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Abstract—Bandwidth hungry video content has become the
dominant contributor to the data traffic world over. Cellular
networks are constantly evolving to meet the growing traffic
demands. Over the past few years, wireless multicast has been
garnering a lot of attention as a means of efficient resource
utilization. Multicast transmission lets spectral resources to be
shared between users streaming the same content. Even though
multicast transmission allows to serve multiple users on the same
resources, in order to serve all these users successfully, the base
station cannot transmit the content at a rate greater than that
decodable by the user with the worst channel conditions. In this
paper, we propose a way to overcome this bottleneck. Video
streaming services can sustain a certain amount of packet loss
without any significant degradation in the quality experienced
by the users. We leverage this loss tolerant nature of video
streaming applications to improve the performance of multicast
video services in LTE and 5G. We convert the problem of resource
allocation for loss tolerant multicasting into the problem of
stabilizing a queueing system. We then propose two through-
put optimal Maximum Weight (MW) policies that successfully
stabilize the constructed queueing system. However, brute force
implementation of MW policies is mostly NP-hard. To overcome
this, we propose a maximum weight bipartite matching approach
that results in a polynomial time implementation of the proposed
policies. We also evaluate the performance of our policies via
extensive simulations.

I. INTRODUCTION

Video streaming is expected to form a staggering 75%
of the total mobile data traffic by the year 2021 [1]. With
the huge amount of video content being generated online,
videos are consuming a major chunk of the available network
bandwidth. There is, therefore, a pressing need for resource
allocation techniques that can result in efficient bandwidth
utilization and reduce the burden on the network resources.
Video streaming applications have been found to be tolerant
of packet losses as high as 40% [2]. Currently, H.264/AVC
is the most commonly used video codec over the Internet.
For an H.264 encoded video, decoders like FFmpeg and JM
can successfully conceal as much as 39% packet loss with
no deterioration in the quality of the video observed by the
end user [2]. This loss tolerant nature of video streaming
applications can be leveraged to build video specific resource
allocation schemes which can reduce the congestion in the
network significantly. Tolerating some losses in video streams
can allow for higher transmission rates and greater flexibility in
providing video streaming services. However, this loss tolerant
nature of video streaming has not been exploited in the existing
multicast streaming literature.

Abundant availability of online streaming services also leads
to a lot of content being redundantly streamed to several users
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simultaneously. This means that a large number of resources
could be in use for transmitting the same content to different
users. Using multicast transmission, the number of resources
needed for a single user can be used for catering to all the users
streaming the same content. Multicast services in Long Term
Evolution (LTE) are termed as evolved Multimedia Broadcast
Multicast Services (eMBMS) [3]. In eMBMS, the User Equip-
ments (UEs) can subscribe to any of the multicast services
available in the network. The UEs subscribed to a multicast
service form a single multicast group. Once the eMBMS
content is available, the evolved NodeB (eNB) informs the
UEs of the service start and begins transmitting the content.
The subscribed UEs can join the eMBMS session any time
during the service. The eMBMS content is transmitted to the
entire multicast group on the same Physical Resource Blocks
(PRBs). Therefore, for every UE to receive the eMBMS
content successfully, the eNB cannot transmit data to a group
at a rate greater than that supported by the UE with the worst
channel quality (henceforth referred to as the weakest UE) in
the group. The weakest UE, therefore, becomes a bottleneck
for the entire multicast group.

In this work, we take advantage of the loss tolerant nature of
video streams to enhance the performance of video multicast
streaming services. We design efficient resource allocation
algorithms for loss tolerant video streaming and evaluate their
performance through extensive simulations. Allowing for some
controlled losses in a multicast stream gives us the flexibility
of not having to serve every UE in the multicast group in every
sub-frame. As long as we can keep the loss of a UE below a
certain threshold, the UE will receive the desired video quality.
This means that the weakest UE is no longer a bottleneck all
of the time. The transmission rates in some sub-frames can,
therefore, be higher than what can be decoded by the weakest
UE in the group. This leads to higher throughput and better
user satisfaction.

A. Related Literature

To the best of our knowledge, none of the existing works
deal with resource allocation for loss tolerant video streaming.
Therefore, the related literature summarized in this section
is primarily composed of the papers that deal with resource
allocation for multicast transmission in general. The problem
of grouping and resource allocation for multicast streaming
has also been extensively studied by us in [4] and [5].
In [4] and [5], we have addressed the problems of grouping
and optimal resource allocation for multicast streaming in
eMBMS. The objective of resource allocation in [4], [5] was to
satisfy all the multicast UEs while minimizing the number of
PRBs used in doing so. In [6], the authors propose a Frequency
Domain Packet Scheduler (FDPS) for Multimedia Broadcast
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Multicast Services (MBMS) that maximizes the minimum rate
achievable by UEs in a PRB. It uses a somewhat pessimistic
approach in that it only minimizes the damage caused by
the worst PRB assignment. Moreover, the performance of
the proposed policy has only been compared to a blind
FDPS policy that uses a blind static allocation that doesn’t
change over time. This is not a good benchmark to compare
with. In [7], the authors propose a fair and optimal resource
allocation for eMBMS. It is assumed that the video content
is simultaneously available through unicast as well as through
eMBMS and the primary problem seeks to jointly optimize
over the grouping of UEs and allocation of resources to unicast
and eMBMS. The resource allocation scheme proposed in the
paper allocates resources to groups proportional to the number
of UEs in the group. While allocating resources, the varying
channel conditions of UEs over different PRBs have not been
considered.

Resource allocation for MBMS Operation On-Demand has
been studied in [8]. The authors consider Quality of Experi-
ence (QoE) metrics such as user engagement instead of Quality
of Service (QoS) metrics like average throughput to be the
utility function sought to be maximized by the correspond-
ing resource allocation schemes. All the video streams are
assumed to be encoded using Scalable Video Coding (SVC).
In [9], the authors have used convex optimization to obtain an
optimal solution for multicasting Dynamic Adaptive Streaming
over HTTP (DASH) [10] as well as SVC streaming content
over LTE. The problem optimizes the Modulation and Coding
Scheme (MCS) and the Forward Error Correction (FEC) code
rates used while allocating resources.

In [11], the authors use a pricing based scheme for al-
locating resources to multicast groups streaming SVC video
content. Users are divided into three multicast groups based on
the price they pay. UEs that pay the most receive the maximum
number of enhancement layers. In [12], the authors investigate
the use of Random Network Linear Coding (RNLC) for
improving the performance of multicast services. They use two
different forms of RNLC for multicasting H.264/SVC videos
in a generic cellular system. The authors in [13] deal with
optimizing the delivery of network coded SVC content using
eMBMS. They make use of Unequal Error Protection (UEP)
for ensuring reliability of the multi layer video transmission.
They propose a UEP Resource Allocation Model (UEP-RAM)
that seeks to maximize the profit to cost ratio of the system.
It is shown that the proposed UEP-RAM provides a much
better coverage than conventional multi-rate transmission [14].
Even though SVC provides an interesting new method of
video encoding with various benefits, H.264/AVC continues
to be the choice of encoding videos over the Internet. Most
of the popular streaming platforms like Netflix [15] and
YouTube [16] use H.264/AVC or VP9 to encode their videos.
Therefore, in this work, we do not consider a layered video
coding for the eMBMS video streams.

In [17], the authors propose a scheduling scheme for
eMBMS broadcast services that is focused on reducing the
average latency of packets in the system. The proposed scheme
starts transmission in unicast mode and gradually moves to the
broadcast mode as the number of UEs increases. In [18], the

authors deal with efficient broadcasting in LTE using eMBMS.
The proposed broadcasting mechanism has been given the
name of Broadcast over LTE (BoLTE). Their resource allo-
cation algorithm uses a water filling form of the proportional
fair scheduling [19], [20]. The authors have evaluated the
performance of BoLTE using a WiMAX testbed.

