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Synopsis

Modern-day communication networks seek to provide Quality of Service (QoS) guaran-

tees to traffic flows. QoS guarantees are typically in the form of (average or absolute)

delays and losses that a flow would experience. A QoS framework places constraints on

the traffic inflow, as it would be required to adhere to a pre-negotiated regulating profile.

It also constrains the scheduling or servicing manner, as it must deliver the performance

metrics as required by the end application and promised by the network.

In this work, three different problems that broadly fall within this framework of

scheduling or choosing a transmission strategy that meets the imposed constraints while

optimizing on a suitable cost function are separately dealt with.

The first is that of delay-bounded streaming of video under traffic constraints that are

specified in terms of a generalized token bucket regulator. The objective is to optimize

the distortion and the distortion jitter in the resulting stream. A simple but effective

way to capture this objective function is also presented.

The second problem considered is also related to token bucket regulator constrained

transmission; the objective function to be optimized here is the entropy of the resultant

flow. Such a flow has an additional source of information in terms of the variable sizes

of the chunks of transmission.

Finally, the problem of power efficient transmission in wireless networks subject to

a constraint on average delay is considered. The property that power increases with

the transmission rate in a convex fashion can be exploited to save power consumption.

The problem is formulated with an additional practical implementation constraint that

transmission may only be carried out at from a set of fixed discrete rates. The queueing

theory problem of obtaining the steady state distribution under discrete rate scheduling

is addressed for an important class of such schedulers, using the generating function

approach.
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Chapter 1

Introduction

1.1 QoS Mechanisms

As communication networks gear to support along with the conventional data commu-

nications, a new class of applications such as multimedia streaming, a range of issues

related to Quality of Service (QoS) comes into play. Broadly, QoS refers to the mech-

anisms to provide support for performance requirements in packet transfer that will be

demanded of the network by the end applications. Data based applications tend to

demand high data integrity or low packet loss guarantees. Interactive or multimedia ap-

plications demand strict delay guarantees but have relatively less stringent packet loss

requirements. Two different frameworks to provide QoS support have been defined -

the Integrated Services (IntServ ) which deals with each traffic flow separately and the

Differentiated Services (DiffServ ) which treats flows in aggregates by classifying them

into different classes based on their service requirements. Since the amount of resources

with a communication network are limited, to provide QoS guarantees, the network

must have an estimate of the incoming flows and then allocate its resources among them

accordingly. Also, the network is required to employ mechanisms to control flows. This

is achieved through traffic regulation mechanisms, such as the token bucket regulator

that are employed at the ingress points to the network. The task of QoS delivery is then

of efficiently scheduling resources for the flows which are known to obey the regulator

constraints, so as to meet the QoS parameters guaranteed to them. In this work, some

problems related to this task are discussed. These problems are briefly outlined in the

next section.
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1.2 Contributions of the Dissertation

In Chapter 2, the problem of scheduling for distortion optimized streaming of a regulated

media source is considered. Here, we consider the case where a media source is required to

transmit subject to a strict delay constraint and a token-bucket regulation [1]. To adhere

to these, it will have to drop certain packets. The problem dealt with is of selection of

the sizes of packets to be dropped in each transmission, so as to minimize the perceptual

distortion or irregularities in video quality. A simple model that captures both distortion

and quality smoothness is presented. An optimal solution is found to the problem, when

the size of the transmissions in the stream is known apriori, i.e., the stream is offline.

This is then extended to a useful heuristic scheme when the transmission sizes are not

known apriori, i.e., the stream is online. Finally a comparison of different schemes and

a study of performance improvements is made.

In Chapter 3, we investigate the utility offered to a customer, who has been given

absolute delay guarantees subject to the constraint that the flow passes through a token

bucket regulator. For this, we evaluate the entropy or information content that such a

flow can potentially contain, in terms of the regulator parameters. We need to take into

account, the information that may be conveyed by exploiting the variations in packet

lengths that will be allowed by the token bucket regulator.

In Chapter 4, we consider the problem of power-efficient transmission in wireless

networks under an average delay constraint. Specifically, we discuss the power saving

gains possible over a wireless channel through two different means - its time varying

nature and the convex relationship between the transmission rate and power. We focus

on the delay-power tradeoff possible due to the latter and which can be realized by ap-

propriately sizing the batches of packets prior to transmission. We argue that variable

rate transmissions may be practically feasible only at a small set of discrete rates. Ac-

cordingly, we restrict our attention to such schedulers. We then consider the queueing

theory problem associated with discrete rate scheduling, that would allow us to evaluate

the performance of these schedulers. Using the generating function technique, we obtain

the steady distribution of the resulting queues. We begin with the simple case of single-

rate scheduling and build upon it to extend the solution to a special class of many-rate

schedulers that we call the ‘greedy’ schedulers. We finally extend the framework to the

class of deterministic monotone many-rate schedulers.

We conclude with suggestions of possible extensions and future directions that may

be pursued in connection with these problems in Chapter 5.

2



Chapter 2

Optimal Packet Length Scheduling

for Regulated Media Streaming

2.1 Introduction

Packet switched networks that provide Quality of Service (QoS) guarantees to traffic

flows usually require them to conform to some Traffic Descriptors [1]. Traffic Descriptors

form the basis of Service Level Agreement (SLA) [2] between the source and the network

which broadly comprise guarantees in terms of loss and delay that the network offers to

a traffic flow and the constraints that it would put on the same. Commonly used Traffic

Descriptors are Linearly Bounded Arrival Process (LBAP) [2]. An LBAP constraint

bounds the maximum number of bits that a source may transmit in a given interval t

by a linear function of t. The source employs traffic shapers and the network polices the

traffic using Traffic Regulators to ensure that the source adheres to the advertised traffic

descriptions. A simple Traffic Regulator for an LBAP descriptor is the Token Bucket

(or Leaky Bucket) Regulator which has two parameters - the token generation rate r

and the size of the token bucket B.

For Variable Bit Rate (VBR) traffic such as video streams, the selection of appro-

priate values of the token bucket parameters can be both difficult as well as inefficient

in terms of resource utilization [3], [4]. Further, the source would not always be able to

procure for itself, its exact requirements from the network. This is because, the network

may be offering only a discrete set of combinations of r and B from which the source

would be required to choose. Media streaming applications, though delay sensitive, are

somewhat flexible in terms of their packet loss requirements and allow for a graceful

degradation of quality with loss.

In this chapter, we consider a problem where the network has offered QoS guarantees
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for a particular set of Token Bucket parameters that the traffic source is required to

conform to. Further, by using flexible coding schemes, the source may schedule the

size of its packets to adapt to these traffic constraints. We argue that of all the packet

length schedules that honor the imposed traffic constraints, the one that minimizes the

distortion and quality jitters as perceived by the receiver may be the most appropriate

to choose for transmission. We propose that MINMAX loss (in absolute or fractional

terms) over sets of contiguous frames spanning disjoint time-intervals may be used as an

effective combined measure of distortion and quality smoothness of the stream. Using

this criterion , we derive an optimal packet length schedule for an offline (prerecorded)

stream and then suggest directions for extending it to the case of online (real time)

transmission. Our formulation though is not restricted to video or media transmission

and can be applied to any LBAP traffic that exhibits properties of loss tolerance.

In Section 2.2, we formalize the model and the notion of distortion and smoothness

used in this chapter. In Section 2.3 we present the distortion model used in this disser-

tation. In Section 2.4, we present an algorithm to determine the optimal packet length

schedule for an offline stream. In Section 2.6 we consider the online scheduling problem.

We conclude with Section 2.7 where we present results of our simulation exercises and

end with a brief conclusion on the same in Section 2.8.

Related Work

Previously, [4] and [5] have considered the problem of Token Bucket constrained trans-

mission to achieve loss-free or distortion-free streaming and suggested algorithms for

selection of token bucket parameters for offline streams. In [6], the authors have con-

sidered the problem of optimizing distortion for constrained VBR streaming in ATM

networks. The authors have proposed a complex Viterbi algorithm for quantizer selec-

tion at encoder based on apriori knowledge of distortions associated with each choice.

For unconstrained streaming, the problem of joint optimization of average bandwidth

consumption and distortion or that of rate-distortion optimized streaming of video has

been dealt with in many works. [7] has considered a lossy best-effort network and pre-

sented transmission schemes for rate distortion optimized streaming of packetized media

in such networks. The authors have used an MPEG-type data dependency model of

frames for modeling distortion. However only the mean or expected values of rate and

distortion were considered in their analysis. In [8], a similar problem pertaining to

streaming of scalable media consisting of independent frames in best effort networks has

been dealt with. In [9], the authors have considered the problem of delay constrained

transmission of layer-encoded multimedia presentation in a network with limited con-

4



stant bandwidth. They have also used a MINMAX measure of distortion for evaluating

the presentation quality.

Our work differs in the respect that we consider a network model which is based

on the QoS framework rather than the best effort model and we seek a packet length

scheduling policy under stated constraints on both rate and burstiness. Further, while

choosing a scheduling policy we also take into account the consistency and smoothness

of stream quality over time.

Unlike some of the aforementioned work, our distortion model does not take into

account temporal dependencies that may be present in the data units sent in different

time-intervals. Such dependencies, which may be represented by an acyclic graph are

characteristic of video coding schemes and can result in error propagation over finite

durations. This simplification, applicable under reasonable assumptions, allows us to

present a distortion model that is simple to analyze and at the same time not tied to

any specific coding scheme.

2.2 The Model

We consider a source that transmits for a finite duration N , at discrete times n =

1, 2, ..., N . The source is constrained by an augmented variant of the Token Bucket

Regulator, henceforth denoted by TBR(r,B, B0). This representation is more general

as we allow the token generation rate and the maximum number of residual tokens to

vary with time n and denote them as vectors r : (r1, r2, ..., rN) and B : (B1, B2, ..., BN)

respectively. B0 is the initial token grant. The IETF Token Bucket Regulator commonly

employed is subsumed by the special case, rn = r, Bn = B ∀n : 1 ≤ n ≤ N ; r, B being

constants. We denote this regulator as simply TBR(r, B,B0). We do not assume the

actual time-interval between two successive time indices to be constant. In case of non-

constant time intervals, i.e., when packet arrival is not at equal time intervals, each refill

component rn that represents the tokens gained in the interval from n − 1 to n will be

appropriately weighted according to the length of the interval.

The source is characterized by a requirement schedule vector y : (y1, y2, ..., yN). yn

denotes the number of bits1 required by the source to code the media content between

times n − 1 and n, which we shall refer to as interval n, to a desired level of quality.

The transmission is termed ‘offline’ if all yns are known apriori, e.g., streaming of a

prerecorded video. We consider the ‘offline’ case first. This also gives, as discussed in

Section 2.6, a considerable insight for dealing with the ‘online’ transmission problem,

1here ‘bits’ are used in an Information Theoretic context, i.e., as a measure of information
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where all yns are not known apriori. xn in the vector x : (x1, x2, ..., xN) denotes the

number of bits transmitted at time n. TBR(r,B, B0) constrains xn so that

xn ≤ tn−1 + rn ;∀n : 1 ≤ n ≤ N (2.1)

tn in t : (t1, t2, ..., tN) is the number of tokens left in the bucket just after the nth

transmission. If all packet sizes xn satisfy (2.1), i.e., the source is conforming, then tn

will evolve as

tn = min(tn−1 + rn − xn, Bn) ;

t0 = B0 (2.2)

We assume a zero effective playback buffer/delay scenario, i.e., the information per-

taining to the interval n i.e., from times n− 1 to n, is useful only if transmitted by the

source at n. A conformant transmission is assumed to be error-free and at a constant

delay. This amounts to an assumption that the playback buffer available at the receiver

is just enough to absorb delay jitters caused by the network, a likely case for low-memory

devices like handhelds. In Section 2.5 we relax this constraint and extend the analysis

to allow for non-zero absolute delay bounds.

Figure 2.1: Network Model

2.3 Stream Distortion

Distortion measures used in literature are based on Peak Signal to Noise Ratio (PSNR)

or mean squared error between the actual and reconstructed frames [7, 8]. The problem

of distortion modeling that relates well to a perceptual experience is a difficult one and

estimation based on these models can often be computationally expensive. For some

examples of methods used for distortion modeling of media streams refer [10] or [11].

Further, these models take into account only the overall distortion for the stream.

Apart from overall distortion itself, we believe distortion jitters; a term we use to refer

6



to fluctuations in quality of different frames of the same stream, can also lead to an

undesirable viewing experience. To take care of this, for our analysis, we use a model

which is simple and amenable to analysis while at the same time is not restricted to

specific media or coding schemes. We do not assume a specific form for the distortion

function but only make a few assumptions on the same, namely

i.) distortion dn for any interval n can be expressed as a function of what we term as

absolute loss αn or fractional loss βn defined as follows

αn , max(yn − un, 0) (2.3)

βn , max

(
yn − un
yn

, 0

)
(2.4)

As stated before yn represented the number of bits required to code the content

to a quality level assumed to be entirely satisfactory, while un is the number of

bits actually utilized for the purpose. This assumption requires that distortion

(or additional distortion) can be related to the bit deficit in coding, measured

in an absolute (or fractional) sense through a function dα(.) (or dβ(.)) that re-

mains invariant with time index n. This assumes the stream to have a stationary

distribution.

ii.) dα(.) and dβ(.) are increasing and convex functions of their arguments. Convexity is

a plausible assumption because of the nature of rate-distortion curves. For example

for a Gaussian distributed continuous random variable, the rate-distortion function

is of the form

D(R) = K2−2R (2.5)

If the distortion corresponding to a rate R0; i.e., D(R0) is treated as acceptable,

then the additional distortion incurred as a result of using a rate R′ which is less

than R0 by say ∆R will be given by

∆D(∆R) = D(R0)
(
22∆R − 1

)
(2.6)

which is a convex function of the ‘loss’ ∆R.

iii.) distortion across data sets is additive, i.e., the distortion across the different non-

overlapping time intervals add up to give the overall distortion for the stream.

