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Abstract— We consider the problem of scheduling users on the
downlink of a Time Division Multiplexed (TDM) system with
constraints on the average packet delays over a fading wireless
channel. Our objective is to maximize the sum throughput with
constraints on the user delays. Due to the difficulty in computing
optimal policy, we propose a suboptimal scheduling algorithm
which is based on computing appropriate indices and scheduling
the user with the highest index. Our simulations for the IEEE
802.16 system indicate that our algorithm satisfies the delay
constraints of the users and is highly throughput efficient.

I. I NTRODUCTION

Wireless users perceive time varying channel quality. The
channel quality across users might be quite diverse. In recent
times, cross layer schemes that exploit the channel related
information at the higher layers have resulted in improved
system performance [1]. A centralized scheduler in a point-
to-multipoint scenario, e.g., a base station on the downlink, can
exploit this information from the physical layer by scheduling
a user perceiving better channel quality. Data can be trans-
mitted at a higher rate to such a user while maintaining
an acceptable Bit Error Ratio (BER) at the receiver. This
results in higher sum throughput [2] (i.e., the sum of the
throughputs of all the users). Such schemes that exploit the
opportunities provided by multiuser diversity for scheduling
at the MAC layer are calledopportunistic scheduling schemes
[3]. However, under opportunistic scheduling over a Time
Division Multiplexed (TDM) system, users perceiving peren-
nially better channel conditions obtain a higher proportion of
slots. In a best effort system, this leads tounfairness, while
in a system providing QoS, this leads to QoS guarantees like
average rate/delay guarantees being violated. Schedulingusers
perceiving poor channel conditions results in transmission at
lower rates to such users, thereby reducing the sum throughput.
The objective, therefore, is to schedule an appropriate user so
as to maximize the sum throughput while satisfying the QoS
constraints or being fair. Various fair scheduling algorithms
have been explored in [3], [4], [5], [6].

A scheduling policy is consideredstable if the expected
queue length is bounded under the policy. In [7], the authors
determine the throughput capacity region of a multi-access
system, i.e., the set of all rates that can be deliveredreliably
under average power constraints. In [8], the authors have

shown that the throughput capacity region is same as the multi-
access stability region (i.e., the set of all arrival vectors for
which there exists some rate and power allocation policies that
keep the system stable). A scheduler is termedthroughput-
optimal if it can maintain the stability of the system as
long as the arrival rate is within the stability region [9].
Throughput optimal scheduling policies have been exploredin
[7], [10]. Longest Connected Queue (LCQ) [11] , Exponential
(EXP) [12], Longest Weighted Queue Highest Possible Rate
(LWQHPR) [13] and Modified Longest Weighted Delay First
(M-LWDF) [14] are other well known throughput optimal
scheduling policies. It has been shown that the Longest
Queue Highest Possible Rate (LQHPR) policy [15] (besides
being throughput optimal) also minimizes the delay for any
symmetric power control under symmetric fading provided
that the packet arrival process is Poisson and packet length
is exponentially distributed. Recently in [16], the authorhas
studied the problem of minimizing sum power on the downlink
under the user queue stability constraints. Note, however,that
on the downlink, the base station typically transmits at a fixed
maximum power sufficient to reach the farthest user and hence
power minimization is not a central issue.

In this paper, we consider the problem of scheduling the
users on the downlink of a TDM system such that the average
packet delays experienced by the users are below certain
specified constraints. For a multiuser queuing system with
scheduler on a TDM channel, there is an extensive literature
that we have reviewed above. However, the specific optimiza-
tion problem of maximizing the sum throughput subject to
constraints on the individual user delays has not been explicitly
addressed so far. It can be easily argued that this problem
has the structure of a Constrained Markov Decision Problem
(CMDP) [17]. However, the primary difficulty in computing
optimal policy (as exemplified later in this paper) lies in large
state space size that increases exponentially with number of
users. Moreover, computation of such a policy requires the
knowledge of the system model, i.e., the knowledge of the
probability distributions of the channel state and the arrival
process for each user. This knowledge of the system model is
not available in practice.

