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Abstract—Multimedia traffic is predicted to account for 82%
of the total data traffic by the year 2020. With the increasing
popularity of video streaming applications like YouTube, Netflix,
Amazon Prime Video, popular video content is often required
to be delivered to a large audience simultaneously. Multicast
transmission can be used to cater to such applications efficiently.
The common content can be transmitted to the users on the
same resources resulting in considerable resource conservation.
This paper proposes various schemes for efficient grouping
and resource allocation for multicast transmission in LTE. The
optimal grouping and resource allocation problems are shown
to be NP-hard and so, we propose heuristic algorithms for both
these problems. We also formulate a Simulated Annealing based
algorithm to approximate the optimal resource allocation for our
problem. The LP-relaxation based resource allocation proposed
by us results in allocations very close to the estimated optimal.

Index Terms—Multicast, NP-hardness, Video streaming, LTE,
eMBMS, Resource allocation.

I. INTRODUCTION

Multicast transmission refers to one-to-many transmission
from a single source to multiple receivers simultaneously.
Today’s cellular communication is primarily based on unicast
communication where the base station communicates with
each user separately over orthogonal resources. However,
using multicast, multiple users can receive content on the same
resources simultaneously. It can be effectively used for appli-
cations like video streaming from popular platforms such as
YouTube, Netflix and Amazon Prime, streaming of television
(TV) programs, large scale software updates, news updates,
weather forecasts and managing IoT devices in which the
same content is required to be transmitted to a large number
of devices at a time. Assigning orthogonal resources to every
user in this scenario is a very inefficient manner of resource
allocation. Using multicast transmission for such applications
can save considerable network resources. As of September
2018, KT, Verizon, Telstra and Reliance (Jio) have already
deployed Long Term Evolution (LTE) multicast services and
41 operators have invested in LTE multicast [2] in the form
of trials and deployments worldwide.

For successfully implementing multicast in LTE, there are
two main challenges that need to be addressed. The first is
the problem of dividing User Equipments (UEs) into multicast
groups. UEs in a multicast group are treated as a single entity
by the evolved NodeB (eNB) and can be served using the same
resources. One obvious requirement for grouping is for all the
UEs in a group to require the same content. But, as we shall
see, grouping all the UEs into a single group based on this
criterion alone may lead to a degraded system performance due
to varied channel gains experienced by the UEs. Therefore,
the channel gains of the UEs also need to be considered
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while grouping. The second problem to be addressed is that
of allocating resources to the multicast groups. Here, we aim
at minimizing the resources used for multicast transmissions
so that its impact on other services is minimized.

Provision for multicast has been introduced in Release
9 [3] of the Third Generation Partnership Project (3GPP)
standards by inclusion of Multimedia Broadcast Multicast
Services (MBMS). Enhanced version of MBMS introduced in
3GPP Release 11 [4] is known as evolved MBMS (eMBMS).
A radio frame in LTE spans 10 ms and consists of 10 sub-
frames of 1 ms each. A sub-frame is made up of smaller
units called Physical Resource Blocks (PRBs). A PRB is the
smallest unit of allocation in LTE. eMBMS allows for point-to-
multipoint transmission [5]. All UEs subscribed to a particular
eMBMS service are served on common PRBs. Thus, UEs are
grouped based only on the subscribed content. This makes the
performance of eMBMS dependent on the channel gain of the
weakest UE in the group which may lead to a degraded system
performance. We consider an example to illustrate this.

Consider a sub-frame of 10 PRBs. Two UEs, U1 and U2

have subscribed to the same eMBMS service. Let the required
rate for this service be 103 bits/sub-frame. When a PRB
is allotted to a group of UEs, the rate at which reliable
transmission can take place corresponds to the UE with the
least channel gain in the group. Transmitting at a rate greater
than this leads to unsuccessful decoding by the UEs with lower
channel gains. Consider a state where U1 has a good channel
in all odd numbered PRBs so that as many as 103 bits can
be transmitted in each of them. In the rest of the PRBs, U1

can only get a maximum of 100 bits each. Similarly assume
that U2 can receive a maximum of 103 bits in each of the
even numbered PRBs and 100 bits in the odd ones. If these
UEs are grouped together, data can be transmitted at a rate
corresponding to the UE with the least channel gain (and hence
the least rate) in each PRB. In this case, only 100 bits can be
transmitted in each PRB and to provide the required rate, all
10 PRBs will be used. On the other hand, if U1 and U2 are
grouped separately, they can be alloted PRB 1 and PRB 2
respectively and 103 bits can be transmitted in each of these
PRBs. Thus, the required rate for both will be satisfied in just
2 PRBs, 8 less than the previous scenario. This example shows
that appropriate grouping of multicast UEs is essential for
obtaining any benefit whatsoever from multicast operations.

We now briefly discuss the main challenges involved in
grouping and resource allocation for multicast transmission.
The main challenge in grouping UEs based on their channel
gains is that, due to fast fading, channel gains experienced
by the UEs keep on changing. As a result, grouping done
based on channel conditions in one sub-frame may not be
optimal in subsequent sub-frames. However, grouping UEs
based on their instantaneous Signal-to-Noise Ratio (SNR) in
every sub-frame is also not feasible as it will lead to increased
control overhead due to frequent changes in grouping. Since
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each multicast group is treated as a separate entity by the
eNB, each group is assigned a unique eMBMS Radio Network
Temporary Identifier (M-RNTI). M-RNTI of a group is used
for scrambling its Downlink Control Indicator which carries
the resource allocation information in LTE [6]. If grouping
is changed every sub-frame, a new M-RNTI will have to be
assigned and conveyed to UEs every sub-frame, leading to
increased control overhead. Therefore, the grouping policies
need to achieve a balance between the efficiency and robust-
ness of grouping. In addition, grouping policies need to answer
key questions like the number of groups that should be formed
or the maximum number of UEs that should be placed in
a group. Creating a lesser number of groups means more
UEs in a single group which may result in lesser number
of PRBs being used. However, as the number of UEs in a
group increases, the probability that at least one UE is in deep
fade also increases, leading to a degraded system performance.
Thus, there is a trade-off between the number of multicast
groups formed and the number of UEs in each group which
needs to be balanced by a grouping policy.

Once the groups are formed, PRBs have to be allocated
to the groups in each sub-frame. The aim of the resource
allocation problem here, is to minimize the number of PRBs
given to multicast UEs while guaranteeing a certain Quality
of Service (QoS). The optimal resource allocation problem
is a Binary Linear Program (BLP). BLPs are hard to solve
and require significant computational power even for small
input sizes. Thus, the optimal grouping and optimal resource
allocation problems are non-trivial and we need to design effi-
cient algorithms to solve them. In this paper, we address these
problems and design algorithms to overcome the discussed
challenges. Next, we discuss some of the relevant literature.

A. Related Literature

The literature related to multicast grouping and resource al-
location can be broadly classified into the following categories:

1) Opportunistic Multicast Scheduling (OMS): Opportunis-
tic scheduling schemes schedule UEs with the best channel
conditions in a sub-frame to maximize the throughput. In [7],
the authors present an optimized version of OMS that balances
between multicast gain and multi-user diversity. [8] studies
the use of opportunistic multicasting for maximizing spectral
efficiency in Single Frequency Networks. In [9], the authors
propose a frequency domain packet scheduler for MBMS that
maximizes the minimum rate achievable by UEs in a PRB. It
uses an adversarial framework in that it only minimizes the
performance loss caused by the worst PRB assignment.

In [10], the authors propose the use of a throughput max-
imizing genetic algorithm for resource allocation in OFDMA
multicast subject to power and fairness constraints. Power
allocation is done based on the technique proposed in [11].
In [12] and [13], the authors propose solutions for radio
resource management and grouping for multicast over 5G
satellite systems aimed at maximizing the Aggregate Data Rate
(ADR) of the system. Maximizing the ADR is also the objec-
tive function of [14] that proposes game theoretic bargaining
solutions for multicast grouping and resource allocation.

Most of the literature considers only wideband CQI for
grouping and resource allocation in multicast transmission.
[15] is one work that explores the use of subband CQI values
in multicast resource allocation. All the papers mentioned in

this section seek to maximize the ADR in some way. In this
paper, however, we focus on providing a certain rate to every
multicast UE based on the service it is subscribed to.

2) Joint optimization for unicast and multicast: In [16]
and [17], joint delivery of unicast and multicast in LTE
and OFDMA systems has been considered. Policies proposed
in [17] guarantee a certain rate to the UEs and use unicast
transmission for serving UEs with the worst CQIs. [18]
presents a generalized auction based resource allocation for
multicast and unicast. In [19], the authors deal with resource
allocation in eMBMS. They assume that video content is
simultaneously available through unicast and eMBMS and
their problem seeks to jointly optimize over grouping UEs and
allocating resources to unicast and eMBMS. However, none of
these papers consider the varying channel conditions of UEs
over different PRBs while allocating resources. In this work,
we account for the fact that the CQIs of UEs may be different
in every PRB of a sub-frame.

3) Sub-group formation for multicast: In [20], the authors
deal with the grouping problem for MBMS in High Speed
Packet Access (HSPA) networks. They propose a grouping
policy that minimizes a ‘Global Dissatisfaction Index’ that
accounts for the difference in the maximum data rates achiev-
able by UEs and the rates actually assigned to them. In [21],
the same authors investigate the effect of pedestrian mobility
on the performance of the grouping policy proposed in [20].
In [1], users are grouped based on their average SNR.

In [22], the authors propose sub-grouping and resource al-
location schemes for multicast in LTE-Advanced. For resource
allocation, they make use of the bargaining solutions proposed
in [14]. Extension of bargaining solutions proposed in [14]
to multi-carrier systems like LTE-A have also been studied
in [23]. In [24], the authors have extended the work from
[14] to exploit frequency selectivity for improving the spectral
efficiency of multicast in LTE. [25] and [26] deal with the
use of multicast in heterogeneous networks and grouping of
UEs for MBMS respectively. Low complexity variations of the
Subgroup Merging Scheme [27] that provide better ADR have
been proposed in [28] for improving scalability.