This essentially neglects any temporal dependencies that may have been exploited

in the coding scheme. In a practical coding scheme, time dependencies are present

over disjoint code blocks, each of which constitutes, what is termed as a Group

7



of Pictures (GOP). Thus, the stated assumption will be valid if the time intervals

of consideration are larger than the GOP interval or losses are so less that they

are completely absorbed by spatial enhancement frames and do not affect the base

frame representations which may have been used in the encoding of subsequent

frames.

If these assumptions hold then a reasonable estimate of the overall distortion may be

provided by an expression that would take one of the following forms.

Dα =
n=N∑
n=1

dα(αn) (2.7)

Dβ =
n=N∑
n=1

dβ(βn) (2.8)

D′β =
n=N∑
n=1

yn.dβ(βn) (2.9)

We consider a hypothetical example to make things clearer. We assume that a VBR

scheme is used to code a video stream and the time intervals correspond to a GOP

interval. Thus data units belonging to different intervals are independently coded. We

assume that the coding is in form of real-valued mutually uncorrelated ‘objects’ (e.g.,

DCT coefficients). Thus during intervals that are ‘rich’ in information content, a good

representation of the stream would require a greater number of these ‘objects’. We make

a simplifying assumption that these ‘objects’ have similar distributions and need to be

coded using the same number of bits, say M . Thus, a coding requirement of yn for an

interval n may be interpreted as a presence of yn
M

objects in the media representation.

If only un bits are available to code these objects; then the coder can choose either to

code only a few objects using M bits each or code all of them using less than M bits

each or any intermediate approach. The latter two would result in distortion in each one

of the objects. Again if we assume that all the objects are of equal importance, then,

because of the convex nature of the rate-distortion curves, a good-coder will code all

the objects using same number of bits, evenly distributing the performance degradation

due to the bit deficit across all objects. Thus each object would be coded using M un
yn

bits. Assuming a Gaussian model for the distribution of ‘objects’, the distortion e (mean

squared error sense) in the coding of each object will be then given by

e = K
(

22M(1−un
yn

) − 1
)
or

e = K
(
22Mβn − 1

)
(2.10)

8



There being yn
M

objects to be coded, the distortion dn for the interval n will be given by

dn =
yn
M
K
(
22Mβn − 1

)
(2.11)

Because the coding across intervals is assumed to be independent, the overall distor-

tion D will be simply given as

D =
K

M

n=N∑
n=1

yn
(
22Mβn − 1

)
(2.12)

Normalizing the proportionality constant to 1, the expression is similar to that of

(2.9) with dβ(.) given by dβ(β) = 22Mβ − 1 which is indeed a convex function of β.

For the subsequent analysis then, we shall assume that the overall distortion may be

modeled with sufficient accuracy by an expression of one of the three types- (2.7), (2.8) or

(2.9). Along with overall distortion, we also want to minimize the ‘distortion jitter’. The

distortion jitter may be characterized by the variance of distortions in individual intervals

or maximum distortion overshoot from the mean. We avoid such a characterization here,

but would return to these metrics for performance evaluation. For the zero-delay case,

un = xn, i.e., against a requirement of yn bits, the number of bits actually used is

the same as that transmitted at time n, i.e., xn. With our assumptions, the resulting

perceptual distortion can be completely characterized in terms of the allocation vector

x and the requirement vector y. We now define a MINMAX kind measure of distortion.

Definition 2.1. α′,β′ are ordered loss vectors of absolute and fractional losses respec-

tively, obtained by sorting the losses for different intervals in a decreasing order.

Thus for fractional loss,

β′1 ≥ β′2 ... ≥ ... β′N

in particular,

β′1 = max
1≤n≤N

βn (2.13)

In our analysis we would attempt to find a packet length schedule x∗ that gives the

minimum β′ (or α′), comparisons made in lexicographic order, for a given requirement

schedule y and TBR(r,B, B0) constraints. Our motivation arises from the fact that

such a packet length schedule will also have optimal MINMAX distortion and hence

maximum quality smoothness. Further it can be shown that if the overall distortion

can be modeled by (2.7) or (2.9), then the optimal offline solution w.r.t. the MINMAX

criterion based on α′ or β′ respectively, will also be optimal in terms of overall distortion.

9



(Refer Appendix A for a proof.) Even when the overall distortion is of the nature of

(2.8), for highly convex functions dβ(.) or dα(.), the MINMAX solution will be close

to optimal in terms of overall distortion. In the next section, we present an algorithm

that gives the optimal β′ for the offline case. Algorithm that would give the optimal α′

is similar with minor modifications. For mathematical convenience, it is assumed that

r,B, x, y, t as well as α, β ∈ {R+ ∪ {0}}N rather than {Z+ ∪ {0}}N .

2.4 Optimal Packet Length Scheduling

Given the regulator TBR(r,B, B0), a packet length schedule x is conformant iff the

packet lengths satisfy the following set of constraints.

n=j∑
n=i

xn ≤ Bi−1 +

n=j∑
n=i

rn ∀(i, j) : 1 ≤ i ≤ j ≤ N (2.14)

Also since the delay bound is zero, we consider only those packet length schedules x

that satisfy

xi ≤ yi ∀i : 1 ≤ i ≤ N (2.15)

The set of all allocation vectors x satisfying these constraints (2.14) and (2.15) are said

to be admissible and the corresponding loss vectors β (or α) are said to be feasible. We

seek to minimize β′. Define

γij , max

(∑n=j
n=i [yn − rn]−Bi−1∑n=j

n=i yn
, 0

)
(2.16)

γ∗ , max
(i,j):1≤i≤j≤N

{γij} (2.17)

(i∗, j∗) , arg max
(i,j):1≤i≤j≤N

{γij} (2.18)

Lemma 2.1. For an admissible allocation,

β′1 ≥ γ∗ (2.19)

Proof. We will prove this by contradiction. Assume that (2.19) does not hold then

β′1 < γij for some (i, j) : 1 ≤ i ≤ j ≤ N

as βn ≤ β′1 ∀n : 1 ≤ n ≤ N

⇒
n=j∑
n=i

βn.yn <

n=j∑
n=i

[yn − rn]−Bi−1

⇒
n=j∑
n=i

xn > Bi−1 +

n=j∑
n=i

rn

10



which would contradict (2.14). Hence the proof.

Lemma 2.2. If x∗ and β′∗ denote the optimal packet length schedule and ordered frac-

tional loss vectors respectively, then

β′∗1 = γ∗ (2.20)

x∗n = yn(1− γ∗) ∀n : i∗ ≤ n ≤ j∗ (2.21)

Proof. From Lemma 2.1, Lemma 2.2 would follow if (2.20) were feasible and (2.21)

were a necessary condition for the same. The feasibility of (2.20) may be verified by

considering the loss vector given by βi = γ∗ ∀i : 1 ≤ i ≤ N and using (2.18) and the

admissibility constraints (2.14) and (2.15). Claim (2.21) is equivalent to

β∗n = β′∗1 = γ∗ ∀n : i∗ ≤ n ≤ j∗

indeed, if this is not so, then

β∗n < β′∗1 = γ∗ for some n : i∗ ≤ n ≤ j∗

⇒
n=j∗∑
n=i∗

β∗n.yn <

n=j∗∑
n=i∗

[yn − rn]−Bi∗−1

Once again, this contradicts (2.14). Hence the proof.

From the lemmas, the recursive Algorithm 1 that gives the optimal packet length

schedule to minimize β′ can be easily worked out.

The algorithm follows a divide and conquer approach. If, in the notation used in the

algorithm, i∗ 6= 1, the limit on residual tokens, i.e., B is acting as a bottleneck and the

allocation uses the maximum number of tokens that can be stored. Hence in the next

recursion the same number of tokens are decremented from the appropriate component

of the refill vector r. The same idea can also be expressed in terms of a state notion

where apart from an initial token grant there is also specified a token balance that the

allocation scheme is required to leave. In the recursions of the Algorithm 1 described

above, this token balance will either be zero or the maximum allowed i.e., the algorithm

branches at the points of zero or maximum allowed token content.

2.5 Absolute Delay Bounded Scheduling

In this section, we consider the case where the media content for interval n is not

required to be transmitted entirely in the nth transmission but may be transmitted

within an absolute delay of D. This relaxation helps the source achieve better distortion

11



Inputs: vectors y := yN1 , r := rN1 ,B := BN
1 ;B0 := B0

( aqp denotes the vector (ap, ap+1, ..., aq))

Output: x∗

1: Compute γ∗ and (i∗, j∗)

2: if γ∗ = 0 then

3: for all n : 1 ≤ n ≤ N do

4: xn := yn

5: end for

6: return

7: end if

8: for all n : i∗ ≤ n ≤ j∗ do

9: x∗n := (1− γ∗)yn
10: end for

11: if i∗ > 1 then

12: ri∗−1 := ri∗−1 −Bi∗−1

13: end if

14: Apply Algorithm 1 with inputs (yi
∗−1

1 , ri
∗−1

1 , Bi∗−1
1 ;B0)

15: Apply Algorithm 1 with inputs (yNj∗+1, r
N
j∗+1, B

N
j∗+1; 0)

Algorithm 1: Algorithm for Offline Packet Length Scheduling

12



performance at the cost of increased delay. As we shall show, the solution for this case

is not much different from that of the zero delay case. Most of the analysis in fact

carries through, with the change being that it applies to un, i.e., the total number of

bits transmitted for representing the media content for interval n, rather than xn, i.e,

the number of bits transmitted in the transmission n itself. For the zero delay bound

case, the two are equal, i.e., un = xn. With a delay bound of D, these un bits may have

been split across some or all of the transmissions that occur at n, n+ 1, ..., n+D.

The constraints on the allocation schedule u are now two-fold. One arises from the

Token Bucket Regulation Constraint and the second from the transmission delay bound

constraint. The necessary and sufficient conditions for a packet length schedule u to be

admissible may now be modified as follows

ui ≤ yi
n=j∑
n=i

un ≤ Bi−1 +

min(j+D,N)∑
n=i

rn ∀(i, j) : 1 ≤ i ≤ j (2.22)

Condition (2.14) has been relaxed to (2.22) to incorporate the non-zero transmission

delay. Using these, the definitions of parameters γij, γ
∗ and (i∗, j∗) are appropriately

modified as

γij = max

(∑n=j
n=i yn −

∑min(j+D,N)
n=i rn −Bi−1∑n=j
n=i yn

, 0

)
(2.23)

γ∗ = max
(i,j):1≤i≤j≤N

{γij} (2.24)

(i∗, j∗) = arg max
(i,j):1≤i≤j≤N

{γij} (2.25)

It may be shown that the results of Lemma 2.1 and 2.2 are applicable to these

modified definitions and with xn replaced by un. We shall skip the proofs of the same

here and proceed to present the modified allocation algorithm (Algorithm 2) that gives

the optimal schedule u∗, directly. It is a simple matter to obtain the schedule x∗ from

the schedule u∗

x∗n = min

(
t∗n−1 + rn,

k=n∑
k=1

u∗k −
k=n−1∑
k=1

x∗k

)
(2.26)

For any transmission, contents from multiple intervals might be pending and a priority

is set in the order of the intervals itself, with the most delayed content having the highest

priority. We neglect any fragmentation overheads.

As the case with finite delay is quite similar to that of zero delay, we shall henceforth

consider only the zero-delay transmission case.

13



Inputs: vectors y := yN1 , r := rN1 ,B := BN
1 ;B0 := B0, D := D

( aqp denotes the vector (ap, ap+1, ..., aq))

Output: u∗

1: Compute γ∗ and (i∗, j∗)

2: if γ∗ = 0 then

3: for all n : 1 ≤ n ≤ N do

4: un := yn

5: end for

6: return

7: end if

8: for all n : i∗ ≤ n ≤ j∗ do

9: u∗n := (1− γ∗)yn
10: end for

11: if i∗ > 1 then

12: ri∗−1 := ri∗−1 −Bi∗−1

13: end if

14: if j∗ < N then

15: for all n : j∗ + 1 ≤ n ≤ min(j∗ +D,N) do

16: rn = 0

17: end for

18: end if

19: Apply Algorithm 2 with inputs (yi
∗−1

1 , ri
∗−1

1 , Bi∗−1
1 ;B0;D)

20: Apply Algorithm 2 with inputs (yNj∗+1, r
N
j∗+1, B

N
j∗+1; 0;D)

Algorithm 2: Algorithm for Offline Packet Length Scheduling - Finite Absolute Delay

Case

14



2.6 Online Packet Scheduling Policy

We now consider the online video streaming case where the decision about the length

xn must be based only on previous inputs and apriori knowledge about the statistics of

the input stream. If the particular form of distortion function is available, the problem

may be formulated and solved within a Dynamic Programming Framework. The overall

distortion will be replaced by the expected value of a ‘henceforth’ distortion (a sum

of current distortion and expected future distortion) and this would comprise the cost

function that is to be minimized. As the actual distortion will be replaced by its expected

values, in general, the solution using an expected value of β′ as an objective function,

will not be identical to those using (2.7) or (2.9) as the objective function.