The existing literature does not take advantage of the fact
that since video streaming is the most useful application of
eMBMS, the inherent loss tolerance of video streams can be
leveraged for improving the performance of multicast services.
In this paper, we consider the use of eMBMS primarily for
video streaming applications. Since video streams can handle
losses as high as 40% without significantly altering the quality
perceived by the end-user [2], we exploit this property to
design efficient resource allocation policies for eMBMS. A
similar approach has also been used in [21] to design a regular
service guarantee algorithm for a wireless network with a
number of links, only one of which can transmit in a time
slot. In our system, the degree of packet loss that can be
tolerated by an end user depends upon factors like the video
stream subscribed and the channel quality experienced by the
user. Allowing for some losses can help in better resource
utilization and in controlling congestion in the network during
peak traffic hours. It also reduces the dependence of a multicast
group on the UE with the worst channel quality as the resource
allocation policy is no longer constrained to serve every UE
in every sub-frame.

In most of the existing multicast literature, the rate achiev-
able by a group is assumed to be the same over all PRBs.
This assumption significantly simplifies the resource allocation
problem. Without the channel variability over PRBs, all PRBs
are equivalent for a UE and the problem reduces to deter-
mining the number of PRBs allocated to a multicast group.
We, however take into account the fact that due to fading,
the channel states and hence the Channel Quality Indicator
(CQI) values for a group or user may vary over different PRBs
in a single sub-frame as well. Therefore, it is not enough to
determine the number of PRBs to be allocated to a group, the
identity of the PRBs being allocated also needs to be specified.

B. Contributions
The main contributions of this paper are summarized below:
• We address the problem of resource allocation in loss

tolerant eMBMS systems in which every user may have a
different loss tolerance. This is the first work of its kind that
considers a loss tolerant model for video multicast services.
•We convert the problem of resource allocation in loss tolerant
eMBMS networks to the problem of stabilizing a queueing
system. We prove that stabilizing the token queues in the
constructed queueing system is equivalent to satisfying the
loss requirements of the users.
• We propose an optimal online Maximum Weight (MW)
resource allocation policy for loss tolerant eMBMS networks.
The policy doesn’t require any statistical information of the
channel states of users. Channel states can vary arbitrarily and
can also be correlated across users. The proposed policy is
optimal in the sense that it can stabilize the queueing system
whenever any other policy, including offline policies with
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complete information of channel states of users, can do so.
•We propose another online priority Maximum Weight (MW-
priority) resource allocation policy. It provides an improve-
ment over the MW policy in terms of the burstiness of the
losses encountered by the users. MW-priority ensures that no
user is starved for long periods at a stretch, thus providing a
better quality of experience. MW-priority is also optimal in
the sense that it can stabilize the queueing system whenever
any other policy, including offline policies with complete
information of the channel states, can do so.
• We also present a mechanism for a polynomial time im-
plementation of the proposed policies (which are otherwise
computationally very expensive and impractical to implement)
using Maximum Weight Bipartite Matching (MWBM).
•We have evaluated the performance of the proposed schemes
via extensive simulations. We have compared their perfor-
mance to that of the throughput optimal Exponential (Queue
length) (EXP-Q) rule [22]. EXP-Q does not take the loss
requirements of users into consideration. Under this policy,
several users encounter losses greater than their thresholds.
On the other hand, our proposed policies successfully meet
the loss requirements of all the users. Thus, by taking the loss
tolerance of users into consideration, we are able to satisfy a
larger number of users.

The rest of this paper is organized as follows. We discuss
the system model and the problem formulation in Sections II
and III respectively. The construction of the queueing system
and related results are presented in Section IV. In Section V,
we present the proposed resource allocation algorithms and
in Section VI, we discuss the MWBM based polynomial
time implementation of these algorithms. The details of the
simulations done are given in Section VII and the conclusions
in Section VIII. In the interest of preserving the flow of
the paper, proofs of all the theorems and lemmas are given
separately in the appendix.

II. SYSTEM MODEL

Our system consists of an LTE cell with L different eMBMS
services available for transmission to the UEs. There are M
UEs in the cell that can subscribe to any of these eMBMS
services. Let [n] = {1, . . . , n} and let |A| denote the cardinal-
ity of a set A. Thus, [M ] and [L] denote the set of UEs and
the set of multicast groups, respectively. UEs subscribed to
the ith video stream form multicast group Gi. The number of
UEs in Gi is denoted by Ki. Each eMBMS group is allocated
one PRB in every sub-frame. A resource allocation policy Γ
decides which PRB will be allocated to which group in every
sub-frame. We define an allocation vector BΓ[t] for policy Γ
in sub-frame t. BΓ[t] is a vector of length L that specifies
which PRB, if any, has been assigned to each group. Note
that Γ is completely defined by the value of BΓ[t] in every
sub-frame t. We use BΓ

i [t] to denote the ith entry of vector
BΓ[t]. If Gi is not scheduled for reception in sub-frame t,
then BΓ

i [t] = 0, otherwise BΓ
i [t] takes the value of the PRB

number allocated to Gi. The ith eMBMS service requires data
to be transmitted to the subscribed UEs at rate Ri. For each
eMBMS stream, a data packet arrives at the beginning of every
sub-frame and is transmitted in the same sub-frame.

The channel states of UEs vary across time and frequency.
As a result, the channel experienced by a UE varies from one
sub-frame to another and also across PRBs in a sub-frame.
Depending on the CQI experienced by UE k in PRB j in sub-
frame t, there is a certain maximum MCS that an be supported
in that PRB for that UE [23] and a corresponding maximum
rate that the UE can successfully decode. We denote this rate
as rkj [t]. Whenever a PRB is allocated to multicast group Gi,
data is transmitted in that PRB at the corresponding rate Ri.
Since every UE in the multicast group experiences a different
channel quality in the allocated PRB, the maximum rate that
UEs can successfully decode is also different for each of them.
As a result, a UE in a multicast group may not receive the
transmitted content successfully even after a PRB has been
assigned to its group. When a UE successfully receives data
in a sub-frame, we say that the UE has been served in that
sub-frame. Note that a UE being scheduled and being served is
not the same. We distinguish between these two terms below:
• We say that a UE has been scheduled in a sub-frame if a
PRB is allocated to its corresponding group in that sub-frame.
For instance, UE k ∈ Gi is said to have been scheduled for
reception in sub-frame t under policy Γ if BΓ

i [t] 6= 0.
• We say that a UE has been served in a sub-frame if it has
been scheduled in that sub-frame and is able to successfully
decode the received content. For instance, UE k ∈ Gi is said
to have been served in sub-frame t under Γ if BΓ

i [t] = j 6= 0
and Ri ≤ rkj [t].

We denote the loss encountered by UE k under policy Γ in
sub-frame t by `Γk [t]. For UE k ∈ Gi and BΓ

i [t] = j 6= 0, we
have:

`Γk [t] =

{
0, if Ri ≤ rkj [t],
1, otherwise.

(1)

For BΓ
i [t] = 0, UE k is not scheduled for reception and

so, `Γk [t] = 0. Since we assume that a packet arrives at the
beginning of every sub-frame and is transmitted in the same
sub-frame, the fraction of sub-frames in which a UE is not
served under policy Γ is equal to the fractional packet loss
for that UE under Γ. Thus, `Γk [t] represents the packet loss
encountered by UE k under policy Γ.