We believe that state space explosion and unknown system
model are the primary reasons for inadequate attention towards



Fig. 1. System Model

optimal delay constrained multiuser scheduler structure despite
abundant literature in wireless scheduling with various other
performance objectives. We address this problem by proposing
a suboptimal scheduler that is based on computing appropriate
indices and scheduling the user with the highest index. The
scheme generates indices in each slot in such a fashion that
the delay constraints of the users are satisfied while still
achieving a very high sum throughput. We demonstrate the
applicability of our algorithm to IEEE 802.16 based system
through simulation experiments. To the best of our knowledge,
there is no scheme that solves the problem explicitly. For
comparison purposes, we adapt the M-LWDF scheduler to our
scenario just to illustrate that our algorithm achieves a high
sum throughput even while satisfying the delay constraints.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a multiuser TDM system where a base station
schedulesN users on the downlink, as depicted in Figure 1.
Time is divided into slots of unit duration. Only one user can
be scheduled in a time slot. The base station maintains a queue
of sizeB bits for each user. Packets arrive into the queue at the
beginning of a time slot. The packets are queued at the base
station until they are transmitted. We assume that the number
of packets arriving to the queue of useri in each slot forms an
independent and identically distributed (i.i.d.) process. Let Ai

n

denote the number of packets arriving into the useri queue
in slot n. We assume that the arrivals in a slot are discrete
and finite, i.e., the random variableAi

n takes values from a

setA
∆
= {0, . . . , A}. We assume that the distribution ofAi

n is
not known.

The channel quality perceived by a user remains constant
for the duration of a slot and changes from slot to slot in an
i.i.d. fashion. This channel model is called block fading model
[18]. Let yn denote the signal transmitted by the base station
in slot n. Then the signalRi

n received by a useri in time slot
n can be expressed as,

Ri
n = Hi

nyn + Gi
n, (1)

whereHi
n is a circularly symmetric complex Gaussian ran-

dom variable andGi
n is the Additive White Gaussian Noise

(AWGN) at the receiver with Power Spectral Density (PSD)
N0. We defineX i

n

∆
= |Hi

n|
2 as thechannel state for a useri in

slot n. In practice,Hi
n is a continuous random variable and so

is X i
n. However, in this paper we assume thatX i

n takes values
from a discrete and finite setX . We assume perfect channel

state information at the base station, i.e., in every slot, the
base station has the perfect knowledge of the channel state
perceived by each user.

Let Qi
n denote the instantaneous queue length of a user

i in slot n. Let U i
n denote the number of bits that the base

station can transmitreliably to user i in slot n. Since slot
duration is normalized to1, U i

n also denotes the rate at which
the base station can transmit to useri in slot n. Since the base
station can at most transmit all the bits in a buffer in any slot,
U i

n ≤ Qi
n. We assume thatU i

n takes values from a finite and
discrete setU . The queue evolution equation for useri can be
written as,

Qi
n+1 = max(0, Qi

n + Ai
n+1 − Ii

nU i
n), (2)

where Ii
n is an indicator variable that is set to1 if user

i is scheduled in time slotn, otherwise it is set to0. We
assume that the buffer sizeB allocated for each user is large
and that the probability of packet drops is negligible. We,
therefore, ignore packet drops in (2). The users specify their
QoS requirements in terms of average packet delay constraints.
These constraints are known a priori to the base station.

B. Formulation as a Constrained Optimization Problem

By Little’s law, the average delaȳD suffered by the packets
is related to the average queue lengthQ̄ as follows,

Q̄ = āD̄, (3)

where ā is the average arrival rate. For a constant average
arrival rate, the average delay can be considered equivalent to
the average queue length. Hence we consider constraints on
average queue lengths instead of average delays in this paper.
The long term average queue length for useri can be expressed
as,

Q̄i = lim sup
M→∞

1

M

M∑

n=1

Qi
n. (4)

Let Q̄ = [Q̄1, . . . , Q̄N ]T denote the vector of long term
average queue lengths. Letā = [ā1, . . . , āN ]T denote the
vector of the average arrival rates,āi being the average arrival
rate for useri. Let δ̄ = [δ̄1, . . . , δ̄N ]T denote the vector of
queue length constraints. The sum throughput over a long
period of time can be expressed as,