2.6.1 Dynamic Programming Formulation

Let Jn(t, y, Y n) denote the minimum expected cost when n transmissions including the

current one are to be made. There are t residual tokens at this stage and the requirement

for the current transmission is y. Y n denotes the history of the input process that is

assumed to be stationary. If, for example, dβ(.) is the function that gives the distortion

based on fractional loss β and the overall distortion can be modeled by (2.8), then

Jn(t, y, Y n) = min
u: 0≤u≤y,t+r

{
dβ

(
1− u

y

)
+ Ey′

[
Jn−1

(
min(t+ r − u,B), y′, Y n−1

)
|Y n

]}
(2.27)

The minimizing u is the optimal packet length and is denoted by Πn(t, y, Y n). It follows,

if (t+ r ≥ B + y),

Πn(t, y, Y n) = y and

Jn(t, y, Y n) = Ey′
[
Jn−1(B, y′, Y n−1)|Y n

]
(2.28)

else,

Jn(t, y, Y n) = min
u: 0≤u≤t+r,y

{
dβ

(
1− u

y

)
+ Ey′

[
Jn−1(t+ r − u, y′, Y n−1)|Y n

]}
(2.29)

Πn(t, y, Y n) is then the minimizing u in (2.29). For a stationary first order Markov

Process, some simplifications are possible as the process would depend only on the most

recent requirement y and the dependence on Y n will vanish. Specifically,

if (t+ r ≥ B + y),

Πn(t, y) = y and

Jn(t, y) = Ey′ [Jn−1(B, y′)|y] (2.30)

else,

Jn(t, y) = min
u: 0≤u≤t+r,y

{
dβ

(
1− u

y

)
+ Ey′ [Jn−1(t+ r − u, y′)|y]

}
(2.31)

15



2.6.2 A Heuristic Algorithm

The dynamic programming solution presented in the earlier section will have a high

space/time complexity. Further, it requires a knowledge of the explicit nature of the

distortion function. Here, we present an alternative method which is a heuristic method

based on the offline streaming algorithm presented earlier.

In the offline algorithm, for a simple Token Bucket Regulator with fixed r, B, i.e.,

TBR(r, B,B0), we observe at time i

βi ≤

[
max

j:i≤j≤N

{
1− ti−1 + (j − i+ 1)r∑n=j

n=i yn

}]+

(2.32)

where, z+ denotes max(z, 0).

Equality would hold in (2.32) for large B. If strict inequality applies in (2.32) then

if j∗ = arg max
j:i≤j≤N

{
1− ti−1 + (j − i+ 1)r∑n=j

n=i yn

}
; (2.33)

βi = min
k:i≤k<j∗

{
1− ti−1 + (k − i+ 1)r −B∑n=k

n=i yn

}
(2.34)

To compute βi in the online case, the unknowns may be replaced by their expectations

conditioned on the history denoted by Y i.

Rij(yi) =
1

yi +
∑n=j

n=i+1 yn
∀i ≤ j ≤ N (2.35)

eij(t, yi) = min
(

min
k:i≤k<j

{1− [t+ (k − i+ 1)r −B]Rik(yi)} , 1− [t+ (j − i+ 1)r]Rij(yi)
)

Then the recommended loss at time i,

βi(t, yi, Y
i) ,

[
E

[
max

q:i≤q≤N
{eiq(t, yi)} |Y i

]]+

(2.36)

If the approximations: i) the input process is stationary First Order Markov and ii) the

order of E and min or max operators may be interchanged; are valid, then the algorithm

can be simplified and would require only statistics based on reciprocals of sums of packet

lengths, i.e., E[Rij(yi)|Y i] = E[Rij(yi)] which may be derived analytically or obtained

through simulations. The recommended loss βi to be undergone will then be given by

βi(t, yi) =

[
max

q:0≤k≤N−i
{E [e0q(yi, t)]}

]+

(2.37)

For large B, i.e., B =∞ this further simplifies to

βi(t, y) =

[
max

q:0≤q≤N−i
{1− [t+ (q + 1)r]E[R0q(y)]}

]+

(2.38)
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2.7 Simulation Study

The optimal offline and the heuristic online algorithms were compared with a ‘naive’

algorithm in a simple simulation setup consisting of the standard IETF Token Bucket

Regulator TBR(r, B,B0) with B0 = B. In the ‘naive’ algorithm, the packet allocation

is online allowing a transmission to take as many tokens as available, i.e.,

xn = min(yn, tn−1 + rn) (2.39)

For the simulations, the video traces were obtained from

http://www-tkn.ee.tu-berlin.de/research/trace/ltvt.html. Specifically, we have used high

quality MPEG4 streams and VBR H.263 coded streams to derive the requirement sched-

ule y. The entries or components of vector y were averages of 12 consecutive frames

which roughly corresponded to 1 GOP. We truncated the vectors to size 500 (or 500x12

frames of the original stream). The heuristic online algorithm was slightly modified to

simplify implementation and suit the finite buffer case. We considered the sum of recip-

rocals prediction E[R0k] for k ≤ 100 only, irrespective of the number of transmissions

remaining. This was done so that the estimates used were reliable (the estimates were

used using the same input stream). Instead of a 1st order Markov process, for simplicity,

the input process was assumed to be stationary iid. Finally, since the bucket limit was

finite the online algorithm was augmented to utilize any tokens for current transmission

if they could not be stored. Specifically if βONn denoted the online estimate for the loss,

then the allocation xn was calculated as follows.

βONn =

[
max

0≤q≤min(N−n,100)
{1− (tn−1 + (q + 1)r)R0q}

]+

xn := yn(1− βONn )

xn := xn + min(yn − xn,max(0, (tn−1 + r − xn −B)))

tn = min(tn−1 + r − xn, B) (2.40)

Figures 2.2 and 2.3 show the allocations and fractional losses according to the differ-

ent schemes applied to the Bean MPEG4 stream.

The results on some of the traces are summarized in Table 2.1. The token rate r

was chosen to be approximately 0.8 times the mean rate while the bucket depth B was

chosen to be approximately 4 times the standard deviation. The distortion measure used

was that of (2.12) with M = 4 and the distortion and deviations have been normalized

to that given by the optimal offline algorithm.

The results show that the offline allocation scheme and the modified online scheme

perform consistently better than the naive scheme. The performance improvement over

17



Figure 2.2: Different allocation schemes for the Bean MPEG4 stream

Figure 2.3: Fractional losses as per different allocation schemes for the Bean MPEG4

stream

the naive scheme, in terms of both, overall distortion as well as deviation in distortion

of individual frames, is remarkable for the offline scheme. The improvements using the

modified online heuristic algorithm are less significant for most of the cases. We also

observe that, on the whole, improvements are more marked in the H.263 VBR streams.

To study the effect of the variation of token bucket parameters, we have applied the

three algorithms to the Bean MPEG4 and Bean H.263 VBR streams for various values

of r and B. Figures 2.4, 2.5, 2.6 and 2.7 show the variation of distortion and distortion

deviation with refill rate r on these streams. The value of B was held constant at 4

times the standard deviation while r was made to vary from 0.5 to 1.2 times the mean

value of the requirement schedule. We observe that the performance differences are more

18



Table 2.1: Comparison of Distortion performance of Various Algorithms (Weighted Frac-

tional Measure)

Trace Mean S.D. Peak r B = B0 Distortion S.D. in Distortion

Opt. Naive Online Opt. Naive Online

bean(MPEG4) 2582 883 3922 2065 3531 1 1.3030 1.2535 1 2.0349 1.9547

bean(var) 2277 859 4267 1821 3436 1 1.6788 1.4679 1 2.6964 2.4908

formula(MPEG4) 4213 1121 4952 3370 4485 1 1.2646 1.1441 1 1.5179 1.2939

formula(var) 3869 1549 6088 3095 6194 1 1.5377 1.3353 1 2.0724 1.8620

Jurassic(MPEG4) 3619 2042 7160 2895 8166 1 1.3188 1.2823 1 1.6777 1.6284

Jurassic(var) 3870 2306 7984 3095 9223 1 1.4428 1.3666 1 2.0107 1.9346

RobinHood(MPEG4) 3007 1394 6877 2405 5575 1 1.3136 1.2543 1 1.4906 1.4787

RobinHood(var) 3161 1560 7357 2528 6240 1 1.5094 1.3880 1 1.9205 1.8787

StarWarsIV(MPEG4) 1665 1059 3484 1332 4237 1 1.2691 1.1846 1 1.4458 1.3182

StarWarsIV(var) 1475 1007 4013 1179 4028 1 1.2400 1.1801 1 1.2668 1.2601

pronounced at lower values of r. As r increases, the naive and the online algorithm give

almost identical results.

Figure 2.4: Variation of Distortion with r for the Bean MPEG4 stream

A similar study of dependence of distortion and distortion deviation on the Bucket

size B revealed that the differences are more pronounced for higher values of B. The

value of r was held constant at 0.8 times the mean requirement while B was varied from

0 to 4 times the standard deviation in the original stream. Figures 2.8, 2.9, 2.10 and

2.11 show the results of these simulations.
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Figure 2.5: Variation of Distortion Deviation with r for the Bean MPEG4 stream

Figure 2.6: Variation of Distortion with r for the Bean VBR stream

2.8 Conclusions

Packet length scheduling when applied to media streams constrained by a Token Bucket

Regulator gives performance improvements in terms of distortion and distortion vari-

ability of the resultant stream. The improvements are particularly significant for low

values of r and large values of B.
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Figure 2.7: Variation of Distortion Deviation with r for the Bean VBR stream

Figure 2.8: Variation of Distortion with B for the Bean MPEG4 stream

Figure 2.9: Variation of Distortion Deviation with B for the Bean MPEG4 stream
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Figure 2.10: Variation of Distortion with B for the Bean VBR stream

Figure 2.11: Variation of Distortion Deviation with B for the Bean VBR stream
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Chapter 3

Information Utility of a Token

Bucket Regulator

3.1 Introduction

In this chapter, we investigate the information theoretic utility provided to a flow that

has been assured of loss and delay performance guarantees but is required to conform to

a Token Bucket Regulator. We take into account the side information, that is present

in the form of variable lengths of packets. The idea of using indirect means to convey

information or of ‘side information channel’ has been investigated earlier, by Gallager

in his pioneering paper [12]. More recently, [13] gives a detailed exposition to this idea

which considers information that can be conveyed through means other than the packet

contents themselves, for example, by encoding it into the timing of packets. The network,

though, could mask or distort this covert channel by randomly delaying the packets. For

the case considered in this chapter, however, the channel becomes distortion free as long

as the flow conforms to the regulator, because of the guarantees provided by the network

on loss and delay.

In this chapter, we analyze such a ‘side information’ channel for QoS Networks.

Specifically, we derive the maximum amount of information that a traffic flow can con-

vey on an average (or the entropy) using both the packet contents and the packet lengths

during a finite transmission interval while still conforming to the Token Bucket Regula-

tor. We call this maximum flow entropy, the information utility of the regulator. This

entropy may be achieved by the source by selecting packet lengths according to a state

based probability schedule. The maximum entropy gives the maximum information

theoretic utility a source can derive, when regulated by a Token Bucket Regulator and

would thus have a bearing on a pricing policy that is based on Token Bucket parameters.
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3.2 Information Utility

We consider a discrete time model, where the source transmits packets of variable lengths

x1, x2, ..., xN at discrete times 1, 2, ..., N respectively conforming to the negotiated Token

Bucket Regulator, with bucket depthB and token refill rate r. We also take as a regulator

parameter, B0, the initial token count for the bucket and denote the augmented Token

Bucket Regulator by TBR(r, B,B0). Let tj denote the number of tokens in the bucket

just after the jth packet transmission. Note that t0 = B0. Recall that the constraint

imposed by TBR(r, B,B0) is

xj ≤ tj−1 + r ;∀j : 1 ≤ j ≤ N (3.1)

If all the packet lengths xjs are conforming, i.e., satisfy (3.1) then the number of residual

tokens will evolve as

tj = min(tj−1 + r − xj, B) ;

t0 = B0 (3.2)

We seek to maximize the average information that the source may convey in N

transmissions or the entropy for a flow of duration N . We denote the flow entropy for a

particular source by E(B0, N) and the maximum achievable flow entropy by E∗(B0, N).

The maximum flow entropy is defined to be the information limit of the regulator. As

will be shown later, a source may achieve the maximum entropy by following an optimal

schedule. The dependence on the Token Bucket Regulator parameters - r and B is to

be understood and will not be stated explicitly. We argue that the source has two ways

of conveying information to the receiver.

1. At time j, the source transmits a packet of length xj. It can thus contain xj bits

or xj × ln2 nats of information.

2. An indirect way of conveying information is the length xj of the packet selected,

which can form an independent alphabet. This arises because the source can

transmit packets of any length so long as it conforms to the token bucket constraint,

i.e., 0 ≤ xj ≤ tj−1 + r.

