumption of
stability of the queues. Note that thg and)\’, iterations
are primal-dual iterations. The primal iterations perform
relative value iteration and determine a minimum of
the Lagrangian with respect to the policy for an almost
constant LM. For the time being, suppoBé) in (23)
is dropped. Then the limiting o.d.e. for th¥'s is
a steepest ascent for the Lagrangian minimized over
the primal variables (See Lemma 4 of [17]), a fact
that can be justified by using the ‘envelope theorem’
[38], which allows one to interchange the ‘max’ and
the gradient operator. By standard results for stochastic
gradient ascent for concave functions (see Section 10.2
of [37]), this converges to the optimal LM-* as argued
in [17] Lemma 4 and Corollary 1. Specifically, we have
the limiting o.d.e.

N(t) ¥ min L, X' (1)),

n
EA(t) [Q’L] - gia

(26)

(27)

where E*[.] denotes the stationary expectation under a
policy that is optimal forA. (If it is non-unique, then we
can use a differential inclusion as iipid.).

When the projectiol’(+) is operative, we have a pro-
jected version of this 0.d.e., as described in [37], Chapter
7. This involves a correction term at the boundary,
which, however, is zero if the driving vector field of the
o.d.e. is transversal to the boundary and points inward.
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This indeed will be the case hereAf in the definition outside a bounded set gfs. That is, if queue length(s) blow
of T' is sufficiently large so that the true Lagrangeip, the system at the very least transmits at Fat€his implies
multiplier is in the interior of the range af. This can be that wheneveK,, is outside a certain large bounded set,
ensured by takingC extremely large. (A priori bounds

on Lagrange multipliers can be derived, e.g., as in ([33], EV(Qnt1)|Qn, X0l = V(Qn)
p. 516.) Since the r.h.s. of the limiting o.d.e. for LM is =R+ ZVi <0. (31)
nothing but the vector of offsets between the mean queue P

lengths and the corresponding bounds, convergence of . )
the o.d.e. implies that this offset is asymptotically zerd,nus V(-) serves as a stochastic Lyapunov function for the

i.e., the constraints are met with equality, this beingueue thus ensuring its stability (i.e., positive recureer see
precisely the statement that the right hand side of t 9], Chapter 13). Note that it suffices to have the Lyapunov
o.d.e. is zero. m function depend on gqueue lengths alone, as the channel state
It may be mentioned that projection such Hsis a IS in any case finite valued.
commonly used device for theoretical purposes that The condition (30) ensures that the minimum of the max-
avoids the difficulties in proving a priori boundednesgnum rate allowed to each user is itself adequate to handle
of iterates. Empirically, the scheme even works witho@l! traffic. Under (30), we can say more than just positive
any such projection. recurrence, viz., we characterize the set near which thaeque
Lemmas 1 and 2 imply tha(Vg,)\fl) - (f/i,Aiv*) as Iengt_h_s will concentrate in an apprommate__way. Note that
required. ‘stability’ for o.d.e. (or qurespondlngly, ‘posﬂwe_re_n_cr_ence’
for a Markov process) still allows for many possibilitiesg.e
oscillatory or even chaotic behavior. In what follows, wgus
that one can say more, viz., that the o.d.e. generically show
B. Queue Stability convergent behavior, whence the random process conantrat

In this sub-section we prove (under suitable condition§Far the equilibria of the o.d.e. The argument will be based
that under the strategies learnt by individual users, treugs On the so called cooperative o.d.e. introduced by Hirsch, [40
do remain stable. This is done using a stochastic Lyapundfiich have since been used in many situations by control
argument. This does, however, presuppose that the usegs HB§0rists. The key result here, due to Hirsch [40], is that as
learnt the correct strategies already, i.e., the learnigrse long as the trajectories remain bounded, for almost aliaihit
has already converged. As noted earlier, this does not pr&Rditions they converge to an equilibrium. With this in chin
closed loop stabilityvith the learning scheme. Our simulationVe Proceed as follows: First we prove the boundedness of

results, however, indicate a stable behavior even with tH&iectories and the cooperative property of the o.d.eictwh
learning component kicking in. allow us to invoke the Hirsch theorem to claim convergence.

