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Abstract—In this paper, we consider the problem of energy
efficient uplink scheduling with delay constraint for a multi-user
wireless system. We address this problem within the framework
of constrained Markov decision processes (CMDPs) wherein one
seeks to minimize one cost (average power) subject to a hard
constraint on another (average delay). We do not assume the
arrival and channel statistics to be known. To handle state space
explosion and informational constraints, we split the problem into
individual CMDPs for the users, coupled through their Lagrange
multipliers; and a user selection problem at the base station. To
address the issue of unknown channel and arrival statistics, we
propose a reinforcement learning algorithm. The users use this
learning algorithm to determine the rate at which they wish to
transmit in a slot and communicate this to the base station. The
base station then schedules the user with the highest rate in a slot.
We analyze convergence, stability and optimality properties of
the algorithm. We also demonstrate the efficacy of the algorithm
through simulations within IEEE 802.16 system.

Index Terms—Multi-user Fading Channel, Constrained
Markov Decision Process, Energy Efficient Scheduling, Learning
Algorithm

I. I NTRODUCTION

Broadband wireless networks like IEEE 802.16 [1] and 3G
cellular [2] are expected to provide Quality of Service (QoS)
for emerging multimedia applications. One of the challenges
in providing QoS is the time varying nature of the wireless
channel due to multipath fading [3]. Moreover, for portable
and hand-held devices, energy efficiency is also an important
consideration.

For most wireless communication systems, the power re-
quired to transmit ‘reliably’ for a given channel fading state
is an increasing and strictly convex function of the trans-
mission rate [3]. This suggests that energy efficiency can
be achieved by transmitting the data at lower rates when
the channel is bad, albeit at a cost of queuing delay, thus
leading to a power-delay tradeoff. Furthermore in a multi-user
wireless system, recent studies [4], [5] suggest that sincethe
wireless channel fades independently across different users,
this diversity can be exploited byopportunisticallyscheduling
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the user with the best channel gain. This leads to significant
performance improvement in terms of total system throughput.
Such scheduling algorithms that exploit the characteristics
of the physical channel to satisfy some network level QoS
performance metrics are referred to ascross layerscheduling
algorithms [6].

In this paper, we consider a single cell multi-user wireless
uplink system. For such a system, we consider the problem of
determining the user to be scheduled in each time slot along
with its transmission rate. This scenario may correspond to
scheduling users on the uplink in an IEEE 802.16 based system
to satisfy delay constraint of each user.

A. Related Work

1) Energy Efficient Scheduling:The problem of energy
efficient scheduling with delay constraint for a single user
wireless channel has been explored in the pioneering work of
[7]. Subsequently, the model of Berry-Gallager [7] has been
extended with many generalizations on arrival and channel
state processes in [8], [9], [10], [11], [12], [13], [14]. Inmost
of these papers, the scheduling policy has been formulated
as a control policy within the Constrained Markov Decision
Process (CMDP) framework. However, only structural results
of the optimal policy are available under various assumptions.
Moreover, these results are applicable to only the single user
scenario. There is very little work for extending the vast body
of literature on single user delay constrained energy efficient
scheduling to the multi-user scenario.

In [15], the author does extend the analysis for single user
case to multi-user case, albeit with only two users. Beyond two
users, the problem becomes too unwieldy to gain any useful
insight. This is primarily due to the large state space. For the
two user case, the author has given an elegant near optimal
policy where each user’s rate allocation is determined by the
joint channel states across users and the user’s own queue
state. Thus each user’s queue evolution process behaves as if it
were controlled by a single user policy. However, computation
of user’s transmission power still takes into account the joint
channel and queue state processes.

Recently, in a significant work [16], the author has extended
the asymptotic analysis of Berry-Gallager [7] for exploiting
the power-delay tradeoff to a multi-user system. The author,
however, has considered the case of downlink scheduling,
i.e, the base station scheduling users on the downlink. The
objective is to minimize the total sum power subject to
the users’ queue stability constraints. Using the concept of
Lyapunov Drift Steering, the author has given an algorithm
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that comes within a logarithmic factor of achieving the Berry-
Gallager power-delay bound. While [16] is one of the first
serious attempts at multi-user energy efficient schedulingwith
delay constraint, it deals with sum power minimization on
the downlink. On the other hand, for the uplink, the problem
is to minimize the average power ofeach usersubject to
individual delayconstraint, subject to the additional constraints
automatically imposed by the multi-user environment. Thishas
not been addressed in the literature so far.

Even for the single user case [8], [9], [10], [11], [12],
[13], [14], practical implementation of optimal policy is far
from simple. This is because a knowledge of the probability
distributions of the arrival and channel state processes is
required for computing the optimal policy. This knowledge is
usually not available in practice. We have addressed this lim-
itation by formulating an on-line algorithm within stochastic
approximation framework in [17].

2) Other Multi-user Cross Layer Scheduling Schemes:
While there has been little work in the area of multi-user
energy efficient delay constrained scheduling, there is an abun-
dance of literature on cross layer scheduling algorithms with
other objectives. See [18] for a succinct review. A scheduling
policy is consideredstable if the expected queue lengths are
bounded under the policy. Many scheduling policies proposed
in the literature have considered stability as a QoS criterion. In
[19], the authors have shown that the throughput capacity re-
gion (as derived in [4]) is the same as the multi-access stability
region (i.e., the set of all arrival vectors for which there exists
some rate and power allocation policies that keep the system
stable.). A scheduler is termedthroughput optimalif it can
maintain the stability of the system as long as the arrival rate
is within the stability region. Throughput optimal scheduling
policies have been explored in [4], [20]. Longest Connected
Queue (LCQ) [21], Exponential (EXP) [22], Longest Weighted
Queue Highest Possible Rate (LWQHPR) [23] and Modified
Longest Weighted Delay First (M-LWDF) [24] are other well
known throughput optimal scheduling policies.

While throughput optimal scheduling policies maintain the
stability of the queuing system, they do not necessarily guar-
antee small queue length and consequently lower delay. Delay
optimal scheduling deals with optimal rate and power allo-
cation such that the average queue length and hence average
delay are minimized for arrival rates within the stability region
under average and peak power constraints. It has been shown
that the Longest Queue Highest Possible Rate (LQHPR) policy
[25] (besides being throughput optimal) is also delay optimal
for any symmetric power control under symmetric fading
provided that the packet arrival process is Poisson and the
packet length is exponentially distributed.

Apart from throughput and delay optimal policies, oppor-
tunistic scheduling which maximizes sum throughput subject
to various fairness constraints have been explored in [26],[27].

B. Our Contributions

In this paper, we consider the problem of opportunistic
scheduling for a multi-user uplink system with power cost
and individual delay constraints. Considered as a centralized

control problem of power minimization subject to constraints
on average delays, this would be a special case of a CMDP.
The traditional approaches for numerically determining the
optimal policy in a CMDP framework are based on Linear
Programming (LP) [28]. These, however, cannot be used for
the problem posed in this paper because of the following
reasons:

1) Large state space:In our model, the system state space
is large even for moderate number of users and the state
space size increases exponentially with the number of
users. We illustrate this with a simple example. Consider
a system with4 users. Assume that each user has a buffer
of size50 packets (assuming equal sized packets). The
channel condition of each user can be represented using
8 states, which is a practical assumption justified in [29].
For this scenario, the system state space contains504×
84 = 2.56× 1010 states. The computational complexity
for determining the optimal policy (possibly based on
the CMDP approach) is proportional to the state space
size [30], [31] and thus increases exponentially with the
number of users.

2) Unknown system model:Computation of optimal
scheduling policy using traditional schemes based on
LP assumes a knowledge of the system model, i.e.,
a knowledge of probability distributions of the arrival
and channel state processes, for modeling the transition
probability mechanism of the underlying Markov chain.
This knowledge is not easily available in practice, so the
exact model is not known.

3) Communication overheads:In the multi-user framework
considered here, there is also a cost on messages com-
municated between users and base station, as these
consume some of the available rate. Thus any proposed
scheme should be low on these overheads, which works
against a scheme based on full state information.