To find the maximum information that the source may convey on an average in N

transmissions, we consider an intermediate stage where the source has n more transmis-

sions to make, i.e., just before the (N − n+ 1)th transmission. Let there be b tokens in

the bucket, i.e., tN−n = b. We assume that the source chooses to transmit a packet of

length i with probability pi(b, n). As before E(b, n) denotes the entropy in nats for n
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slots, with b tokens to begin with (i.e., subject to the TBR(r, B, b) constraint). Then

the following recursive equation must hold.

E(b, n) =
i=b+r∑
i=0

pi(b, n) [i ln 2− ln pi(b, n) + E(min(b+ r − i, B), n− 1)] (3.3)

This equation indicates that the flow entropy for duration n is a sum of information

contained in the packet length and packet contents of the first of the n transmissions,

and the entropy of the remaining flow consisting of n − 1 transmissions. To simplify

notation, we define E(b, n) to be

E(b, n) = E(B, n) ; ∀b > B

E(b, n) =
i=b+r∑
i=0

pi(b, n) [i ln 2− ln pi(b, n) + E(b+ r − i, n− 1)] ;∀b ≤ B (3.4)

We seek to find the information limit of the regulator, i.e., the maximum possible flow

entropy. We observe that the only manner in which the prior transmissions can constrain

the rest of the flow is through the number of residual tokens left. Hence to maximize

entropy in a flow of duration n, the source would follow a policy that yields maximum

entropy for a flow of duration n− 1, for each of the possible residual token states that it

may reach, and this optimal policy would be independent of the probabilities of packet

length selection in previous transmissions, i.e., pi(b, n). This gives for maximum entropy,

E∗(b, n) =
i=b+r∑
i=0

pi(b, n) [i ln 2− ln pi(b, n) + E∗(b+ r − i, n− 1)] ; (b ≤ B) (3.5)

For maximum entropy, the probabilities pi(b, n) are chosen to be those that maximize

(3.5) subject to

i=b+r∑
i=0

pi(b, n) = 1 (3.6)

Using the Lagrange-multiplier method, the optimal p∗i (b, n) may be obtained by solving

the following equation for each p∗i (b, n).

∂

∂pi(b, n)

{[
i=b+r∑
i=0

pi(b, n) [i ln 2− ln pi(b, n) + E∗(b+ r − i, n− 1)]

]
+ λ

[
i=b+r∑
i=0

pi(b, n)− 1

]}
= 0

at pi(b, n) = p∗i (b, n) (3.7)
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This gives,

p∗i (b, n) = ei ln 2−1+E∗(b+r−i,n−1)+λ , i.e.,

p∗i (b, n) ∝ ei ln 2+E∗(b+r−i,n−1) (3.8)

The constant of proportionality may be evaluated using (3.6). Also,

E∗(b, 0) = 0; ∀b

p∗i (b, 1) ∝ 2i (3.9)

Starting with (3.9), and using (3.5) and (3.8) recursively for n = 1 to n = N ,

one can compute the values of the optimal probability schedule and the corresponding

entropy for a flow of duration N subject to TBR(r, B,B0). Numerical computations

reveal that the dependence of the optimal probabilities p∗i (b, n) on n vanishes rapidly

and the probability schedule does not vary much after n > 10. Also for large n, the

packet lengths over a wide range are chosen with almost equal probabilities for a given

state b, indicating a reduced dependence on i (Figure 3.1). This suggests that a source

that is not particularly selective in choosing packet lengths may also achieve close to

optimal flow entropy. Further with sufficiently large N , the entropy increases almost

linearly with r while logarithmically with B. This is illustrated in Figures 3.2 and 3.3.

Also asymptotically, the average entropy per transmission
(
E∗(b,N)
N

)
and the marginal

increase in entropy (E∗(b,N)− E∗(b,N − 1)) approach constant values as illustrated in

Figure 3.4.

Figure 3.1: Convergence of the optimal Probability Schedule for r = 50; b = B = 100
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Figure 3.2: Variation of the Information Utility with B for various r(B0 = B; N = 100)

Figure 3.3: Variation of the Information Utility with r: (B0 = B = 100; N = 100)

3.3 A Remark on Pricing based on Token Bucket

Parameters

Given assured performance guarantees, pricing of services would be a function of the

regulator parameters and the flow duration. Our analysis gives the information utility

offered to a consumer as a function of these parameters. It has been argued that a

sustainable pricing policy must be a linear function of both the regulator parameters

r and B, [5]. This is because, these parameters translate linearly to the amount of

bandwidth and buffer space required in the network. A function that is non-linear

would allow entities to make profits by buying in bulk and selling in small chunks or

vice-versa. For example, if the prices were to increase sub-linearly (say, logarithmically)

with buffer space then a broker may make profits by buying a large amount of buffer
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Figure 3.4: Convergence of average and marginal flow entropies for TBR(50, 100, 100)

space and selling it in small fragments.

The information theoretic utility, as we show, however is not a linear function of

B. It increases much slowly with B. This makes for an interesting case for a consumer

seeking to maximize his utility for a given price.

3.4 Conclusions

In this chapter, we have evaluated the maximum average information that can be trans-

mitted by a flow regulated by a Token Bucket Regulator. The maximum entropy of

the flow is a function of the negotiated regulator parameters and the flow duration and

defines an information utility for the regulator, i.e., it is indicative of the maximum ben-

efits a flow can derive even as it obeys the traffic regulator constraints. Thus it would

influence the selection of token bucket parameters by a user and their pricing by the

network.
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Chapter 4

Discrete Rate Scheduling

4.1 Introduction

The next generation wireless networks seek to evolve to a unified/integrated commu-

nication infrastructure to provide a variety of voice, data and multimedia services to

the customer. These services will be required to be delivered with widely varying QoS

guarantees in terms of performance metrics such as the delay and losses that may be

experienced by the associated traffic. The multitude of services that will be offered will

not only vary considerably in their performance requirements but also in the statistical

properties of the traffic that they will generate. Bandwidth and power are the two pri-

mary resources available to any communication system and hence they must be allocated

through proper scheduling to meet the services’ demands. Further in case of wireless

networks, where both bandwidth and power are inherently limited in availability and

must be used in the most efficient manner, the task of scheduling becomes even more

important. The future communication networks such as the 4G therefore are likely to

focus on using the available resources more efficiently, even though this would have to be

achieved at a cost of some increase in system complexity, as practical implementations

become facilitated by the continued advances in VLSI technology.

Power efficiency has always been an important design challenge for wireless networks,

as the user terminals such as the mobile phones, handhelds, notebooks are battery

operated. In such a scenario, it is the power consumption or the rate at which the

batteries need to be replaced or recharged that would effectively determine the mobility

in the network, which is a strong Universal Selling Point (USP) of any wireless network.

Further, in certain cases such as the sensor networks, where the sensors may not be

charged once their energy has drained, power consumption may in effect determine the

lifetime of the network. One of the principal power consuming part of a mobile device
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is the transmitter of the RF circuitry, which may account for upto 60% of the total

power consumed in some systems [14]. Hence any savings in transmission power would

translate to substantial improvements in the overall power performance of the system.

While there are avenues for power saving in transmitters at a variety of implementa-

tion stages including the R-F circuitry, communication technology and protocols, in this

paper we concern ourselves with the power savings that can be achieved in perhaps the

simplest possible way, that is through packet scheduling; where the transmitter gains by

simply transmitting packets at a more opportune time or in a more opportune fashion.

Since these gains would always come at cost of an increased transmission delay, they

have to be constrained by the QoS requirements of the traffic in terms of delay and will

be limited by the same.

In a wireless network, the tradeoff between power consumption and delay is made

possible in two different ways. First, the wireless channel is an erratic one and is charac-

terized by periods of deep fades, in which, transmission at any given rate would require

a substantially larger power than what would be required when the channel state is

‘good’. If the scheduler can differ the transmission of packets that arrive in a ‘bad’

channel state to the times when the channel state is ‘good’, it can bring down the av-

erage power consumption of the system. The cost, of course, is the greater delay that

would be experienced by packets arriving in ‘bad’ states and this would tend to increase

the overall average delay.

Another means of power-savings arises due to a more fundamental relationship be-

tween the power and the rate. Interestingly, this leads to a case where a transmitter

may require different amounts of power to serve two sources even if they have the same

average packet arrival rate. This occurs because power increases as a convex function

of the transmission rate. Specifically, if we consider the Shannon’s capacity relations for

an Additive White Gaussian Noise (AWGN) channel, then it follows that to transmit at

a rate R, in the presence of a noise with variance σ2, the minimum power requirement

for error-free transmission is

P = σ2(eR − 1) (4.1)

The corresponding Energy(E) requirement is then

E =
σ2(eR − 1)

R
(4.2)

The convex nature of the relationship between E and R in (4.2) allows one to save

energy by choosing the rate R at various stages in transmission in an appropriate fashion
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i.e., to transmit the data in opportunistic chunks. This again, however, would lead to

an increase in buffered data and hence, the average delay. As an example consider

a slotted transmission system serving a single application that generates r number of

packets of equal sizes in every alternate slot. Consider the performance of the following

two transmission schemes.

• Scheme A : The transmitter transmits the packets in the same slot as they arrive.

The packets then do not experience any buffering delays. However, following (4.1)

where we take the slots to be of a unit length and σ = 1 for convenience, the

average power consumed by this transmitter will be PA = er−1
2

.

• Scheme B : A scheduler sends half the packets i.e r
2

packets for transmission in

the same slot as they arrive and schedules the remaining for the transmission in

the next slot that will have no arrivals. In this scheme, a packet would experience

a delay of 1
2

slot on an average. The average power requirement, however, is now

PB = e
r
2 −1 which can be a substantial improvement over scheme A depending on

the size r.

The above example illustrates the gains that can be realized through simple rear-

rangement of transmission batches at the cost of an increased delay. The extent of the

gains would however depend on the delay budget of the system as well as the nature of

the packet arrival process.

Remark 4.1. The relation (4.2) actually gives an asymptotic limit on the power and

would not hold when there are delay constraints on the delivery of data. However, the

relation between energy (or power) and rate for practical robust transmission schemes

is also convex. This convex nature is evident in non-asymptotic cases when error expo-

nents or finite length codes are considered. The error exponent for Gaussian channels,

for example, varies logarithmically in power and linearly in rate. i.e., schemes with

acceptable rates of error, also show a convex P −R relation.

Remark 4.2. As an example of practical schemes, consider a simple uncoded system

using Q-ary QAM modulation [14]. For large (Q ≥ 16) rectangular QAM constellations,

the average power required to achieve a certain minimum distance between constellation

points is only marginally greater than the average power required to achieve the same

minimum distance using the best known QAM. The constellation points are given by the

two-tuples ((2q1−1−Q)d, (2q2−1−1Q)d), for q1, q2 = 1, 2, ..., Q. The transmission data

rate is R = 2 log2 Q bits/symbol and the average transmit power is P = 2d2(Q+1)(Q−1)
3Q

.

The minimum distance between signal points is given by 2d for all Q , hence these

31



constellations achieve approximately the same Bit Error Rate (BER). Thus the P − R
relation, i.e. the relationship between power and rate at an almost constant BER is

given by

P =
2d2(2R − 1)

3(2
R
2 )

(4.3)

Thus, the uncoded QAM system also exhibits a near exponential P −R relationship.

The convex nature of the P−R relationship thus offers an opportunity to trade delay

with power. To realize this, however the system must have the capability of transmitting

at different rates.

In practice, a scheduler would exploit power savings that can be achieved due to

both the varying states of a wireless channel as well as the convex P − R relationship.

However in this work, we shall largely focus on gains that can be reaped through the

latter, by suitably varying the transmission rates. Moreover since the P − R relation

holds for any communication system and not just wireless systems, it is possible to apply

these ideas to wired systems as well. We consider a slotted point-to-point wireless trans-

mission system. This model is believed to be directly applicable to the uplink (mobile

station to base station) transmissions in wireless networks (both GSM and CDMA based

networks) or certain wired systems as the DOCSIS (cable data transmission system, re-

fer [15] for details) where power savings are of special importance. We fill focus on a

class of scheduling actions that may be realized with only a reasonable implementation

complexity.

4.1.1 Related Work

The possibility of realizing power gains through varying transmission rates was first

recognized in [16]. This paper has considered a hypothetical problem where a set of

packets arriving at different times in an interval [0, T ] have all to be transmitted on a

point-to-point link by a deadline T in the most energy efficient manner. The authors

have presented a solution to this problem, i.e., the optimal transmission times leading

to the least energy consumption for the ‘offline’ case where the actual arrival times of

individual packets are known apriori and then used this solution to develop a heuristic

schedule for an ‘online’ transmission case. The work was later extended to consider

a point-to-multipoint link in [17]. In [14], the authors have considered the problem

of power-efficient scheduling under average and absolute delay constraints. They have

used a slotted arrival system and considered an arbitrary iid packet arrival process.

A characterization of the optimal scheduler has been provided in terms of a smaller
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class of deterministic schedulers. Though [14] does recognize the potential gains offered

by the time-varying nature of wireless channels, [14] and [16] are largely concerned with

profitably exploiting the convex P−R relationship. [18] on the other hand has dealt with

energy-efficient scheduling under an average delay constraint for time varying channels.