Let V(@) = S,¢', 7' = E[4L]. Let = denote T1hen a standard argument from the theory of stochastic

the (unique) stationary distribution of the Markov chaifPProximation algorithms with constant stepsize shows tha

{X,}. Recall thatR! depends onQ,X:). Suppose that the random iterates concentrate with a high probabilityr nea
Ri — ¢(Q,X) for some ¢i(-,). Write £(Q,,X,,) for the equilibria of the o.d.e. The details follow.

QL. X)), Y (QY, X)) Now, For technical reasons, for the purposes of this proof we
assume that at each time the base station uses a smooth
EV(Qn11)|Qn, X0] = V(Q,) approximationF := [F!, ..., V] of the maximum function
for channel allocation, i.e., it allocates the channel te th
_ iy user with the highest demand (sayh) with a probability
N E[Xi:(Q"“ @)l Qn, Xl F'(R,,) close to one, but does allocate it to others with a
i i small but nonzero probability™(R,,),j # i. Specifically,
- _ZU” +Z'y let F(R,,) := g(R;,)™/(>; 9(R})™) for some monotone
Lo increasing and smooth and m >> 1. Also, we assume
= _ZEZ(Q%XZ)I{zi(Q;,x;g)zw(Qi,X,J;),i;éj} that the ¢i(-,-) above is continuously differentiable. These
Lo hypotheses avoid some difficulties in the argument below tha
+ Z V. (28) would be caused by having to deal with a differential equmtio
i with a discontinuous right hand side. This is at the expefise o

If Qi 1 then?*(Q%, X*) 1 by monotonicity of optimal single P€iNg only approximate. ‘ _
user policy in the queue length [11], [10]. It is reasonalole t 1N€ queue evolution (2) for usercan be rewritten as:

expect that ag’ T, , , , , . . ,
b = Qe+ (0 = FURRL) + (Al =)

(gt xt Ri(z). 29 i i i
(¢",2") T R'(2*) (29) +(F1(RR)R;—UQ)).

This motivates our assumptiodR > 0 such that

minfi(q',2') > R > Y~ (30) LetF=— [El,_. ., ff\_’} be defined byfi(r) = Fi(r)ri Vi.
@ p Note that this is continuously differentiable. Then the upie
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evolution is of the form: decreases foi # j. As per our user selection policy at the
base station, this results in a decrease in probability ahobl

@npr = o+ (0" = F'(Ra)) + M1, 20, (32)  qocationFi(.), i # j, and henceF (-) for useri. n
where{M,} is a martingale difference sequence. We thus have the following lemma.
Letq = [¢},. .. ,qN]_ DefineF = [F!,. .. 7FN} by: Lemma 5: The trajectories of the o.d.e. in (34) converge to
. ) . an equilibrium for almost all initial conditions.
F'(q) = ZFZ(K(Q» X)) (", 2" )m(x). Proof: Boundedness of the iterates as proved in Lemma
x 3 and the cooperative property as proved in Lemma 4 allows
Consider the scaled version of (32), given by us to apply Hirsch theorem (Theorem 4.1, p. 435, of [40]).
Qi = Q4 nl(v — F{(R) + Musa], n >0, (33) :;tomlic:iv(\)/ist.hat the trajectories converge for almost aIItu:il

for a smalln > 0. If we consider smaller and smaller time Lemma 6:With probability 1 — O(n), {Q.} in (32) will
slots of widthn with 4%, and F* being ‘rates per unit time’ concentrate near the set of equilibdfiof (34).
rather than ‘per slot' quantities, then we obtain the ‘fluid’  Proof: As seen above)(-) serves as a&tochasticLya-