T̄ = lim inf
M→∞

1

M

M∑

n=1

N∑

i=1

Ii
nU i

n. (5)

The objective of the system is to maximize the sum through-
put while satisfying the average packet delay requirementsof
the users. The scheduling problem can therefore be expressed
as a constrained optimization problem,

Maximize T̄ subject to Q̄i ≤ δ̄i for i = 1, . . . , N. (6)



C. The CMDP Framework

Let Xn = [X1
n, . . . , XN

n ]T denote the vector of channel
states of the users in slotn. Let Qn = [Q1

n, . . . , QN
n ]T denote

the vector of queue lengths of the users in slotn. The state of
the system in slotn is specified by the tupleSn

∆
= (Qn,Xn).

The system state spaceS = QN ×XN is discrete and finite. In
each slot, the scheduler chooses a particular user based on the
system state. The state of the system in the current slot depends
on its state in the previous slot and the decision taken by the
scheduler in the previous slot. The objective is to determine
an optimal policy that achieves the highest possible throughput
while satisfying the delay constraints of the users. Hence the
problem has the structure of a CMDP [17]. However, the
traditional approaches based on Linear Programming (LP) [17]
for determining the optimal policy cannot be used because of
the following reasons:

1) Large state space: In our model, the system state space
is large even for moderate number of users. We illustrate
this with a simple example. Consider a system with4
users. Assume that the base station reserves a buffer of
size50 packets (assuming equal sized packets) for each
user. Assume that the channel condition of each user
can be represented using8 states, which is a practical
assumption justified in [19]. For this scenario, the system
state space contains504 × 84 = 2.56× 1010 states. The
computational complexity of the traditional LP based
approaches is proportional to the state space size [17]
and hence the computational complexity also increases
exponentially with users.

2) Unknown system model: Traditional approaches require
the information about the state transition probability of
the underlying Markov process which in turn needs
the information regarding the probability distributions
of the channel state and the arrival for each user. This
information is not available in practice.

To alleviate the problem of unknown system model, reinforce-
ment learning algorithms [20] could be used. However, with
such a large state space, the learning algorithms would take
prohibitively large time to converge to the optimal scheduling
policy. Hence, we develop an indexing scheme which though
suboptimal, yet performs very well and does not face these
problems.

III. I NDEXING SCHEDULER

We propose anindexing scheme that generates indices for
all users in each slot. We seek to generate indices that exploit
the tradeoff between maximizing throughput and satisfying
delay constraints. The user having the maximum index in a
slot is scheduled in that slot. Note that maximizing the sum
throughput requires that a user with the best channel state be
scheduled in a slot. On the other hand, if the queue length of
a user exceeds the queue length constraint, then the scheduler
has to compromise on the objective of maximizing the sum
throughput and possibly schedule a user not having the best

channel state. These considerations can be precisely expressed
as follows:

1) To fulfill the objective of maximizing the sum through-
put, an index must be proportional to the channel state
of the user. This ensures that a user with a better channel
state has a higher probability of being scheduled.

2) The index allocation must be cognizant of the user delay
requirements. A user having a tighter delay constraint
must be given a higher index and hence higher prob-
ability of being scheduled. If the slots allocated to a
user are not sufficient to satisfy its delay constraint,
its queue length would be greater than the desired
queue length frequently. In order to satisfy the delay
constraint of a user, its index must be proportional to the
aggregate amount with which its queue length exceeds
the desired queue length. This ensures that the user
having a higher aggregate queue constraint violation has
a greater probability of being scheduled.

Taking these requirements into consideration, we define the
index κi

n of a useri in a slotn as:

κi
n = λi

n × U i
n. (7)

λi
n is the weight of useri in slotn. This weight is dynamically

adjusted in each slot based on the deviation of the queue length
of that user from its desired queue length. Once the indices
are determined, the algorithm determines the user with the
highest index with a non-empty queue and non-zero rate, and
schedules this user. If there are multiple such users, one of
them is scheduled randomly with uniform probability. We now
describe an approach for determining the weightλi

n for a user
i in slot n.