However, here the authors assume a linear relationship between P and R and thus fail

to take into account the gains that can be realized through varying the transmission

rates. More recently, the work in [19] has considered the comprehensive problem of

energy-efficient scheduling taking into account both the fluctuating channel conditions

and the convex P −R relationship.

A common feature of all these works however, is that while designing the scheduling

action, it has been implicitly assumed that transmissions rates (or times in case of

[16, 17]) can be varied arbitrarily. This is a rather unrealistic assumption because the

rate referred to in (4.2), for which power becomes a convex function, is the actual

physical rate of communication. Hence, except for [18], which in fact doesn’t tap the

gains due to P −R relationship, it would be practically very difficult to have an actual

physical system in which the rates can be varied as required by the scheduler. Not

only would this require transmitters capable of varying transmission rates continuously,

but also a considerable protocol overhead and receiver complexity for demodulation of

signals so transmitted. Hence, in our work, we consider only the class of schedulers

that we believe would lead to practically realizable systems. Specifically, we consider

only a class P of schedulers, called the constant power schedulers, characterized by the

practical constraint that they can transmit at only a finite discrete set of pre-determined

rates. We seek to find the most energy efficient scheduler that belongs to P for a given

discrete arrival process under an average delay constraint.

4.2 Model and Terminology

The model used here is similar to that of [14] and to some extent that of [19]. This

consists of a single transmitter, single receiver system or a point-to-point link.

1. A slotted transmission system is considered. The slot is the smallest duration of

scheduling packets for transmission. All packets are assumed to be of a fixed size.

2. In a slot n, an denotes the number of packet arrivals and un the number of packets

transmitted. The packet arrival process is assumed to be stationary iid with pi

being the probability of i packet arrivals in any slot. The average arrival rate is

denoted by λ = E[an].

33



3. A packet arrived in slot n is available for transmission only from slot (n+1) onwards

(using this convention the minimum achievable delay is of 1 slot for any policy).

The buffer is assumed to be of infinite size. Buffer occupancy xn, measured just

at the beginning of a slot n then evolves as

xn+1 = xn − un + an (4.4)

4. In general, the channel may be a time-varying one. We assume that the channel

state remains unchanged over an interval corresponding to a slot length and denote

it by yn for slot n. We further assume for each n, yn takes a unique value from a

finite discrete set of channel states B : {1, 2, ...,M}.

5. Each channel state has a corresponding cost of transmission associated with it,

denoted by {c1, c2, ..., cM}. The cost cj indicates that when the channel is in state

j, energy requirement for any rate R is cj times the minimum requirement for

that rate R, which occurs when the channel is in an ‘ideal’ state. Without loss of

generality, the ‘ideal’ state is labeled as 1 so that c1 = 1 and we enforce the strict

ordering c1 < c2 < ... < cM . yn may evolve according to a known memoryless or

first order Markov process. The scheduler is assumed to be able to ‘sense’ the state

in each slot, before transmission, and adapt the rate and the power accordingly.

The above system can be modeled by a discrete time queue. Further, the ‘state’ of

the system then can be characterized completely by a two-tuple comprised of the buffer

occupancy and the channel state - vn = (xn, yn). Here, we only investigate schedulers

belonging to a certain class P , called the constant power.

Definition 4.1. A scheduler S ∈ P is one characterized by the constraint that it can

transmit only at a set of finite pre-configured rates, i.e., un ∈ NK = {0, N1, N2, ..., NK}.
A transmitter capable of transmitting at K different non-zero rates is said to belong to

the class PK of K-rate schedulers.

Definition 4.2. If in NK , Ni = iM for some M , then the scheduler is said to be a

(MxK)-rate scheduler.

We define and classify a few more sub-classes of the constant power schedulers on

the basis of the scheduling policy chosen. We will consider only stationary scheduling

policies, as they lead to an equilibrium state distribution.

Definition 4.3. A deterministic scheduler is the one in which the scheduling action can

be specified as a stationary function u(.) on the state vn i.e. un = u(vn).
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A stochastic scheduler on the other hand would randomly choose un according to a

probability distribution which is a function of the system state vn. A sub-class of the

deterministic schedulers is the greedy schedulers defined as follows.

Definition 4.4. A scheduling policy is said to be greedy if, whenever xn ≥ Ni ∈ NK ,

un ≥ Ni.

Thus for any state vn, a greedy scheduler transmits at the maximum permissible

rate. It follows that among all schedulers with the same set of allowable rates NK , the

greedy scheduler would give the best average delay performance. An important sub-class

of deterministic schedulers is the monotone schedulers defined as follows.

Definition 4.5. A deterministic scheduler S is said to be monotone if the scheduling

function u(.) of the buffer-state v : (x, y) is increasing in x for a fixed value of y.

The problem of power-efficient scheduling then maybe stated as:

Given an iid packet arrival process on an, a channel state evolution process on yn and

an average delay constraint D̄, design for a K-rate scheduler, the set of rates NK ,

and the corresponding stationary scheduling policy that would give the optimal power

performance.

Here, we consider a very simplified version of the general problem stated above.

The channel state will be assumed to be constant. We refer to this as the constant

channel case (M = 1). The state vn then collapses to just the buffer occupancy xn.

Further, rather than finding the optimal scheduler for a given arrival process and delay

constraints, we would be more concerned with analyzing the queue associated with

a given scheduler action and an arrival process. Specifically, we illustrate a method

to obtain the equilibrium or stationary buffer occupancy distribution given the arrival

process and the scheduler action. This allows us to evaluate the performance metrics

such as the delay and average power requirements of a scheduler for a given arrival

process. We first analyze the greedy class of schedulers and then extend the method

to monotone schedulers. For the constant channel case, we begin with analyzing the

performance of the simplest possible scheduler, a 1-rate scheduler, i.e., a scheduler that

can transmit only at 1 constant rate N in a slot (or not transmit at all) in Section

4.4 and then extend the analysis to multirate greedy schedulers and finally monotone

schedulers in Sections 4.5 and 4.6 respectively.

4.2.1 Bulk Queues

We model the single link transmission system described in the previous section as a dis-

crete time queue in which there could be both multiple arrivals and multiple departures
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in a single instant. The associated queueing problem thus falls within the framework

of bulk (arrival and service) queues. Transform methods have been profitably used to

solve bulk queue problems and we follow a similar approach here. In the queues that

we consider, both the inter-arrival and departure times can be taken to be deterministic

and of a unit slot length.

Most of the subsequent work is devoted to the problem of finding the steady state

distribution for a given arrival process under the action of certain classes of schedulers.

These schedulers that we consider are a deterministic sub-class of the class P schedulers

described earlier - schedulers that allow departures to occur only in batches of some fixed

sizes. The simplest case arises when only one batch size is allowed and the queueing

system that we encounter is similar to that considered in [20, 21]. However, this is not

quite the DX/Dm/1 queue described therein. While in the DX/Dm/1 queue, departures

occur in any sizes upto an integer m, in the queues that we consider, departure batch

sizes is restricted to one or more integers. In fact, to the best of our knowledge, some of

the queues solved in this work have not been analyzed before. Besides the power efficient

scheduling problem, this queue analysis may have applications in other domains such as

ATM networks, transport networks or problems in management and decision sciences.

We use the following notation for the queues that we counter.

Definition 4.6. We use the notation DX/D/NK to denote the infinite buffer queue

resulting out of a deterministic arrival process and a K-rate greedy scheduling action.

4.3 1-rate Scheduler

In this section we consider the problem of finding the optimal 1-rate scheduler.

Proposition 4.1. For the constant channel (M = 1) case, among the class of 1-rate

schedulers only, there is a greedy scheduler which gives the optimal performance.

Proof. The proof is quite easy. We first show that any two 1-rate schedulers that use the

same rate N will have the same power performance. Let E(N) be the energy required for

transmitting N packets in 1 slot and let q be the fraction of slots in which S transmits.

If the queue is stable, then we must have N > λ. Then,

q =
λ

N

C(SN) =
λ

N
E(N) (4.5)

where, C(SN) denotes the average energy per slot or power requirement of the scheduler

S using a single rate N . Thus, as the greedy scheduler would give the same energy
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performance and at least as good a delay performance as any scheduler using that rate;

only greedy schedulers need be considered for this case.

Proposition 4.2. Let C(N) denote the average power requirement of a 1-rate scheduler

of rate N . Then if N ′ > N , C(N ′) > C(N).

Proof. This follows from the convexity of E(N).

C(N ′)− C(N)

= λ

[
E(N ′)

N ′
− E(N)

N

]
=

λ

N ′N
[N(E(N ′)− E(N))− E(N)(N ′ −N)]

=
λ(N ′ −N)

N ′

[
E(N ′)− E(N)

N ′ −N
− E(N)− E(0)

N − 0

]
> 0 (4.6)

as N ′ > N and E(N) is convex.

From the above results, it follows that, under constant channel conditions (M = 1), a

greedy scheduler transmitting at rate N , denoted by GN , is an optimal 1-rate scheduler,

iff N is the smallest integer that satisfies the delay constraint.

4.4 Steady State Queue Analysis of GN

Let tij = P [xn+1 = j|xn = i]. Let πi be the steady state probability of the buffer

occupancy being i. The scheduler action of GN on buffer state x is defined as

u(x) = 0 if x < N

u(x) = N else (4.7)

It then follows,

tij = pj−i if i < N

= pj−i+N if i ≥ N (4.8)

Then for the steady state distribution for the Markov chain on buffer occupancy xn, i.e.;

the DX/D/N 1 queue, the flow equations are

πi =

j=N−1∑
j=0

πjpi−j +

j=∞∑
j=N

πjpi−j+N

=

j=N−1∑
j=0

πjpi−j +

j=∞∑
j=0

πj+Npi−j (4.9)
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where, the definitions of pi have been extended so that pi = 0; ∀i < 0. It may be verified

that if (4.9) written in terms of the characteristic functions π(z) and p(z) gives

π(z) = p(z)π0(z) + p(z)
π(z)− π0(z)

zN

where, (4.10)

p(z) =
i=∞∑
i=0

piz
i

π(z) =
i=∞∑
i=0

πiz
i

π0(z) =
i=N−1∑
i=0

πiz
i (4.11)

Note that, π0(z) is a (N − 1) degree polynomial. Now (4.10) may be rewritten as

π(z) =
p(z)

(
zN − 1

)
zN − p(z)

π0(z) (4.12)

This expression is like an eigenvalue relationship in so much as the terms in π0(z) also

occur in π(z)1. To simplify, define

χ(z) =
π(z)− π0(z)

zN

⇒ π(z) = π0(z) + zNχ(z) (4.13)

Note that π0(z) and χ(z) are now decoupled, in the sense they have no implicit rela-

tionship other than that demanded by (4.10) which may be now written as

π0(z)

χ(z)
=

zN − p(z)

p(z)− 1
(4.14)

Solutions to π0(z) and χ(z) that satisfy (4.14) and also satisfy the constraints of

being partial characteristic functions of a probability distribution, i.e., the coefficients are

non-negative and the functions converge in some region, on appropriate normalization,

would give a possible solution to the distribution π(z).

We seek methods that give such functions from (4.14). In particular, we exploit the

fact that π0(z) is an (N − 1) degree polynomial. The numerator function
(
zN − p(z)

)
may itself be reduced to an (N − 1) degree polynomial by transferring appropriate

zeros in it as poles to the denominator function (p(z) − 1). If the resulting numerator

and denominator functions, thus obtained, have positive and a convergent power series

expansion; then upon normalization this gives a solution for π(z) or the steady state

distribution. This is indeed possible. This method is best illustrated by taking an

example.
1This expression is somewhat similar to that derived for a DX/Dm/1 queue in [20].
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4.4.1 Example 1: Geometric Arrival Process

Consider the Geometric Arrival Process2 characterized by

pi = (1− α)αi (4.15)

then, λ =
α

1− α

and p(z) =
1− α
1− αz

(4.16)

Then from (4.14),

π0(z)

χ(z)
=

zN − 1−α
1−αz

1−α
1−αz − 1

=

(
zN − 1

)
− α

(
zN+1 − 1

)
α(z − 1)

Let, Q(z) =
(
zN − 1

)
− α

(
zN+1 − 1

)
(4.17)

Q(z) here is a polynomial of degree (N + 1). It has a zero at (z = 1) which cancels

with the denominator. It can be shown that Q(z) has one more positive real zero, say

β, and that (β > 1) for N > α
1−α = λ; which is the condition for the queue to be stable.