The issue of unknown system model can be resolved by using
reinforcement learning (RL) algorithms [31] which ‘learn’
the optimal policy by performing approximate dynamic
programming based on observed data. However, with such
a large state space, the learning algorithms would take
prohibitively large time to converge to the optimal scheduling
policy. One therefore has to address the issue of the large
state space first and then employ the reinforcement learning
algorithms appropriately. This provides us the motivationfor
designing multi-user scheduling policy as a combination of
single user policies that search over a relatively small state
space. This is achieved by artificially splitting the problem
into several single user problems for the individual users and
the base station, which are coupled, but in a relatively simple
and manageable manner. Note that this solution strategy may
be viewed as approximate solution to the power optimal
delay constrained energy efficient scheduling. However, this
reduces the complexity to linear in the number of users and
does not require the knowledge of channel and arrival models.
Simulations demonstrate very promising results.
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Thus in our approach, each user behaves as though it is
facing a single user optimization problem and comes up with
a desired rate. This is then communicated to the base station.
The base station then schedules the user with the highest rate
requirement in a slot. The intuition behind this is that this
will favor the user with greatest need, be it because of a
favorable channel or a high queue length. At the same time,
when a user with lower rate requirement is not allocated the
channel for a while, its queue length and therefore the rate
requirement will go up and it will eventually be allocated the
channel. The learning algorithm puts a penalty on violation
of the delay constraint. This implicitly couples individual
decisions, as the users are sharing a common channel. We
prove convergence, stability and optimality properties under
some assumptions.

The scheduling algorithms proposed in the literature like
EXP [22], LQHPR [25], M-LWDF [24] etc., also require
the queue length information for determining the scheduling
decision. In the downlink scenario, this information is
readily available to the scheduler residing at the base station.
However, in the uplink scenario, this information needs to be
communicated by the users to the scheduler. Communicating
the queue length information poses a significant overhead.
In our approach, each user needs to communicate only the
desired rate. In a practical system, we may have few possible
rates, say eight. This means that we may need only 3 bits of
information to be conveyed.

Through our simulations in an IEEE 802.16 system, we
demonstrate that the algorithm is indeed able to satisfy the
delay constraints of the users. Moreover, we demonstrate that
the power expenditure of a user is commensurate with its
delay requirement, average arrival rate and average channel
condition.

The contributions of this paper can be summarized as
follows:

1) We propose a novel scheduling algorithm for minimizing
the average power expended by each user subject to
a constraint on individual user delay in a multi-user
uplink wireless system. This algorithm does not require
knowledge of the probability distributions of the channel
states and the arrivals.

2) We analyze convergence and stability properties of the
proposed scheme. We establish an interpretation as
‘Markov equilibrium’ of a stochastic game and also
argue incentive compatibility of the scheme. We are
dealing with a ‘learning’ situation for which we make
a somewhat qualified convergence-stability claim: if the
learning scheme converges as desired, then the queues
are stable. Conversely, if the queues are stable, the
learning scheme converges. The simultaneous validity
of both, while observed in simulations, appears hard to
prove, a situation not uncommon in adaptive control.

3) We demonstrate applicability of the algorithm within
IEEE 802.16 framework. Our simulation studies involv-
ing comparison with M-LWDF scheduler demonstrate
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Fig. 1. System Model

that the proposed algorithm is power efficient. We also
study performance of the scheme under different ‘infor-
mation accuracies’, i.e., with different number of bits
for conveying the desired rate.

The rest of the paper is organized as follows. In Section II,
we present the system model. In Section III, we formulate the
multi-user scheduling problem. In Section IV, we propose an
on-line learning algorithm for the users and a user selection
algorithm at the base station. We also discuss the imple-
mentation issues. In Section V we analyze properties of the
algorithm such as convergence, queue stability and optimality.
We present the simulation setup and results in Section VI.
Finally, we conclude in Section VII.

II. SYSTEM MODEL

We consider uplink transmissions (as in Figure 1) in a Time
Division Multiple Access (TDMA) system1 with N users, i.e.,
time is divided into slots of equal duration and only one useris
allowed to transmit in a slot. We assume that the slot duration
is normalized to unity. The base station is a centralized entity
that schedules the users in every slot. We assume a fading
wireless channel where the channel gain is assumed to remain
constant for the duration of the slot and to change in an
independent and identically distributed (i.i.d.) manner across
slots. This model is termed as theblock fadingmodel [7]. We
assume that the channel gains across users are also i.i.d. Under
these assumptions, if a useri transmits a signalyi

n in slot n,
then the received signalZi

n can be expressed as,

Zi
n = Hi

nyi
n + Gn, (1)

where Hi
n denotes the complex channel gain due to fading

and Gn denotes the complex additive white Gaussian noise
with zero mean and varianceN0. Let Xi

n = |Hi
n|

2 be the
channel state for useri in slot n. Usually,Hi

n (and henceXi
n)

is a continuous random variable. However, in this paper we
assume thatXi

n takes only finite and discrete values from a
setX . This assumption has been justified in [7], [8]. In this
paper, we assume that the distribution ofXi

n is unknown.
We assume that the users’ packets are of equal size, say,

τ bits. Packets arrive into the user buffer of infinite capacity

1The assumption of TDMA does not restrict the applicability ofthis
formulation to any orthogonal multiple access system.
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and are queued until they are transmitted. The packet arrival
process for each user is assumed to be i.i.d. across slots. Let
Ai

n denote the number of packets arriving into the useri buffer
in slot n. We assume that the random variableAi

n takes values
from a finite and discrete setA

∆
= {0, . . . , A}. Like Xi

n, we
assume that the distribution ofAi

n is unknown.

Let Qi
n ∈ Q

∆
= {0, 1, . . .} denote the queue length or buffer

occupancy of useri in slot n. Let U i
n denote the number of

packets actually transmitted in slotn (by useri). We assume
thatU i

n takes values from the setU
∆
= {0, 1, . . .}. Let Ii

n be an
indicator variable that is set to1 if user i is scheduled in slot
n and is set to0 otherwise. LetIn be the vector[I1

n, . . . , IN
n ].

Note that since only one user can transmit in a slot, only one
element ofIn is equal to1 and the rest are0. Let I be the set
of all possibleN dimensional vectors with one element equal
to 1 and the rest being0. Let Ri

n ∈ U denote the number of
packets that useri should transmit in a slot if it is scheduled.
ThenU i

n can be represented asU i
n = Ii

nRi
n. Moreover, since a

user can at most transmit all the packets in its buffer in a slot,
Ri

n ≤ Qi
n. Since we assume that the slot length is normalized

to unity, U i
n also represents the rate at which useri transmits

in slot n. Let Un be the vector[U1
n, . . . , UN

n ], Un ∈ U
N .

The queue evolution equation for useri can be expressed
as,

Qi
n+1 = Qi

n − U i
n + Ai

n+1. (2)

For most communication systems, the power required for
reliable communication at a rateRi

n = u packets/sec when
Xi

n = x, denoted asP (x, u), is an increasing and strictly
convex function ofu. Let P̂ denote the maximum power with
which a user can transmit in any slot. Let̂Ri(xi) be the
maximum number of packets which useri can transmit in a
slot when the channel state isxi and when transmitting with
power P̂ . Then the set of feasible actions for useri in slot n

is F i
n

∆
= {0, . . . ,min(R̂i(xi

n), Qi
n)}.

We assume that the users specify their QoS requirements in
terms of the average packet delay requirements. These delay
requirements of the users are known a-priori to the scheduler.
By Little’s law [32], the average delaȳD is related to the
average queue length̄Q as,

Q̄ = āD̄, (3)

whereā is the average arrival rate. In the rest of the paper, we
treat average delay as synonymous with average queue length
and ignore the proportionality constantā.

III. PROBLEM FORMULATION

In this section, we formulate the multi-user scheduling
problem.

The problem considered here is to design a scheme for
scheduling a user in each time slot and also the rate (i.e.,
number of packets to be transmitted) that minimizes the aver-
age power expenditure of each user subject to the satisfaction
of individual delay constraint. The average power consumed

by a useri can be expressed as:

P̄ i = lim sup
M→∞

1

M
E

M∑

n=1

P (Xi
n, Ii

nRi
n). (4)

The average queue length of useri can be expressed as:

Q̄i = lim sup
M→∞

1

M
E

M∑

n=1

Qi
n. (5)

Each useri wants its average queue length to remain below a
certain value, say,̄δi. Our objective is to design a scheduling
algorithm that minimizesP̄ i for each useri subject to a
constraint onQ̄i. Thus the scheduler objectives can be stated
as,

Minimize P̄ i subject to Q̄i ≤ δ̄i, i = 1, . . . , N. (6)

Note that there are actuallyN problems in (6). However,
these problems are not independent. This is because in a
TDMA system, only one user can be scheduled in a slot.
Consequently, the scheduling decision in a slot impacts the
buffer occupancy of all the users in future slots. The above
formulation, however, leads to the difficulties of large state
space, high communication overheads etc which we have
mentioned already.

In the next section, we present a solution strategy wherein
we split the problem intoN + 1 parts:N user problems and
one base station problem. This alters the problem to a simpler
one which may be viewed as an approximation to the above.
The details follow.