A. Determining the Weights

As outlined above, if the aggregate queue constraint viola-
tion of a user is large, it must have a large weight. Hence,
we dynamically update the weight in each slot by adding the
deviation of the current queue length from the constraint toit.
Consider sequence{an} that satisfies the following properties:

lim
n→∞

an = 0, lim
n→∞

∑

n

(an)2 < ∞, lim
n→∞

∑

n

an = ∞. (8)

The first two properties in (8) ensure that the sequence{an}
converges to zero sufficiently rapidly, while the third property
ensures that it does not converge to zero too rapidly. Letλi

0 =
1 ∀i. The weightλi

n for a useri in slot n is then determined
using the following iteration:

λi
n+1 = min(L, max(0, λi

n + an × (Qi
n − δ̄i))), (9)

whereL >> 0, i.e., we project theλi iterates in the interval
[0, L]. The properties of{an} ensure that the update rate
of weight λi is neither too fast nor too slow (following
arguments similar to that of [21]). The stable value of the
weight determines the proportion of slots allocated to a user
based on its delay requirement and thereby the relative priority
between the users. The intuition behind (9) is to iteratively tune
the weight of useri so as to satisfy its delay constraint. If



Qi
n continues to be less than̄δi then it progressively reduces

the weightλi
n in the subsequent slots thereby reducing the

probability of useri being scheduled. On the other hand, ifQi
n

continues to be more than̄δi, then it progressively increases
the weightλi

n thereby increasing the probability of useri being
scheduled and hence increasing the proportion of slots that
would be allocated to useri. Updation of the weights results
in a redistribution of the proportion of slots allocated to users.
If the delays are feasible, the scheme determines an allocation
such that the delay constraints of all the users are satisfied.

Theorem 1: λn iterates converge to a stable valueλ∗.
Proof: We provide a sketch of the proof in the Appendix.

IV. SIMULATION SETUP AND RESULTS

In this section, we demonstrate the following:

1) The algorithm satisfies the delay constraints of all the
users.

2) The algorithm is efficient in terms of the achieved sum
throughput through comparison with the M-LWDF [14]
scheduler.

M-LWDF scheme considers the probability with which a
user’s queue length is allowed to exceed a certain target queue
length. We assume that this probability is the same for all the
users and ignore it in the present simulations. Specifically, the
adapted M-LWDF schedules a useri in each slot such that,

i = arg max
j

τ j
n × U j

n, (10)

where τ j
n is the delay experienced by the head of the line

packet for userj. M-LWDF scheme transmits at a constant
power in each time slot. Note that M-LWDF scheduler at-
tempts to minimize the user delays and does not address
the problem of maximizing sum throughput subject to delay
constraints. We, therefore, first determine the average delays
experienced by the users under the M-LWDF scheme for
various average arrival rates. The values of these delays are
then considered to be the delay constraints for the indexing
scheduler. We determine the average delays experienced by
the users under the indexing scheduler and also the sum
throughput achieved under it. We perform the simulations
within the framework of an IEEE 802.16 system.

A. The IEEE 802.16 System

In this paper, we concentrate on the point-to-multipoint
(PMP) mode specified in the IEEE 802.16 standard, where
a centralized base station (BS) serves multiple subscriber
stations (SSs). We consider the downlink (DL) transmissions
in the residential scenario as in [22] where the BS provides
Internet access to the subscribers. IEEE 802.16 medium access
control (MAC) specifies the non real-time polling service
(nrtPS) for non real-time applications. Although the standard
does not explicitly specify any mechanism for providing
average delay guarantees, the nrtPS service discipline canbe
extended to cater to the average delay requirements of the
users. The unicast polling service of nrtPS can be used to

determine the channel state perceived by the users. On the
downlink, the base station has the knowledge of the queue
lengths of all the users. The scheduling algorithm can thus be
implemented as a part of nrtPS.