For this case, consider the functions

a(z) ,

(
zN − 1

)
− α

(
zN+1 − 1

)
(z − 1) (1− β−1z)

b(z) , α
(
1− β−1z

)−1
(4.18)

a(z) is a polynomial of degree (N−1). It may be shown that a(z) has positive coefficients

(as all other roots of Q(z) other than β have negative real parts). Also b(z) has positive

coefficients in its power series expansion and the same converges for z < β. Then a

solution to π(z) is

π(z) =
1

a(1) + b(1)

[
a(z) + zNb(z)

]
(4.19)

Clearly π(z) satisfies (4.10) and (π(1) = 1). Moreover, because there is but one such

zero β outside the unit circle, this solution is unique. The constant (a(1) + b(1)) can be

evaluated to be

a(1) + b(1) = N
1− α

1− β−1

2Note that, in this chapter, by ‘Geometric Arrival Process’, we refer to a deterministic bulk arrival
process whose batch size is geometrically distributed. This is not to be confused with an arrival process,
where the inter-arrival times are geometrically distributed, which also is sometimes referred to as a
Geometric Arrival Process.
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Figure 4.1: Average delay DN v/s rate N for GN for a Geometric Arrival Process

π(z) =
1− β−1

N(1− α)

∑i=N−1
i=0 zi − α

∑i=N
i=0 z

i + αzN

1− β−1z

=
1− β−1

N

∑N−1
i=0 zi

1− β−1z
(4.20)

The average delay suffered is given by Little’s theorem as

DN =
E[x]

λ
E[x] = π′(1)

=
N − 1

2
+

1

β − 1

⇒ DN =
1− α
α

[
N − 1

2
+

1

β − 1

]
(4.21)

Figure 4.1 shows a plot of average delay DN v/s the rate N of the greedy 1-rate

scheduler GN for a geometric arrival process with α = 0.94. From this, given an average

delay constraint D̄, the optimal rate N may be selected.

4.4.2 Example 2: Polynomial Arrival Processes

We now consider the case where the arrival process has a finite support, i.e., ∃ a finite

R such that pi = 0 ∀i > R. WLOG, assume pR > 0. We also assume that p0 > 0.3

It is clear that the arrival transform function p(z) will be a polynomial of degree R.

Consider (4.14), rewritten for convenience as

χ(z) =
p(z)− 1

zN − p(z)
π0(z) (4.22)

3The case where p0 = 0 may be tackled similarly by first eliminating the states that are non-recurrent.
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We assume that N ≤ R. In that case the denominator function D(z) = zN − p(z) in

(4.22) is a polynomial of degree R. Note that z = 1 is a a zero of D(z). Then we have

the following result.

Proposition 4.3. Suppose, the arrival process p(z) to a Dx/D/N 1 queue is a poly-

nomial of degree R ≥ N and p(0) 6= 0. Let c(z − 1)g(z)h(z) be the factorization of

D(z) = zN − p(z), such that g(z) and h(z) are monic polynomials with the property

that g(z) has zeros only on or within the unit circle and h(z) has zeros only outside the

unit circle. If, the condition for the queue stability;

N > λ i.e.,

N > p′(1) (4.23)

is satisfied, an explicit solution to the generating function for the steady state distribution

of DX/D/N 1 is given by

π0(z) =
ch(1)

N
g(z)

χ(z) =
h(1)

N

p(z)− 1

(z − 1)h(z)

π(z) =
h(1)

N

p(z)
∑i=N−1

i=0 zi

h(z)
(4.24)

Proof. It can be shown using Rouche’s theorem, that under the conditions of the prob-

lem, g(z) is of degree N − 1 and that all its zeros lie inside the unit circle. A detailed

proof of the same is provided in the Appendix B. Thus D(z) has one zero at z = 1 and

exactly N − 1 zeros inside the unit circle.

Now χ(z) has the rational form as given by (4.14). For π(z), to be a convergent

series, the partial generating function χ(z) must also converge. Hence, it cannot have

any poles on or inside the unit circle. The N zeros of D(z) that lie on or within

the unit circle, i.e., the zeros of g(z) and the zero z = 1 then must also occur in the

numerator polynomial. It can be verified through direct substitution that
(
zN − p(z)

)
and (1− p(z)) have only one zero, viz., z = 1 in common for N > 1.

Hence, the N − 1 zeros of D(z) that lie within |z| = 1 must occur in π0(z). Note

that since π0(z) is a polynomial of degree N − 1, this uniquely determines π0(z) to a

scalar multiplicative constant A as π0(z) = Ag(z). From the relation (4.22) and the

normalization constraint π(1) = 1, i.e., π0(1) + χ(1) = 1, it then follows that χ(z)

and π(z) as defined in (4.24) satisfy (4.14). Further, as π0(z) is of degree N − 1, this

is the only convergent function that satisfies (4.10). This in turn uniquely fixes χ(z).

Since, an ergodic chain must have a stable solution, and moreover, as this solution is
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Figure 4.2: Comparison of steady state distributions of buffer occupancy obtained ana-

lytically and through simulation for a 1-rate greedy scheduler

unique, it follows that π(z) as given in 4.24 is the generating function of the steady state

distribution of the concerned queue.

It can be verified that the average power will be given by λ
N
E(N) and the average

delay suffered by

DN = 1 +
N − 1

2λ
− h′(1)

h(1)λ
. (4.25)

Figure 4.2 shows a validation of the expressions in (4.24) when a one-rate sched-

uler with N = 15 schedules packets from a binomial arrival process. This process is

simulated as 20 packet producing applications independently generating a packet in a

transmission slot with probability 0.6. The corresponding p(z) is described by (4.26)).

The analytically predicted steady state buffer occupancy distribution was compared with

one obtained through simulations.

p(z) = ((1− 0.6) + 0.6z)20 (4.26)

Similar results may be obtained when the arrival process is a rational function of

the form p(z) = N(z)
D(z)

when N (z) and D(z)4 are relatively prime. Specifically, if c(z −
1)h(z)g(z) is the factorization of zND(z)−N (z) as in (4.24), then

π(z) =
h(1)

N (1)N

N (z)
∑i=N−1

i=0 zi

h(z)

DN =
N ′(1)

N (1)λ
+
N − 1

2λ
− h′(1)

h(1)λ
. (4.27)

4Note that D(z) must have zeros that lie outside the unit circle.
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4.5 Multirate Scheduling

In this section, we first consider the problem of obtaining the steady state distribution

for a 2-rate greedy scheduler, capable of transmitting at the non-zero rates N1, N2 (i.e.,

the DX/D/N 2 queue), and then extend the analysis for a K-rate scheduler where the

transmitter can transmit at any rate from the set NK : {0, N1, N2, ..., NK} (i.e., the

DX/D/NK queue). The transition probabilities for a K-rate scheduler may be easily

identified as

tij = pj−i i < N1

= pj−i+N1 N1 ≤ i < N2

:

= pj−i+Np Np−1 ≤ iNp

:

= pj−i+NK i ≥ NK

Using these, the flow equation may be written succinctly in terms of the generating

functions in a form analogous to (4.10).

i=K−1∑
i=0

zNiπi(z) + zNKχ(z) = p(z)

[
i=K−1∑
i=0

πi(z) + χ(z)

]
(4.28)

⇒
i=K−1∑
i=0

(
p(z)− zNi

)
(πi(z)) =

(
zNK − p(z)

)
χ(z)

χ(z) =

∑i=K−1
i=0 (p(z)− zNi)πi(z)

zNK − p(z)
(4.29)

note that, N0 = 0.

As before, the partial generating functions πi(z)and χ(z) are defined as

πi(z) =

j=Ni+1−1∑
j=Ni

πjz
j−Ni

χ(z) =

j=∞∑
j=NK

πjz
j−NK

π(z) =
i=K−1∑
i=0

zNiπi(z) + zNKχ(z) (4.30)

Note that πi(z) is a polynomial of degree Ni+1−Ni− 1. Also the stability condition for

multi-rate scheduling requires only the highest rate to be more than the average arrival

rate, i.e., NK > λ.
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As before, we first consider the simple case of geometric arrival process.

4.5.1 Geometric Arrival Process

Consider the action of a greedy 2-rate scheduler capable of transmitting at rates N1, N2

on the geometric arrival process described in (4.15). (4.29) then gives

χ(z) =
(p(z)− 1)π0(z) +

(
p(z)− zN1

)
π1(z)

zN2 − p(z)

=
α(z − 1)π0(z) +

[
α
(
zN1+1 − 1

)
−
(
zN1 − 1

)]
π1(z)

zN2 − 1− α (zN2+1 − 1)
(4.31)

Following a reasoning similar to that in previous sections, the denominator function

D(z) = zN2−1−α
(
zN2+1 − 1

)
in the above expression is a polynomial of degree N2 +1.

It has a zero of multiplicity 1 at z = 1. If the stability condition, N2 > λ is satisfied then

it has one more real zero β > 1. Thus D(z) has exactly N2−1 zeros inside the unit circle

and one zero at z = 1 which must cancel with those in the numerator polynomial function

N (z) = α(z − 1)π0(z) +
[
α
(
zN1+1 − 1

)
−
(
zN1 − 1

)]
π1(z) for χ(z) to be convergent.

Note that the numerator function is a polynomial of degree N2 with a zero at z = 1.

Then, the N2−1 zeros of D(z) that lie inside the unit circle uniquely determine N (z) to

a multiplicative scalar constant. Consider the factorizationD(z) = −α(z−β)(z−1)g(z).

Then, from the preceding argument, we must have

χ(z) = − A

z − β
α(z − 1)π0(z) +

[
α
(
zN1+1 − 1

)
−
(
zN1 − 1

)]
π1(z) = Aα(z − 1)g(z)

⇒ π0(z) +

[
i=N1∑
i=0

zi − 1

α

i=N1−1∑
i=0

zi

]
π1(z) = Ag(z) (4.32)

There are unique polynomials π0(z) and π1(z) that satisfy (4.32) and they are obtained

respectively, as the remainder and the quotient in the Euclidean division of Ag(z), a

polynomial of degree N2 − 1, by
(∑i=N1

i=0 zi − 1
α

∑i=N1−1
i=0 zi

)
, a polynomial of degree

N1. The constant A can be evaluated through the normalization constraint π(1) = 1.

Further, this set of values of χ(z),π0(z) and π1(z), is the solution to the queueing

problem, as this is the only assignment leading to a convergent generating function for

χ(z) and because an ergodic chain has exactly one steady state probability distribution.

The extension to multirate scheduling - the greedy K-rate scheduler is straightfor-

ward. Proceeding similarly, as in the case of 2-rate scheduler, we obtain

χ(z) = − A

z − β
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π0(z) +

j=K−1∑
j=1

πj(z)

i=Nj∑
i=0

zi − 1

α

i=Nj−1∑
i=0

zi

 = Ag(z)

(4.33)

where again
(
zNK − p(z)

)
has been factored as −α(z−1)(z−β)g(z). Once again πj(z)

can be determined from (4.33) as quotients of repeated Euclidean division of g(z) by the

corresponding multiplicands in (4.33), beginning from the evaluation of πK−1(z). A is

once again evaluated using the normalization constraint π(1) = 1.

4.5.2 Polynomial Arrival Processes

We now consider the case when the arrival process can be described by p(z); a polynomial

of degree R as in Section 4.4.2. Consider first, a 2-rate scheduler with the non-zero

transmission rates N1 and N2. To recapitulate, according to (4.29), the steady state

distribution has a generating function governed by

χ(z) =
(p(z)− 1)π0(z) +

(
p(z)− zN1

)
π1(z)

zN2 − p(z)

(4.34)

As before we assume N2 ≤ R. Then, again using the argument based on the Rouche’s

theorem, the denominator function D(z) = zN2 − p(z) has N2 − 1 zeros inside the unit

circle and 1 on the unit circle at z = 1 which cancels with the numerator. Following

the reasoning and the notation in Section 4.4.2 with zN2 − p(z) = c(z− 1)g(z)h(z), the

numerator polynomial N (z) must divide g(z), which is of degree N2− 1. However, here

we note that N (z) is a polynomial of degree (R− 1 + max(N1, N2 −N1)). Let

N(z) = (p(z)− 1)π0(z) +
(
p(z)− zN1

)
π1(z) = (z − 1)t(z)g(z) (4.35)

where, t(z) is an unknown polynomial of degree (R−N2 − 1 + max(N1, N2 −N1)). This

then immediately gives

χ(z) =
t(z)

ch(z)
(4.36)

The equilibrium distribution thus can be evaluated if the polynomial t(z) can be deter-

mined. It can be verified that (4.35) actually represents a system of (R+ max(N1, N2−
N1)− 1) independent linear equations with (R + max(N1, N2 −N1)) unknowns. Hence,

together with the normalization constraint π(1) = 1, in principle, this allows us to

obtain the (R + max(N1, N2 −N1)) unknowns and thereby π(z) uniquely, by solving a

finite system of linear equations.
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Figure 4.3: Comparison of steady state distributions of buffer occupancy obtained ana-

lytically and through simulation for a 2-rate greedy scheduler

In Appendix C, we describe a method to reduce the order of this system to max(N1, N2−
N1).

For a 2-rate scheduler transmitting at rates 4 and 15, we verify the steady state buffer

occupancy distribution obtained through the method described in Appendix C with that

obtained through simulation for the binomial arrival process described by (4.26) (Figure

4.3).

The extension to the greedy multi-rate scheduling case is straightforward and most

of the analysis carries through with the obvious modifications. The details are given in

Appendix C. The same relations (C.7) and (C.3) in Appendix C can also be used to

obtain π(z). We solved the steady state distribution for the arrival process of (4.26)

for a 3-rate greedy scheduler with rates 4, 7 and 15 and compared with a distribution

obtained through simulations. (Figure 4.4).

With some additional effort, this method can also be used to solve for the case where

the characteristic function for the arrival process has a rational polynomial form.