IV. SOLUTION STRATEGY: DECOMPOSITION INTOUSER

AND BASE STATION PROBLEMS

In this section, we propose the following solution strategy:
we view the problem asN (dependent) user problems and
one base station problem. The useri problem is to determine
a rate at which it desires to transmit in a slot so as to solve the
problem specified in (6). Since the channel and arrival statistics
are not known, in order to address this problem, the users
resort to a ‘learning’ approach discussed below. The users’
desired rates are then conveyed to the base station. The base
station problem is to select a user in each slot.

A. Learning Algorithm for the Users

We consider a modified version of the on-line algorithm
proposed in [17] that determines the transmission rate in every
slot for each user. Once the on-line algorithm has determined
the rateRi

n ∈ F
i
n, the transmitter at a particular user executes

this action if the channel is allocated to it, otherwise it is
unable to proceed with the transmission. If the transmitteris
not able to proceed with the transmission, the packets remain
in the queue. Under the given model, the queue evolution
equation can be expressed as,

Qi
n+1 = Qi

n + Ai
n+1 − Ii

nRi
n, (7)

whereIi
n = 1 if the transmitteri actually transmits the packets

(i.e., if useri is scheduled in a slotn), else,Ii
n = 0. Let Qn

andXn denote the vectors[Q1
n, . . . , QN

n ] and [X1
n, . . . ,XN

n ]
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respectively. The state of the systemSn at time n can be
described bySn = (Qn,Xn) comprising of the queue lengths
and the channel states. The control variables areIn, Rn =
[R1

n, . . . , RN
n ], of which the transmitters independently choose

the corresponding components ofRn and the base station,
which is doing the channel allocation, choosesIn subject to
the constraints thatIi

n ∈ {0, 1} and
∑

i Ii
n = 1.

Our learning policy, however, mandates that once transmitter
i has determined the rateRi

n, it updates its power cost
irrespective of whether packets have been transmitted or not.
That is, it operates as though its cost is

P̄ i
e = lim sup

M→∞

1

M
E

M∑

n=1

P (Xi
n, Ri

n). (8)

Thus the problem that useri addresses can be specified as:

Minimize P̄ i
e subject to Q̄i ≤ δ̄i, i = 1, . . . , N. (9)

This problem is a CMDP with average cost criterion. The
objective is to determine an optimal policyµi,∗ such that
the power cost (8) is minimized while satisfying the delay
constraint. Note that the policy considered here minimizesthe
single user cost exactly as in the single user case of [17] as
specified in (8), not the actual power cost (4). See the Remark
1 at the end of this sub-section and the subsequent sections
for further discussion on this aspect.

1) The Primal Dual Approach:The constrained problem
in (9) can be converted into an unconstrained problem using
the Lagrangian approach [28]. We focus on theith user. Let
λi ≥ 0 be a real number termed as the Lagrange Multiplier
(LM). Let c : R+ × Q × X × U → R be defined as the
following,

c(λi, Qi
n,Xi

n, Ri
n)

∆
= P (Xi

n, Ri
n) + λ(Qi

n − δ̄i), (10)

whereRi
n is determined using the rate allocation policyµi :

Q×X → U . The unconstrained problem is to minimize:

L(µi, λi) = lim sup
M→∞

1

M
E

M∑

n=1

c(λi, Qi
n,Xi

n, µi(Qi
n,Xi

n)).

(11)
L(·, ·) is called the Lagrangian. Our objective is to determine
the optimal rate allocation policyµi,∗ and optimal LMλi,∗

such that the following saddle point optimality condition [33]
is satisfied:

L(µi,∗, λi) ≤ L(µi,∗, λi,∗) ≤ L(µi, λi,∗). (12)

For a fixed LMλi, the problem is an unconstrained Markov
Decision Problem (MDP) with the average cost criterion. Let
p((q, x), r, (q′, x′)) denote the probability of reaching a state
(q′, x′) upon taking an actionr in state(q, x). Let V i,µ(·, ·)
denote the value function under policyµ, i.e., V i,µ(q, x)
denotes the expected cost for a state(q, x) under a policyµ.
Let V i(·, ·) denote optimal value function. It can be expressed
as:

V i(q, x) = min
µ

V i,µ(q, x). (13)

The following dynamic programming equation [30] gives a
necessary condition for the optimality of a solution:

V i(q, x) = min
r∈F

[
c(λi, q, x, r)− β +

∑

q′,x′

p((q, x), r, (q′, x′))V i(q′, x′)
]
, (14)

wherea′ ∈ A, x′ ∈ X , V i(·, ·) is the value function,β ∈ R is
the unique optimal power expenditure. Let(q0, x0) ∈ Q× X
be any pre-designated state. If we imposeV i(q0, x0) = 0, then
V i(·, ·) is unique [30]. The Relative Value Iteration Algorithm
(RVIA) [30] is a known approach for determining the optimal
value function. It can be expressed as:

V i
n+1(q, x) = min

r∈Fi

[
c(λi, q, x, r)−

V i
n(q0, x0) +

∑

q′,x′

p((q, x), r, (q′, x′))V i
n(q′, x′)

]
. (15)

Note, however, that RVIA (15) requires the knowledge of
p(·, ·, ·). This depends on the probability distributions of the
arrivals and channel states; which are not known. Moreover,
determining the optimal value function as defined in (14) is not
sufficient because the unconstrained solution for a particular
λi does not ensure that the constraints would be satisfied.
To ensure constraint satisfaction, the optimal LM needs to be
determined.

2) The Post-decision State Formulation:To address the
difficulty posed by unknownp(·, ·, ·), we introduce a stochas-
tic approximation version of the RVIA. The RVIA above,
however, is not suited for this because the conditional ex-
pectation w.r.t. the transition probability is inside the (non-
linear) minimization operator. This prompts us to replace the
state variables(Qi

n,Xi
n) by ‘post-decision state’ variables2

(Q̃i
n, X̃i

n) defined byQ̃i
n = Qi

n − U i
n, X̃i

n = Xi
n. Let ζi(·)

denote the unknown law for the arrivals andκi(·|·) the tran-
sition probability kernel for the channel states. The dynamic
programming equation and the RVIA for post-decision states
become

Ṽ i(q̃, x̃) =
∑

a′,x′

ζi(a′)κ(x′|x)×

min
r∈Fi

[
c(λi, q̃ + a′, x′, r)− β + Ṽ i(q̃ + a′ − r, x′)

]
, (16)

and

Ṽ i
n+1(q̃, x̃) =

∑

a′,x′

ζi(a′)κ(x′|x)×

min
r∈Fi

[
c(λi, q̃ + a′, x′, r)− Ṽ i

n(q̃0, x̃0) + Ṽ i
n(q̃ + a′ − r, x′)

]
, (17)

where (q̃0, x̃0) is any pre-designated reference post-decision
state. On the right hand side in (17), the value function
corresponding to this state is subtracted in order to keep the

2This is a special construct that is possible when the controlled transition
naturally splits into the control action followed by the action of noise. It has
the advantage that the corresponding dynamic programming equation has the
conditional expectation operation outside the minimizationoperation. This
facilitates a stochastic approximation version of it, whichis the learning
algorithm. See [34] for an extensive account of the post-decision state
formalism.
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iterates bounded. In the next section, we present an on-line
algorithm based on a reformulation of this RVIA that does
not require the knowledge ofp(·, ·, ·). The approach is similar
to that in [17]. We also augment the reformulated RVIA with
an LM iteration to ensure constraint satisfaction.

3) The On-line Rate Allocation Algorithm:In this section,
we present the on-line algorithm which we call therate
allocation algorithm. This algorithm determines the rate with
which the user should transmit in a slot and updates the value
function and LM.

Let {fn} and{en} be two sequences that have the following
properties,

∑

n

(fn)2,
∑

n

(en)2 <∞, (18)

∑

n

fn =∞,
∑

n

en =∞, (19)

lim
n→∞

en

fn

→ 0. (20)

The significance of these properties has been explained below.
Let the useri’s state at the beginning of slotn be Si

n =
(Qi

n,Xi
n) = (q, x). Suppose thatu packets are transmitted

in slot n. The following primal-dual algorithm can be used
to compute the rateRi

n+1 = ri
n+1 at which the transmitter

should transmit in slotn + 1,

ri
n+1 = arg min

v∈Fi
n+1

{
(1− fn)Ṽ i

n(q̃, x̃) + fn ×

{
c(λi

n, q̃ + Ai
n+1,X

i
n+1, v)

+Ṽ i
n(q̃ + Ai

n+1 − v,Xi
n+1)

−Ṽ i
n(q̃0, x̃0)

}}
, (21)

Ṽ i
n+1(q̃, x̃) = (1− fn)Ṽ i

n(q̃, x̃) + fn ×{
c(λi

n, q̃ + Ai
n+1,X

i
n+1, r

i
n+1)

+Ṽ i
n(q̃ + Ai

n+1 − ri
n+1,X

i
n+1)

−Ṽ i
n(q̃0, x̃0)

}
, (22)

λi
n+1 = Γ[λi

n + en

(
Qi

n − δ̄i
)
], (23)

where Γ[·] in (23) is a projection operator that projects the
λi iterates in the interval[0,K] for K >> 1. This is to
ensure boundedness of these iterates. Components other than
the (q̃, x̃)th in (22) are left unchanged. These equations are
explained below:

1) (21), (22) and (23) constitute the rate allocation al-
gorithm or the ‘user algorithm’. It consists of two
phases:rate determination phaseandupdate phase. (21)
constitutes the rate determination phase of the algorithm,
i.e., it is used to determine the rate at which a user
should transmit in a slot. (22) is a primal iteration to
determine the optimal value function for post-decision
states and thereby the optimal policy, while (23) is a
coupled dual iteration for determining the optimal LM.
They constitute the update phase of the algorithm.