Most of the papers mentioned in this section use the
entire set of PRBs for catering to multicast transmission. We,
however, aim to satisfy the multicast UEs in the minimum
possible number of PRBs since an eNB has to typically support
multiple other services alongside multicast sessions.

4) Multicasting of Scalable Video Coded (SVC) content:
[29] and [30] deal with resource allocation for MBMS Op-
eration On-Demand for video streams. The authors consider
Quality of Experience (QoE) instead of QoS as the utility
function that is maximized by the resource allocation schemes.
[31] examines power efficient streaming of high quality SVC
videos via MBMS. The algorithms proposed try to minimize
the power consumption by sending traffic in discontinuous
bursts, allowing UEs to sleep in between bursts. The algo-
rithms proposed in [32] make use of Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) [33] for
taking multi-criteria decisions for sub-grouping and resource
allocation. TOPSIS has also been used in [34] for compar-
ing the performance of various multicast resource allocation
schemes based on their ADR, fairness and spectral efficiency.
In [35], the authors exploit multiuser diversity to improve the
performance of LTE multicast. They propose resource alloca-
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tion schemes for multicasting SVC video content where the
base layer is transmitted to all the users and the enhancement
layers are provided to certain groups according to their channel
qualities. A similar work for multicasting scalable Internet
protocol TV over WiMAX has been carried out in [36]. In
this paper, the authors make use of opportunistic policies
to transmit the enhancement video layers and improve the
system utility. In [37], the authors study the use of multicast
with caching for SVC and DASH videos. They optimize over
content placement in caches and overlapping content requested
by users is multicast to them from the nearest suitable helper.
Even though SVC provides an interesting method of video
encoding with various benefits, non-layered video codecs
continue to be the choice for encoding videos over the Internet.
Most of the popular streaming platforms like Netflix [38] and
YouTube [39] use H.264/AVC or VP9 to encode their videos.

B. Main Contributions
In this paper, we address the problem of grouping and

resource allocation for satisfying the rate requirement of each
eMBMS UE while minimizing the resources used. This prob-
lem is of immense practical importance because the success of
multicast services strongly depends on how well they can co-
exist with the large number of services supported by LTE and
5G networks [40]. While eMBMS is suitable for streaming,
its resource utilization has to be such that sufficient resources
are available for other services simultaneously provided in the
cells.

Most of the literature assumes the rate achievable by a UE
to be the same in all PRBs. This assumption greatly simplifies
the resource allocation problem as the identities of the PRBs
are no longer important. In practice, however, the channel
experienced by a UE is different for different frequency
channels resulting in varying channel gains over different
PRBs. In this work, we take these variations into account.
A large portion of the literature including [10] and [17] claim
that the grouping and resource allocation problems are ‘hard to
solve’ or ‘infeasible’. However, none of these papers present
any mathematical proof of hardness of these problems. In this
paper, for the first time, we present the proof of NP-hardness of
both the optimal grouping and the optimal resource allocation
problems. The main contributions of this paper are:
• We prove that the optimal resource allocation problem that
minimizes the number of PRBs utilized while providing a
certain rate to all the multicast groups is an NP-hard problem.
Note that unicast is a special case of multicast and hence
the same result applies for unicast communication as well.
• We prove that the optimal grouping problem is NP-hard.
• We devise a randomized scheme for estimating the optimal
resource allocation. It works iteratively to end up at the optimal
solution with high probability. • We propose a greedy scheme
and an LP-relaxation based heuristic scheme for resource
allocation to multicast groups. • We also propose a hybrid
grouping policy for multicast group formation. • Through
simulations, we have also compared the performance of our
resource allocation schemes to that of the existing schemes.
• We have also conducted simulations with video traces from
an actual video and shown the feasibility of our policies for
practical usage.

Suitability for streaming: The allocation policies proposed
in this paper are specially suitable for streaming services. Our

policies ensure that all the users receive the video streams
at a steady rate. The rate of transmission required by a
steaming service depends on the kind and quality of video
being streamed. In order to see a consistent streaming quality,
the users must be served at a certain fixed rate. The resource
allocation policies proposed in this paper achieve this objective
since they serve all the users at their required rates.

The rest of this paper is organized as follows. In Section II,
we discuss the problem formulation and the system model.
The Simulated Annealing (SA) based randomized scheme and
related results are presented in Section III. Sections IV and V
discuss the proposed heuristic schemes for resource allocation
and grouping respectively. We present the simulation results
in Section VI and conclude in Section VIII.

II. PROBLEM FORMULATION

We consider an LTE cell with M UEs. All UEs have
subscribed to the same eMBMS service and need to be served
at a rate of R bits/sec. R can be varied across sub-frames
depending on the incoming rate of packets. Note that such
fixed rate streaming can potentially experience fluctuating
video quality since a consistent quality video stream might
require a varying bit rate. However, the varying bit rate can be
taken care of by the playback buffer of an application. A large
enough playback buffer can compensate for the fluctuating
bit rate and provide a good video quality under fixed rate
streaming, while greatly simplifying the resource allocation
issues. Adaptive playback buffers [41] can also be used for
adapting to the changing bit rates.

We denote the number of PRBs in a sub-frame by N . Let
[n] = {1, . . . , n} and let |A| denote the cardinality of a set
A. Thus, [M ] and [N ] denote the set of multicast UEs and
the set of PRBs in a sub-frame, respectively. We assume that
channel gains are location and time varying. Thus, each UE
has different channel gains in different PRBs and also across
different sub-frames. We assume block fading channel model,
and hence the channel gain of a UE is assumed to remain the
same during a sub-frame. Though we do not consider mobility
explicitly, our approach can be extended to cases where UE
positions evolve at a slower time scale than the sub-frame
duration. Let hiu[t] denote the channel gain for UE u on ith

PRB in sub-frame t. hiu[t] = hiu + Hiu[t], is made up of
2 components. hiu denotes the average channel gain which
accounts for path loss and shadowing and is invariant across
sub-frames. Hiu[t] is the fast-fading component that varies
across sub-frames. Hiu[t]’s are independent and identically
distributed (i.i.d) exponential random variables. We assume
that the eNB has full Channel State Information (CSI) of all
the UEs. This not a restricting assumption in the current state
of LTE systems where CQI can be periodically fed back to
the eNB by the UEs [42]. Corresponding to the channel gain,
there is a maximum supportable rate, riu[t] bits/sec for UE
u on ith PRB in sub-frame t. Note that riu[t] is determined
by the Modulation and Coding Scheme (MCS) used, and thus
can take finitely many values (15 as per current standards for
LTE [42]). Next, we discuss grouping.

Since all multicast UEs want the same content in each
sub-frame, the UEs can be grouped together and served on
common PRBs. A grouping strategy ∆ is defined as follows:
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Definition 1. A grouping strategy ∆, defines a partition
{G∆

1 , . . . , G
∆
L } of [M ], where G∆

i ⊆ [M ] is referred to as
the ith group.

Note that L ≤ M . For L = M , we have the unicast case.
Henceforth, unicast is not dealt with separately. Throughout
this paper, we assume that groups once defined at the be-
ginning of an eMBMS session cannot be changed during the
session. This is done to avoid excessive control overhead that
may result due to rapid changes in grouping. One can relax the
assumption and allow for grouping to be potentially changed
every K sub-frames, where K is large. This will allow the
scheme to adapt in case of mobile networks. The minimum
supportable rate for a group Gj on ith PRB in sub-frame
t (r∆

ij [t]) is equal to the minimum of the rates achievable
by its constituent members, i.e., r∆

ij [t] = minu∈G∆
i
{riu[t]}.

This ensures that the content received by a group can be
successfully decoded by all the members. If we transmit at
rates more than this, the weakest UE in the group may not be
able to decode the received content successfully. Once r∆

ij [t]s
are obtained, we need to decide how to allot resources to each
group so that the total number of PRBs used is minimized
subject to giving each group at least the minimum required rate
R. This is a resource allocation problem. The formal definition
of a resource allocation policy is stated below.

Definition 2. For a given grouping ∆ a resource allocation
policy Γ defines an assignment of PRBs to the L multicast
groups, {V ∆

1Γ, . . . , V
∆

LΓ}, where, V
∆

iΓ is the set of PRBs
assigned to group i by resource allocation policy Γ under
grouping ∆. The allocation Γ should be such that V

∆

iΓ∩V
∆

jΓ =

φ whenever i 6= j and
⋃L
i=1 V

∆

iΓ ⊆ [N ].
Resource allocation policy Γ is said to be feasible if∑∆
j∈V iΓ

r∆
ij [t] ≥ R for every i ∈ [L]. The other parameter

used by us to characterize a resource allocation policy is the
number of PRBs left unused after resource allocation in a sub-
frame t, S∆

Γ [t] = N−|
⋃L
i=1 V

∆

iΓ|. We shall now formally state
our resource allocation and grouping problems.

A. Problem 1: Optimal Resource Allocation B?
∆

Consider a fixed grouping policy ∆, and define indicators
in sub-frame t as follows:

xij [t] =

{
1, if PRB j is assigned to group i
0, otherwise.

The optimal resource allocation can then be obtained as a
solution to the following BLP for every t:

(B?
∆) : min

∑
j∈[N]

∑
i∈[L]

xij[t],

subject to:
∑
j∈[N ]

xij [t]r
∆
ij [t] ≥ R, ∀ i ∈ [L], (1)

∑
i∈[L]

xij [t] ≤ 1, ∀ j ∈ [N ]. (2)

The objective function of B?
∆seeks to minimize the number

of PRBs used in sub-frame t. Constraint (1) guarantees that
the rate given to each group is atleast equal to the required
rate R and (2) ensures that each PRB is given to at most one
group. Note that B?

∆ gives the optimal resource allocation for
any grouping ∆. Next, we establish the hardness of B?

∆.