As discussed in the previous section, video streams are loss
tolerant to a certain extent. The loss tolerance is different
for different UEs since UEs experience different channel
conditions and are subscribed to different services. The loss
tolerance of a UE depends on the channel conditions experi-
enced and the video resolution chosen by it. Higher resolutions
mean a lower loss tolerance and vice versa. A UE that chooses
automatic resolution adjustment will have the highest loss
tolerance. We use ˜̀

k to denote the fractional loss that can
be tolerated by UE k. ˜̀̀̃̀̃ = [˜̀1, . . . , ˜̀

M ] is the loss tolerance
vector for the system. In the next section, we formally define
the resource allocation problem.

III. PROBLEM DEFINITION

We begin by stating some important definitions that will be
used in defining the problem statement.
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Definition 1. Feasible resource allocation: Resource alloca-
tion in a sub-frame is said to be feasible if it assigns at most
one PRB to each multicast group such that no two groups are
assigned the same PRB. In other words, a feasible resource
allocation in sub-frame t corresponds to an allocation vector
BΓ[t] such that no two non-zero elements in it are equal i.e.,
if BΓ

i [t] 6= 0, then BΓ
i [t] 6= BΓ

i′ [t] for every i′ 6= i.

Definition 2. Feasible resource allocation policy: A feasible
resource allocation policy Γ is a policy that chooses a feasible
allocation vector in every sub-frame.

A resource allocation policy can make use of the knowledge
of current channel states of UEs, the allocation information of
the previous sub-frames, the loss tolerance of UEs and the
losses encountered by the UEs in the past to make allocation
decisions in a sub-frame. It could even be an off-line policy
that could make the allocation decisions in advance if the
channel conditions of all sub-frames are known apriori.

Definition 3. Average Packet loss: We denote the average
packet loss encountered by a UE k under resource allocation
Γ by ¯̀Γ

k . It is the total packet loss per unit time and can be
mathematically written as follows:

¯̀Γ
k = lim sup

T→∞

1

T

T∑
t=1

`Γk [t].

Definition 4. Feasible region of a policy: The feasible region
of a resource allocation policy Γ, LΓ, is the set of all loss
tolerance vectors, ˜̀̀̃̀̃s that can be satisfied by Γ i.e. ˜̀̀̃̀̃ > ¯̀Γ̄`Γ̄`Γ

with probability (w.p.) 1.

Definition 5. Feasible region of the system: The feasible
region of the system is the set of loss vectors L =

⋃
Γ LΓ

where the union is over all feasible Γ.

Definition 6. Optimal policy: The optimal resource allocation
policy Γ? is a policy whose feasible region is the set of loss
vectors LΓ? =

⋃
Γ LΓ.

Our objective here is to determine the optimal resource
allocation policy Γ?. We design the optimal resource allocation
policy using results from queueing theory. Towards that end,
we convert the resource allocation problem in a loss tolerant
eMBMS network to the problem of stabilizing a queueing
system and prove that stabilizing the resulting system is
equivalent to meeting the loss requirements of the UEs.

IV. QUEUEING SYSTEM FOR RESOURCE ALLOCATION IN
LOSS TOLERANT eMBMS

We convert the problem of resource allocation in a loss
tolerant eMBMS network to the problem of obtaining a
throughput optimal allocation policy for stabilizing a queueing
system. Towards this end, we first discuss the construction of
the queueing system.
A. Construction

The queueing system consists of token queues correspond-
ing to every UE. At the beginning of a sub-frame, a token
arrives in the token queue of UE k w.p. (1− ˜̀

k) and w.p. ˜̀
k,

there is no new arrival. We represent the token arrival process

for queue k by an indicator random variable λk[t]. λk[t] is 1
if a token arrives in queue k in sub-frame t and 0 otherwise:

λk[t] =

{
1, w.p. 1− ˜̀

k

0, w.p. ˜̀
k.

The arrivals are independent and identically distributed, there-
fore, the average rate of token arrival to queue k is λk =
(1− ˜̀

k). We use λλλ = {λ1, . . . , λM} to denote the arrival rate
vector of the system. Qk[t] denotes the length of queue k at
the beginning of sub-frame t. If UE k is successfully served
in a sub-frame, a token departs from its token queue and the
queue length is reduced by 1.

We define another indicator random variable µΓ
k [t] that

indicates whether or not UE k has been served in sub-frame
t under Γ. µΓ

k [t] = 1 iff k is served under Γ in sub-frame t.
Say k ∈ Gi and BΓ

i [t] = j. Then, µΓ
k [t] = 1 iff j 6= 0 and

Ri ≤ rkj [t]. Otherwise, µΓ
k [t] = 0. µΓ[t]µΓ[t]µΓ[t] = [µΓ

1 [t], . . . , µΓ
M [t]]

denotes the service vector of the system in sub-frame t under
policy Γ. The stability region of the queueing system thus
constructed can be defined as follows:

Definition 7. Stability region of the queueing system: The
queueing system is said to be stable if the expected queue
lengths stay finite for every queue i.e. supt E[Qk[t]] <∞ for
every k. A resource allocation policy that stabilizes the system
is called a stable resource allocation policy. The stability
region of a resource allocation policy Γ is the set of arrival
rate vectors for which the system is stable under Γ. The
stability region of the queueing system is the union of the
stability regions of all feasible Γ. We denote it as S.

Definition 8. Throughput optimality: A resource allocation
policy Γ is said to be throughput optimal if Γ can stabilize
the queueing system if any other policy can do so. This means
that if the queueing system is at all stabilizable, Γ will succeed
in stabilizing it.

The queueing system thus constructed can be maintained at
the eNB. Since the eNB knows the loss requirements of the
UEs as well as their channel states, it has all the information
needed to maintain the queueing system. In the next section,
we examine the stability region of the constructed queueing
system and relate it to the feasible region of the optimal
resource allocation policy.

B. Feasible Region of the eMBMS System and Stability Region
of the Queueing System

In this section, we prove that stabilizing the queueing system
constructed in the previous section is equivalent to meeting the
loss requirements of the UEs. This will establish the equiva-
lence of the stability region of the constructed queueing system
and the feasible region of the optimal resource allocation
policy. We begin by defining a few terms.

Define a set B = {B1, . . . , B|B|} containing all possible
PRB allocation vectors to the L groups. The cardinality of
this set |B| =

(
N
L

)
× L!. In LTE, channel states are quanti-

fied in terms of CQI values. According to Third Generation
Partnership Project (3GPP) standards [23], a total of 15 CQI
values are defined in LTE. Since the number of CQI values are
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finite, the possible channel states of UEs can take finitely many
values. We define a set C that contains all possible channel
state combinations of all the UEs in the system. For an LTE
system, C will therefore be a set of 15M CQI vectors, each
of size M . Let g be the probability distribution over the set
C. That is, the channel state of the system in a sub-frame
t, C(t) = C w.p. g(C). We denote by µBiCµBiCµBiC , the vector of
service rates of UEs corresponding to an allocation Bi in CQI
state C ∈ C. Note that µBiCµBiCµBiCs are binary vectors of size M .
Define a distribution w = {wBiC} over the set of µBiCµBiCµBiCs
where wBiC denotes the probability of choosing allocation
Bi in channel state C ∈ C. Using these definitions, we define
the the following LP:

LP (δ) :
∑
C∈C

∑
Bi∈B

g(C)wBiCµBiCµBiCµBiC = λλλ+ δ,

wBiC ≥ 0 ∀ Bi ∈ B, C ∈ C,∑
Bi∈B

wBiC = 1, ∀ C ∈ C,

where δ is a non-negative real number. Denote by Λ(δ) the
set of arrival rate vectors λλλ such that the feasible region of
LP (δ) is non-empty. Define two sets, Λ◦ =

⋃
δ>0 Λ(δ) and

Λ =
⋃
δ≥0 Λ(δ). In the next result, we establish the relation

between sets Λ◦, Λ and stability region of the queueing system
S. This result is essential for relating the feasible region of
the optimal resource allocation policy to the stability region
of the queueing system.