2) The sequencesfn and en have properties specified in
(18), (19) and (20). The properties of the update se-
quences in (18) ensure that the sequences{fn} and{en}

converge to zero sufficiently fast to eliminate the noise
effects when the iterates are close to their optimal values
Ṽ i(·, ·) andλi,∗, while those in (19) ensure that they do
not approach zero too rapidly to avoid convergence of
the algorithm to non-optimal values. Furthermore, (20)
ensures that the update rates of primal, i.e., the value
function iterations and the dual, i.e., the LM iterations
are different. Sinceen approaches0 much faster than
fn, the update rate of the value function iterations is
much higher than that of the LM iterations. Using a two
time scale analysis, we show in Section V-A that even
though both the primal and dual variables are updated
simultaneously, both converge to their optimal values.

Remark 1:Note that the r.h.s. of (22) is nothing but the
actual minimum of the expression being minimized on the
r.h.s. of (21). That is, the relative value iteration is being
performed for the single user cost exactly as in the single
user case of [17] specified by (8), not for the power cost (4).
As we argue later, it will in fact converge to the single user
optimum rate requiredfor the current quasi-static value of the
Lagrange multiplier. This is the rate the user willrequest, it is
not necessarily the rate actuallyallocatedto it. The difference
with the single user case of [17] comes from the fact that
these relative value iterations for users are coupled through the
Lagrange multiplier updates which are indeed affected by the
actual transmission scheme. As we see later, the convergence
of (23) perforce implies that the constraints are met. Given
the fact that not the full requested transmission rate is actually
granted, that leads to the conclusion that a higher rate willbe
requested than in the single user case in [17], which in turn
means larger limiting values for theλ’s compared to those in
[17]. We call this themulti-user penaltythat a user pays in
the multi-user environment. Further discussion on this canbe
found in Section V-D1.

A convergence analysis of the user algorithm in (21), (22)
and (23) is presented in Section V-A. Each useri determines
the rateRi

n+1 = ri
n+1 at which it would transmit in slot

n + 1 if it is scheduled, specified by the algorithm described
above, and communicates this rate to the base station. The
base station employs the user selection algorithm to schedule
a user. The users update their value functions in each slot
assuming successful transmission regardless of whether they
are scheduled by the base station or not. Note, however,
that for the user who is actually scheduled, a corresponding
queue transition occurs because of the transmitted packets.
This influences the queue length and consequently the LM
update.

B. User Selection Algorithm

The user selection algorithm schedules the user with the
largestRi

n. If more than one user has the largest rate, then
a user is selected at random from among them with uniform
probability. The intuition behind selecting the user with the
largest rate is the following. The rate allocation algorithm of
a useri would direct it to transmit at a high rateRi

n under
two circumstances: either the channel condition for that user is
very good, in which case transmission at high rate saves power,
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or the queue length of that user is large. Thus selecting a user
with a high rate results in either power savings or reducing
the queue length of that user and thereby ensuring that the
delay constraint of that user is satisfied. An analysis of the
user selection algorithm is presented in Section V-C.

Base station 

scheduler

(User selection 

policy)
Inform

scheduling

decision

Update phase 

Rate

determination

phase

User i

Inform rate to base 

station

Fig. 2. Solution schematic

C. Algorithm Details and Implementation

The rate allocation algorithm is implemented on the user
devices while the user selection algorithm is implemented at
the base station, as illustrated in Figure 2. From (21), notethat
the rate determination phase requiresXi

n, i.e., the knowledge
of the channel state at the base station. The communication
overhead incurred by the base station in informing a user about
the channel state perceived by it depends on the number of
states used to represent the channel. We represent the channel
using 8 states. Thus the base station needs3 bits per slot in
order to inform a user about the channel state perceived by it.
The users inform the base station about the computed rates.
We allocate3 bits for conveying this information, i.e., the
system can employ8 rates. The user selection algorithm then
determines the user to be scheduled and all users are informed
about this decision. The rate allocation algorithm at each user
then enters the update phase where the value function and the
LM for each user are appropriately updated using (22) and
(23). The algorithm thus continues in each slotn. The rate
allocation algorithm that is executed at each user device is
illustrated in Algorithm 1 where, steps8 − 13 represent the
rate determination phase, while steps19 − 24 represent the
update phase. The user selection algorithm executed at the
base station is detailed in Algorithm 2.

D. Discussion

1) Computational complexity:The computational complex-
ity of the rate allocation algorithm executed at a user
device is independent of the number of users in the
system. This is because the rate allocation algorithm
for any useri is dependent on the useri stateSi only
and is independent of the states of the other users. The
user selection algorithm has to determine the maximum
of N numbers and hence is linear inN . Thus the
computational complexity of the user selection algorithm
grows only linearly with the number of users.

2) An auction interpretation:The above scheme can be
interpreted as an auction, where the user selection al-
gorithm auctions each time slot. The users bid in the

1: Initialize the value function matrix̃V i(q, x) ← 0 ∀q ∈
Q, x ∈ X

2: Initialize LM λi ← 0
3: Initialize slot countern← 1
4: Initialize queue lengthqi ← 0
5: Initialize channel statesxi ← 0, xi′ ← 0
6: Reference state= (0, x1), wherex1 ∈ X
7: while TRUE do
8: while Base station has not informed the channel state

Xi
n+1 = xi′ do

9: wait
10: end while
11: Determine the number of arrivalsAi

n+1 = ai in the
current slot

12: Determine the queue length in the current slotQi
n = qi

13: Use the rate determination phase of the rate allocation
algorithm, i.e., (21) to determine the rateri, for trans-
mission

14: Determine the powerP (xi′, ri) required to transmitri

packets
15: Inform the base station of the rateri

16: while Base station has not scheduled a userdo
17: wait
18: end while
19: Update the component(qi, xi) of the value functioñV i

using (22). Rest of the components remain unchanged
20: Update the LMλi using (23) (Qi

n = qi)
21: qi ← qi + ai − ui

22: xi ← xi′

23: n← n + 1
24: end while

Algorithm 1: The Rate Allocation Algorithm at the Useri
Device

1: while TRUE do
2: for i ∈ 1, . . . , N do
3: Estimate the channel stateXi

n+1 = xi′ in the current
slot for useri

4: Inform xi′ to useri
5: end for
6: while Rate of each user is not knowndo
7: wait
8: end while
9: Determine the userk who has the highest rate

10: Schedule userk in the current slot
11: end while

Algorithm 2: The User Selection Algorithm at the Base
Station

form of their transmission rates to the user selection
algorithm, which allocates the time slot to the user
bidding the highest rate. The rate bid by a user is
dependent on its channel state and queue length. If the
channel state is good and/or the queue length is large,
the user bids a high rate. This is because transmitting
at a high rate when the channel state is good saves
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power, while doing so when the queue length is large
aids in satisfying the delays. Note that the users do not
bid unnecessarily high rates because that might result in
higher power consumption. For a user, not winning an
auction in a certain slot implies that other users either
have better channel conditions or relatively higher queue
length or both. If a user does not win the auction for a
certain number of slots successively, its queue length
grows, thus forcing it to bid a higher rate.

V. A NALYSIS OF THE MULTI -USERSCHEME

In this section, we present an analysis of the multi-user
algorithm presented in the paper. Specifically, we comment on
queue stability, convergence and optimality of the algorithm.
We begin with certain conditions that are necessary for the
convergence of the algorithm.