TABLE I: Table of notations

Notation Meaning
M Number of multicast UEs
L Number of multicast groups
N Number of PRBs in a sub-frame
N Set of available PRBs in a sub-frame
L Set of multicast groups
hiu[t] Channel gain of UE u on ith PRB in sub-frame t

riu[t] Maximum rate supportable by UE u on ith PRB in
sub-frame t

∆ Grouping strategy
G∆

i ith group under policy ∆
Γ Resource allocation policy

V
∆
iΓ Set of PRBs assigned to G∆

i under policy Γ
R Rate requirement of the multicast UEs

S∆
Γ [t]

Number of PRBs left unutilized under ∆ in sub-
frame t using Γ

xij [t]
Indicator random variable that equals 1 when PRB
j is assigned to group i in sub-frame t

Lemma 1. Optimization B?
∆ is NP-hard.

Proof. See Appendix A for the detailed proof.

B. Problem 2: Optimal Grouping C?

Recall that S∆
Γ [t] denotes the number of PRBs left unuti-

lized under grouping policy ∆ in sub-frame t using resource
allocation scheme Γ. Note that these PRBs can be used for
other services in the system. Define,

S
∆

Γ = lim inf
T→∞

1

T

T∑
t=1

S∆
Γ [t]. (3)

Thus, S
∆

Γ is the average number of unutilized PRBs per sub-
frame under grouping policy ∆ and resource allocation policy
Γ. The optimal grouping problem can be defined for any given
resource allocation policy Γ. The definition of the optimal
grouping problem is stated below:

(C?) : Determine the optimal grouping policy ∆? such that
S

∆?

Γ ≥ S∆

Γ for every ∆.
We note that determining S

∆

Γ for a general grouping ∆ and
resource allocation Γ itself is a very hard, if not an impossible
problem. The value of S

∆

Γ depends on the combined channel
states of all the UEs in various sub-frames. We show in the
following result that the problem of determining ∆? for given
Γ is NP-hard.

Lemma 2. For a fixed Γ, the problem of determining ∆? is
NP-hard.

Proof. The detailed proof is given in Appendix B.

Since we have proved that both optimal grouping and opti-
mal resource allocation problems are NP-hard, no polynomial
time algorithms exist for determining their optimal solutions
unless P = NP. We can, however, use some intelligent heuristic
schemes to obtain near optimal solutions. In the following
section, we formulate an iterative randomized scheme for
estimating the optimal resource allocation.

III. RANDOMIZED ALGORITHM FOR OPTIMAL RESOURCE
ALLOCATION

As stated in the previous section, no polynomial time algo-
rithm exists for determining the optimal resource allocation.
We can, however, estimate the optimal solution using random-
ized algorithms that iteratively explore all possible solutions to
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converge to the optimum. The proposed randomized scheme
serves dual purpose, 1) it provides near optimal solution
in much lesser computational power than that required to
solve B?

∆and, 2) its output can be used as a benchmark
for evaluating the heuristic schemes which we propose in
Section IV. We now describe the randomized algorithm.

The allocation of resources in LTE is done in every sub-
frame. So, for brevity, we fix a sub-frame t and omit it from
notations in this section. Grouping strategy ∆ impacts resource
allocation via r∆

ij , which is the rate achievable by group i in
PRB j. Here, we deal with resource allocation for any given ∆.
So, we omit ∆ from the notations as well for better readability.

The Randomized Scheme (RS) used here is based on SA,
a well known Markov Chain Monte Carlo (MCMC) tech-
nique [43]. SA is a randomized algorithm used for obtaining
the global optimum of a function. In SA, we construct a
Markov chain on the states of the problem under consideration
and transition between the states to ultimately end up at the
global optimum with high probability. Here, states correspond
to possible resource allocations to groups. Therefore, a state,
sd of the Discrete Time Markov Chain (DTMC) is a possible
distribution of PRBs, {V 0d, V 1d. . . . , V Ld} where V id is the
set of PRBs assigned to group Gi, i ∈ [L] in state sd. G0

is a dummy group that is assigned all the unused PRBs. The
state space χ corresponds to all possible PRB allocations to
groups. Let `di denote the total rate achieved by the ith group
in allocation sd. Thus, `di =

∑
j∈V id

rij . Moreover, let qd
denote |{i : `di ≥ R}|, i.e. qd is the number of satisfied
groups in allocation sd. In SA, each state has an associated
reward that defines how good the state is. For our DTMC, we
define the real valued reward function E as follows:

E(sd) = |V 0d| −
L∑
i=1

[R− `di]+ + qd, (4)

where [y]+ = max{y, 0} and |V 0d| is the number of unused
PRBs in state sd. The reward function is a monotonically
increasing function of the number of satisfied groups and
number of unused PRBs. It also decreases proportionally with
the difference between the required and achieved rates of
the groups. Thus, intuitively, maximizing E maximizes the
number of unused PRBs while satisfying all the groups. We
prove this formally in the next result.

Lemma 3. Let B?
∆ has a feasible solution and sd? ∈

arg maxsd E(sd). Define x?ij = 1 if j ∈ V id? and 0 otherwise.
Then, {x?ij}i,j is the optimal solution of the BLP B?

∆.

Proof. The detailed proof is given in Appendix C.

Thus, determining a state that maximizes the reward func-
tion is equivalent to determining the optimal solution of B?

∆.
Note that the proposed approach uses a DTMC on χ where
|χ| = (L + 1)N . Recall that L is the number of groups and
N is the number of PRBs available in a sub-frame. Hence,
the Transition Probability Matrix (TPM) corresponding to the
DTMC will have dimensions exponential in N . So, for guar-
anteeing computational feasibility of the proposed approach,
one must ensure that the TPM need not be stored, rather, given
a state, transition probability to the neighboring states can be
determined in time polynomial in system parameters. Next,
we elaborate how such a DTMC can be constructed.

A. DTMC Construction

Let E? denote the maximum value of the reward function
E(·) defined in (4), i.e. E? = maxsd E(sd). Suppose we
construct a DTMC {Xn}n≥1 on χ such that P (E(Xn) = E?)
tends to 1 as n tends to ∞. If we simulate this DTMC for
a large enough time, say τ , the probability that the state
of the DTMC at τ yields the optimal resource allocation is
very close to one. Towards this end, we first define a time
homogeneous DTMC {XT

n }n≥1 on χ. We will subsequently
define the DTMC {Xn}n≥1 with parameter T varying as
a function of n. As we will see in the following sections,
transition probabilities of the constructed DTMC are a function
of T . Therefore, variation of T as a function of n makes
{Xn}n≥1 non time homogeneous. For defining the DTMC
{XT

n }n≥1, it is enough to specify its TPM, which we do next.
1) Neighboring States: Consider any state sd ∈ χ. A state

sd′ is a neighbor of sd if it can be obtained from sd using one
of the following actions:
• Swap (A1): Swap takes two PRBs j1 and j2 from groups

i1 and i2 respectively and assigns j1 to i2 and j2 to i1. Only
allocation to groups i1 and i2 are changed through this action.
Mathematically, sd′ is obtained from sd using swap if:

1) j1 ∈ V i1d and j2 ∈ V i2d,
2) V id′ = V id for all i 6= i1, i2 and
3) V i1d′ = (V i1d\{j1})∪{j2}, V i2d′ = (V i2d\{j2})∪{j1}.
• Drop (A2): The drop action takes a PRB j1 from a

group i1 (i1 6= 0) and assigns it to group G0. Here, only
allocation of groups i1 and 0 is changed by dropping the PRB
j1. Mathematically, sd′ is obtained from sd using drop if:

1) j1 ∈ V i1d,
2) V id′ = V id for all i 6= i1, 0 and
3) V i1d′ = V i1d \ {j1}, V 0d′ = V 0d ∪ {j1}.
• Add (A3): The add action takes a PRB j1 from V 0d and

assigns it to a group i1 6= 0. Here, only allocation of groups
i1 and 0 is changed by assigning the PRB j1 to group i1.
Mathematically, sd′ is obtained from sd using add if:

1) j1 ∈ V 0d,
2) V id′ = V id for all i 6= i1, 0 and
3) V i1d′ = V i1d ∪ {j1}, V 0d′ = V 0d \ {j1}.

Note that the neighboring relation defined here is symmetric
in nature. This is proved in the following result.

Lemma 4. The neighboring relation of the DTMC {XT
n }n≥1

is symmetric. Moreover, if transition from sd to sd′ occurs due
to a swap action, then transition from sd′ to sd can also take
place using a swap action only. Similarly, if transition to sd
from sd′ occurs due to add (drop, respectively), the transition
from sd′ to sd can only result from drop (add, respectively).

Proof. To prove the required result, we need to show that
if a state sd′ is a neighbor of the state sd, then, sd is also
a neighbor of sd′ . Since neighbors are defined using three
different actions, we consider the following cases separately:
• Swap: Consider that sd′ is obtained from sd by swapping

PRBs j1 and j2 belonging to groups i1 and i2 respectively.
From definition of the swap action, V id′ = V id ∀ i 6= i1, i2,
V i1d′ = (V i1d\{j1})∪{j2} and V i2d′ = (V i2d\{j2})∪{j1}.
Now, let us see if sd can be obtained from sd′ . Say PRBs j1
and j2 are picked for swapping in sd′ . In sd′ , j1 ∈ V i2d′ and
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j2 ∈ V i1d′ . For the resulting state sd′′ , we have:

V id′′ = V id′ = V id,∀ i 6= i1, i2,

V i1d′′ = (V i1d′ \ {j2}) ∪ {j1} = V i1d,

V i2d′′ = (V i2d′ \ {j1}) ∪ {j2} = V i2d.

Therefore, V id′′ = V id for all i which implies that sd′′ ≡
sd. So, sd is also a neighbor of sd′ and can be obtained from
sd′ using a swap action only.
• Add: Consider that sd′ is obtained from sd by adding

PRB j1 to group i1. Then, from the definition of the add
action, V id′ = V id for all i 6= i1, 0, V i1d′ = V i1d ∪ {j1} and
V 0d′ = V 0d \{j1}. Now, let us see if state sd can be obtained
from sd′ . Say PRB j1 is picked for a drop action in sd′ . Note
that in sd′ , j1 ∈ V i1d′ . For the resulting state sd′′ , we have:

V id′′ = V id′ ,∀ i 6= i1, 0,

V i1d′′ = V i1d′ \ {j1} = V i1d,

V 0d′′ = V 0d′ ∪ {j1} = V 0d.