Theorem 1. Λ◦ ⊆ S ⊆ Λ.

Proof. The detailed proof is given in Appendix A.

From this point forward, we consider Λ◦ to be the stability
region of the queueing system. We now state and prove the
following important theorem that relates the feasible region of
the optimal resource allocation policy to the stability region
of the queueing system.

Theorem 2. The loss requirement of a UE is met iff its token
queue in the queueing system is stable. Therefore, the feasible
region of the optimal allocation policy Γ?, LΓ? is equivalent
to the stability region of the queueing system, S. i.e. ˜̀̀̃̀̃∈ LΓ?

iff (111− ˜̀̀̃̀̃) ∈ S. Here, 111 is a vector of ones of same size as ˜̀̀̃̀̃.

Proof. The detailed proof is given in Appendix B.

We have now established that the stability region of the
constructed queueing system is same as the feasible region of
the optimal resource allocation policy Γ?. Therefore, from this
point onwards, we do not explicitly talk about meeting the loss
requirements of the UEs. Instead, we focus our attention on
stabilizing the token queues corresponding to each UE know-
ing that stabilizing the token queues of UEs will ensure that
their respective loss requirements are met. In the next section,
we propose maximum weight throughput optimal policies for
resource allocation in loss tolerant eMBMS systems.

V. PROPOSED RESOURCE ALLOCATION ALGORITHMS

In this section, we propose Maximum Weight (MW)
throughput optimal policies for resource allocation in loss

tolerant eMBMS networks. We also present their efficient
polynomial time implementations in a later section.
A. Maximum Weight Resource Allocation (Γ0)

Maximum weight resource allocation Γ0 takes scheduling
decisions in a sub-frame t based on the token queue lengths
Qk[t]s. In sub-frame t, Γ0 chooses service vector µΓ0 [t]µΓ0 [t]µΓ0 [t]
according to the following optimization problem:

µΓ0 [t]µΓ0 [t]µΓ0 [t] = arg max
µ

Γ0
k [t]∈µBiCµBiCµBiC

M∑
k=1

Qk[t]µΓ0

k [t], (2)

where µΓ0

k [t] is the service rate of UE k in sub-frame t
under policy Γ0. Γ0 seeks to maximize the sum of the queue
lengths of the UEs that are being served in sub-frame t. It
has a computational complexity of O(M

(
N
L

)
L!). We have

already established in Section IV that stabilizing the token
queues ensures that the loss requirements of the UEs are met.
Therefore, to prove that Γ0 can successfully meet the loss
requirements of the multicast UEs, it is sufficient to show that
Γ0 stabilizes the constructed queueing system. We prove this
in the following result.

Theorem 3. For any stabilizable arrival rate vector λλλ, Γ0

stabilizes the queueing system.

This theorem implies that as long as the system is stabi-
lizable, i.e. there exists some policy Γ that can stabilize the
queueing system, so can Γ0. Note that the policy Γ is not
restricted to use the same information that is available to Γ0.
Γ could be using information of the past and future allocations
and channel conditions to take allocation decisions. Despite
that, we claim that Γ0 will successfully stabilize the system
using only the knowledge of the current state of the queueing
system to make the scheduling decisions.

Proof. The detailed proof is given in Appendix C.

We now have a MW policy that takes allocation decisions
based on the UE token queue lengths and meets the loss
requirements of users. However, in addition to the amount
of packet loss encountered by a video stream, the pattern in
which the loss occurs is also an important factor in determining
the quality experienced by the end user. While a 30% loss
spread over multiple frames may not result in any significant
quality impairment, a bursty loss of 30% of the packets at
once can degrade the quality significantly for a while. Such
bursts of degraded quality are unacceptable to the end users
and may result in UEs choosing to leave the eMBMS session.
It is therefore important to ensure that the packet losses are
distributed throughout the multicast session.

In order to ensure this, a resource allocation policy also
needs to restrict the amount of consecutive packet losses
encountered by a UE in addition to the long term average
packet loss. We propose such a policy which we call as the
priority MW policy, in the next section. This policy improves
upon MW policy by increasing the scheduling probability of
a UE every time it is left unserved. This will ensure that a
UE does not remain unserved for long periods which leads
to better loss performance and reduces the burstiness of the
losses encountered.
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B. Priority Maximum Weight Resource Allocation (ΓP )

Priority Maximum Weight (MW-priority) resource alloca-
tion ΓP also takes scheduling decisions in a sub-frame based
on the queue lengths Qk[t]s in that sub-frame. However, in this
scheme, we use an additional priority vector to increase the
probability of serving a previously unserved queue. In every
sub-frame t, ΓP chooses service vector µΓP [t]µΓP [t]µΓP [t] according the
following optimization problem:

µΓP [t]µΓP [t]µΓP [t] = arg max
µ

ΓP
k [t]∈µBiCµBiCµBiC

M∑
k=1

(Qk[t] + (ck[t] + 1)× s)µΓP
k [t],

(3)
where µΓP

k [t] is the service rate of UE k in sub-frame t
under ΓP , ck[t] is the priority weight ascribed to the token
queue of UE k and s is a positive constant. ck[t] is defined as
follows:

ck[t] =

{
0, if µk[t− 1] = 1,

min(ck[t− 1] + 1, κ), otherwise.

κ is the maximum positive integer value that the priority
weights can take. Also, ck[0] = 0,∀ k. We use c[t] =
[c1[t], . . . , cM [t]] to denote the vector of priority weights of
all the queues in sub-frame t. ΓP also has a computational
complexity of O(M

(
N
L

)
L!). Since increasing ck[t] increases

the contribution of UE k in (3), it is more likely to be served
by the resource allocation policy.

When using policy ΓP for resource allocation, the state
of the queueing system can be completely defined by the
queue lengths of all the token queues in the system and the
value of the priority counter for each queue. As before, we
denote the state in sub-frame t under policy ΓP by the vector
QΓP [t] = [QΓP

1 [t], . . . , QΓP
M [t], c̄[t]]. Since the scheduling

decisions under ΓP in a sub-frame are based only on the state
of the system in that sub-frame, the evolution of states of the
system form a Discrete Time Markov Chain (DTMC). In the
next result we prove that this DTMC is countable, irreducible
and aperiodic.

Lemma 1. The DTMC formed by the evolution of the states
under ΓP QΓP [t] = [QΓP

1 [t], . . . , QΓP
M [t], c̄[t]] is countable,

irreducible and aperiodic.

Proof. The detailed proof is given in Appendix D.

We now prove that ΓP is a throughput optimal policy i.e.
ΓP will stabilize the queueing system if any other policy can
do so.

Theorem 4. For any stabilizable arrival rate vector λλλ, ΓP
stabilizes the queueing system.

Theorem 4 states that if the queueing system under consid-
eration is at all stabilizable, ΓP will stabilize it.

Proof. The detailed proof is given in Appendix E.

Thus, ΓP and Γ0 are both throughput optimal. In the next
section, we discuss the Exponential (Queue length) rule (EXP-
Q) which was proposed in [22]. We use the EXP-Q rule as
a benchmark for performance evaluation of our policies since
it is a well known throughput optimal policy for scheduling

multiple flows over a time varying wireless channel. The EXP-
Q rule also minimizes the maximum delay encountered in the
system [24]. The rule, however, considers that there is a single
channel that can be used by one flow at a time. In the next
section, we present a generalization of EXP-Q for use with
multicast transmission and with multiple channels available
for allocation. We have modified the rule so it can be used for
scheduling in the system under consideration in this paper.
C. Generalized Exponential (Queue length) rule (ΓE)

EXP-Q rule is a throughput optimal policy [22] that sched-
ules a single queue k in a time slot t such that:

k ∈ arg max
k

γkµk[t] exp

(
akQk[t]

β + [Q̄[t]]η

)
, (4)

where µk[t] is the rate of service of queue k in sub-frame t,
aks, γks and η are constants and Q̄[t] = (1/N)

∑
k akQk[t].