Let ς(si, n) be the number of times that useri state si

is visited up to timen. The state process should satisfy the
following property:

lim inf
n→∞

ς(si, n)

n
> 0, ∀si, i. (24)

(24), which is akin to positive recurrence for uncontrolled
Markov chains, is a stability condition and is essential for
proving the convergence of our algorithm. We shall prove that
the queues are indeed stable, implying that (24) is indeed
satisfied, if we assumethat the users have already learnt
their policies, i.e., the user learning component of the overall
scheme has converged. On the other hand, this convergence in
turn requires a priori proof of stability. This circular situation is
very common in adaptive and learning control (see, e.g., [35])
and a procedure that assures its resolution is yet unknown.
There are however certain heuristic approaches that work well
in practice. In the present case, for example, one can impose
an initial ‘pure learning’ phase wherein one employs a known
stable strategy for a finite duration instead of the ‘self-tuning’
policy which bases its decision on the current guess for the
value function, and then switches to the latter. This will ensure
that the latter, when finally inducted, gives good guesses for
the value functions so that the corresponding guesses for
actions are close to optimal, in particular stable. Another
possible solution is to use a known stabilizing policy when
the state process blows up, i.e., crosses a very large threshold,
and use the policy proposed herein otherwise. Our simulations,
however, use the original scheme and the simulation resultsare
quite promising.

A. Convergence Analysis

Note that each user in the system has coupled iterations
comprising of the value function and LM. We need to prove
that these coupled iterations converge to an equilibrium
set for each user. It may be noted that the reinforcement
learning algorithms that we are adapting here are originally
designed for finite state space scenarios. In contrast we are
dealing with a discrete but countably infinite state space. We
present the proof only for finite state space. Note that the
channel state space is already finite. For queue length space,

we assume very large buffers. This can be viewed as an
approximation to the original problem. Alternatively, we can
interpret the analysis as stating that high buffer occupancy
has low probability.

The main steps in the analysis are as follows:
1) We make an assumption on the stability of the queues

under the closed loop scheme, as noted above.
2) We then analyze the convergence of the value function

for each user for an almost constant value of the LM.
Since the value function of each user is updated in each
slot regardless of whether the user is scheduled in that
slot or not; the value functions are decoupled across
users. This is in the spirit of the decoupling of static
formulations of network flow problems via the Lagrange
multiplier as in [36], except that here it ismandatedby
our algorithm. The decoupling is facilitated by the fact
that the users compute their value function as though the
cost is (8) and not (4). The latter would have introduced
a more direct dependence on other users, over and above
that through the LM.

3) Finally, we prove that the LMs and the coupled iterates
of the users also converge. Convergence of the LMs
implies that the delay constraints are satisfied and vice
versa. This implies that if there is sufficient capacity,
the multi-user scheduling satisfies the delay constraints
of all the users.

We now prove that the value functions converge.
Theorem 1:For the rate determination algorithm (21), (22)

and (23), under the assumption of stability of queues, the iter-
ates(Ṽ i

n, λi
n) converge to the optimal values, i.e.,(Ṽ i

n, λi
n)→

(Ṽ i, λi,∗). Moreover, convergence to equilibrium implies that
the delay constraints of the users are satisfied.

Proof: The proof for individual user’s algorithm is similar
to that of the single user algorithm in [17]. We sketch it
in outline below, referring to the relevant portions of [37]
for details. The arguments are based on the well known
‘o.d.e.’ approach for the analysis of stochastic approximation
algorithms, wherein one looks at the algorithm as a noisy dis-
cretization of a limiting ordinary differential equation (o.d.e.)
which can be written by inspection. One treats the ‘learning
parameters’ or stepsizes as discrete time steps and compares
the linearly interpolated iterates with the o.d.e. trajectory from
some time on. The assumptions such as (18) and (19) on the
stepsizes ensure (under suitable hypotheses) that errors due to
both discretization and noise are asymptotically negligible and
therefore the iterates a.s. track the asymptotic behavior of the
o.d.e. See Chapter 2 of [37] for the general idea of proof. We
spell out some details below that are specific to this paper.

1) Our requirement thaten

fn
→ 0 induces two time scales, a

fast one for (22) and a slow one for (23). Lethi(Ṽ i) =
[hi

q,x(Ṽ i)] be given by:

hi
q,x(Ṽ i) =

∑

a,x′

ζi(a)κi(x′|x)×min
u

[c(λi, q + a, x, u)

+ Ṽ i(q + a− u, x′)− Ṽ i(q0, x0)],

where(q0, x0) is any pre-designated state. Using the two
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time scale analysis in [37], Section 6.1, we first analyze
(22) by freezingλi

n ≈ a constantλi and considering the
limiting o.d.e. for (22) given by

˙̄V i(t) = Λi(t)(hi(V̄ i(t))− V̄ i(t)), (25)

where Λi(t) is a diagonal matrix with nonnegative
elements summing to1 on the diagonal. The diagonal
elements ofΛi(t) reflect the relative frequency with
which the system states(q, x) are visited, and there-
fore the corresponding components of the iteration are
updated. Barring the diagonal matrixΛi(t), this is just
what one expects. The occurrence ofΛi(t) is due to the
asynchronous iteration – we update only one component
of Ṽ i

n at a time. See [37], Section 7.2, for a description
of how this comes about.

2) Suppose that the queues remain stable. Coupled with the
recurrence of the Markov chain describing the channel
state, this implies that the empirical frequency of any
possible post-decision state value remains bounded away
from zero with probability one. This implies that the rel-
ative frequencies with which the states(q, x) are visited
are of the same order of magnitude. Hence, the diagonal
elements ofΛi(t) remain uniformly bounded away from
zero (see [37], p. 87, for a more formal argument.). One
also needs that a particular user is scheduled frequently
enough by the base station. Our stability assumption will
be seen to ensure this automatically: a user not selected
for long builds up a large queue and hence requests
higher rate, which favors its selection thereafter. Were
this not so, that queue would have become unstable.
In fact this can still happen if the maximum permissible
rate for one user is way less than that for others, in which
case it will be starved of transmission opportunities
most of the time and go unstable. We assume that the
maximum allowable rates are sufficiently large for the
arrival rates under consideration and comparable (among
users) so that this does not happen, in fact we later
impose a condition ((30) below) stronger than this.

3) We now prove that the value function converges to its
optimal valueṼ i, i.e., V i

n → Ṽ i.

Lemma 1: If the diagonal elements ofΛi(t) remain
uniformly bounded away from zero,V i

n → Ṽ i.
Proof: We first need to prove that the iterates

remain bounded a.s. We adapt the arguments of Section
3.2, [37]. The situation is slightly different here, viz.,
we have a time-dependent matrixΛi(t) on the r.h.s.
of (25) whereas Section 3.2 of [37] analyzes a time-
homogeneous case (compare (25) in the present paper
and (3.2.1) in [37]). Nevertheless, it does not affect the
argument as long as the diagonal elements ofΛi(t) are
uniformly bounded away from zero. As in Section 3.2 of
[37], (especially the development after (3.2.2)), consider
a ‘scaled limit’ of the o.d.e. (25) wherein in the r.h.s.
of (25) the functionhi is replaced byhi

∞ defined by
hi
∞(x)

∆
= lima↑∞

hi(ax)
a

. This corresponds to (25) again,
but with c(·) ≡ 0, i.e., the immediate cost function is set

to zero. It can be shown as in [17], Lemma 1, that this
scaled o.d.e. has the origin as the globally asymptotically
stable equilibrium. This ensures a.s. boundedness of
the iterates by the results of Section 3.2 of [37]. The
intuition is as follows: if the iterates become unbounded
along a subsequence, a scaled version thereof, suitably
interpolated, begins to approximate the limiting o.d.e.
above and therefore has to return towards the origin by
the asymptotic stability of the limiting o.d.e. Since these
differ from the original iterates only by a scale factor,
one can argue that the original iterates themselves start
moving towards a bounded set and therefore cannot blow
up. Section 3.2 of [37] makes this intuition precise.
One can then argue as in [17] (development just before
Lemma 1) to conclude that̃V i(t) converges to the
solution Ṽ i corresponding toṼ i(q0, x0) = β, where
β is the optimal average cost per stage. As in Section
2.1, [37], it then follows that̃V i

n → Ṽ i a.s.
4) Note that the above analysis treatsλi

n ≈ a constant,
so what we have really proved (cf. Section 6.1, [37])
is that {Ṽ i

n} closely tracks {Ṽ i,λi
n}, where Ṽ i,λi

is Ṽ i with its λ-dependence made explicit. To be
precise, Ṽ i

n − Ṽ i,λn → 0 a.s. The following lemma
then proves that the LM converges to its optimal value
λi,∗, and hence the pair(Ṽ i

n, λi
n) converges to(Ṽ i, λi,∗).