Therefore, V id′′ = V id for all i which implies that sd′′ ≡ sd.
So, sd is also a neighbor of sd′ and can be obtained from sd′
using a drop action only.
• Drop: The proof for drop action is very similar to that for

add. It can be shown in the same manner that if sd′ is obtained
from sd using a drop action, sd can be obtained from sd′ using
an add action and so sd is also a neighbor of sd′ .

We now define the TPM.
2) Transition Probability Matrix: Let pdd′ denote the prob-

ability that the DTMC transitions to sd′ in the next step from
the current state sd. The transition happens in two steps. 1)
In state sd, we first randomly choose one of the three actions
A1, A2 or A3 and then randomly choose a neighboring state
sdp that can be obtained from sd by performing the chosen
action. The state sdp is referred to as the proposed next state.
2) Based on the reward values E(sd) and E(sdp), the proposed
transition from sd to sdp is either accepted, i.e. sd′ = sdp or
rejected, i.e. sd′ = sd. We discuss these steps in detail below.
• Step 1: In this step, one of the three actions is picked.
Since different actions lead to different sets of potential
neighboring states, we will use sdAi

to denote a state that can
be obtained from sd by performing action Ai, i ∈ {1, 2, 3}.
Probability of picking every action is different. Action A1 is
picked with probability (w.p.) βddA1

= 1
3 , A2 is picked w.p.

βddA2
= 2

3 ×
N−|V 0d|

L(|V 0d|+1)+(N−(|V 0d|+1))
and A3 is picked w.p.

βddA3
= 2

3 ×
L|V 0d|

L|V 0d|+(N−|V 0d|)
. With the remaining probabil-

ity, the state of the DTMC remains unchanged. A3 corresponds
to the add action and so, is chosen with a probability directly
proportional to the number of unused PRBs and the number
of multicast groups. Therefore, for greater number of groups
and unused PRBs, the algorithm is more likely to choose the
add action. Similarly, for greater number of used PRBs, the
algorithm is more likely to choose the drop action.

Now we explain how one of the neighboring states is chosen
for potential transition given the chosen action. If the chosen
action is A1, the two PRBs to be swapped, j1 and j2 are
chosen uniformly at random from [N ]. The swap of j1 and
j2 is then performed as discussed in Section III-A1. For A2,
the PRB to be dropped, j1 is picked uniformly at random
from [N ] \ V 0d and dropped as discussed in Section III-A1.
Similarly for A3, a group i1 is picked uniformly at random

from [L] and a PRB to be added to it, j1 is chosen uniformly
at random from V 0d. The addition of j1 to i1 is then done as
discussed in Section III-A1. In the next step, we discuss how
the transition probabilities are finally determined.
• Step 2: Let sd′ denote the state chosen for transition. If sd′
has reward greater than or equal to that of sd, the DTMC
transitions to sd′ . Otherwise, transition to sd′ takes place w.p.
e(−(E(sd)−E(sd′ ))/T ). Thus, probability that the DTMC will
transition to sd′ is αdd′ = min

(
1, e(−(E(sd)−E(sd′ ))/T )

)
. T

is a parameter commonly known as ‘temperature’. T > 0 is
fixed and {XT

n }n≥1 is the corresponding time homogeneous
DTMC.
sdA1

, sdA2
and sdA3

denote the states resulting from sd
due to A1, A2 and A3 respectively. Then the corresponding
transition probabilities take the following form :

pddA1
= βddA1

× 1
N(N−1) × αddA1

, (5)

pddA2
= βddA2

× 1
N−|V 0d|

× αddA2
, (6)

pddA3
= βddA3

× 1
|V 0d|

1
L × αddA3

, (7)

pdd′ = 0, if sd′ is not a neighbor of sd. (8)

Note that (5), (6), (7) and (8) completely describe the TPM.
pddA1

is the probability of transitioning to sdA1
from sd. In (5),

βddA1
is the probability of picking action A1, the second

term, 1
N(N−1) accounts for choosing 2 PRBs for swapping and

αddA1
is the probability with which the DTMC transitions to

the resulting state sdA1
. Thus, pddA1

is the overall probability
of transitioning to state sdA1

from sd. Similarly, in (6) and (7),
βddA2

and βddA3
are the probabilities of picking A2 and A3

respectively, 1
N−|V 0d|

is the probability of choosing one of
the allocated PRBs for dropping, 1

|V 0d|
1
L is the probability

of choosing a certain PRB for addition from V 0d times the
probability of picking a certain group to which the PRB can
be assigned, αddA2

and αddA3
are the probabilities with which

the DTMC transitions to the selected states sdA2
and sdA3

respectively. In (8), pdd′ = 0 because the DTMC cannot jump
from sd to a state that is not a neighbor of sd.

In the randomized scheme here, we aim to simulate this
DTMC with these transition probabilities. The steps involved
in the randomized scheme are presented in the form of
a pseudo-code in Algorithm 1. Note that the TPM of the
DTMC is not being stored in this algorithm and the transition
probabilities defined above can be determined in polynomial
time. Thus, the TPM satisfies all the conditions stated earlier
for computational feasibility of the algorithm. In the next
result, we prove certain important properties of the DTMC.

Lemma 5. The constructed DTMC {XT
n }n≥1 is finite, aperi-

odic and irreducible for every T ∈ (0,∞).

Proof. The DTMC is finite because total number of possible
resource allocations is (L + 1)N . The DTMC has self loops
which makes it aperiodic. The DTMC can transition from any
state sd to any other state sd′ by first dropping all the used
PRBs into G0 by choosing the drop action repeatedly. Then,
PRBs can be added one by one according to the assignment
in sd′ by choosing the add action repeatedly. Thus, there is
at least one finite length path from any state sd to any other
state sd′ . Hence, the DTMC is irreducible.

Having established that the DTMC is finite, aperiodic and
irreducible, it is guaranteed to have a unique steady state



7

Algorithm 1: Algorithm for the Randomized Scheme

Input: Rates rij∀ i ∈ [L] and j ∈ [N ], max iter = 105

1 Initialize: s0, initial random allocation state
2 sd ← s0

3 for n = 1 : max iter do
4 sd′ ← sd
5 T ← 1

log(n)

6 Pick action A1, A2 or A3 w.p. βddA1
, βddA2

and βddA3
respectively

7 if action=A1 then
8 Pick any two PRBs, j1, j2 ∈ [N ]. Say,

j1 ∈ V i1d′ & j2 ∈ V i2d′

9 V i1d′ = V i1d′ \ {j1} ∪ {j2},
V i2d′ = V i2d′ \ {j2} ∪ {j1}

10 else if action=A2 then
11 Pick a PRB, j ∈ ∪L

i=1V id′ . Say, j ∈ V id′

12 V id′ = V id′ \ {j}, V 0d′ = V 0d′ ∪ {j}
13 else
14 Pick any j ∈ V 0d′ and any i ∈ {1, 2, . . . , L}
15 V id′ = V id′ ∪ {j}, V 0d′ = V 0d′ \ {j}
16 end
17 sd ← sd′ , if E(sd′) ≥ E(sd)
18 sd ← sd′ w.p. e(−(E(sd)−E(sd′ ))/T ), otherwise
19 end
20 sd is the proposed resource allocation

distribution. In the following result, we determine this steady
state distribution.

Theorem 1. For any fixed T > 0, the steady state distribution
of the DTMC {XT

n }n≥1 is given by

πTd =
eE(sd)/T∑
sd
eE(sd)/T

∀ sd ∈ χ. (9)

Proof. To prove the required, we show that the transition
probabilities in (9) satisfy πTd pdd′ = πTd′pd′d for every sd, sd′ .
This will imply that the DTMC is reversible [44] and has
steady state distribution πTd = eE(sd)/T∑

sd
eE(sd)/T ,∀ sd ∈ χ.

Suppose sd and sd′ are not neighboring states, then pdd′ =
pd′d = 0. Hence, the required follows trivially. Thus, it suffices
to consider the case when sd and sd′ are neighbors. If sd
and sd′ are neighbors, there are three possibilities, that sd′ is
obtained from sd by 1) swap action, 2) drop action or 3) add
action. We consider each case separately:
• Swap: If the transition from sd to sd′ occurs due to a swap
action, then pdd′ and pd′d take the form given by (5). For
E(sd) ≥ E(sd′) we have:

eE(sd)/T∑
d∈χ e

E(sd)/T

1

3

1

N(N − 1)
e−(E(sd)−E(sd′ ))/T

=
eE(sd′ )/T∑
d∈χ e

E(sd)/T

1

3

1

N(N − 1)
,

which is true. Therefore, the given πTd satisfies πTd pdd′ =
πTd′pd′d for the swap action. This can be similarly shown for
E(sd) < E(sd′) as well.
• Add: If the transition from sd to sd′ occurs due to an add
action, pdd′ and pd′d will be given by (7) and (6) respectively.

For E(sd) ≥ E(sd′), we have:

2πTd
3
(
L|V 0d|+ (N − |V 0d|)

)e−(E(sd)−E(sd′ ))/T

=
2πTd′

3
(
L(|V 0d′ |+ 1) + (N − (|V 0d′ |+ 1))

) . (10)

Since sd′ is obtained from sd by an add action, |V 0d| =
|V 0d′ | + 1 which means that L|V 0d| + (N − |V 0d|) =
L(|V 0d′ |+ 1) + (N − (|V 0d′ |+ 1)) in (10). So, (10) becomes:

πTd e
−(E(sd)−E(sd′ ))/T = πTd′ ,

=⇒ eE(sd)/T∑
d e

E(sd)/T e
−(E(sd)−E(sd′ ))/T = eE(s

d′ )/T∑
d e

E(sd)/T ,

which is true. Therefore, the given πTd satisfies πTd pdd′ =
πTd′pd′d for the add action. This can be similarly shown for
E(sd) < E(sd′) as well.
• Drop: If the transition from sd to sd′ occurs due to a drop
action, pdd′ and pd′d will be given by (6) and (7) respectively.
Also, in this case, |V 0d′ | = |V 0d| + 1. Following the same
steps as for the add action, it can be shown that the given πTd
satisfies πTd pdd′ = πTd′pd′d for the drop action as well.