The EXP-Q rule assumes that there is a single time varying
channel that is to be shared by several flows. We generalize the
EXP-Q rule for use in LTE eMBMS where multiple channels
(in the form of PRBs) are available for scheduling the L
multicast flows in the cell. Each channel is time varying and
different for each UE in the cell. Moreover, in this case, we
need to schedule groups of UEs in a single PRB instead of
individual UEs since each multicast flow corresponds to a
group of UEs subscribed to it. Hence, the EXP-Q rule cannot
be used as it is for scheduling in eMBMS.

We use ΓE to refer to the modified EXP-Q rule. Since we
have multiple channels available and multiple groups can be
scheduled for service in a time slot, the policy has to choose
an allocation vector instead of a single queue to be scheduled
in a time slot. Specifically, for the problem being considered
in this paper, the policy needs to determine the allocation
vector BΓE [t] (as defined in Section III). We define ΓE as
the policy that chooses allocation vector µΓE [t]µΓE [t]µΓE [t] according to
the following optimization problem:

µΓE [t]µΓE [t]µΓE [t] = arg max
µ

ΓE
k [t]∈µBiCµBiCµBiC

M∑
k=1

γkµ
ΓE
k [t] exp

(
akQk[t]

β + [Q̄[t]]η

)
,

where µΓE
k [t] is the service rate of UE k in sub-frame t under

ΓE . ΓE also has a computational complexity of O(M
(
N
L

)
L!).

The allocation vector BΓE [t] determines which PRB is al-
located to which multicast group and hence determines the
µΓE
k [t]s. The data is then transmitted to the ith group at the

corresponding rate Ri in the PRB allocated to it.
D. Computational Complexity

As mentioned before, the resource allocation policies dis-
cussed in this section have a computational complexity of
O(M

(
N
L

)
L!). These are, therefore, not suitable for use in

practical systems unless we can find efficient means of im-
plementing them. It turns out that these policies can infact be
implemented in polynomial time using a Maximum Weight
Bipartite Matching (MWBM) [25]. We discuss the details of
this implementation in the next section. We first present the
algorithm for implementing Γ0 using MWBM in detail. The
same algorithm can be used for implementing ΓP as well as
ΓE by replacing the edge weights of Γ0 with those of ΓP and
ΓE respectively.
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VI. MAXIMUM WEIGHT BIPARTITE MATCHING FOR
eMBMS RESOURCE ALLOCATION

We make use of MWBM for an efficient polynomial time
implementation of the resource allocation policies proposed
in Section V. The MWBM brings down the computational
complexity of their implementation to O(NL2). The policies
can thus be implemented in polynomial time. We begin with
the construction of the underlying bipartite graph which is
the same for all the policies except for the edge weights
which change according to the policy under consideration. We
discuss the implementation for Γ0 in detail. The procedure and
proof involved can be directly used for ΓP and ΓE as well
with modified edge weights. The modifications involved will
be specified at the end of this section.

Construct a bipartite graph G = (U, V,E) where vertex set
U is the set of L multicast groups and vertex set V is the set
of N PRBs. We define the service rate of a UE k ∈ Gi in
PRB j in sub-frame t as follows:

µjk[t] =

{
0, if Ri > rkj [t]

1, otherwise.

The weight of an edge connecting vertex i ∈ U to vertex
j ∈ V , wji [t] is the sum of the products of the queue lengths
of UEs in group Gi and their achievable service rates in PRB
j in sub-frame t i.e.

wji [t] =
∑
k∈Gi

Qk[t]µjk[t].

The resulting bipartite graph is illustrated in Figure 1.
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Fig. 1: Bipartite graph between multicast groups and PRBs

A MWBM of G that matches every node in U to a unique
node from V results in an allocation equivalent to Γ0. We
prove this in the following result.

Lemma 2. Maximum weight bipartite matching for graph G
results in resource allocation according to policy Γ0.

Proof. The detailed proof is given in Appendix F.

The same MWBM can be used for implementing ΓP and
ΓE by changing the edge weights. For ΓP we will have:

wji [t] =
∑
k∈Gi

(Qk[t] + (ck[t] + 1)× s)µjk[t]. (5)

TABLE I: System Simulation parameters [26]

Parameters Values
System bandwidth 20 MHz
eNB cell radius 150 m
Path loss model L = 128.1+37.6 log 10(d), d in kilometers

Lognormal shadowing Log Normal Fading with 10 dB standard
deviation

White noise power density −174 dBm/Hz
eNB noise figure 5 dB
eNB transmit power 46 dBm
Number of PRBs 100 per sub-frame

For ΓE the edge weights will change to:

wji [t] =
∑
k∈Gi

γkµ
j
k[t] exp

(
akQk[t]

β + [Q̄[t]]η

)
. (6)

The same proof as in Lemma 2 follows to show that the
MWBM for graph G with the edge weights defined in (5)
and (6) results in the implementation of resource allocation
policies ΓP and ΓE respectively. In the next section, we
present the results of the simulations performed for evaluating
the performance of the proposed resource allocation schemes.

VII. SIMULATIONS

For studying the performance of the proposed allocation
algorithms, we use these algorithms for allocation in LTE
eMBMS. We consider an LTE cell with L different eM-
BMS video streams and UEs distributed uniformly at random
through the cell. All UEs are subscribed to one of the eMBMS
video streams. UEs subscribed to a particular eMBMS service
receive the relevant content on common PRBs. We have used
a MATLAB [27] based LTE simulator designed in [28]. In
order to create LTE specific physical layer conditions, we have
created channels using the models recommended by 3GPP
in [26]. The SNR to CQI and CQI to rate mapping has been
done using the tables specified in 3GPP documents [26]. Other
relevant simulation parameters are given in Table I.

Every multicast service has a certain rate requirement and
every UE can tolerate a certain amount of packet loss. The loss
tolerable by a UE depends on the quality of video required
by it, what its average channel conditions are like and the
multicast group it belongs to. PRBs are allocated to the
multicast groups according to the MW, MW-priority as well
as the modified EXP-Q resource allocation policies. We then
observe the packet loss encountered by the UEs under each of
these policies. We compare the performance of the proposed
schemes with the modified EXP-Q rule [22] which is proven to
be throughput optimal [22]. The simulations have been carried
out for 106 sub-frames and losses have been calculated as the
fraction of sub-frames in which a UE is not served.

The first set of plots in Figure 2 compare the losses
encountered by UEs to their respective loss tolerances. Fig-
ures 2a and 2b show this comparison for MW and MW-
priority policies respectively. Both these policies succeed in
meeting the loss requirements of all the UEs in the system. The
queueing system is, thus, stable under both the proposed MW
policies. Figure 2c plots the losses encountered when using the
modified EXP-Q rule for resource allocation. We observe that
several UEs experience losses significantly greater than their
tolerable limits and the queueing system is rendered unstable.
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Fig. 2: Tolerable loss versus loss encountered using a) MW b) MW-priority c) EXP-Q
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Fig. 4: Loss pattern of a UE (losses per sub-frame)

Figure 3 compares the plots of the average losses encoun-
tered by the UEs under the three schemes. For this, the losses
encountered per second have been exponentially averaged for a
user. Every point in the plot is then obtained by averaging over
all the UEs. We observe that EXP-Q rule results in a better loss
performance than the MW scheme. Even though EXP-Q gives
us a better average loss performance, as we saw in Figure 2,
it failed to meet the loss requirements of several UEs. On the
other hand, despite a greater average system packet loss, MW
is able to meet the loss requirements of all the UEs. The MW-
priority scheme leads to the least average packet losses among
the three schemes.