Lemma 2: The LM iteratesλi
n converge to optimal

valueλi,∗.
Proof: The proof is similar to that in [17], Lemma

4 and Corollary 1. The proof of this Lemma depends on
Lemma 1, hence by implication on our assumption of
stability of the queues. Note that thẽV i

n andλi
n iterations

are primal-dual iterations. The primal iterations perform
relative value iteration and determine a minimum of
the Lagrangian with respect to the policy for an almost
constant LM. For the time being, supposeΓ(·) in (23)
is dropped. Then the limiting o.d.e. for theλi

n’s is
a steepest ascent for the Lagrangian minimized over
the primal variables (See Lemma 4 of [17]), a fact
that can be justified by using the ‘envelope theorem’
[38], which allows one to interchange the ‘max’ and
the gradient operator. By standard results for stochastic
gradient ascent for concave functions (see Section 10.2
of [37]), this converges to the optimal LMλi,∗ as argued
in [17] Lemma 4 and Corollary 1. Specifically, we have
the limiting o.d.e.

λ̇i(t) = ∇min
µi

L(µi, λi(t)), (26)

= Eλ(t)[Qi]− δ̄i, (27)

whereEλ[.] denotes the stationary expectation under a
policy that is optimal forλ. (If it is non-unique, then we
can use a differential inclusion as inibid.).
When the projectionΓ(·) is operative, we have a pro-
jected version of this o.d.e., as described in [37], Chapter
7. This involves a correction term at the boundary,
which, however, is zero if the driving vector field of the
o.d.e. is transversal to the boundary and points inward.
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This indeed will be the case here ifK in the definition
of Γ is sufficiently large so that the true Lagrange
multiplier is in the interior of the range ofΓ. This can be
ensured by takingK extremely large. (A priori bounds
on Lagrange multipliers can be derived, e.g., as in ([33],
p. 516.) Since the r.h.s. of the limiting o.d.e. for LM is
nothing but the vector of offsets between the mean queue
lengths and the corresponding bounds, convergence of
the o.d.e. implies that this offset is asymptotically zero,
i.e., the constraints are met with equality, this being
precisely the statement that the right hand side of the
o.d.e. is zero.
It may be mentioned that projection such asΓ is a
commonly used device for theoretical purposes that
avoids the difficulties in proving a priori boundedness
of iterates. Empirically, the scheme even works without
any such projection.

Lemmas 1 and 2 imply that(Ṽ i
n, λi

n) → (Ṽ i, λi,∗) as
required.

B. Queue Stability

In this sub-section we prove (under suitable conditions)
that under the strategies learnt by individual users, the queues
do remain stable. This is done using a stochastic Lyapunov
argument. This does, however, presuppose that the users have
learnt the correct strategies already, i.e., the learning scheme
has already converged. As noted earlier, this does not prove
closed loop stabilitywith the learning scheme. Our simulation
results, however, indicate a stable behavior even with the
learning component kicking in.

Let V(q) =
∑

i qi, γi = E[Ai
n]. Let π denote

the (unique) stationary distribution of the Markov chain
{Xn}. Recall thatRi

n depends on(Qi
n,Xi

n). Suppose that
Ri

n = ℓi(Qi
n,Xi

n) for some ℓi(·, ·). Write ℓ(Qn,Xn) for
[ℓ1(Q1

n,X1
n), . . . , ℓN (QN

n ,XN
n )]. Now,

E[V(Qn+1)|Qn,Xn]− V(Qn)

= E[
∑

i

(Qi
n+1 −Qi

n)|Qn,Xn]

= −
∑

i

U i
n +

∑

i

γi

= −
∑

i

ℓi(Qi
n,Xi

n)I{ℓi(Qi
n,Xi

n)≥ℓj(Qj
n,X

j
n), i 6=j}

+
∑

i

γi. (28)

If Qi
n ↑ thenℓi(Qi

n,Xi
n) ↑ by monotonicity of optimal single

user policy in the queue length [11], [10]. It is reasonable to
expect that asqi ↑,

ℓi(qi, xi) ↑ R̂i(xi). (29)

This motivates our assumption:∃R > 0 such that

min
i

ℓi(qi, xi) > R >
∑

i

γi (30)

outside a bounded set ofq’s. That is, if queue length(s) blow
up, the system at the very least transmits at rateR. This implies
that wheneverQn is outside a certain large bounded set,

E [V(Qn+1)|Qn,Xn]− V(Qn)

= −R +
∑

i

γi < 0. (31)

Thus V(·) serves as a stochastic Lyapunov function for the
queue thus ensuring its stability (i.e., positive recurrence – see
[39], Chapter 13). Note that it suffices to have the Lyapunov
function depend on queue lengths alone, as the channel state
is in any case finite valued.

The condition (30) ensures that the minimum of the max-
imum rate allowed to each user is itself adequate to handle
all traffic. Under (30), we can say more than just positive
recurrence, viz., we characterize the set near which the queue
lengths will concentrate in an approximate way. Note that
‘stability’ for o.d.e. (or correspondingly, ‘positive recurrence’
for a Markov process) still allows for many possibilities, e.g.,
oscillatory or even chaotic behavior. In what follows, we argue
that one can say more, viz., that the o.d.e. generically shows
convergent behavior, whence the random process concentrates
near the equilibria of the o.d.e. The argument will be based
on the so called cooperative o.d.e. introduced by Hirsch [40],
which have since been used in many situations by control
theorists. The key result here, due to Hirsch [40], is that as
long as the trajectories remain bounded, for almost all initial
conditions they converge to an equilibrium. With this in mind,
we proceed as follows: First we prove the boundedness of
trajectories and the cooperative property of the o.d.e., which
allow us to invoke the Hirsch theorem to claim convergence.
Then a standard argument from the theory of stochastic
approximation algorithms with constant stepsize shows that
the random iterates concentrate with a high probability near
the equilibria of the o.d.e. The details follow.

For technical reasons, for the purposes of this proof we
assume that at each timen the base station uses a smooth
approximationF := [F 1, . . . , FN ] of the maximum function
for channel allocation, i.e., it allocates the channel to the
user with the highest demand (say,ith) with a probability
F i(Rn) close to one, but does allocate it to others with a
small but nonzero probabilityF j(Rn), j 6= i. Specifically,
let F i(Rn) := g(Ri

n)m/(
∑

j g(Rj
n)m) for some monotone

increasing and smoothg and m >> 1. Also, we assume
that the ℓi(·, ·) above is continuously differentiable. These
hypotheses avoid some difficulties in the argument below that
would be caused by having to deal with a differential equation
with a discontinuous right hand side. This is at the expense of
being only approximate.

The queue evolution (2) for useri can be rewritten as:

Qi
n+1 = Qi

n + (γi − F i(Rn)Ri
n) +

(
(Ai

n+1 − γi)

+ (F i(Rn)Ri
n − U i

n)
)
.

Let F̃ = [F̃ 1, . . . , F̃N ] be defined by:F̃ i(r) = F i(r)ri ∀i.
Note that this is continuously differentiable. Then the queue
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evolution is of the form:

Qi
n+1 = Qi

n + (γi − F̃ i(Rn)) + Mn+1, n ≥ 0, (32)

where{Mn} is a martingale difference sequence.
Let q = [q1, . . . , qN ]. DefineF̂ = [F̂ 1, . . . , F̂N ] by:

F̂ i(q) =
∑

x

F i(ℓ(q,x))ℓi(qi, xi)π(x).

Consider the scaled version of (32), given by

Qi
n+1 = Qi

n + η[(γi − F̃ i(Rn)) + Mn+1], n ≥ 0, (33)

for a smallη > 0. If we consider smaller and smaller time
slots of widthη with γi, and F̃ i being ‘rates per unit time’
rather than ‘per slot’ quantities, then we obtain the ‘fluid’
approximation of (32) , which is given by the o.d.e.

q̇i(t) = γi − F̂ i(q(t)), (34)

restricted to the positive orthant (i.e., it follows the projected
dynamics on the boundary of this orthant). Note, however,
that under the condition that the rate requested at zero queue
length is zero, the boundary will be repelling, i.e., trajectories
starting at boundary move away from it.

Lemma 3:The trajectories of the o.d.e. in (34) for eachi
approach a bounded set.

Proof: The proof is similar to the stochastic Lyapunov
argument above (Refer to (31)). LetΩn

∆
= { maximizers

of i → Ri
n} =⇒ for m >> 1, F i(Rn) ≈ 1

|Ωn|I{i∈Ωn}(=

limm↑∞ g(Ri
n)m/(

∑
j g(Rj

n)m)). Let V(q)
∆
=
∑

i qi. Thus

V̇(q(t)) =
∑

i

γi −
∑

i

F̂ i(q(t))

≈
∑

i

γi −
∑

x

π(x)ℓi∗(t,x)(qi∗(t,x)(t), xi∗(t,x)),

where i∗(t, x)
∆
= the maximizer ofi → ℓi(qi(t), xi), i.e.,

i∗(t, x) is the index of the user that bids the highest rate.
If any qi(t) becomes very high, then one expects the users to
transmit at the highest possible rate in all channel states,and
the system at the very least transmits at rateR. Hence, r.h.s.
≤
∑

i γi −R, thus leading to

V̇(q(t)) ≤
∑

i

γi −R < 0.