approximation of (32) , which is given by the o.d.e. punov function for the Markov chai{Q,}, implying its
y PR positive recurrence. In particular, it will be asymptotiga
¢'(t) =" = F*(a(?)), (34)  stationary. Thus it suffices to consider the stationary rchai

restricted to the positive orthant (i.e., it follows the jeced Consider two time slices at andn + M resp.,n, M > 0, of
dynamics on the boundary of this orthant). Note, howevdhe stationary chain. The distributign, of the queue lengths
that under the condition that the rate requested at zeroequéti the same at both times by stationarity. Let> 0 as
length is zero, the boundary will be repelling, i.e., trajeies above and pickK C (Z27)V such thatuy(K) > 1 — 1.

starting at boundary move away from it. Let B denote thee-neighborhood of 3. Then 1(Ui{q :
Lemma 3:The trajectories of the o.d.e. in (34) for each ¢(0) = ¢, q(t) € BV ¢t > i}) = 1 by Lemma 5.
approach a bounded set. Thus we can pick anM > 1 such that with probability

Proof: The proof is similar to the stochastic Lyapunovts({g iAQ(O) = qq(t) € BEVt > M}) > 1—n.

argument above (Refer to (31)). L&, 2 { maximizers Let D = {q : ¢(0) = ¢,q(t) € B° ¥ t > M}. Now
of i — R} = for m >> 1,FY(R,) ~ \Q%I{ieﬂ, (= consider (33) as a constant stepsize stochastic approgimat
! iteration for smalln. The convergence analysis for constant

limmpoo g(R,)™ /(325 9(B5)™)). LetV(q) = 5., ¢"- Thus stepsize stochastic approximation algorithms of Chapter 9

V(q(t)) _ Z,yi _ Zﬁf,(q(t)) [37], implies that
' e . Eld(Q, 121, B)?|Qn € D] < Cn (35)
~ Z,yz o Z W(X)él (t,z) (qz (75,95)(15)7 7t (t,x))’ +f n 1
i x for someC > 0, d(-, B€) being the Euclidean distance from

A . ) o . Be. It follows that under the stationary law,
where i*(t,z) = the maximizer ofi — ¢(¢*(¢),z"), i.e.,

i*(t,x) is the index of the user that bids the highest rate. P(d(QnH%W,Be) >€)

If any ¢*(t) becomes very high, then one expects the users to — P(d(Q,, a1, B) > 26)
transmit at the highest possible rate in all channel stated, nt[ 5T =
the system at the very least transmits at rAteHence, r.h.s. < n+4+0 (e%) ,

<> .7" — R, thus leading to
. ‘ where we use stationarity, (35) and the Chebyshev inegualit
V() <> 7' - R<O. to get the above inequality. n
i The equilibriag* of the limiting o0.d.e. correspond to situa-
ThusV(-) serves as a Lyapunov function for the o.d.e., leadirigpns where
to bounded trajectories. ] v = Fi(q") Vi, (36)
Recall that an o.d.e:(t) = f(x(t)) is cooperative if% >

0 for i # j (more generally;> 0 and the Jacobian matrix with I-€- the mean arrivgls and departures balance out, as the_y
diagonal elements replaced by zero is irreducible) [40]. should. The discussion above then shows that the stochastic

Lemma 4: gF7 < 0fori # j,ie., (34) is a cooperative behavior fluctuates around thIS.. Solution of (36) for>> 1 .
dynamics. 4 thus allows us to make predictions about the queue behavior.