As discussed in Section V, in addition to the amount of
packet loss seen by an end user, the pattern in which the

losses occur also has a major bearing on the video quality
experienced by the user. While some amount of packet loss
spread more or less uniformly through a session may lead to
no degradation in quality at all, a concentrated packet loss
can be extremely annoying in a video stream and may even
lead to UEs quitting the session altogether. In order to observe
the pattern of packet loss encountered under the three policies
over time, we plot the percent packet loss encountered by
one of the users with a high loss threshold. This is plotted
for all the policies as a function of time in Figure 4. EXP-Q
sees the most variable loss pattern. The losses per second see
jumps as high as 10% from one second to another. The MW
policy does better than EXP-Q. However, the MW-priority
policy provides the most uniform loss pattern of the three.
It, therefore, controls the burstiness of the losses encountered
and ensures that no UE is starved for long periods at a stretch.

We have verified the effectiveness of the proposed policies
via simulations. We now present our conclusions.

VIII. CONCLUSIONS
In this paper, we have addressed the problem of resource

allocation in loss tolerant eMBMS networks. eMBMS flows
are primarily video streams that can tolerate a certain amount
of packet loss without affecting the quality perceived by
the end users. Each flow is allocated one PRB every sub-
frame. We have converted the problem of determining the
optimal resource allocation policy for the system under con-
sideration to the problem of stabilizing a queueing system.
We have proposed a MW and a MW-priority algorithm for
allocating PRBs in loss tolerant multicast video streaming.
Since MW schemes are typically computationally expensive to
implement, we propose a MWBM that provides a polynomial
time implementation of the proposed policies. We have also
generalized the EXP-Q rule [22] for use with multiple channels
and multicast transmission. Simulations have been performed
to study and compare the loss performance of the MW, MW-
priority and the modified EXP-Q policies. We have observed
from the simulations that the MW-priority policy results in
the least packet loss of all the policies. Usage of such a policy
for video streaming using eMBMS can significantly lower the
burden on the network and reduce congestion when multiple
video streams are being transmitted simultaneously in a cell.

APPENDIX
A. Proof of Theorem 1

We begin by constructing the following randomized re-
source allocation policy Γδ based on LP (δ) defined in Sec-
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tion IV-B:

Definition 9. Randomized allocation policy Γδ: Γδ chooses
an allocation vector in a sub-frame according to a feasible
solution w of LP (δ). If the system is in channel state C,
Γδ chooses allocation vector Bi w.p. wBiC i.e. P (BΓδ [t] =
Bi|C(t) = C) = wBiC ∀ t and decisions across sub-frames
are independent. δ is an input parameter for Γδ .

The definition of Γδ will be used for proving various results
in this and the following sections. Consider λλλ ∈ Λ◦. By the
definition of Λ◦, this means that, there exists δ > 0 such that
LP (δ) is feasible for arrival rate vector λλλ. Let w = {wBiC}
denote a feasible solution of LP (δ). Therefore, we can use
policy Γδ to take scheduling decisions in each sub-frame
according to w. Let Ak[t] denote the arrival process of queue
k. Ak[t] = 1 if there is an arrival to queue k in sub-frame
t and 0 otherwise. DΓδ

k [t] denotes the departure process of
queue k under Γδ . DΓδ

k [t] is 1 if a token departs from queue
k under Γδ in sub-frame t and 0 otherwise. We have:

QΓδ
k [t+ 1] = max{(QΓδ

k [t] +Ak[t]−DΓδ
k [t]), 0},

where QΓδ
k [t] denotes the length of the token queue of UE k at

time t under policy Γδ . For the sake of simplicity of notation,
we omit the Γδ superscript from QΓδ

k [t] and DΓδ
k [t] through

the rest of this section. Since a departure from queue k means
that UE k was successfully served, the corresponding service
rate µΓδ

k [t] = 1 and we can write the above equation as:

Qk[t+ 1] = max{(Qk[t] +Ak[t]− µΓδ
k [t]), 0}.

The state of the queueing system in a sub-frame can be
completely defined by the queue lengths of all the token
queues in that sub-frame. We denote the state of the system
in sub-frame t by the vector Q[t] = [Q1[t], . . . , QM [t]]. Since
the scheduling decisions taken under Γδ only make use of the
current state of the system, the evolution of states of the system
{Q[t]}t≥0 under Γδ forms a Discrete Time Markov Chain
(DTMC). This DTMC is countable, irreducible and aperiodic.
We prove this in the following result.

Lemma 3. The DTMC {Q[t]}t≥0 is countable, irreducible
and aperiodic.

Proof. • Countable: The state space of the DTMC is the set of
all M -tuples (Q1[t], . . . , QM [t]) where Qk[t] ∈ N. It forms an
M dimensional Cartesian product of the set of natural numbers
N which is a countable set. Therefore, the state space of the
DTMC and hence the DTMC itself is countable (by Theorem
2.13 in [29]).
• Irreducible: The DTMC can transition from any state Q to
a state Q′ in the following steps:
− Step 1: Schedule all UEs for service until all queues are
empty. This is accomplished in maxkQk sub-frames.
− Step 2: For the next maxkQ

′
k sub-frames, the token queue

of UE k has an arrival and no departure for the first Q′k sub-
frames. In the remaining (maxkQ

′
k − Q′k) sub-frames, there

is no new arrival and no departure. At the end of this step, the
DTMC is in state Q′.
These steps define at least one path of length (maxkQk +
maxkQ

′
k) from any state Q to any other state Q′. Therefore,

the DTMC is irreducible.
• Aperiodic: If the DTMC is in state Q[t] and no new token
arrives in any queue and no queue is scheduled for service, the
state of the DTMC remains unchanged. Therefore, self loops
exist and the DTMC is aperiodic.

We now begin the proof of Theorem 1.

Proof. We prove Theorem 1 in two steps. We first establish
that Λ◦ ⊆ S in Lemma 4 and then show that S ⊆ Λ in
Lemma 5.

Lemma 4. Every λλλ ∈ Λ◦ is a stabilizable arrival rate vector.
Hence, Λ◦ ⊆ S.

Proof. To prove this result, we first show using Foster’s
theorem [30] that the DTMC {Q[t]}t≥0 is positive recurrent
and hence the queue lengths do not grow infinitely under Γδ .

Using the Lyapunov function f(Q[t]) =
∑M
k=1Q

2
k[t], we

have:

f(Q[t + 1])− f(Q[t])

≤
M∑
k=1

[(Ak(t)− µΓδ
k [t])2 + 2Qk[t](Ak[t]− µΓδ

k [t])].

Hence,

E[(f(Q[t + 1])− f(Q[t]))|Q[t]]

≤ E
[
(
∑M
k=1[(Ak(t)− µΓδ

k [t])2 + 2Qk[t](Ak[t]− µΓδ
k [t])])|Q[t]

]
,

≤M + 2E
[
(
∑M
k=1Qk[t]Ak[t]−

∑M
k=1Qk[t]µΓδ

k [t])|Q[t]
]
,

≤M + 2
∑M
k=1Qk[t]λk − 2

∑M
k=1Qk[t]E

[
µΓδ
k [t]|Q[t]

]
.

From LP (δ), we have E
[
µΓδ
k [t]|Q[t]

]
= λk+δ. Therefore,

E[(f(Q[t + 1])− f(Q[t]))|Q[t]]

≤M + 2
∑M
k=1Qk[t]λk − 2

∑M
k=1Qk[t](λk + δ),

≤M − 2
∑M
k=1Qk[t]δ.