4.6 Monotone Schedulers

In this section, we briefly consider the problem of a special non-greedy deterministic

multi-rate scheduler, the monotone scheduler. As before let NK : {0, N1, N2, ..., NK}
be the set of discrete rates at which the transmitter can transmit. Further, let T K :

{0, t1, t2, ..., tK} be the set of discrete thresholds such that the transmitter transmits at a

rate u = Ni when x ∈ [ti, ti+1); where we assume ti ≥ Ni. We denote the resulting queue
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Figure 4.4: Comparison of steady state distributions of buffer occupancy obtained ana-

lytically and through simulation for a 3-rate greedy scheduler

(infinite buffer) by DX/D/[NK , T K ]. We assume that the arrival process is polynomial,

as in Section 4.4.2 It maybe verified that the characteristic equation in this case will be

given by an expression similar to (4.29)

π(z) = p(z)

[
i=K−1∑
i=0

zti−Niπi(z) + ztK−NKχ(z)

]
(4.37)

where we define,

πi(z) =

j=ti∑
j=ti−1

πjz
j−Ni−1

χ(z) =

j=∞∑
j=tK

πjz
j−NK (4.38)

Rearranging terms in (4.37), we get

χ(z) =
p(z)

∑i=K−1
i=0 zti−Niπi(z)−

∑i=K−1
i=0 ztiπi(z)

ztK−NK (zNk − p(z))
(4.39)

Again, define

πl(z) =
i=K−1∑
i=0

ztiπi(z)

π̃l(z) =
i=K−1∑
i=0

zti−Niπi(z)

⇒ χ(z) =
p(z)π̃l(z)− πl(z)

ztK−NK (zNK − p(z))
(4.40)
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Again, reasoning as before, if NK > λ, and zNK − p(z) = c(z − 1)g(z)h(z), then

convergence requires

p(z)π̃l(z)− πl(z) = ztK−NK (z − 1)g(z)t(z) (4.41)

where t(z) is a polynomial of appropriate degree, R+v−tk−1, where v = deg(π̃l(z))+1.

Again, coefficients of t(z) may be obtained by solving the system of linear equations

obtained by comparing coefficients in (4.41) which together with the normalization con-

straint (π(1) = 1) gives a set of (R + v) independent linear equations in as many

unknowns. As

in Section 4.5.2, this order can be reduced. In Appendix D, we describe a method

to do so to v.

4.7 Minimum Power Requirement

In this section, we discuss the minimum power requirement for a K-rate scheduler, when

there is no delay constraint on scheduling. It is interesting to note that the minimal

power depends only on the average arrival rate and can be achieved by a corresponding

2-rate scheduler.

Proposition 4.4. Let Np, Np+1 ∈ NK be such that Np < λ < Np+1. Then, the minimum

power requirement, that occurs in the absence of delay constraints, i.e., D̄ =∞ is given

by

Pmin =
Np+1 − λ
Np+1 −Np

E(Np) +
λ−Np

Np+1 −Np

E(Np+1) (4.42)

Proof. In the absence of the delay constraint, this can be posed as the optimization

problem.

minimize P =
i=K∑
i=1

qiE(Ni)

subject to,
i=K∑
i=1

qiNi = λ

i=K∑
i=1

qi < 1 (4.43)

Here, qi, is the fractional time for which, the scheduler transmits at Ni. The result (4.42)

then follows from the convexity of E(.). Details are given in Appendix E.
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From the above result, it follows that over the K-rate schedulers, the least power will

be achieved by the schedulers that use the rates bλc and (bλc+1). For these schedulers,

Pmin = (λ−bλc)E(bλc) + (1− λ+ bλc)E(bλc+ 1), which is similar to the expression in

[14]. Note that Pmin is achievable in the limit by appropriate scheduling action.

4.8 Summary

In this chapter, the problem of power efficient scheduling subject to an average delay

constraint has been considered. For implementation reasons, it has been reasoned that

a practical scheduler must consider a transmitter allowed to transmit only at discrete

rates. The problem of power-efficient scheduling for a K-rate scheduler and a first order

Markovian channel fading process has been formulated. For the simple case of a non-

time varying channel and when transmission at only a single discrete rate is allowed, the

method to arrive at the optimal scheduler has been discussed.

In the subsequent sections, the queues arising out of the action of a deterministic

subclass of discrete rate schedulers (called the greedy schedulers) and a given arrival

process have been discussed and analyzed. The analysis has then been extended to

include a class of non-greedy schedulers as well. It may be pointed out that the non-

greedy scheduler as characterized in Section 4.6 encompass the class of all monotone

deterministic schedulers. The methods described in this chapter allow analysis of such

monotone schedulers and evaluate their performance. This provides a useful tool in

scheduler design, besides addressing an interesting problem in its own right. This may

have applications in other fields such as transport problems, management science etc.
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Chapter 5

Conclusions and Future Directions

In this dissertation, some aspects of Quality of Service (QoS) scheduling have been con-

sidered. Although, the problems considered fall within different application domains,

there is a common underlying structure uniting them. Broadly, a QoS scheduling mech-

anism involves allocation of available resources to meet certain constraints and achieve

efficient utilization. Many of these problems can be posed as constrained optimization

of convex cost functions. The constraints that arise are two-fold - first, there are traffic

constraints that arise because of the restriction that the network places on the flows

and second, there are those due to the performance guarantees in terms of delay etc,

that the network has promised to the flows. For example, in Chapter 2 the problem of

delay and Token Bucket Regulator constrained streaming of video to optimize distortion

that has been considered, is a convex optimization problem. The problem considered in

Chapter 3, although of a slightly different nature, in that the cost function sought to be

optimized was not known in nature, can also be cast in such a framework. The problem

of delay constrained scheduling for wireless transmitters to optimize power, considered

in Chapter 4, again belongs to this class. It then, perhaps, would help to consider a

unified framework for tackling this class of problems, where a single cost function is

desired to be optimized, under the commonly arising constraints such as those of traffic

regulation, like the Token Bucket Regulation and average or absolute scheduling delays.

Apart from this, significant refinements and extensions can be made to the individ-

ual problems considered in this dissertation. In Chapter 2, for example, a simplified

distortion function has been considered. It would be interesting to consider a simple

but effective distortion model that would allow for data dependencies in some manner.

Also, it would be useful if a simple optimal or close to optimal solution to the problem

of online scheduling for video streaming could be found or the analysis extended to more

elaborate models of both the arrival as well as distortion processes. Finally, it may be
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worthwhile considering the problem of scheduling vis-a-vis rate allocation or selection

of token bucket parameters to optimize a joint cost function comprising pricing and a

distortion measure. This would be especially useful in cases where the token bucket

or the concerned traffic regulator parameters can be frequently renegotiated during the

duration of the flow.

In Chapter 3, the entropy associated with a Token Bucket Regulator has been eval-

uated. Formulation of traffic regulation in terms of entropy or information utility allows

us to compare otherwise different regulators. These regulators may differ in multiple

parameters and may even be based on different mechanisms altogether. Characteriza-

tion in terms of information utility would provide a common criterion for determining

pricing. Moreover, it should be possible to factor in the QoS performance guarantees

such as delay or loss in entropy evaluation. If done, this would provide a useful common

platform to set or evaluate pricing and consumer utility for different services that may

be offered by the network, in a consistent manner.

In Chapter 4, the problem of power efficient transmission scheduling has been consid-

ered. Towards this end, the domain of scheduling action was restricted to the practically

implementable class of discrete rate schedulers. For the non-time varying channel case,

the optimal one rate scheduler has been found. Tools have also been developed for

analysis of monotone deterministic schedulers for this case. This is important because

most of the optimal deterministic policies in convex function optimization turn out to

be monotone in nature. Moreover, the optimal stochastic schedulers too, involve only

a few randomizations and may be obtained readily from a combination of deterministic

schedulers. In this context, the task of determining the optimal scheduling policy, given

the allowed discrete rates remains to be addressed. This can of-course be easily done

through standard dynamic programming approaches. However, it might be possible to

exploit the simplified nature of the problem in case of discrete rate scheduling to come

up with simpler strategies for determining the optimal scheduler action. A more difficult

problem, would be the joint optimization of both the scheduling rates and scheduling

policies. Finally, the effect of channel fading needs to be considered in scheduling for

different channel fading models. For time-varying channels, that are characterized with

deep fades, an average delay constraint may not be sufficient, as a scheduling policy

designed on the basis of only a mean delay constraint is likely to lead to large variances

in delays suffered by the packets. It is likely to be particularly severe on packets arriving

in a ‘bad’ channel state, if these states are persistent.

Finally, practical schemes and constraints on the selection of discrete rates should

be factored in. In this context, it is easy to see that not all average delays are feasible
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Figure 5.1: Equivalent Cost function with stuffing

for a given set of discrete rates and an arrival process. Specifically, the delay achieved

by the greedy schedulers is the least achievable delay and this sets a lower bound on

delays that can be achieved. To circumvent this, stuffing as in flushing packets, even

before a number corresponding to an available rate has accumulated, by adding dummy

packets might have to be done. The dummy packets will be discarded at the receiver.

The problem then becomes akin to one where scheduling at arbitrary rates is allowed,

but the cost function takes a ladder form with the jumps corresponding to the set of

allowed rates (Figure 5.1).

If however, the set delay target is feasible without stuffing, i.e., if D̄ is greater than

the greedy scheduler delay, then the optimal scheduler would not make use of stuffing

(for non-time varying channels). It would, then be simpler to restrict oneself to the

smaller class of discrete-rate schedulers for determining the optimal scheduling policy.

These issues could be investigated in future studies.
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Appendix A

Optimization of distortion cost

functions through α′, β′

Here, we show that an allocation scheme that is optimal w.r.t. α′ or β′ is also optimal

w.r.t. the cost functions (2.7) and (2.9) respectively.

We shall first prove the following result.

Proposition A.1. If an allocation x∗ achieves optimal α′ (or β′), then it is also optimal

w.r.t. the objective function X =
∑n=N

n=1 xn.

Proof. Let, t∗, be the corresponding residual token vector. We first show by induction,

that x∗, achieves optimal values of Tn =
∑i=n

i=1 xi + tn ∀ n : 1 ≤ n ≤ N . It is easy to

see that this must be true for n = 1. Assume this is true upto some n = k, k ≤ N − 1,

i.e., x∗, achieves optimal value of Tk. To establish a contradiction, suppose this is not

true for n = k + 1, i.e., ∃ a scheme x̄, such that

i=k+1∑
i=1

x∗i + t∗k+1 <

i=k+1∑
i=1

x̄i + t̄k+1 (A.1)

From the induction hypothesis,

i=k∑
i=1

x∗i + t∗k ≥
i=k∑
i=1

x̄i + t̄k (A.2)

As Tk(x
∗) is optimal, (A.1) can occur only if Tk+1(x∗)− Tk(x∗) < rk+1, i.e., t∗k + rk+1−

yk+1 > Bk+1. This in turn means x∗k+1 = yk+1 and t∗k+1 = Bk+1. As, these are the

maximum values that xk+1 and yk+1 can respectively take, from (A.1), we have

i=k∑
i=1

x∗i <

i=k∑
i=1

x̄i (A.3)

t∗k > t̄k (A.4)
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If x∗k < yk, it follows that, then x∗ cannot be optimal, as one may increase x∗k by

upto min(t∗k, t
∗
k + rk+1 − yk+1 − Bk+1), without affecting allocations at other instants

and thus it may be possible to bring down α∗ or β∗. If x∗k = yk, then because of

induction hypothesis, (A.3) and (A.4) will hold with k replaced by k − 1. Let v be the

greatest index less than k for which x∗v < y∗v . Then, x∗v, may be increased by at least

min(t∗v, t
∗
v+1, ..., t

∗
k, t
∗
k + rk+1 − yk+1 − Bk+1), a quantity that is strictly positive due to

(A.4), without affecting any other allocations1. Then x∗ cannot be optimal w.r.t. α′ or

β′. Thus, we conclude that x∗ achieves the optimal value of TN = X + tN .

Now, if t∗N = 0, then x∗ clearly also achieves the optimal X. Else, i.e., if t∗N > 0,

then we must have x∗N = yN . It then follows easily from an argument similar to the

one used to prove the induction claim, that x∗ cannot be optimal unless it achieves the

optimal X. Hence, x∗ must also optimize the value of X =
∑n=N

n=0 xn.

An immediate consequence of Proposition A.1 is that a schedule that optimizes α′

achieves the least value of

lα =
n=N∑
n=0

αn

and the one that optimizes β′ achieves the least value of

lβ =
n=N∑
n=0

ynβn

We now proceed to show optimality w.r.t. (2.7) and (2.9). For this, we need the following

property of convex functions

Lemma A.1. If f(.) is a convexly increasing function with f(0) = 0 and a, b, c, d and

p, q, r, s are positive real nos. such that

p+ s = q + r = 1

pa+ sd = qb+ rc = m and

a ≤ b ≤ m ≤ c ≤ d

then,

pf(a) + sf(d) ≥ qf(c) + rf(d)

1Note that, x∗v < yv, for some v else Tk+1(x∗) =
∑i=k+1
i=1 yi+Bk+1, which is the maximum possible

value for Tk+1 and would contradict (A.1).
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Proof. Note that p = d−m
d−a , s = m−a

d−a , q = c−m
c−b , r = m−b

c−b . then,

pf(a) + sf(d) =
c−m
c− b

[
d− b
d− a

f(a) +
b− a
d− a

f(d)

]
+
m− b
c− b

[
d− c
d− a

f(a) +
c− a
d− a

f(d)

]
≥ c−m

c− b
f(b) +

m− b
c− b

f(c) (A.5)

≥ qf(c) + rf(d)

where in (A.5), we make use of the following property of f(.)

pf(x) + qf(y) ≥ f(px+ qy) p, q > 0 and p+ q = 1.