Proof: From [7], [11], [10], we know that the optimal
policy is increasing in queue length for the single user cage Some Properties of User Selection Algorithm
with i.i.d. channel fading and arrival processes. Thus,gase
in the queue lengti®)’ for a user; results in an increase in
R’ as computed by user. Hence

We now prove that the base station user selection algorithm
minimizes the long term sum of maximum rates. Furthermore,
we also argue that the scheme is ‘fair’ in the sense that users
FY(R,) := 9(32)7”/(29(3%)7”) requiring larger system resources have to pay a higherepric

J i.e., they expend more power.
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The base station faces a ‘restless bandit’ problem [41] with1) Multi-user Penalty: Consider a usei. Fix a Markov
partial observations, since the base station has a knowlegwlicy learnt by userg # ¢ and the base station policy. As per
of X,, and not ofQ,,. This problem is hard [42]. In the userour scheme, usersolves an average cost MDP with running
selection policy suggested by us, the base station employsaat functionP (z, )+ A (q—38) = P(z,r)+ A" (25 (g—67)),
greedy index policy treating the observed bids as indiceseH where)®* is the correct LM for the constramed MDP with the
we prove the optimality of the user selection policy at theebaobjective of minimizing hm SUDA oo 37 Z P(Q!, RY)
station for a certain cost criteriogiventhe user behavior.  subject to lim SUP /oo M Zn QL < ot Th|s can be

Lemma 7:The base station user selection policy minimizesaterpreted as there being an appropriate ‘scaling’ of the L

because of the presence of multiple users. This is the yeaufalt
) operating in a multi-user environment. The upward scalihg o
the LM would naturally result in a higher power consumption
as compared to the single user facing the aforementioned
Proof: Let II(Q, X) be stationary distribution of the constrained MDP. We call the rati/é% themulti-user penalty
joint queue and channel state under the user selectionypolitis clear that each user is optimal for this modified MDP
proposed in the paper. Taking stationary expectations ¢im bavhen the policies of other users and the base station are

M

1 . )
lim sup — Z max QL X1). (37

M— o0 n—1

sides of the recursion fixed. On the other hand, we have already seen that the base
_ _ station uses a policy that is optimal for cost (37) when the
ZQZH = ZQ% - Z , t ZAn+1 user policies are fixed. Thus this is a Nash equilibrium for a
i i i certain stochastic dynamical game. In fact, it is an insanc
allows us to write the following: of the economists’ notion of Markov equilibrium(See, e.g.,
Chapter 13 of [43]).
Zy‘/ = ZH (q,x Z[{Mq wiy> 0 (g 2y 0(a", ) 2) Incentive Compatibility of the SchemEhe users always
; attempt to keep their average queue lengths close to their
_ ZH q,x maX i(qf,21) (38) respective queue length constraints, i.e., the constnaint

satisfied with equality. This is because the user’'s objedsv

to minimize the power expenditure. By asking for a highee rat
Let II(q,x) be the stationary distribution of joint queue andhan what is required, a user might achieve an average queue
channel state induced by some other stabilizing policy thi@ngth that is much lower than the queue length constraint.
does not necessarily schedule the user bidding the highiest However, as proved in [7] for single user policy, since the
in a slot. (It is assumed that the other policy is a stabitizinPOwer is an increasing convex function of the rate, the rate
policy, but then it is clear that unstable policies are nghould be kept as low as possible so that the average queue

contenders for optimality anyway.) Again, we have: length is as large as possible (in this case, equal to theequeu
‘ . length constraint) in order to save power. Thus users will
Zv’ = ZH(q, ZX (q,x)(¢'(q", ")), (39) transmit at a rate such that the average throughput achieved

by them is just sufficient to meet the delay constraint with
. ) - ) n equality, implying that there is no incentive for the usews t
where x'(q,x) is the probability of scheduling user in e and ask for an unnecessarily high rate. This establigies
state(q, x) under the other stabilizing policyy’(q,x) > 0, jncentive compatibility of the scheme.