ThusV(·) serves as a Lyapunov function for the o.d.e., leading
to bounded trajectories.

Recall that an o.d.e.̇x(t) = f(x(t)) is cooperative if∂fi

∂xj
>

0 for i 6= j (more generally,≥ 0 and the Jacobian matrix with
diagonal elements replaced by zero is irreducible) [40].

Lemma 4: ∂ bF i

∂qj < 0 for i 6= j, i.e., (34) is a cooperative
dynamics.

Proof: From [7], [11], [10], we know that the optimal
policy is increasing in queue length for the single user case
with i.i.d. channel fading and arrival processes. Thus, increase
in the queue lengthQj for a userj results in an increase in
Rj as computed by userj. Hence

F i(Rn) := g(Ri
n)m/(

∑

j

g(Rj
n)m)

decreases fori 6= j. As per our user selection policy at the
base station, this results in a decrease in probability of channel
allocationF i(·), i 6= j, and henceF̂ i(·) for useri.

We thus have the following lemma.
Lemma 5:The trajectories of the o.d.e. in (34) converge to

an equilibrium for almost all initial conditions.
Proof: Boundedness of the iterates as proved in Lemma

3 and the cooperative property as proved in Lemma 4 allows
us to apply Hirsch theorem (Theorem 4.1, p. 435, of [40]).
It follows that the trajectories converge for almost all initial
conditions.

Lemma 6:With probability 1 − O(η), {Qn} in (32) will
concentrate near the set of equilibriaB of (34).

Proof: As seen above,V(·) serves as astochasticLya-
punov function for the Markov chain{Qn}, implying its
positive recurrence. In particular, it will be asymptotically
stationary. Thus it suffices to consider the stationary chain.
Consider two time slices atn andn + M resp.,n,M > 0, of
the stationary chain. The distributionµs of the queue lengths
is the same at both times by stationarity. Letη > 0 as
above and pickK ⊂ (Z+)N such thatµs(K) > 1 − η.
Let Bǫ denote theǫ-neighborhood ofB. Then µs(∪i{q :
q(0) = q, q(t) ∈ Bǫ ∀ t ≥ i}) = 1 by Lemma 5.
Thus we can pick anM ≥ 1 such that with probability
µs({q : q(0) = q, q(t) ∈ Bǫ ∀ t ≥ M}) > 1 − η.

Let D
∆
= {q : q(0) = q, q(t) ∈ Bǫ ∀ t ≥ M}. Now

consider (33) as a constant stepsize stochastic approximation
iteration for smallη. The convergence analysis for constant
stepsize stochastic approximation algorithms of Chapter 9,
[37], implies that

E[d(Qn+⌈M
η
⌉, B

ǫ)2|Qn ∈ D] ≤ Cη (35)

for someC > 0, d(·, Bǫ) being the Euclidean distance from
Bǫ. It follows that under the stationary law,

P (d(Qn+⌈M
η
⌉, B

ǫ) ≥ ǫ)

= P (d(Qn+⌈M
η
⌉, B) ≥ 2ǫ)

≤ η + O
( η

ǫ2

)
,

where we use stationarity, (35) and the Chebyshev inequality
to get the above inequality.

The equilibriaq∗ of the limiting o.d.e. correspond to situa-
tions where

γi = F̂ i(q∗) ∀i, (36)

i.e., the mean arrivals and departures balance out, as they
should. The discussion above then shows that the stochastic
behavior fluctuates around this. Solution of (36) form >> 1
thus allows us to make predictions about the queue behavior.

C. Some Properties of User Selection Algorithm

We now prove that the base station user selection algorithm
minimizes the long term sum of maximum rates. Furthermore,
we also argue that the scheme is ‘fair’ in the sense that users
requiring larger system resources have to pay a higher ‘price’,
i.e., they expend more power.
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The base station faces a ‘restless bandit’ problem [41] with
partial observations, since the base station has a knowledge
of Xn and not ofQn. This problem is hard [42]. In the user
selection policy suggested by us, the base station employs a
greedy index policy treating the observed bids as indices. Here,
we prove the optimality of the user selection policy at the base
station for a certain cost criterion,given the user behavior.

Lemma 7:The base station user selection policy minimizes:

lim sup
M→∞

1

M

M∑

n=1

max
i

ℓi(Qi
n,Xi

n). (37)

Proof: Let Π(Q,X) be stationary distribution of the
joint queue and channel state under the user selection policy
proposed in the paper. Taking stationary expectations on both
sides of the recursion

∑

i

Qi
n+1 =

∑

i

Qi
n −

∑

i

U i
n +

∑

i

Ai
n+1

allows us to write the following:
∑

i

γi =
∑

q,x

Π(q,x)
∑

i

I{ℓi(qi,xi)>ℓj(qj ,xj)}ℓ
i(qi, xi)

=
∑

q,x

Π(q,x)max
i

(ℓi(qi, xi)). (38)

Let Π̃(q,x) be the stationary distribution of joint queue and
channel state induced by some other stabilizing policy that
does not necessarily schedule the user bidding the highest rate
in a slot. (It is assumed that the other policy is a stabilizing
policy, but then it is clear that unstable policies are not
contenders for optimality anyway.) Again, we have:

∑

i

γi =
∑

q,x

Π̃(q,x)
∑

i

χi(q,x)(ℓi(qi, xi)), (39)

where χi(q,x) is the probability of scheduling useri in
state(q,x) under the other stabilizing policy;χi(q,x) ≥ 0,∑

i χi(q,x) = 1. This implies that:

∑

q,x

Π(q,x)
(
max

i
(ℓi(qi, xi))

)

=
∑

q,x

Π̃(q,x)

(
∑

i

χi(q,x)(ℓi(qi, xi))

)

≤
∑

q,x

Π̃(q,x)
(
max

i
(ℓi(qi, xi))

)
. (40)

Hence the policy minimizes (37) over all stable stationary
policies. From standard results from Markov decision theory
([30], Chapter 8), optimality over stable stationary strategies
implies optimality over all admissible strategies. This implies
the claim.

D. Game Theoretic Interpretation

Here, we provide a game theoretic interpretation of the
scheme and argue that it is incentive compatible.

1) Multi-user Penalty: Consider a useri. Fix a Markov
policy learnt by usersj 6= i and the base station policy. As per
our scheme, useri solves an average cost MDP with running
cost functionP (x, r)+λi(q−δ̄) = P (x, r)+λi,∗( λi

λi,∗ (q−δ̄i)),
whereλi,∗ is the correct LM for the constrained MDP with the
objective of minimizing lim supM→∞

1
M

∑M
n=1 P (Qi

n, Ri
n)

subject to lim supM→∞
1
M

∑M
n=1 Qi

n ≤ δ̄i. This can be
interpreted as there being an appropriate ‘scaling’ of the LM
because of the presence of multiple users. This is the penalty of
operating in a multi-user environment. The upward scaling of
the LM would naturally result in a higher power consumption
as compared to the single user facing the aforementioned
constrained MDP. We call the ratioλ

i

λi,∗ themulti-user penalty.
It is clear that each user is optimal for this modified MDP
when the policies of other users and the base station are
fixed. On the other hand, we have already seen that the base
station uses a policy that is optimal for cost (37) when the
user policies are fixed. Thus this is a Nash equilibrium for a
certain stochastic dynamical game. In fact, it is an instance
of the economists’ notion of aMarkov equilibrium(See, e.g.,
Chapter 13 of [43]).

2) Incentive Compatibility of the Scheme:The users always
attempt to keep their average queue lengths close to their
respective queue length constraints, i.e., the constraintis
satisfied with equality. This is because the user’s objective is
to minimize the power expenditure. By asking for a higher rate
than what is required, a user might achieve an average queue
length that is much lower than the queue length constraint.
However, as proved in [7] for single user policy, since the
power is an increasing convex function of the rate, the rate
should be kept as low as possible so that the average queue
length is as large as possible (in this case, equal to the queue
length constraint) in order to save power. Thus users will
transmit at a rate such that the average throughput achieved
by them is just sufficient to meet the delay constraint with
equality, implying that there is no incentive for the users to
lie and ask for an unnecessarily high rate. This establishesthe
incentive compatibility of the scheme.