Defining set A = {Q :
∑M
k=1Qk ≤

M+1
2δ }, we have:

E[(f(Q[t + 1])− f(Q[t]))|Q[t]] <

{
−1, ∀ Q[t] /∈ A,
∞, otherwise.

Thus, by Foster’s theorem [30], the DTMC is positive recurrent
so the expected queue lengths in the queueing system are finite.
Therefore, Γδ stabilizes the system for arrival rate vector λλλ ∈
Λ◦. Thus, λλλ ∈ S which implies that Λ◦ ⊆ S.

This proves the first part of our result. We now need to
show that S ⊆ Λ. In the interest of simplicity of notation, we
assume that under a policy Γ that stabilizes the system, the
following limit exists w.p. 1.

lim
T→∞

1

T

T∑
t=1

1Γ
BiC [t], (7)

where 1Γ
BiC

[t] is an indicator random variable that is 1 if
allocation vector Bi is chosen by Γ under channel state C in
sub-frame t and zero otherwise. Now consider the following
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sets of sample paths:
• A1 : the set of sample paths on which Strong Law of Large
Numbers (SLLN) holds for the arrival rates i.e.

∑t
i=1 λk[t]

t →
λk as t→∞, ∀ k. This is a probability 1 set i.e. P (A1) = 1.
• A2 : set of sample paths on which

∑t
i=1 1{C(t)=C}

t → g(C)
as t→∞, ∀ C (SLLN holds) where 1{C(t)=C} is an indicator
random variable that is 1 if the channel state in sub-frame t is
C and 0 otherwise. Since g is a probability distribution over
the set of channel states C, we have, P (A2) = 1.
• A3 : the set of sample paths on which service rate under Γ
is ≥ λλλ. Since Γ stabilizes the system, we have P (A3) = 1.
• A4 : the set of sample paths over which the limit in (7) exists.
Since we assume that this limit exists w.p. 1, P (A4) = 1.
Since A1, A2, A3, A4 are probability 1 sets, their intersection,

A =

4⋂
i=1

Ai (8)

is also a probability 1 set. We refer to the sample paths
belonging to this set A as non-trivial sample paths.

We now prove the second part of our result.

Lemma 5. If λλλ /∈ Λ, then λλλ /∈ S. Thus, S ⊆ Λ.

Proof. We prove this result using a contradiction. Let λλλ /∈ Λ
be a stabilizable arrival rate vector i.e. λλλ ∈ S. Since λλλ is
a stabilizable arrival rate vector, there exists some allocation
policy Γ that can stabilize the system for arrival rate λλλ.

We observe the scheduling decisions taken by this policy Γ
along a non-trivial sample path from the set A defined in (8).
Let vBiC denote the fraction of time for which Γ chooses the
allocation vector Bi under channel state C along such a sample
path. Since Γ stabilizes the system, the rate of departures must
equal the arrival rate in the system. Therefore, we have:∑

C∈C

∑
Bi∈B

g(C)vBiCµBiCµBiCµBiC = λλλ,

where vBiC ≥ 0 ∀ Bi ∈ B, C ∈ C,∑
Bi∈B

vBiC = 1 ∀ C ∈ C.

This implies that vvv = {vBiC} is a feasible solution of LP (δ)
and that,

λλλ ∈ Λ(0) =⇒ λλλ ∈ Λ, (9)

which is a contradiction. Therefore, λλλ /∈ Λ is not stabilizable
i.e. any stabilizable λλλ must be contained in Λ. Hence,
S ⊆ Λ.

From Lemmas 4 and 5, we have, Λ◦ ⊆ S ⊆ Λ, which is
the required result. This concludes the proof.

B. Proof of Lemma 2

Proof. We need to show that the loss requirement of a UE is
met if and only if its token queue in the queueing system is
stable. We first argue that the stability of the queueing system
implies that the loss requirements of the UEs are met. If the
queue corresponding to UE k is stable, it means that there
exists a policy Γ that stabilizes the queue for λλλ ∈ Λ◦. We
can, therefore, construct a randomized policy Γδ as defined

in Definition 9 (Appendix A). Under Γδ , the rate of service
is greater than λk which means that UE k is served in
greater than (1 − ˜̀

k) of the sub-frames. Therefore, the loss
encountered by UE k is less than ˜̀

k and its loss requirements
are successfully met.

Now, let us assume that the loss requirement of UE k is met.
We show that this ensures the stability of its token queue. Since
the loss requirement ˜̀

k is achievable, there exists a policy Γ
that satisfies the loss requirement. This means that, under Γ,
the UE is being served in greater than (1 − ˜̀

k) fraction of
sub-frames. Since the arrival rate λk = (1− ˜̀

k), the queue is
served at a rate greater than the arrival rate. Hence, Γ stabilizes
the token queue. From these arguments, we conclude that the
loss requirement of a UE is met iff its corresponding token
queue in the queueing system is stable. Therefore, the feasible
region of the optimal allocation policy Γ?, LΓ? is equivalent
to the stability region of the queueing system, S.

C. Proof of Theorem 3

Proof. Let DΓ0

k [t] denote the departure process of queue k
under Γ0. We have:

QΓ0

k [t+ 1] = max{(QΓ0

k [t] +Ak[t]−DΓ0

k [t]), 0},

where QΓ0

k [t] denotes the queue length of the token queue of
k at time t under Γ0. For the sake of simplicity of notation,
we omit the Γ0 superscript from QΓ0

k [t] and DΓ0

k [t] through
the rest of this section. Since a departure from queue k means
that UE k was successfully served, the service rate µΓ0

k [t] = 1
and we can write the above equation as:

Qk[t+ 1] = max{(Qk[t] +Ak[t]− µΓ0

k [t]), 0}.

The state of the queueing system is completely defined by the
vector Q[t] = [Q1[t], . . . , QM [t]]. The evolution of Q[t] forms
a DTMC since the scheduling decisions taken by Γ0 in a sub-
frame are based solely on the state of the system in that sub-
frame. The DTMC is countable, irreducible and aperiodic. The
proof that the DTMC has these properties follows the same
arguments as in Lemma 3 in Appendix A. We now show using
Foster’s theorem [30] that this DTMC is positive recurrent and
hence the token queues do not grow infinitely.

Using the Lyapunov function f(Q[t]) =
∑M
k=1Q

2
k[t], we

have:

f(Q[t + 1])− f(Q[t])

=

M∑
k=1

[(Ak(t)− µΓ0

k [t])2 + 2Qk[t](Ak[t]− µΓ0

k [t])].

Hence,

E[(f(Q[t + 1])− f(Q[t]))|Q[t]]

= E

[
(

M∑
k=1

[(Ak(t)− µΓ0

k [t])2 + 2Qk[t](Ak[t]− µΓ0

k [t])])|Q[t]

]
,

≤M + 2

M∑
k=1

Qk[t]λk − 2E

[
(

M∑
k=1

Qk[t]µΓ0

k [t])|Q[t]

]
.

(10)
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Let µΓδ
k [t] denote the service rate for UE k in sub-frame t

under the randomized policy Γδ . Then, from (2), we have:
M∑
k=1

Qk[t]µΓ0

k [t] ≥
M∑
k=1

Qk[t]µΓδ
k [t]. (11)

Therefore, from (10) and (11):

E[(f(Q[t + 1])− f(Q[t]))|Q[t]]

≤M + 2

M∑
k=1

Qk[t]λk − 2E

[
(

M∑
k=1

Qk[t]µΓδ
k [t])|Q[t]

]
,

≤M + 2

M∑
k=1

Qk[t]λk − 2

M∑
k=1

Qk[t](λk + δ),

≤M − 2

M∑
k=1

Qk[t]δ.