The system can be operated in either time division duplex
(TDD) or frequency division duplex (FDD) mode. We assume
the FDD mode of operation where all SSs have full-duplex
capability. We consider a single carrier system with a frame
duration of 1 msec and bandwidth of10 MHz. The SSs
employ the following modulations: 64-Quadrature Amplitude
Modulation (QAM), 16-QAM, Quadrature Phase Shift Keying
(QPSK) and QPSK with a rate 1/2 code; along with a filter
rolloff factor of 0.22. These provide us with the following
4 rates of transmission:24 Mbps, 16 Mbps, 8 Mbps and4
Mbps respectively. We consider20 connections on the DL
and assume that the number of connections does not change
over the duration of the simulations. We measure the sum of
queuing and transmission delays of the packets and ignore the
propagation delays.

B. Simulation Details and Results

Internet traffic is modeled as a web traffic source [23].
Packet sizes are drawn from a truncated Pareto distribution
(shape factor1.2, mode =2000 bits, cutoff threshold =10000
bits) which provides us with an average packet size of3860
bits. In each time frame, we generate the arrivals for all the
users using Poisson distribution. Arrivals are generated in an
i.i.d. manner across frames.

We simulate a Rayleigh channel1 for each user. For a
Rayleigh model, channel stateX i is an exponentially dis-
tributed random variable with probability density function
given by fXi(x) = 1

αi e
−

x

αi , whereαi is the mean ofX i.
We discretize the channel into eight equal probability bins
with the boundaries specified by{ (-∞, −8.47 dB), [−8.47
dB, −5.41 dB), [−5.41 dB, −3.28 dB), [−3.28 dB, −1.59
dB), [−1.5 dB, −0.08 dB), [−0.08 dB, 1.42 dB), [1.42 dB,
3.18 dB), [3.18 dB, ∞ ) }. We associate a channel state
with each bin. The channel state space isX = {−13 dB,
−8.47 dB, −5.41 dB, −3.28 dB, −1.59 dB, −0.08 dB, 1.42
dB, 3.18 dB}. This discretization of the state space ofX i

has been justified in [24]. Users are divided into two groups
(Group 1 and Group 2) of10 users each. In all the scenarios
described below, each simulation run consists of simulating
the algorithms for100000 frames. Results are presented after
averaging over20 simulation runs.

Scenario 1: In this scenario, we demonstrate that the algo-
rithm satisfies the various user specified delay constraints. We
consider two cases: symmetric case and asymmetric case. In
both the cases, in each frame, arrivals are generated with a
Poisson distribution with mean180 packets/sec/user. Packet
lengths are Pareto distributed with shape factor1.2, mode =
2000 bits and cutoff threshold =10000 bits. This results in
an average arrival rate of0.6948 Mbits/sec/user. We choose

1The scheduling algorithm is not aware that the channel is Rayleigh or that
the arrival distribution is Poisson.
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Fig. 2. Delay experienced by a user selected at random - symmetric case
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Fig. 3. Delay experienced by two users selected at random from Group 1
and Group 2 - asymmetric case

αi = 0.4698 (−3.28 dB) ∀i. In each frame, we generateX i

using exponential distribution with meanαi. We determine
the channel state based on the channel bin that containsX i as
explained above. We fix the transmission power at4 Watts. The
indexing algorithm determines the user that is scheduled in
that frame. In the symmetric case, we fix the delay constraints
of all the users to be equal to25 msec. We then repeat
the experiment with different values of delay constraint such
as 50, 75, 100, 125, 150, 175 msec and measure the average
delay experienced by each user. The value of the delays for
a particular user (chosen at random) are plotted in Figure 2.
In the asymmetric scenario, the delay constraint of the users
in Group 1 is fixed at100 msec for all the experiments,
while the delay constraint of the users in Group 2 is varied as
25, 50, 75, 100, 125, 150, 175 msec in successive experiments.
The average delay experienced by two specific users (each
selected at random from Group1 and Group2) are plotted in
Figure 3. It can be seen from Figures 2 and 3 that the delay
constraints are satisfied in both the cases.