>_i x'(a,x) = 1. This implies that: 3) Fairness: The scheme is ‘fair’ in the sense that users’
S power expenditure is commensurate with their fraction of
> T(q,x) (m?X(fZ(qZ,CUZ))) time slots requirement. A certain user having a high arrival
rate or stringent delay constraint or poorer channel candit
- i P requires higher fraction of slots in order to satisfy theagel
= ZH 9 (ZX 9, x)(¢"(¢", 2 ))> requirement. Such a user must consistently bid higher rates
_ o order to obtain a higher fraction of time slots and thus ends
< ZH(q, x) (In?ax(ﬂl(q’, a:’))) . (40) up ‘paying’ more in terms of its long term power expenditure.
Hence the policy minimizes (37) over all stable stationary V1. EXPERIMENTAL EVALUATION

policies. From standard results from Markov decision tieor We demonstrate the performance of our algorithm under the
([30], Chapter 8), optimality over stable stationary sigiés |EEE 802.16 [1] framework through simulations in a discrete
implies optimality over all admissible strategies. Thisplies event simulator. Specifically, we intend to demonstrate the
the claim. m  following:

1) The algorithm satisfies the users’ delay constraints.

2) The algorithm is efficient in terms of the power con-
sumed for each user. This is demonstrated by comparing
Here, we provide a game theoretic interpretation of the  the power consumed under our algorithm with that under

scheme and argue that it is incentive compatible. M-LWDF scheduler [24].

D. Game Theoretic Interpretation
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3) Performance of the algorithm under different informgparameters while in the asymmetric case, users are divided
tion accuracies. into two groups (Group 1 and Group 2) @f) users each

with different parameters. We have simulated both symmetri

and asymmetric cases. However, due to space constraints, we

A. Simulation Setu ) )
d include the results for the asymmetric case only.

We consider uplink (UL) transmissions in thessidential
scenario as in [44]. Internet traffic is modeled as a web traffi
source [44], [45]. Variable sized packets are generatetieat B. Satisfaction of Delay Constraint
application layer. Packet sizes are drawn from a truncatedyn this sub-section, we demonstrate that the delay constrai
Pareto distribution. This distribution is characterizgdthree of each user is satisfied for various constraints and average
parameters: shape factgr modewv and cutoff thresholdy. channel conditions.

The probability that a packet has a sigecan be expressed Scenario 1:In this scenario, we demonstrate that the al-

as: gorithm satisfies the various user specified delay conssrain
€0t In each frame, arrivals are generated with a Poisson dis-
fre(y) = g Y Sy<yg tribution with mean 0.1 packets/msec. Packet lengths are

(41) Pareto distributed with parameters detailed above. This re
sults in an arrival rate 0f).386 Mbits/sec/user. We choose
wherev can be calculated to be equal to: o = 0.4698(—3.28 dB) Vi. In each slot, we generat&®
_ (g>§ €1 (42) using exponential distribution with mear. We determine the
v g’ ’ channel state based on the bin that contairisas explained
above.

fre(y) = v, y=>9,

We choose shape factgr= 1.2, modev = 2000 bits, cutoff
thresholdg = 10000 bits, which provides us with an average
packet size oB3860 bits. In each time frame, we generate the
arrivals for all the users using Poisson distribution. yals

are generated in an i.i.d. manner across frames. We divale th
packets into fragments at the MAC layer with each fragment
being of sizer = 2000 bits. Fragments of size less than
2000 bits are padded with extra bits. Since all fragments are
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in terms of number of fragments. We simulate a Rayleigh
fading channél for each user. For a Rayleigh model, chan-
nel stateX’ is an exponentially distributed random variable
with meana’ and probability density function expressed as

fx(z) = LHexp (gjf , « > 0. We assume that the power 2 w0 0 80 100 120 140 160 180
required for transmitting: fragments of size- bits when the Delay constraint of a user in Group 2 (msec)
channel state is is P(z,2r) = %N (2% — 1) where W Fig. 3. Achieved delay of a user with specified delay constsai
is the bandwidth andv, is the power spectral density of the

additive white Gaussian noise at the receiver. We assunte tha

the productW Ny is normalized tol. We measure the sum 0.085 . . . . . . .