Therefore, we conclude that the steady state distribution of
the DTMC is πTd = eE(sd)/T∑

sd
eE(sd)/T ∀ sd ∈ χ.

For a fixed T , the DTMC is time homogeneous with steady
state distribution πTd as shown in Theorem 1. When T varies
as a function of time n, the DTMC is no longer time homoge-
neous and the steady state distribution cannot be determined
in the same manner. We require this non time homogeneous
DTMC {Xn}n≥1 to end up in a reward maximizing state. In
the following theorem, we show that this does indeed happen.

Theorem 2. For the non time homogeneous DTMC {Xn}n≥1,
limn→∞ P (Xn = sd) exists, call it πd. Moreover, πd =
limT→0 π

T
d . Specifically,

πd =

{
1/| arg maxdE(sd)|, ∀ d ∈ arg maxdE(sd),

0, otherwise.
(11)

Thus, πd is a uniform distribution over the optimal resource
allocation states.

Proof. This follows directly from Theorem 1 of [45].

We mentioned the parameter T above, while discussing the
TPM. Now, we elaborate its significance in more detail. SA in-
volves an exploration versus exploitation trade-off. It achieves
a balance between exploration and exploitation through this
parameter T . T is kept very high in the beginning so that
the algorithm can explore a large number of states quickly.
As the time index increases, T goes on decreasing and so
does the likelihood of transitioning to lower reward states.
T = 1/ log(n), n being the time index is the optimal cooling
schedule [45]. This form of T ensures that the algorithm
escapes local optima faster and ends up at the global optimum
as T goes to 0. Specifically, by varying T , we can achieve the
required limn→∞ P (E(Xn) = E?) = 1. In the next section,
we compare the results of the RS with the optimal solution
obtained by solving the BLP B?

∆for small input sizes.
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TABLE II: Performance comparison of RS and BLP

No. of groups RS BLP % Error
2 93.53 96 2.57
3 90.05 94 4.2
4 86.54 91 4.9

B. Performance comparison of the RS and the BLP
The optimal resource allocation can be obtained by solving

BLP B?
∆ from Section II. BLPs, as mentioned before, are

inherently hard to solve. They can however be solved for small
input sizes. Using the computing power at our disposal (Intel
i7, 2.90 GHz quad-core processor with 16 GB RAM), we were
able to obtain a solution of B?

∆ for an input size of up to 4
groups. Note that the search space scales as (L+ 1)N where
L is the number of groups and N is the number of PRBs in
a sub-frame. So, even for 4 groups and 100 PRBs, the search
space consists of 5100 states which is why the BLP fails to
give a solution for more than 4 groups. The outputs of the BLP
and the RS for up to 4 groups, averaged over 100 different
channel conditions are tabulated in Table II. As we can see,
the output of the RS is close (difference in number of PRBs
saved < 5%) to the optimal obtained by solving the BLP.

The randomized scheme works iteratively to obtain an
optimal solution and so, it is not guaranteed to converge within
a sub-frame of 1 ms. We require resource allocation schemes
that can output a near optimal solution (if not optimal) every
sub-frame. We now present two such heuristic schemes.

IV. HEURISTIC SCHEMES FOR RESOURCE ALLOCATION

In this section, we propose two heuristic schemes for allo-
cating PRBs to multicast groups. The first one allocates PRBs
greedily and the second makes use of Linear Programming
(LP) relaxation. Resource allocation in LTE is done every sub-
frame. So, for brevity, we fix a sub-frame t and omit it from
notations in this section. Grouping strategy ∆ impacts resource
allocation via r∆

ij , which is the rate achievable by group i in
PRB j. Our aim is to propose resource allocation for any given
∆. So, we fix ∆ and omit it from the notations as well.
A. Greedy Allocation

Algorithm 2: Greedy Resource Allocation Scheme
Input: Rates rij for all i ∈ [L] and j ∈ [N ]

1 Initialize: N = [N ], L = [L] and xij = 0 for every i, j
2 while N ∩ L 6= φ do
3 Assign (i?, j?) = argmax(i,j)∈N×L rij
4 xi?j? ← 1, N ← N \ {j?}
5 if

∑
j∈[N ] xi?jri?j ≥ R then

6 L ← L \ {i?}
7 end
8 end

The pseudo code for this scheme is given in Algorithm 2.
Here, N and L denote the unallocated PRBs and the groups
whose rate requirements are not yet satisfied, respectively.
These quantities are updated every iteration and are monotone
non-increasing. The algorithm terminates when either of the
two sets becomes empty. In each iteration, the algorithm
determines indices i? and j? from L and N , respectively,
that correspond to the maximum rij . PRB j? is allotted to
group i? and is removed from N . Also, if the total sum
rate on all the allotted PRBs to i? is greater than or equal
to the requirement R, then i? is also removed from L. Next

iteration starts with the new values of N and L. Note that N
is monotone decreasing, thus, the algorithm terminates in at
most N iterations. At the termination, if only N = φ and L is
non-empty, then the greedy resource allocation scheme fails
to output a feasible resource allocation, else variables xij’s
yield the required resource allocation. The resource allocation
thus obtained is inherently fair as the algorithm provides the
minimum required rate R to all the UEs.

B. LP-relaxation Based Allocation

Recall that the optimal resource allocation can be obtained
as a solution to the BLP B?

∆. BLPs are hard to solve and
cannot be solved in reasonable time except for very small
input sizes. A standard approach is to do LP-relaxation of the
BLP i.e., relax the binary variables (in our case, xijs) to take
values in the interval [0, 1]. The resulting LP can be solved in
polynomial time. Let x̃ij for all i, j denote the optimal solution
of the relaxed LP. Now, x̃ijs are real numbers and we need to
convert them to binary values without violating the constraints
of B?

∆. To do this, we use a greedy algorithm (Algorithm 3)
similar to the one used in Section IV-A. In each iteration, PRB
j is assigned to an unsatisfied group i if it has the largest value
of x̃ij for that PRB. This is intuitive, as a higher value of x̃ij
means that group i was assigned a larger share of PRB j by
the LP. Note that the resource allocation obtained using this
scheme is inherently fair as the algorithm ensures that the rate
R is provided to all the UEs. We shall refer to this scheme as
the LPr scheme from this point onwards.

Algorithm 3: Rounding off algorithm for LP-relaxation
Input: x̃ij for all i ∈ [L] and j ∈ [N ]

1 Initialize: N = [N ], L = [L] and xij = 0 for every i, j
2 while N ∩ L 6= φ do
3 Assign (i?, j?) = argmax(i,j)∈N×L x̃ij
4 xi?j? ← 1, N ← N \ {j?}
5 if

∑
j∈[N ] xi?jri?j ≥ R then

6 L ← L \ {i?}
7 end
8 end

1) Performance Comparison of RS and LPr: In order to
compare the performance of the LPr scheme to that of the RS,
we simulate an LTE cell with all the multicast UEs requiring
the same content from the eNB. PRBs are allocated to the UEs
using the RS as well as the LPr scheme. We gradually increase
the number of UEs in the cell starting from 10 UEs and go
up to 100. For each of the resulting 10 scenarios, the PRB
allocation is done for 100 different fading variations using
both the schemes. The average number of PRBs saved is used
as a measure for performance comparison. The results of the
simulations are plotted in Fig. 1a. Each point in the curves
has been obtained by averaging over 100 different channel
gain variations. Note that all the groups achieved the required
rates at all points in the two curves. Both the algorithms show
a similar trend as the number of UEs in the cell increases.
Even though the RS saves more PRBs throughout, the ratio of
the number of PRBs saved by the RS to the number of PRBs
saved by the LPr scheme is no more than 1.25.

2) Time Comparison of RS and LPr: Recall that, in LTE,
the allocation of PRBs is done every sub-frame. Since a sub-
frame spans only 1 ms in time, it is important for whatever
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TABLE III: Time taken in seconds to run RS and LPr

No. of groups RS LPr Ratio
6 0.082 0.015 5.47
7 0.086 0.019 4.53
8 0.089 0.021 4.24
9 0.097 0.017 5.71
10 0.096 0.018 5.33

resource allocation scheme we employ, to be time efficient as
well. We now do a time comparison of RS and LPr schemes.

The RS is an iterative algorithm and cannot be guaranteed
to converge within the span of a sub-frame. While simulating
the RS in this paper, we perform 105 iterations. However, for
the time comparison here, we will first see how the reward of
the current state of the RS changes as a function of the number
of iterations. Fig. 1b illustrates the change in the reward of the
current state of the RS as a function of the number of iterations
for different number of UEs in the cell. We can observe from
the figure that the output saturates well before 2000 iterations
in each curve. So, for the sake of time comparison with the
LPr scheme, we consider the time taken by just 2000 iterations
of the RS. Table III illustrates the time taken by the RS and
the LPr scheme for different number of groups in the cell. The
time taken is averaged over 200 different channel gains. We
observe that the RS takes about 5 times more time to run than
the LPr scheme even with just 2000 iterations. Note that in
practice, depending upon the system, we might need to run
the algorithm for a much larger number of iterations.

From the performance and time comparisons of the LPr
and the RS, we conclude that LPr performs nearly as well as
the RS in 5 times lesser duration than the RS. Thus, the LPr
scheme is a suitable resource allocation scheme for practical
implementation. In the next section, we present a heuristic
scheme for the grouping of UEs for multicast transmission.

V. HEURISTIC SCHEME FOR GROUPING

We proved in Section II that obtaining the optimal grouping
strategy ∆? that maximizes S

∆?

is NP-hard. Indeed, even
quantifying S

∆
for a given ∆ is a very difficult task as the

channel gains and hence the rates vary over time. This is
because obtaining the optimal resource allocation in a given
sub-frame itself is NP-hard. However, even if some genie
provides us with the value S

∆
for any given ∆, determining

the optimal ∆? is still NP-hard. Hence, in this section, we
present the following heuristic algorithm for grouping.