Now consider the set A = {Q :
∑M
k=1Qk ≤

M+1
2δ }, we have:

E[(f(Q[t + 1])− f(Q[t]))|Q[t]] <

{
−1, ∀ Q[t] /∈ A,
∞, otherwise.

Thus, by Foster’s theorem [30], the DTMC is positive recurrent
which means that the expected queue lengths in the queueing
system will be finite. Therefore, Γ0 stabilizes the system and
hence meets the loss requirements of the UEs.

D. Proof of Lemma 1

For the sake of simplicity of notation, we omit the ΓP
superscript from the notations through the rest of this section.

Proof. • Countable: The state of the DTMC Q[t] is comprised
of the queue lengths of the M UEs and their priority weights.
We have already shown in Lemma 3 that the state space
of queue lengths (Q1[t], . . . , QM [t]) is a countable set. The
state space of the priority weights of the UEs is an M
dimensional Cartesian product over the finite set {1, 2, . . . , κ}
and is therefore a finite countable set (by Theorem 2.13 in
[29]). Therefore, the states of the DTMC Q[t] form a 2M
dimensional Cartesian product over two countable sets, the
state space of queue lengths and the state space of the priority
weights. Therefore, the state space of the DTMC and hence
the DTMC itself is countable (by Theorem 2.13 in [29]).
• Irreducible: Consider that the DTMC is in state Q =
{Q1, . . . , QM , c̄k}. We will show that a path exists from Q to
any state Q′ = {Q′1, . . . , Q′M , c̄′k}. The DTMC can transition
from Q to Q′ in the following steps:
− Step 1: Schedule all UEs for service until all queues are
empty. This is accomplished in maxkQk sub-frames.
− Step 2: A new token arrives in every queue and no queue
is scheduled for service for the next minkQ

′
k sub-frames. At

the end of this step, all queue lengths are equal to minkQ
′
k

and all priority weights are equal to min(minkQ
′
k, κ).

− Step 3: For the next maxkQ
′
k −minkQ

′
k sub-frames, the

UEs in arg maxkQ
′
k see one arrival and no departure. Every

other UE k′ see an arrival and no departure for the first
(Q′k′−minkQ

′
k) sub-frames and one arrival and one departure

for the remaining maxkQ
′
k −Q′k′ sub-frames. At the end of

this step, the queue length of UE k is equal to Q′k.
− Step 4: In the next sub-frame, there is one arrival and one
departure in every queue. This makes the priority weights all
equal to 0 while the queue lengths remain unchanged.
− Step 5: In the next maxk c

′
k sub-frames, there is no arrival

and no departure for UEs in arg maxk c
′
k. For every other UE

k′, there is an arrival and a departure in the first (maxk c
′
k−c′k′)

of these sub-frames and no arrival and no departure in the
remaining c′k′ sub-frames. At the end of this step, the DTMC
is in the desired state Q′.
This defines one finite length path from any state Q to any
other state Q′ of length (maxkQk+maxkQ

′
k+1+maxk c

′
k).

Hence, the DTMC is irreducible.
• Aperiodic: Consider state Q[t] where all queues are empty
and all priority weights are 0. If there is one arrival in each
queue in slot t + 1 and every queue is served, the queues
remain empty and the priority weights remain 0. Therefore,
this state has a self loop and hence has period 1. Since we
have already shown that the DTMC is irreducible, all states
have period 1 because periodicity is a class property. Hence,
the DTMC is aperiodic.

E. Proof of Theorem 4

Proof. Let DΓP
k [t] denote the departure process of queue k

under ΓP . We have:

QΓP
k [t+ 1] = max{(QΓP

k [t] +Ak[t]−DΓP
k [t]), 0},

where QΓP
k [t] is the queue length of the token queue of k

at time t under ΓP . For the sake of simplicity of notation,
we omit the ΓP superscript from QΓP

k [t] and DΓP
k [t] through

the rest of this section. Since a departure from queue k in
sub-frame t means that µΓP

k [t] = 1, we can write the above
equation as:

Qk[t+ 1] = max{(Qk[t] +Ak[t]− µΓP
k [t]), 0}.

Under this policy, the evolution of the state of the queueing
system Q[t] = [Q1[t], . . . , QM [t], c̄[t]] forms a DTMC. We
have proved in Lemma 1 that this DTMC is countable,
irreducible and aperiodic. We now show using Foster’s the-
orem [30] that this DTMC is positive recurrent and hence the
queues do not grow infinitely.

Using the following Lyapunov function f(Q[t]) =∑M
k=1Q

2
k[t], we have:

f(Q[t + 1])− f(Q[t])

=

M∑
k=1

[(Ak(t)− µΓP
k [t])2 + 2Qk[t](Ak[t]− µΓP

k [t])].

Hence, as in (10), we have:

E[(f(Q[t + 1])− f(Q[t]))|Q[t]]

≤M + 2

M∑
k=1

Qk[t]λk − 2E

[
(

M∑
k=1

Qk[t]µΓP
k [t])|Q[t]

]
.

(12)
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Let µΓδ
k [t] denote the service rate for UE k in sub-frame t

under the randomized policy Γδ . Then, from (3), we have:

M∑
k=1

(
Qk[t]µΓP

k [t] + (ck[t] + 1)sµΓP
k [t]

)
≥

M∑
k=1

(
Qk[t]µΓδ

k [t] + (ck[t] + 1)sµΓδ
k [t]

)
. (13)

Therefore, from (12) and (13):

E[(f(Q[t + 1])− f(Q[t]))|Q[t]] ≤M + 2
∑M
k=1Qk[t]λk

−2E
[
(
∑M
k=1Qk[t]µΓδ

k [t] + (ck[t] + 1)(µΓδ
k [t]− µΓP

k [t])s)|Q[t]
]
,

≤M + 2
∑M
k=1Qk[t]λk − 2

∑M
k=1Qk[t](λk + δ)

−2E
[
(
∑M
k=1−(κ+ 1)s

]
,

≤M − 2
∑M
k=1Qk[t]δ + 4Ms. (for κ = 1)

Defining set A = {Q :
∑M
k=1Qk ≤

4Ms+M+1
2δ }, we have:

E[(f(Q[t + 1])− f(Q[t]))|Q[t]] <

{
−1, ∀ Q[t] /∈ A,
∞, otherwise.

Thus, by Foster’s theorem [30], the DTMC is positive recurrent
which means that the expected queue lengths in the queueing
system will be finite. Therefore, ΓP stabilizes the system and
hence meets the loss requirements of all the UEs.

F. Proof of Lemma 2

Proof. A matching for graph G selects edges that share no
common vertices. This means that each group from U will be
matched to exactly one PRB from V and each PRB from V
will be matched to at most one group from U . Therefore, the
requirement of assigning no more than 1 PRB to each group
is satisfied. Since PRBs in V are matched to no more than
one group from U , we will have BΓ

i [t] 6= BΓ
i′ [t] ∀ {i, i′ ∈

[L] : BΓ
i [t], BΓ

i′ [t] 6= 0} as required by Definition 1. Thus, the
solution of the MWBM gives us a feasible resource allocation.
Next, we show that the resulting allocation is consistent with
the allocation decisions that would be taken by policy Γ0.

MWBM picks edges such that the sum of the weights of
the edges chosen is maximized. Therefore, it maximizes the
quantity

∑
i∈U

∑
k∈Gi Qk[t]µjk[t] =

∑M
k=1Qk[t]µk[t] which

is same as in (2). Hence, resource allocation done using
MWBM on G is consistent with policy Γ0.
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frameworks for network-coded layered multimedia multicast services,”
IEEE Journal on Selected Areas in Communications, pp. 141–155, 2015.

[13] A. Tassi, I. Chatzigeorgiou, D. Vukobratović, and A. L. Jones, “Op-
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