3) Fairness: The scheme is ‘fair’ in the sense that users’
power expenditure is commensurate with their fraction of
time slots requirement. A certain user having a high arrival
rate or stringent delay constraint or poorer channel condition
requires higher fraction of slots in order to satisfy the delay
requirement. Such a user must consistently bid higher ratesin
order to obtain a higher fraction of time slots and thus ends
up ‘paying’ more in terms of its long term power expenditure.

VI. EXPERIMENTAL EVALUATION

We demonstrate the performance of our algorithm under the
IEEE 802.16 [1] framework through simulations in a discrete
event simulator. Specifically, we intend to demonstrate the
following:

1) The algorithm satisfies the users’ delay constraints.
2) The algorithm is efficient in terms of the power con-

sumed for each user. This is demonstrated by comparing
the power consumed under our algorithm with that under
M-LWDF scheduler [24].
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3) Performance of the algorithm under different informa-
tion accuracies.

A. Simulation Setup

We consider uplink (UL) transmissions in theresidential
scenario as in [44]. Internet traffic is modeled as a web traffic
source [44], [45]. Variable sized packets are generated at the
application layer. Packet sizes are drawn from a truncated
Pareto distribution. This distribution is characterized by three
parameters: shape factorξ, modeυ and cutoff thresholdg.
The probability that a packet has a sizey can be expressed
as:

fTP (y) =
ξ · υξ

yξ+1
, υ ≤ y < g

fTP (y) = ν, y ≥ g, (41)

whereν can be calculated to be equal to:

ν = (
υ

g
)ξ, ξ > 1. (42)

We choose shape factorξ = 1.2, modeυ = 2000 bits, cutoff
thresholdg = 10000 bits, which provides us with an average
packet size of3860 bits. In each time frame, we generate the
arrivals for all the users using Poisson distribution. Arrivals
are generated in an i.i.d. manner across frames. We divide the
packets into fragments at the MAC layer with each fragment
being of sizeτ = 2000 bits. Fragments of size less than
2000 bits are padded with extra bits. Since all fragments are
of equal size, we determine the transmission rate for users
in terms of number of fragments. We simulate a Rayleigh
fading channel3 for each user. For a Rayleigh model, chan-
nel stateXi is an exponentially distributed random variable
with meanαi and probability density function expressed as
fX(x) = 1

α2 exp
(

−x2

2α2

)
, x ≥ 0. We assume that the power

required for transmittingz fragments of sizeτ bits when the
channel state isx is P (x, zτ) = WN0

x

(
2

zτ
W − 1

)
where W

is the bandwidth andN0 is the power spectral density of the
additive white Gaussian noise at the receiver. We assume that
the productWN0 is normalized to1. We measure the sum
of queuing and transmission delays of the packets and ignore
the propagation delays. In all the scenarios described below,
a single simulation run consists of running the algorithm for
100000 frames and the results are obtained after averaging
over 20 simulation runs. We discretize the channel into eight
equal probability bins, with the boundaries specified by{ (-∞,
−8.47 dB), [−8.47 dB, −5.41 dB), [−5.41 dB, −3.28 dB),
[−3.28 dB, −1.59 dB), [−1.59 dB, −0.08 dB), [−0.08 dB,
1.42 dB), [1.42 dB, 3.18 dB), [3.18 dB,∞ ) }. For each bin,
we associate a channel state and the state spaceX = { −13
dB, −8.47 dB, −5.41 dB, −3.28 dB, −1.59 dB, −0.08 dB,
1.42 dB, 3.18 dB}. This discretization of the state space ofXi

has been justified in [8]. We assumeN = 20, i.e., a system
with 20 users and thereby20 UL connections. We assume
that the number of users does not change during the course
of simulations. In the symmetric case, all20 users have same

3Note that our algorithm does not use this knowledge of the channel and
arrival process model.

parameters while in the asymmetric case, users are divided
into two groups (Group 1 and Group 2) of10 users each
with different parameters. We have simulated both symmetric
and asymmetric cases. However, due to space constraints, we
include the results for the asymmetric case only.

B. Satisfaction of Delay Constraint

In this sub-section, we demonstrate that the delay constraint
of each user is satisfied for various constraints and average
channel conditions.

Scenario 1: In this scenario, we demonstrate that the al-
gorithm satisfies the various user specified delay constraints.
In each frame, arrivals are generated with a Poisson dis-
tribution with mean 0.1 packets/msec. Packet lengths are
Pareto distributed with parameters detailed above. This re-
sults in an arrival rate of0.386 Mbits/sec/user. We choose
αi = 0.4698(−3.28 dB) ∀i. In each slot, we generateXi

using exponential distribution with meanαi. We determine the
channel state based on the bin that containsXi as explained
above.
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We perform multiple experiments. The delay constraints of
the users in Group1 are fixed at100 msec in each experiment,
while the delay constraints of the users in Group2 are fixed at
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25, 50, 75, 100, 125, 150, 175 msec in successive experiments.
It can be observed from Figure 3 that the delay constraints
are satisfied in all the cases. Moreover, from Figure 4, it can
be observed that the power expended is a convex decreasing
function of the delay constraint imposed by the user. Larger
delay constraint implies that lesser power is required to satisfy
the constraint.
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Fig. 5. Achieved delay of a user with varying channel conditions
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Fig. 6. Power expended with varying channel conditions

Scenario 2: In this scenario, we demonstrate that the algo-
rithm satisfies the user specified delay constraints for various
channel conditions. We consider the asymmetric case where
we maintain the average channel state for users in Group 1
constant for all the experiments, i.e.,αi = −3.28 dB, i ∈
1, . . . , 10. For the users in Group 2, i.e.,αi for i ∈ 11, . . . , 20,
the average channel state is fixed atαi = −13 dB, −8.47 dB,
−5.41 dB, −3.28 dB, −1.59 dB, −0.08 dB, 1.42 dB, in
successive experiments. Average delay suffered by a user in
Group 1 and in Group 2 and power consumed by them for the
two cases are plotted in Figures 5, and 6 respectively. From
Figure 5, it can be observed that the scheme is able to satisfy
the delay constraints above a certain average channel state. The
maximum power with which the users can transmit in any slot
determines the capacity of the system. If the maximum power
is high, the scheme is able to satisfy the delay constraints even
for poor channel states. Thus, the maximum power determines

the average channel state above which the delay constraints
are satisfied. From Figure 6 it can be observed that better
channel conditions result in much lesser power being required
for satisfying the delay constraints.
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C. Comparison with M-LWDF

Here, we compare the power consumed by our algorithm
with that of M-LWDF scheme [24]. The arrival rate of all
users is fixed at0.2702 Mbits/sec (0.07 packets/msec) for all
the experiments whileαi = 0.4698(−3.28 dB) ∀i. We first
determine the average delay experienced by the users with
different maximum power constraints (1.5 - 4.5 Watts) under
M-LWDF scheme. We keep track of the power expended by
each user under M-LWDF scheme. The delays experienced
under M-LWDF scheme are set as delay constraints for the
proposed scheme. Figure 7 demonstrates that the proposed
scheme satisfies the delay constraints. The comparison for
power consumed under the two schemes is plotted in Figure 8.
It can be seen from this figure that the proposed scheme con-
sumes much less average power than the M-LWDF scheme.

D. Performance under Different Information Accuracies

Here, we study the performance of our scheme under
different accuracies of information. Specifically, we determine
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the power consumption when 2 bits, 3 bits and 4 bits are
employed in order to convey the rate information from the
users to the base station. The parameters for the users are
same as those in Scenario 1 of Section VI-B. The results are
plotted in Figure 9. It can be seen that as the information
accuracy increases, the power consumption reduces.

Remark 2: It is apparent that there exists a tradeoff between
the information accuracy and the resources (power, bandwidth)
consumed in conveying the information. We are currently
investigating this tradeoff.

VII. C ONCLUSIONS

In this paper, we have proposed a novel scheduling algo-
rithm for minimizing the average power of each user subject
to individual delay constraint in a multi-user uplink system.
The primary difficulty in numerically determining an optimal
policy for this problem is the large state space. To address
this difficulty, we have proposed a novel extension of learning
based single user optimal algorithm to the multi-user setting.
In our approach, the users can be thought of as bidding their
rates to the base station which then schedules the user bidding
the highest rate. We note that it is not in the interest of
users to bid unnecessarily higher rates as that might result
in higher power consumption. We prove analytically that the
proposed algorithm ensures user queue stability if individual
learning schemes converge and vice versa, and if so, satisfies
the delay constraints of the users. Another advantage of our
approach is that it does not require an explicit knowledge
of the probability distributions of channel state and arrival
processes. The algorithm is computationally efficient and has
low communication overhead. It thus provides a powerful
framework for uplink scheduling. Interesting future directions
are to explore a network situation, and on a different note, to
provide a more complete theoretical analysis.
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