A. Hybrid Grouping Policy

For grouping, eNB fixes the SNR thresholds for groups and
then UEs are assigned to various groups based on their average
SNR values. 3GPP standards for LTE [42] define 15 CQI
values, 15 being the best and 1 being the worst. In keeping

20 40 60 80 100

Number of users

15

20

25

30

35

40

N
u

m
b

e
r 

o
f 

P
R

B
s
 s

a
v
e

d

RS

LPr

0 1000 2000

Number of iterations

-4000

-3000

-2000

-1000

0

1000

R
e
w

a
rd

 o
f 
c
u
rr

e
n
t 
s
ta

te

20 users

30 users

40 users

50 users

60 users

70 users

80 users

90 users

100 users

(a) (b)
Fig. 1: a) Number of PRBs saved under LPr and RS, b) Variation of the
reward of the state of RS with the increasing number of iterations

with the number of CQI values, we fix the number of grouping
intervals to be 15. In LTE, a range of SNR values get mapped
to a CQI value [42] (many to one map). Let the minimum SNR
that can be mapped to a CQI value c be denoted by SNRmin(c).
We define a threshold corresponding to CQI c at such a level
that with a large probability (0.9), the instantaneous SNR
of every UE in the group will stay above or at SNRmin(c).
Specifically, a threshold D(c) is defined such that,

P{SNR ≥ SNRmin(c)|SNRavg = D(c)} = 0.9. (12)

To compute D(c), we need the distribution of SNR which
depends on the distribution of hiu[t]. Hiu[t] (the fast-fading
component of hiu[t] as defined in Section II) are i.i.d expo-
nential with mean 1. Given that the average SNR is equal to
D(c), the distribution of the instantaneous SNR is exponential
with parameter D(c). Therefore, (12) can be written as:

e−
SNRmin(c)

D(c) = 0.9, (13)

=⇒ D(c) =
SNRmin(c)

log(10/9)
. (14)

Now that the thresholds have been defined, UEs are classified
into groups based on their average SNR values. UEs with
average SNR greater than or equal to D(15) are classified
as Group 1 and those with SNR below D(2) are grouped into
Group 15. UEs with average SNR between D(14) and D(15)
are put into Group 2 and so on. Thus, Group 1 (Group 15)
corresponds to the UEs with the best (worst) channel.

As group sizes grow, the probability that one or more UEs
in a group will experience a poor channel increases. Therefore,
the performance of the grouping scheme may start worsening
with increasing group sizes. To prevent this, we propose a
second layer of grouping. If the number of UEs in a group
exceeds a certain maximum value, it is further divided into
smaller groups. We fix the maximum group size such that all
UEs in a group experience a good channel in at least 10% of
the PRBs in a sub-frame. Since the thresholds have been set so
that the instantaneous SNR of a UE remains above SNRmin(c)
with probability 0.9 and the channels are independent across
UEs and across PRBs, this probability is given by:

p =

N∑
j=b0.1Nc

(
N

j

)
0.9kj(1− 0.9k)(N−j), (15)

where k is the group size. We need this probability to be
large. For example, in a 20 MHz LTE system with N = 100,
p = 0.9452 for k = 18. So, we fix the maximum group size
for this system at 18 and whenever a group grows beyond 18
UEs, the group is split into smaller groups of 18 UEs or less.
Note that p is a monotonically decreasing function of k.

After the UEs are divided into groups, the rate for a par-
ticular group is set at the value corresponding to the weakest
UE in the group. Once the achievable rate for each group is
determined using the 3GPP mappings [42], PRB allocation is
done according to the resource allocation schemes discussed
in the previous section.

B. Complexity
The greedy allocation algorithm has a complexity of
O(LN2) and the LP relaxation based allocation has a com-
plexity of O(LN2 + LN). The hybrid grouping policy has a
complexity of O(M).
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VI. SIMULATION RESULTS

A. Simulation Settings

Our simulation setup comprises an LTE cell of radius 375
m in accordance with 3GPP simulation parameters for macro
cells [46]. We have used the MATLAB [47] LTE simulator
designed in [48] to conduct our simulations. LTE specific
physical layer conditions have been created using 3GPP chan-
nel models [46]. SNR to CQI and CQI to rate mapping has
also been done according to 3GPP specifications [46].

An eNB located at the center of the cell multicasts the
eMBMS content to all the multicast groups. Rate requirement
for each UE (R) is taken to be 1 Mbps. The UEs are distributed
uniformly at random within the cell and are grouped using
the hybrid grouping policy proposed in Section V. Groups
are formed at the beginning of eMBMS session and remain
unchanged during the session. For dividing the UEs into
groups, we need to determine the average SNR received at
the UEs. For calculating the average SNR, we use shadowing
and path loss models as per 3GPP specifications [46]. The
channel gain of each UE may be different for different PRBs.
The channel gains are determined by: 1): Path Loss, 2):
Shadowing and 3): Multipath due to reflections from the
surrounding environment. After the grouping is done, PRBs
are allocated using the policies proposed in Section IV. Re-
source allocation policies make use of the instantaneous SNR
values for taking the allocation decisions. For determining
the instantaneous SNR values, we also take Rayleigh fading
into account. We compare the performance of the proposed
schemes with unicast transmission. The performance of the
resource allocation policies is also compared to that of the
widely used Proportional Fair (PF) policy [10], [11], [19].
Parameters relevant to our simulations are given in Table IV.

For a given grouping and resource allocation, their perfor-
mance is affected by two sources of randomness, (1) channel
variations around mean on account of fast fading and (2)
average channel gain variations on account of node positions.
We evaluate the performance of our schemes by averaging
over these two sources of randomness. Towards this end, we
consider 100 random UE placements and the performance of
each placement is evaluated and averaged over 1000 sub-
frames with different channel gains. In addition to unicast
and the proposed grouping policy, we also simulate a random
grouping where each UE is placed in one of 10 groups
uniformly at random. Under the proposed hybrid grouping
policy, a maximum of 15 groups can be formed. However,
the actual number of groups formed will depend upon the
average SNR of the users. The average number of groups
formed during the simulations is given in Table V.

B. Results

Fig. 2a and Fig. 2c illustrate plots of the number of PRBs
saved against the number of UEs in the cell for greedy and LPr
schemes respectively. Observations from these plots are: a)
Unicast performs the worst and is unable to support more than
20 UEs. b) Random grouping is able to support up to 30 UEs
successfully. The number of PRBs saved rapidly decreases to
0 beyond 30 UEs. c) With hybrid grouping, greedy allocation
saves greater than 10 PRBs for up to 70 UEs. Using LPr saves
around 20 PRBs even for 100 UEs.

TABLE IV: System Simulation parameters [46]

Parameters Values
System bandwidth 20 MHz
Center frequency 2 GHz
eNB cell radius 375 m
Path loss model L = 128.1+37.6 log 10(d), d in kilometers

Shadowing Log Normal Fading with 10 dB standard
deviation

White noise power density −174 dBm/Hz
eNB noise figure 5 dB
eNB transmit power 46 dBm
PRB width 180 kHz
Number of PRBs 100 per sub-frame
ITU path loss model ITU-R M.2135-1 [49]

Fig. 2b and Fig. 2d illustrate the number of sub-frames
(out of 1000) for which the allocations are rendered infeasible
for greedy and LPr schemes respectively. We observe that:
a) Unicast and random grouping quickly become completely
infeasible beyond 40 UEs for greedy scheme and beyond 50
for LPr. b) Using greedy allocation, the number of infeasible
cases for hybrid grouping is zero for up to 40 UEs. Using LPr,
the allocation is always feasible. We have also conducted all
these simulations for R = 2 Mbps. The corresponding results
are plotted in Fig. 3. We observe a similar relative performance
of the policies as that for R = 1 Mbps. Fig. 4a and Fig. 4b
illustrate the number of PRBs saved at the eNB for different
UE placements. For every M , 100 different UE placements
have been considered. Out of these, 90% closest to the mean
have been plotted as a scatter plot. The conclusions from
these plots are: a) For varying UE placements, the number
of PRBs saved at the eNB is between ±5 PRBs around the
mean number of PRBs saved for all the schemes. b) Overall
trend of the number of PRBs saved as the UE count increases
is the same as that observed in Fig. 2a and Fig. 2c.

In addition to QoS, it is also important to guarantee a good
QoE in video streaming. QoE is known to be a function of
various QoS parameters of the network [50]. The QoE of
a video stream primarily depends on the delay, delay jitter
and the packet loss rate in the network [51], [52]. To study
the impact of our policies on the QoE of users, we evaluate
their performance using data from an actual video stream.
For this purpose, we have used an H.264 encoded video of
Star Wars IV (obtained from (http://trace.eas.asu.edu)) [53].
For transmitting this video stream, the required rate R is
changed every sub-frame according to the requirement of the
video frame being transmitted. Under our policies, packets
of the video are transmitted as soon as they arrive. As a
result, the access network does not induce any additional delay
and jitter in the video stream. The users only experience the
delay incurred due to the core network. Therefore, the QoE
of the users is not degraded by our policies. Fig. 6 shows the
histogram of the number of PRBs saved while transmitting the
frames of this video. The proposed resource allocation policies
are able to meet the requirements of the video stream in far
lesser number of resources than unicast transmission.

These simulation results clearly establish the superiority of
the proposed algorithms for use in multicast systems. The
hybrid grouping policy provides a significant advantage over
unicast and random grouping. The poor performance of ran-
dom grouping reinforces the importance of efficient grouping
algorithms. It clearly shows that if users are thrown together
without considering their channel conditions, multicast may
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TABLE V: Average number of groups formed

No. of UEs No. of groups No. of UEs No. of groups
10 5.39 20 6.94
30 7.75 40 7.96
50 8.45 60 8.39
70 8.66 80 8.77
90 8.77 100 9

not provide any advantage over unicast. Among the proposed
resource allocation policies, LPr does better than the greedy
policy. It satisfies the users in lesser number of PRBs and
successfully meets their requirements in every sub-frame.
Next, we compare the performance of LPr with the widely
used PF policy.

For comparing LPr to PF, we consider a scenario with
both multicast and unicast UEs in the system. We use system
throughput and user rate satisfaction as metrics for the compar-
ison. In order to compare our scheme with PF, we first allocate
the required number of PRBs to multicast groups using LPr.
Since the rate requirements of the unicast UEs are not fixed,
allocation to the unicast UEs is done using the PF policy.