Scenario 2: In this scenario, we demonstrate that the sys-
tem achieves a high sum throughput. We first simulate the
M-LWDF scheme. In each frame, arrivals are generated with
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Fig. 4. Delays experienced under Indexing scheduler with those under M-
LWDF scheduler as constraints

a Poisson distribution. In successive experiments, the mean
arrival rate is fixed at10, 40, 70, 100, 130, 160, 190 pack-
ets/sec/user respectively. Packet lengths are Pareto distributed
with shape factor1.2, mode =2000 bits and cutoff threshold
= 10000 bits. This results in an average arrival rate of0.0386
to 0.7334 Mbits/sec/user in successive experiments. Rest of
the parameters are same as in Scenario 1. We determine
the delays experienced by the users and the sum throughput
achieved. The delays experienced by the users in the M-LWDF
scheme serve as delay constraints for the users in the indexing
scheduler. We determine the delays experienced by a particular
user selected at random and the sum throughput achieved
under the indexing scheduler and compare these with those of
the M-LWDF scheme in Figures 4 and 5 respectively. From
Figure 4 it can be seen that the delays experienced by a user
under the indexing scheduler areless than or equal to those
under the M-LWDF scheme implying that the delay constraints
are satisfied. Moreover, from Figure 5, it can be seen that
the sum throughput achieved by the indexing scheduler is
very close to that achieved by the M-LWDF scheme. Note
that M-LWDF algorithm attempts to minimize the delay and
does not address the problem considered in this paper (i.e.,
of maximizing the sum throughput subject to satisfying the
user delays). The indexing scheduler, on the other hand,
caters to the delay constraints, and while doing it, we have
demonstrated through simulations that it also achieves a high
sum throughput.

V. CONCLUSION

In this paper, we have considered the problem of scheduling
users on the downlink of a TDM system with constraints on
the average packet delays over a fading wireless channel. For
a multiuser queuing system with scheduler on a TDM channel,
there is an extensive literature on scheduling algorithms.How-
ever, the specific optimization problem of maximizing the sum
throughput subject to constraints on the individual user delays
has not been explicitly addressed so far. This is due to the
fact that while this problem has the structure of a CMDP; the
large system state space and unknown system model render the
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Fig. 5. Sum throughput

traditional approaches for determining the optimal policyfor
a CMDP infeasible. Hence, we have suggested a suboptimal
indexing scheduler that is easy to implement in practice. The
indexing scheduler generates indices in each time slot and the
user with the maximum index is scheduled. Our simulations
for the IEEE 802.16 system have indicated that the delay
constraints of the users are satisfied while still achievinga
high sum throughput. While we have simulated the algorithm
within the IEEE 802.16 framework, it is applicable to any
TDM based wireless downlink scheduling framework.

APPENDIX

Sketch of Proof of Theorem 1: Let λn = [λ1
n, . . . , λN

n ]T

denote the weight vector in slotn. (9) can be expressed in
the vector form as,

λn+1 = min(L, max(0, λn + an × (Qn − δ̄))). (11)

We consider theλ andQ values afterT slots for largeT . Let
bl denote the value ofb at the (T × l) th slot. Note that if
the weightλi of useri is increased, over a period of time, its
queue lengthQi reduces, thus increasinḡδi − Qi. We model
this effect using the following equation:

Ql+1 − δ = G(λl) =⇒ Ql+1 = δ̄ + G(λl), (12)

where G(·) is a monotonically non-increasing continuous
function of λ. Moreover, if Qi − δ̄i increases,λi increases.
We model this effect using the following equation:

λl+1 = F (Ql − δ̄), (13)

where F (·) is a monotonically non-decreasing continuous
function of Ql − δ̄. (12) and (13) form the following fixed
point iteration:

λ = F (G(λ)). (14)

SinceF (G(·)) is a composition of continuous functions, it is
continuous. Thus we have a continuous mapping from[0, L]
to [0, L]. Hence, by Brouwer’s fixed point theorem [25], there
exists a fixed point in[0, L]. G(λ) being non-increasing in
λ, F (G(λ)) is non-increasing inλ. Hence, the fixed point
is unique, sayλ∗ which is denoted as the stable value. The
detailed proof is omitted do to space constraint.
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