Proposition A.2. If an allocation x∗ achieves optimal α′, then it is also optimal w.r.t.

the cost function D(α) =
∑i=N

i=0 d(αi), given that d(.) is a convexly increasing function

with d(0) = 0.

Proof. Let, if possible, there be a different allocation leading to a different ordered loss

vector ᾱ′ such that D(ᾱ) < D(α∗). From Proposition A.1, α∗ achieves the optimal lα.

Also ᾱ′ > α′∗. It then follows from a straightforward application of Lemma A.1 that

D(ᾱ) ≥ D(α∗), a contradiction. Thus x∗ must achieve optimal D(.).

Proposition A.3. If an allocation x∗ achieves optimal β′, then it is also optimal w.r.t.

the cost function D(β) =
∑i=N

i=0 yid(βi), given that d(.) is a convexly increasing function

with d(0) = 0.

Proof. Proposition A.1, shows that β∗ achieves optimal lβ. Here, we show that if β̄ is

another feasible vector, then D(β̄) ≥ D(β∗). We consider the case when β∗ and β̄ differ

in only 2 positions - i and j. Suppose β∗i > β∗j , then as β′∗ > β̄′ and β∗ achieves the

least lβ, we must have

β̄i = β∗i + yjδ + ∆

β̄i = β∗i − yiδ

where, δ,∆ > 0. Then,

D(β̄)−D(β∗) = yi [d(β∗i + yjδ + ∆)− d(β∗i )]− yj
[
d(β∗j )− d(β∗i − yiδ)

]
≥ yi [d(β∗i + yjδ)− d(β∗i )]− yj

[
d(β∗j )− d(β∗i − yiδ)

]
≥

[
yid(β∗i + yjδ) + yjd(β∗j − yiδ)

]
−
[
yid(β∗i ) + yj(d(β∗j )

]
≥ 0
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where, in the last inequality, we again use Lemma A.1. It is easy to see that this relation,

i.e., D(β̄) ≥ D(β∗) will, in fact, hold for any β̄ 6= β∗. Hence, x∗ is optimal w.r.t. D(.).
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Appendix B

Proof of Proposition 4.3

Here, we give a detailed proof of the claim that g(z) is of degree N − 1 and consists of

zeros inside the unit circle only. Recall that, g(z) was obtained from the factorization

of D(z) = zN − p(z) as c(z − 1)g(z)h(z), so that h(z) had zeros only outside the unit

circle and g(z), only on or inside the unit circle. The proof makes use of the Rouche’s

theorem. Rouche’s theorem states that if two functions a(.) and b(.) are regular inside,

and continuous on, a closed contour Γ, and if they satisfy the strict inequality

|a(z)| > |b(z)| (z ∈ Γ) (B.1)

then the functions a(z) and a(z)−b(z) have the same number of zeros inside Γ. For our

purpose, we take a(z) = zN−1 and b(z) = p(z) and show that they satisfy the conditions

of the Rouche’s theorem for a contour (circle) Γ of the form |z| = r for all r satisfying

1 < r < 1 + δ, for an appropriately chosen δ > 0. a(z) and b(z), as defined above, being

polynomials, are regular inside and on Γ. Now, since p(z) is uniformly analytic in any

bounded domain D, given any ε > 0, it is possible to find a δ > 0, sufficiently small, so

that ∣∣∣∣p(reiθ)− p(eiθ)

(r − 1)eiθ
− p′(eiθ)

∣∣∣∣ < ε (B.2)

is satisfied ∀ r : 1 < r < 1 + δ. We choose δ such that (B.2) is satisfied for ε = N − λ
which is strictly positive. From (B.2), we then obtain∣∣p(reiθ)

∣∣ <
∣∣p(eiθ)

∣∣+ (r − 1)
∣∣p′(eiθ)∣∣+ (r − 1)(N − λ)

≤
j=R∑
j=0

∣∣pjejiθ∣∣+ (r − 1)

[
j=R∑
j=0

∣∣jpje(j−1)iθ
∣∣+ (N − λ)

]

=

j=R∑
j=0

pj + (r − 1)

[
j=R∑
j=0

jpj + (N − λ)

]
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= 1 + (r − 1) [λ+ (N − λ)]

= 1 + (r − 1)N

≤ rN

=
∣∣(reiθ)N ∣∣

Thus a(z), b(z) satisfy (B.1) for Γ : |z| = r. Hence ∃ δ > 0, such that D(z) = zN−p(z)

has exactly N zeros within the circle |z| = 1 + δ. Since δ can be made arbitrarily small,

the function D(z) has exactly N zeros on or within the unit circle. One of these is

z = 1. As z = 1 satisfies D(z) = 0 but not D′(z) = 0, this zero has multiplicity 1. Also,

since p0, pR > 0, the function D(z) does not have any other zero on |z| = 1. Hence we

conclude that D(z) = zN − p(z) has exactly N − 1 zeros inside the unit circle. Thus

g(z) is of degree N − 1. Further, all its zeros lie within the unit circle.
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Appendix C

A note on obtaining the DX/D/NK

queue distribution for polynomial

arrival processes

In Section 4.5.2, we saw that the equilibrium distribution of a DX/D/N 2 may be ob-

tained, by solving a system of R+ max(N1, N2−N1) linear equations, where N1, N2 are

the non-zero transmission rates and R is the degree of the polynomial arrival process.

Here, we illustrate, how this system may be reduced to a system of only max(N1, N2−N1)

linear equations.

We may rewrite (4.35) of Section 4.5.2 as

p(z)
(
π0(z) + π1(z)

)
−
(
π0(z) + zN1π1(z)

)
= (z − 1)t(z)g(z)

define,

πl(z) = π0(z) + zN1π1(z)

π̃l(z) = π0(z) + π1(z)

thus (4.35) becomes,

p(z)π̃l(z)− πl(z) = (z − 1)t(z)g(z)(
zN2 + c(z − 1)g(z)h(z)

)
π̃l(z)− πl(z) = (z − 1)t(z)g(z)

zN2π̃l(z)− πl(z) = (z − 1) (t(z)− ch(z)π̃l(z)) g(z)

zN2π̃l(z)− πl(z) = (z − 1)u(z)g(z) (C.1)

Here, u(z) is now an appropriate polynomial of degree v − 1, where v = max(N1, N2 −
N1) − 1. Further, (C.1) represents a system of (N2 + v) unknowns and (N2 + v −
1) independent equations. These equations along with the normalization constraint
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(π(1) = 1), allow us to solve the system uniquely. Also note that

π(z) = πl(z) + zN2χ(z)

= πl(z) + zN2
p(z)π̃l(z)− πl(z)

zN2 − p(z)

= p(z)
zN2π̃l(z)− πl(z)

zN2 − p(z)
(C.2)

= p(z)
u(z)

ch(z)
(C.3)

Then using π(1) = 1, we get u(1) = ch(1). (C.2) is somewhat similar to the expression

obtained in [21] for a DX/Dm/1 queue.

We now write the linear equations obtained by comparing coefficients of different

powers of z in (C.1) in a matrix form. Let

(z − 1)g(z) = zN2 + gN2−1z
N2−1 + ...+ g1z + g0 (C.4)

Then, from (C.1), we have

1 0 0 .... 0 g0 0 0 ... 0

0 1 0 .... 0 g1 g0 0 ... 0

: : : :::: : : : : ::: :

0 0 0 .... 1 gN2−1 gN2−2 gN2−3 ... gN2−v

−1 0 0 .... 0 1 gN2−1 gN2−2 ... gN2−v+1

0 −1 0 .... 0 0 1 gN2−1 ... gN2−v+2

: : : :::: : : : : ::: :

0 0 0 .... 0 0 0 0 ... 1





π0

π1

:

πN2−1

u0

u1

:

uv−1


= 0

or [
I G

−Y Gv

][
π

u

]
= 0 (C.5)

where I is the identity matrix of rank N2, G is a N2 x v lower triangular matrix of

coefficients of (z − 1)g(z) given by [G]ij = gi−j, G
v is a v x v upper triangular matrix

given by [Gv]ij = gN2+i−j and Y is a v x N2 matrix obtained from the juxtaposition

Y = [Iv,N1Iv,N2−N1 ] where Im,n, m ≥ n is a diagonal matrix with entries 1.

Eliminating π from (C.5), we get,

(Y G+Gv)u = 0. (C.6)

The matrix Y G +Gv is of rank at most v − 1. It is easy to verify that the sum of

entries in any column of Y G+Gv is
∑i=N2

i=0 gi = 0, following (C.4). Let T be the matrix
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obtained from Y G +Gv, by replacing its first row by a row of all 1s. Then assuming

T−1 exists, the coefficients of u(z) are obtained as

u = T−1


ch(1)

0

:

0

 (C.7)

From u(z), it is straightforward to obtain the transfer function π(z) using (C.3).

Note that πl(z) is given by (z − 1)u(z)g(z) modulo zN2 . Also note that u(z) is con-

strained to be determined uniquely for g(z) of degree N2 − 1. This means, if g(z) has a

degree more than N2 − 1, which would happen if the stability condition, viz., (N2 > λ)

is violated, the system of equations in (C.6) becomes overdetermined and there is no

solution for u(z). Thus, the stability condition ensures and is required for the steady

state distribution to exist.

The problem for the generic greedy multi-rate scheduling under polynomial arrival

case can now be extended in a straightforward manner. In fact, the analysis for the

2-rate scheduler carries forward with the following changes in definitions.

c(z − 1)g(z)h(z) = zNK − p(z) (C.8)

πl(z) =
i=K−1∑
i=0

zNiπi(z) (C.9)

π̃l(z) =
i=K−1∑
i=0

πi(z) (C.10)

v = max
1≤i≤K

{Ni −Ni−1} (C.11)

Y = [Iv,N1Iv,N2−N1 ....Iv,NK−NK−1
] (C.12)
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Appendix D

A note on obtaining the

DX/D/[NK, T K ] queue distribution

for polynomial arrival processes

The approach of obtaining the distribution by solving an alternate equation, akin to

(C.1) of the DX/D/NK queue, which involves a smaller number of unknowns, may also

be used here. However this requires a small modification. The relation that is similar

to (C.1) for a monotone scheduler is

zNK π̃l(z)− πl(z) = (z − 1)u(z)g(z) (D.1)

This may be satisfied with a u(z) of degree v − 1. Recall that v = deg(π̃l(z)) + 1. This

gives us a system with tK + v unknowns while (D.1) with the normalization constraint,

together provide only Nk + v constraints. Hence the system remains under-determined

when tk > Nk. The additional (tK − NK) constraints arise as follows. Note that for

general monotone scheduling, t(z) and u(z) are related by

u(z) = ztK−NKt(z)− ch(z)π̃l(z) (D.2)

It follows from (D.2) that the polynomial (u(z) + h(z)π̃l(z)) must divide ztK−NK , giving

us the additional requisite (tK−NK) constraints. However, unlike the greedy scheduling

case, the polynomial u(z) now depends on the factor h(z) of
(
zNK − p(z)

)
. Finally, it

may be noted that the condition for stability is independent of T K , and as expected

remains NK > λ.
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Appendix E

Proof of Proposition 4.4

We seek to find the optimal tuple Q∗ : (q∗1, q
∗
2, ..., q

∗
K) to optimize

minimize P (Q) =
i=K∑
i=1

qiE(Ni)

subject to,
i=K∑
i=1

qiNi = λ (E.1)

i=K∑
i=1

qi < 1 (E.2)

for Proposition 4.4. The problem as posed is a linear programming problem, and the

optimal solution must occur on the boundary. Hence, the optimal solution, must satisfy

(in the limiting sense)

i=K∑
i=1

qi = 1 (E.3)

This may also be seen readily from the following argument. Suppose, ∆ = 1−
∑i=K

i=0 q∗i >

0, and let Nh be the highest rate for which q∗h > 0, then consider the tuple Q′, which is the

same as Q∗, except that q′1 = q∗1 +Nhδ and q′h = qh −N1δ; where δ = min
(
qh
N1
, ∆
Nh−N1

)
.

Note that Q′ satisfies (E.1) and (E.2). Also,

P (Q∗)− P (Q′) = δ (N1E(Nh)−NhE(N1))

> 0

Thus it follows that the optimal tuple must satisfy
∑i=K

i=0 q∗i = 1..

Now, to prove Proposition 4.4, we note that E(.) is a convexly increasing function

satisfying E(0) = 0. From the Lemma A.1 proved in Appendix A, it then follows that
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a policy Q, transmitting at rates other than Np, Np+1, the rates closest to λ on either

side, will have a higher power requirement than a policy that transmits at only these

rates. Hence, as in Proposition 4.4, the optimal tuple is given by

q∗p =
λ−Np

Np+1 −Np

q∗p+1 =
Np+1 − λ
Np+1 −Np

q∗i = 0 ; i 6= p, p+ 1
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