In Fig. 5a, we see the average sum throughout provided
by LPr and PF allocations. The figure shows that our scheme
results in a significantly better system throughput. Even though
it uses a chunk of PRBs to satisfy the rate requirement of
the multicast UEs, LPr policy still provides a better overall
throughput. In Fig. 5b, we plot the percent unsatisfied multi-
cast groups as a function of the number of users in the system.
The PF policy nearly always fails to meet the requirements of
the multicast users even with no constraint on the amount
of resources it can use. While PF schemes work well in a
unicast only scenario, they are not suitable for rate constrained
streaming systems that require a certain rate to be provided to
the subscribers in every sub-frame. Grouping users according
to the hybrid grouping policy and allocating resources using
the LPr policy provides the best performance in terms of
resource utilization and user satisfaction.

VII. GENERALIZATIONS

In this paper, we have primarily focused on grouping and
resource allocation for multicast streaming for non-layered
video coding such as H.264/AVC in LTE. However, the
proposed policies can also be used in several other more
general scenarios and also in 5G networks. We discuss some
of these generalizations in this section.
• Heterogeneous quality demands: The users subscribed to the
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Fig. 2: Performance evaluation of proposed policies

same eMBMS service may want to see different qualities of
the same video stream. Some users may want ultra HD quality
while others may prefer a lower quality video for a lesser price.
This heterogeneity of user demands can be handled by treating
the users who require the same quality as a separate group with
a specific rate requirement. The proposed allocation policies
can be used as is for such a system.
• Rate adaptation: The proposed policies can also be used
in streaming systems with rate adaptation as long as the rate
adaptation takes place on a slower time scale than a sub-frame
(1 ms). When the rate requirements change, the grouping of
users can be changed accordingly. As discussed in Section II,
we can allow for the groups to change every K sub-frames,
where K is large. Even if rate adaptation occurs on the order
of a few seconds, K would be of the order of a few 1000
sub-frames and the proposed policies can still be used.
• SVC: When SVC is used for encoding the streaming content,
different sets of users may require a different number of en-
hancement layers of the video. The base layer, however, needs
to be transmitted to all the users. The algorithms proposed in
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this paper can then be used for transmitting the base layer to
all the subscribed users and separate algorithms can then be
used for opportunistically transmitting the enhancement layers
to the groups with good channel conditions [35], [36].
• 5G: Even though the policies proposed in this paper have
been discussed in the context of an LTE system, the policies
can be used in next generation 5G systems as well. The
proposed hybrid grouping policy makes use of the SNR to CQI
mappings to define the grouping thresholds. Similar mappings
are also defined in 5G [54] which can be similarly used to
define the SNR thresholds. The proposed resource allocation
policies are also technology agnostic. The bandwidth in 5G
is also divided into PRBs [55] and the proposed policies can
be used to determine resource allocation for 5G in the same
manner.
Thus, the algorithms proposed in this paper can be easily
adapted for video multicasting in a wide variety of systems.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have addressed the problems of grouping
and resource allocation in multicast transmission. We have
formulated these problems with the aim of minimizing the
number of PRBs needed to cater to multicast services. In this
paper, for the very first time, we have proved that the optimal
grouping and the optimal resource allocation problems are
NP-hard and therefore, no polynomial time algorithms exist
for determining their optimal solutions. We have proposed a
randomized scheme (RS) that works iteratively for estimating
the optimal resource allocation. The output of the RS provides
a benchmark for performance evaluation of heuristic resource
allocation schemes. We have proposed two efficient heuristics
for resource allocation, a greedy and an LPr scheme. LPr
results in feasible resource allocations that save nearly as many
PRBs as that saved by RS in about one-fifth the time taken by
RS. We have proposed a hybrid grouping policy for multicast
group formation as well. Using extensive simulations, we
have shown that using the proposed policies for grouping and
resource allocation results in significant resource conservation.
The proposed schemes can act as an enhancement to eMBMS.
These enhancements will not only improve the performance
of eMBMS but will also make its multicast operations more
flexible and versatile.

As a future direction, it will be interesting to evaluate the
effect of the proposed policies on the QoE of multicast users.
To do so, we need to use the proposed policies for video
transmissions over an actual LTE system. This will require
implementing the policies in an LTE testbed wherein we can
transmit various kinds of videos to a group of users and record
their quality of experience.
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APPENDIX

A. Proof of Lemma 1
The optimal resource allocation problem B?

∆was defined
in Section II. Since B?

∆is an optimization problem, in order
to prove that it is NP-hard, we must show the corresponding
decision problem to be NP-complete. The decision problem
corresponding to B?

∆(denoted by B?
D) is defined as follows:

B?
D: Does there exist an assignment of binary variables

{xij}, i ∈ [L] and j ∈ [N ] such that (1) and (2) of B?
∆are

satisfied?
B?

Ddetermines whether or not there exists a feasible solution
of B?

∆. In order to prove that B?
∆ is an NP-hard problem, it

is sufficient to show that B?
D is NP-complete. We prove the

NP-completeness of B?
D by reduction from a version of the

3-partition problem (3P) defined below [56]:
• Input: A set Y, of P = 3m positive integers,
{ρ1, ρ2, . . . , ρP } such that B

4 < ρk <
B
2 for every ρk ∈ Y

and
∑P
k=1 ρk = mB.

• Problem: Can we obtain a disjoint partition of Y,
{Y1, Y2, . . . , Ym} such that

∑
ρk∈Yi

ρk = B and |Yi| = 3
for every Yi, i ∈ {1, 2, . . . ,m} and

⋃m
i=1 Yi = Y?

• Output: If the problem is feasible, output a suitable partition
of Y, else output that the problem is infeasible.
The 3P problem is known to be NP-complete [56]. Next, we
show the NP-completeness of B?

D by reduction from 3P.

Theorem 3. B?
Dis an NP-complete problem.

Proof. In order to prove that B?
Dis NP-complete, we first need

to show that B?
Dbelongs to the class NP. Given a certificate

for B?
D, we can verify in polynomial time whether or not it

is a solution by checking if it satisfies the requirements stated
in constraints (1) and (2) of B?

∆. This can be done in O(LN)
computations. Therefore, B?

D∈ NP.
Having proved that B?

D∈ NP, we now need to reduce 3P
to an instance of B?

Din polynomial time. The pseudo-code
for the algorithm used for the said reduction is presented in
Algorithm 4. Note that, to define an instance of B?

D, we need
to state the number of groups, number of available PRBs,
rate requirement of groups (R) and the rates that can be
achieved by the groups in every PRB. These are defined in
lines 1 through 4 of Algorithm 4 respectively. The reduction
in Algorithm 4 can be accomplished in O(N) computations.

We now show that a solution for B?
∆gives us a solution

for 3P as well. Assume that there exists a polynomial time
algorithm for solving B?

∆. If we try to solve B?
∆using this

algorithm, it will either give us a feasible solution or tell us
that B?

∆is infeasible. We will now show how each of these
outputs can be mapped to a corresponding solution for 3P.

Algorithm 4: Pseudo-code for reducing 3P to B?
D

Input: 3-partition problem with set Y, of P = 3m positive
integers, {ρ1, ρ2, . . . , ρP } such that
B
4
< ρk <

B
2
∀ ρk ∈ Y and

∑P
k=1 ρk = mB

Output: An instance of B?
Dwith

1 L← m
2 N ← P
3 R← B
4 rik = rk ← ρk ∀ k ∈ {1, 2, . . . , P} , i ∈ {1, 2, . . . ,m}

Say that the algorithm gives us a feasible solution for B?
∆.

Let the feasible solution be a matrix of binary values [x̃ij ]i,j
for i ∈ [L] and j ∈ [N ]. The corresponding solution for 3P can
be obtained from this solution in polynomial time as follows:

For every i ∈ [m], Yi = {ρj : x̃ij = 1}.
The solution thus obtained gives us a feasible solution for 3P
as well. To prove this, we need to prove that:
• The solution results in a disjoint partition of Y,
{Y1, Y2, . . . , Ym}.
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•
∑
k∈Yi

ρk = B, for every i.
• |Yi| = 3 for every i.
We shall prove these by contradiction as follows:
1) Let’s first show that the resulting solution is a disjoint
partition on Y. Suppose not. Then, one of the following two
things must happen:
a) there exists Yi and Yk such that Yi ∩ Yk 6= φ or,
b) there exists some k such that ρk /∈

⋃
i

Yi.

If 1a is true and there exist Yi and Yk such that Yi ∩ Yk 6= φ,
it means that:

∃ j ∈ [P ] such that, x̃ij = 1 and x̃kj = 1,

=⇒
∑
l x̃lj ≥ 2,

which violates constraint (2) of B?
∆. This means that [x̃ij ]i,j

is not a feasible solution of B?
∆which is a contradiction.

Therefore, Yi ∩ Yk = φ for every i and k ∈ [m].
If 1b is true and there exists k ∈ [P ], such that ρk /∈

⋃
i Yi,

it means that x̃ik = 0 for every i. But, we have a feasible
solution of B?

Dwhich guarantees that the rate requirement of
every group is satisfied. So,∑

k∈Yi
ρk ≥ B, ∀ i ∈ [m],

=⇒
∑P
j=1,j 6=k ρj ≥ mB, =⇒

∑P
j=1 ρj > mB,

which is a contradiction. Hence, 1b cannot be true. Hence, the
resulting solution will be a partition on Y.
2) We now show that

∑
k∈Yi

ρk = B ∀ i. Suppose not. Since
[x̃ij ]i,j is a feasible solution of B?

∆, we have,
∑
k∈Yi

ρk ≥ B,
for every i ∈ [m]. Let’s say that at least one of these is a strict
inequality. That is, there exists l ∈ [m] such that

∑
k∈Yl

ρk >

B. This implies that
∑P
i=1 ρi > mB, which is a contradiction.

Therefore, we will have
∑
k∈Yi

ρk = B, for every i.
3) Next, we prove that |Yi| = 3 for every Yi. Let’s suppose,
for the sake of contradiction, that one subset, Yk has less than
3 elements. Since the rate requirement of every group is B,
we have,

∑
ρi∈Yk

ρi ≥ B. Also, from the problem definition
of 3P, we have, ρi < B

2 . Since Yk can have a maximum of 2
members, we get,

∑
ρi∈Yk

ρi < B which is in contradiction
to
∑
ρi∈Yk

ρi ≥ B above. Thus, Yk cannot have less than 3
elements. Therefore, |Yi| = 3 for every Yi, i ∈ [m].
We have now established that a feasible solution of B?