of queuing and transmission delays of the packets and ignore Power expended by a user in Group 2 —e—
the propagation delays. In all the scenarios describedabelo 0.08 | Power expended by a user in Group 1 —4
a single simulation run consists of running the algorithm fo
100000 frames and the results are obtained after averaging
over 20 simulation runs. We discretize the channel into eight
equal probability bins, with the boundaries specified{ l{yco,
—8.47 dB), [-8.47 dB, —5.41 dB), [-5.41 dB, —3.28 dB),
[-3.28 dB, —1.59 dB), [-1.59 dB, —0.08 dB), [-0.08 dB,

1.42 dB), [1.42 dB, 3.18 dB), [3.18 dB, o ) }. For each bin,

we associate a channel state and the state spase{ —13

dB, —8.47 dB, —5.41 dB, —3.28 dB, —1.59 dB, —0.08 dB,

1.42 dB, 3.18 dB}. This discretization of the state spaceX6f 00 a0 60 80 100 120 140 160 180
has been justified in [8]. We assumé = 20, i.e., a system Delay constraint of a user in Group 2 (msec)

with 20 users and therebg0 UL connections. We assumeFig. 4. Power expended with specified delay constraints

that the number of users does not change during the course

of simulations. In the symmetric case, all users have same

80 - B
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Achieved de?ajty

0 | .
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Power expended by a user (Watts)

We perform multiple experiments. The delay constraints of
SNote that our algorithm does not use this knowledge of thensaland the. users in Group are _f'xed atl00 msec .'n each eXp_e”ment'
arrival process model. while the delay constraints of the users in Gr@uare fixed at
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25,50,75,100, 125,150,175 msec in successive experimentsthe average channel state above which the delay constraints
It can be observed from Figure 3 that the delay constrairdse satisfied. From Figure 6 it can be observed that better
are satisfied in all the cases. Moreover, from Figure 4, it cahannel conditions result in much lesser power being reduir

be observed that the power expended is a convex decreadorgsatisfying the delay constraints.

function of the delay constraint imposed by the user. Larger
delay constraint implies that lesser power is required tisfya 26
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C. Comparison with M-LWDF
Here, we compare the power consumed by our algorithm

Scenario 2:In this scenario, we demonstrate that the algd¥ith that of M-LWDF scheme [24]. The arrival rate of all
rithm satisfies the user specified delay constraints foouari USers is fixed a0.2702 Mbits/sec (.07 packets/msec) for all
channel conditions. We consider the asymmetric case whéig experiments while:' = 0.4698(—3.28 dB) Vi. We first

we maintain the average channel state for users in Grouglatermine the average delay experienced by the users with
constant for all the experiments, i.evi = —3.28 dB, i ¢ different maximum power constraint$. - 4.5 Watts) under

1,...,10. For the users in Group 2, i.ev fori € 11,...,20, M-LWDF scheme. We keep track of the power expended by
the average channel state is fixechét= —13 dB, —8.47 dB, each user under M-LWDF scheme. The delays experienced
—5.41 dB, —3.28 dB, —1.59 dB, —0.08 dB, 1.42 dB, in under M-LWDF scheme are set as delay constraints for the

successive experiments. Average delay suffered by a usePfAPosed scheme. Figure 7 demonstrates that the proposed
Group 1 and in Group 2 and power consumed by them for tgeheme satisfies the delay constraints. The comparison for
two cases are plotted in Figures 5, and 6 respectively. Frdiawer consumed under the two schemes is plotted in Figure 8.
Figure 5, it can be observed that the scheme is able to satiéfan be seen from this figure that the proposed scheme con-
the delay constraints above a certain average channel Etate SUmes much less average power than the M-LWDF scheme.
maximum power with which the users can transmit in any slot

determines the capacity of the system. If the maximum pow@r Performance under Different Information Accuracies

is high, the scheme is able to satisfy the delay constrau®s e Here, we study the performance of our scheme under
for poor channel states. Thus, the maximum power determirdifferent accuracies of information. Specifically, we datime

Fig. 6. Power expended with varying channel conditions
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