∆gives
us a feasible solution of 3P as well. All that is left to complete
the proof is to show that if B?

∆turns out to be infeasible, then,
3P is infeasible as well. We prove this by contradiction :

Let’s assume that 3P has a feasible solution even when
B?

∆is infeasible. This means that, there exists a disjoint
partition of Y, {Y1, . . . , Ym} such that,

∑
ρk∈Yi

ρk = B and
|Yi| = 3 for every Yi, i ∈ {1, 2, . . . ,m}. This solution can be
mapped to a corresponding solution for B?

∆as follows:

xij =

{
1, if ρj ∈ Yi,
0, otherwise.

So, for every i, we have:
N∑
j=1

xijrij =
∑
ρj∈Yi

rj =
∑
ρj∈Yi

ρj = B = R.

Also, since Yi’s form a disjoint partition of Y, we will have,∑N
i=1 xij ≤ 1 for every j. This means that [xij ]i,j is a feasible

solution for B?
∆which is a contradiction. Therefore, 3P has to

be infeasible every time B?
∆is infeasible.

Thus, a polynomial time solution for B?
Dresults in a polyno-

mial time solution for 3P as well which is not possible unless
P = NP. Therefore, there is no polynomial time algorithm for
solving the optimal resource allocation problem =⇒ B?

Dis
an NP-complete problem.

Corollary 1. B?
∆is an NP-hard problem.

Proof. The proof follows from Theorem 3. Since the decision
version of B?

∆is NP-complete, B?
∆is an NP-hard problem.

B. Proof of Lemma 2
The optimal grouping problem C?was defined in Section II.

Before addressing the hardness of the optimal grouping prob-
lem, we wish to point out that, given a grouping policy,
∆, calculating S

∆
in polynomial time may itself be hard.

Computing S
∆

is non-trivial even when the channels are
independent across UEs. We prove the NP-hardness of C?by
reduction from the Set Cover problem which is an NP-
complete problem [57] and is defined as follows [57]:
• Input: Set Cover takes as input a universe, U =
{u1, . . . , um} containing m elements and a set S =
{S1, . . . , Sn} of subsets of U such that ∪nj=1Sj = U .
• Problem: Any collection of subsets from S form a set cover
if their union is equal to the universe. The Set Cover problem
is required to determine the smallest such collection of subsets.
• Output: The output is the smallest collection of subsets that
form a set cover.
Next, we show that C?is NP-hard by reduction from Set Cover.
Proof. To prove that C?is NP-hard, we first need to show that
C?belongs to the class NP. Given a certificate for C?, we can
verify in polynomial time whether or not it is a solution by
checking if it satisfies the requirements stated in Definition 1.
This can be done in O(L2) computations. Therefore, C?∈ NP.

We now prove that C?is NP-hard by reducing Set Cover to
an instance of C?. The pseudo-code for the algorithm used for
this reduction is given in Algorithm 5. The reduction can be
accomplished in O(MN) computations. We define the total
number of multicast UEs to be m and number of PRBs in a
sub-frame to be n. kth UE in C?maps to the variable uk in Set
Cover. Let rmax denote the maximum rate achievable in any
PRB. The rate achievable by a UE k in PRB j, rkj is defined
to be equal to rmax if uk ∈ Sj and equal to 0 otherwise. We
define the rate requirement of the groups R < rmax.

Let us now assume that there exists a polynomial time
algorithm for solving C?. Using this algorithm to solve C?will
output some grouping {G1, . . . , Gl}. We now show how to
map this output to a solution for Set Cover in polynomial
time. Since the rate achievable by a UE in any PRB can either
be rmax or 0, all the UEs that are grouped together will be
able to achieve rmax in some PRB and the number of PRBs
needed to satisfy the groups will be exactly l because 1 PRB
will be sufficient for providing the required rate. Let the nth

i

PRB be that PRB for group Gi. Hence, uk ∈ Gi, rkni =
rmax =⇒ uk ∈ Sni

. Therefore, the corresponding solution
for the Set Cover problem is {Sn1

, . . . , Snl
}. By the definition

of a grouping we have ∪li=1Gi = [m] =⇒ ∪li=1Sni = U .
Therefore, the resulting solution is a valid set cover of U .

We now show that this is indeed the smallest such collection
that covers the universe U . Suppose that this is not true.
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Then, there exists a collection of subsets from S smaller than
l that forms a set cover. Let’s denote this optimal solution
as S ′ = {Sn′

1
, . . . , Sn′

z
}, z < l. We can then construct the

following grouping from this set cover: G1 = Sn′
1
, G2 =

Sn′
2
\ Sn′

1
, G3 = Sn′

3
\ ∪2

j=1Sn′
j
, . . . , Gz = Sn′

z
\ ∪kj=1Sn′

j
.

Since S ′ is a set cover of U , we have ∪zi=1Gi = [M ] and by
construction of the groups, ∩zi=1 = φ. Hence, {G1, . . . , Gz}
is a valid grouping. Moreover, the number of PRBs needed
to satisfy the UEs under this grouping is z < l which is a
contradiction to the grouping {G1, . . . , Gl} being the optimal
solution of C?. Therefore, {Sn1

, . . . , Snl
} is the optimal

solution of the Set Cover problem.
Thus, a polynomial time solution for C?results in a poly-

nomial time solution for Set Cover as well which is not
possible unless P = NP. Therefore, there is no polynomial
time algorithm for solving C?i.e. C?is an NP-hard problem.

Algorithm 5: Pseudo-code for reducing Set Cover to C?

Input: Set Cover problem with a universe U = {u1, . . . , um}
of m variables and set S = {S1, . . . , Sn} of subsets of
U such that ∪n

i=1Si = U ,
Output: An instance of C?

1 M ← m, N ← n, kth UE← uk

2 rkj =

{
rmax, if uk ∈ Sj ,

0, otherwise.

C. Proof of Lemma 3

Proof. We have sd? ∈ arg maxsd E(sd) i.e. E(sd?) ≥ E(sd)
for every sd ∈ χ. The solution for the BLP B?

∆ corresponding
to the state sd? , {x?ij}i,j is obtained as follows:

x?ij =

{
1, ∀ j ∈ V id? ,
0, otherwise.

In LTE, the rates achievable in a PRB are discrete and can
take 15 different values corresponding to the 15 possible CQI
values [42]. The minimum rate that can be provided in a single
PRB is 16 kbps. We will denote this by rmin. Since the value
of E(.) depends on the value of R, two cases arise:
• R ≤ rmin : In this case, we can satisfy all groups by
allocating a single PRB to every group. This is a trivial case
and so, it is sufficient to consider the case with R > rmin.
• R > rmin : Before proving that {x?ij}i,j is the optimal
solution of B?

∆, we will first show that {x?ij}i,j is a feasible
solution of B?

∆. Suppose {x?ij}i,j is not a feasible solution
of B?

∆. This means, that there exists i ∈ [L] such that∑N
j=1 x

?
ijrij < R. Then the reward of sd? will be:

E(sd?) = (N−
∑
i∈[L]

∑
j∈[N ]

x?ij)−
L∑
i=1

[R− `d?i]+ +qd? . (16)

Note that qd? < L because {x?ij}i,j is infeasible. Depending
on the value of

∑
i∈[L]

∑
j∈[N ] x

?
ij , two cases arise:

1)
∑
i∈[L]

∑
j∈[N ] x

?
ij < N : For this case, consider a state sd

obtained from sd? by allotting one of the PRBs, j′ ∈ V 0d? to
one of the unsatisfied groups i′. On allocating j′ to i′, one of
two things can happen:
• Rate requirement of the group i′ is satisfied: This means
that qd = qd? + 1. The reward of the resulting sd will be:

E(sd) = E(sd?) + (R− `d?i′).

Since group i′ was unsatisfied in state sd? , (R − `d?i′) > 0.
Therefore, E(sd) > E(sd?) which is a contradiction because
E(sd?) ≥ E(sd) for every sd ∈ χ.
• Rate requirement of the group i′ is not satisfied: In this case,
the reward of the state sd will be:

E(sd) = E(sd?)− 1 + (`di′ − `d?i′).

Here, (`di′ − `d?i′) is the additional rate provided to group i′
by the PRB j′ which is why it can be no less than rmin. Since
rmin > 1, E(sd) > E(sd?) which is a contradiction.
2)
∑
i∈[L]

∑
j∈[N ] x

?
ij = N : Here, the reward of sd? is:

E(sd?) = qd? −
L∑
i=1

[R− `d?i]+ .

Since B?
∆is feasible, let sd′ be a state corresponding to a

feasible solution {xij}i,j . The reward of sd′ will be:
E(sd′) = (N −

∑
i∈[L]

∑
j∈[N ]

xij) + L > Esd? ,

which is a contradiction.
Therefore, {x?ij}i,j has to be a feasible solution of B?

∆. All
we need to complete the proof is to show that {x?ij}i,j is also
an optimal solution of B?

∆. We show this as follows:
Suppose {x?ij}i,j is not an optimal solution of B?

∆. Let’s
denote the optimal solution of B?

∆by {xij}i,j and the cor-
responding resource allocation state by sd. Since {x?ij}i,j is
not the optimal solution, we will have,

∑
i∈[L]

∑
j∈[N ] x

?
ij >∑

i∈[L]

∑
j∈[N ] xij The reward of sd will be:

E(sd) = (N −
∑
i∈[L]

∑
j∈[N ] xij) + L,

=⇒ E(sd) > (N −
∑
i∈[L]

∑
j∈[N ] x

?
ij) + L = E(sd?),

which is a contradiction. Therefore, {x?ij}i,j is an optimal
solution of the BLP B?

∆.
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